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Abstract: The exponentially correlated Hylleraas–configuration interaction method (E-Hy-CI) is a
generalization of the Hylleraas–configuration interaction method (Hy-CI) in which the single rij of
an Hy-CI wave function is generalized to a form of the generic type r

νij

ij e−ωijrij . This work continues
the exploration, begun in the first two papers in this series (on the helium atom and on ground and
excited S states of Li II), of whether wave functions containing both linear and exponential rij factors
converge more rapidly than either one alone. In the present study, we examined not only 1s2 1S states
but 1s2p 1P states for the He I, Li II, Be III, C V and O VII members of the He isoelectronic sequence
as well. All 1P energies except He I are better than previous results. The wave functions obtained
were used to calculate oscillator strengths, including upper and lower bounds, for the He-sequence
lowest (resonance) 1S→ 1P transition. Interpolation techniques were used to make a graphical study
of the oscillator strength behavior along the isoelectronic sequence. Comparisons were made with
previous experimental and theoretical results. The results of this study are oscillator strengths for
the 1s2 1S→ 1s2p 1P He isoelectronic sequence with rigorous non-relativistic quantum mechanical
upper and lower bounds of (0.001–0.003)% and probable precision ≤ 0.0000003, and were obtained
by extending the previously developed E-Hy-CI formalism to include the calculation of transition
moments (oscillator strengths).

Keywords: exponentially correlated Hylleraas–configuration interaction; E-Hy-CI; Hy-CI; helium iso-
electronic sequence; oscillator strengths; transition moments; f -values; Slater-type orbitals (STOs); atoms

1. Introduction

The Hylleraas–configuration interaction (Hy-CI) technique (developed by Sims and
Hagstrom (SH) [1] and also independently by Woźnicki [2]) is a hybrid approach that
attempts to combine the high precision of explicitly correlated traditional Hylleraas (Hy) [3]
methods with the analytical tractability of strictly orbital-based configuration interaction
(CI) methods [4]. The use of configurations wherever possible leads to less difficult integrals
than in a purely Hy1 approach whose progress beyond the three electron atomic level has
been hindered by the intractability of integrals involving nonseparable products of factors of
the form r12r23r34. If one restricts the wave function to at most a single, linear interelectronic
distance rij factor in each configuration state function (CSF), then the most difficult integrals
are already dealt with at the four-electron level and the calculation retains the precision of
Hy techniques, but is greatly simplified by the use of CI basis sets. However, for Ne ≥ 4,
there exists an ultimately slowly convergent “rijrkl” double cusp that is built into Hy-CI
for four or more electrons. Consequently, methods that speed up the convergence of an rij
factor can facilitate the extension of Hy-CI to systems with Ne > 4.
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In this paper, we continue to explore2 a generalization of the Hy-CI method proposed
by Wang, Mei, Kurokawa, Nakashima and Nakatsuji [8], the exponentially correlated
Hylleraas–configuration interaction (E-Hy-CI) method, in which the single rij of an Hy-CI

wave function is generalized to a form of the generic type r
νij
ij e−ωijrij . Pairing an exponential

rij factor with linear rij was first suggested for helium by Hirschfelder who, in 1960 [9],
suggested that this type of correlation factor has the right behavior in the vicinity of the
rij cusp, and also has the right behavior as rij goes to infinity. Whether functions having
both linear and exponential rij factors might be more rapidly convergent than either one
alone was not demonstrated until our recent studies of the ground 1S state of the helium
atom [6] and not only the ground 1 1S state of the Li+ ion (Li II), but the 2 1S through 6 1S
excited states as well [7].3 The present contribution continues this work by comparing the
convergence of the E-Hy-CI wave function expansion to that of the Hy-CI wave function
without exponential factors for states of non-S symmetry, specifically the 1s2p 1P (2 1P)
state of some members of the He isoelectronic sequence.

The computed 1s2p 1P state wave functions were used with the previously obtained 1S
wave functions (and some new ones for Li II, Be III, C V and O VII) to calculate He-sequence
oscillator strengths, including upper and lower bounds, for the lowest 1S→ 1P transition.

The calculations reported in this work were obtained by solving the non-relativistic
Schrödinger equation. Chung et al. [15] discussed the relative importance of correlation
effects versus relativistic effects and stated that, for Z ≤ 27, correlation effects dominate
relativistic effects. Consequently, one should start out with the best possible solutions to the
non-relativistic Schrödinger equation and treat relativistic effects as a perturbation. Since this
work considers first-row atoms for which Z ≤ 10, solving the non-relativistic Schrödinger
equation is meaningful.

2. Variational Calculations

For Ne electrons, the total non-relativistic, stationary-point-nucleus energy ENR is de-
fined as the exact solution (eigenvalue) of the time-independent, non-relativistic Schrödinger
equation

HNRΨ(r1, r2, . . . rNe) = ENRΨ(r1, r2, . . . rNe), (1)

where the Hamiltonian HNR is defined as (in hartree atomic units)

HNR =
Ne

∑
i=1
Hi +

Ne

∑
i<j

r−1
ij . (2)

Here,Hi = Ti + Vi,Hi being a one-electron operator (electron i) consisting of a kinetic
energy part Ti = − 1

2∇2
i and a nuclear attraction part Vi = −Z/ri. Ne denotes the number

of electrons and Z the corresponding nuclear charge.
The E-Hy-CI wave function for Ne electron atomic states is

Ψ =
N

∑
K=1

CKΦK, (3)

where

ΦK = Λ(rνK
ij e−ωKrij

Ne

∏
s=1
{φKs(rs)}ΘK) = OasOL,ML OS,MS(r

νK
ij e−ωKrij

Ne

∏
s=1
{φKs(rs)}ΘK) (4)

denotes the Kth antisymmetrized orbital and spin angular momentum projected explicitly
correlated configuration state function (CSF). Λ is the symmetry adaptation operator that
performs the projection and is a product of an idempotent projection operator that makes
the state antisymmetric, Oas, and OL,ML , OS,MS , the idempotent orbital and spin angular
momentum projection operators of Löwdin type [16] for a state of total quantum numbers
L, ML, S, MS (Russell–Saunders (LS) coupling is assumed). Each term K contains at most
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one explicitly correlated factor rνK
ij e−ωKrij that, in addition to the Hy-CI case with ωK = 0,

can also have ωK 6= 0. In practice, it is sufficient to take νK equal to 0 or 1, with νK = 1,
ωK = 0 the Hy-CI case and νK = 0, ωK = 0 the CI case.4 ΘK is a primitive spin product
function for term K and φKs(rs) represents the sth basis orbital in the Kth term.

The basis orbitals are un-normalized Slater-type orbitals (STOs) φ(r) that are defined as

φi(r) = [ni, li, mi]
i
ξi
= rni−1e−ξirYmi

li
(θ, φ), (5)

where Ym
l (θ, φ) is a normalized spherical harmonic in the Condon and Shortley phase

convention [19]. With this choice of phase convention, the spherical harmonics satisfy

Ym∗
l (θ, φ) = (−1)mY−m

l (θ, φ). (6)

The coefficients CK in Equation (3) were found in this work by solving the generalized
eigenvalue problem

HC = ESC, (7)

(H−E0S)C = (E− E0)SC, (8)

C = (E− E0)(H−E0S)−1SC, (9)

where the matrix elements are given by HKL = 〈ΦK|HΦL〉 and SKL = 〈ΦK ΦL〉 with the
Hamiltonian H given by Equation (2) and E0 being some starting approximation for the
eigenvalue E of interest.

The details of how the authors solve this real symmetric-definite eigenvalue problem
are discussed in [20], including how to obtain a quadruple precision version of our com-
putationally fast Fortran 90+ portable parallel package suitable for large (80,000 × 80,000
or greater) dense matrices. All results reported in this article were obtained using real*32
extended precision (quad-double-with exponent or QDE, 256-bit, ≈64 digits) floating point
arithmetic, and the message-passing interface (MPI) standard [21] was used to parallelize
the code.

Method of Calculation

For two electrons, following Hy-CI [22], spin can be eliminated, and the E-Hy-CI wave
function becomes [6,7]

Ψ(r1, r2) =
N

∑
K=1

CKΦK(r1, r2), (10)

where the terms ΦK are specifically of the form

ΦK(r1, r2) = (1± P12)OL,ML(r
νK
12 e−ωKr12 φK1(r1)φK2(r2)). (11)

P12 is the operator that permutes electrons 1 and 2; the plus sign is for singlet levels
and the minus sign is for triplet levels. Equation (2) becomes

HNR = H1 +H2 +H12, (12)

whereH12 = r−1
12 .

In the generalized eigenvalue problem HC = ESC, matrix element HKL is

HKL = 〈ΦK|H|ΦL〉 = 〈ΛΦP
K|H|ΛΦP

L〉, (13)

where ΦP
K = rνK

12 e−ωKr12 φK1(r1)φK2(r2) denotes the Kth primitive (unprojected) function as
given in Equation (11) above. SKL is similar, withH replaced by the unit operator 1.

The projection reduction of these matrix elements is the same projection reduction used
in Hy-CI calculations on lithium [23] and on beryllium [24] and is discussed in Appendix A
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of those references. The helium case is simpler so just the result is given here, which is that
HKL is given by

HKL = 〈gK fK|H|OL,ML B(gLfL)〉, (14)

where gK(r12) = rνK
12 e−ωKr12 is the correlation factor and fK = φK1(r1)φK2(r2) is a product

of un-normalized STOs (Equation (5)). In Equation (14), one can apply OL,ML either before
or after applying B = 1 + P12. The OL,ML projection is applied only on the orbital products
since gL = rνL

12e−ωLr12 commutes with OL,ML [1].
In generalizing Hy-CI to E-Hy-CI for the two-electron He-sequence case, one merely

has to take the correlation factor gK to be gK = rνK
12 e−ωKr12 in the formulas above since

e−ωKr12 has the same symmetry properties as r12. Thus, HKL becomes

HKL = 〈φK1(r1)φK2(r2)r
νK
12 e−ωKr12 |H|rνL

12e−ωLr12(1 + P12)OL,ML(φL1(r1)φL2(r2))〉. (15)

A detailed discussion of the most general exponentially correlated integrals that have
to be evaluated when using this wave function can be found in Section 3 of our recent
study [6] of the ground state of helium.

3. Oscillator Strengths

The basic theory of electric dipole radiation in atomic systems was given by Condon
and Shortley [19]; their terminology is followed closely herein. Assuming Russell–Saunders
(LS) coupling and the non-relativistic many-electron Hamiltonian HNR (Equation (2)),
the energy states of an atom are characterized by the set of quantum numbers γLSML MS

(here, γ denotes the electronic configuration5). For an electric dipole transition connecting
the terms (multiplets) γLS and γ′L′S′, Condon and Shortley introduced the quantity
S(γLS;γ′L′S′), called the absolute multiplet oscillator strength (line strength). It is defined
in terms of the electric dipole moment operator

~P =
Ne

∑
i=1

~ri (16)

by
S(γLS; γ′L′S′) = ∑

ML ,MS

∑
M′L ,M′S

|〈γLSML MS|~P|γ′L′S′M′L M′S〉|2. (17)

The f -value or multiplet oscillator strength is related to S by

f (γLS→ γ′L′S′) =
2
3
(E(γ′L′S′)− E(γLS))

(2L + 1)(2S + 1)
S(γLS; γ′L′S′). (18)

The familiar electric dipole selection rules ∆S = 0, ∆MS = 0, ∆L = ±1 and
∆ML = 0, ±1, hold for the Hamiltonian that we used. Moreover, given γLS and γ′,
L′(= L− 1, L, L + 1), S′(=S), as a consequence of the Wigner–Eckart theorem, every non-
vanishing matrix element of the operator ~P can be expressed in terms of a single parameter
β(γLS; γ′L′S′) multiplied by expressions involving only L, ML and M′L. The parameter is
independent of the quantum numbers ML, M′L, MS and M′S, the summation indices occur-
ring in Equation (17). Consequently, the expressions for the multiplet oscillator strength
may be written as products of a parameter β(γLS; γ′L′S′) and a single algebraic function
of L and S resulting from the summation. Finally, notice that only one nonvanishing matrix
element needs to be evaluated to determine a β(γLS; γ′L′S′), so, instead of computing all
the matrix elements occurring in the summations in Equation (17), a single matrix element
suffices to find the multiplet oscillator strength for a given γLS; γ′L′S′.

For the 1s2 1S→ 1s2p 1P transition, the 1S term consists of the one state with L = ML = 0,
S = MS = 0. The 1s2p 1P term consists of three states corresponding to S′ = M′S = 0, L′ = 1
and M′L = −1, 0, 1. We choose to express (γLS→ γ′L′S′) in terms of the matrix element
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corresponding to the 1P state with S′ = M′S = 0, L′ = 1 and M′L = 0. Then, Equation (17)
for L′ = L + 1 becomes (un-normalized wave functions), from Goldberg [25],

S(γ 1S; γ′ 1P) = 3
∣∣∣ 〈γ 1S|~P|γ′ 1P, ML′ = 0〉
[〈γ 1S|γ 1S〉〈γ′ 1P, ML′ = 0|γ′ 1P, ML′ = 0〉] 1

2

∣∣∣2 (19)

and we only need to construct γ 1S = Ψ(1s2 1S) and γ′ 1P = Ψ(1s2p 1P) and evalu-
ate Equation (19) to compute the line strength S and then the non-relativistic oscillator
strength f .6

To evaluate Equation (19), we use the method developed by one of the authors (see
Section 2.B in [29]) which leads to the following expression for S:

S(γ 1S; γ′ 1P) = 4π|W̃0|2 = 3W̃2
ab, (20)

where
∣∣W̃0

∣∣, the electronic dipole transition moment, is defined by

∣∣W̃0
∣∣ = ∣∣∣〈γ 1S|

Ne

∑
i=1

[2, 1, 0]i0|γ′ 1P, ML′ = 0〉
∣∣∣ (21)

in terms of un-normalized STOs (Equation (5)). To make the notation clearer, [2, 1, 0]i0 is just
the STO riY

mi
li
(θi, φi), i.e., it is a p0 STO whose orbital exponent equals 0.

To evaluate Equation (20), we use the fact that the wave functions employed to
evaluate Equation (20) are given by Equations (3) and (4) and are linear combinations of
antisymmetrized projected products of orbitals and at most one correlation factor of the
form rν12

12 e−ω12r12 .
Thus, ∣∣W̃0

∣∣ = ∑
K,L

CKCL
∣∣W̃0

∣∣
KL, (22)

where ∣∣W̃0
∣∣
KL =

∣∣∣〈ΦK|
Ne

∑
i=1

[2, 1, 0]i0|ΦL〉
∣∣∣. (23)

In Equation (23), ΦL is a linear combination of orbitals and at most one correlation
factor, so Equation (23) can be evaluated by expanding the product of [2, 1, 0]i0 and the
appropriate STO of ΦL in terms of STOs by the formulas given in a previous paper [30].
Then, the integrals required to evaluate Equation (20) are similar in type to those required
to calculate overlap matrix elements using these wave functions and can be evaluated as
described in the next section.

Transition Moment Integrals

In Equation (23), the exponentially correlated transition moment integrals that have to
be evaluated are of the form

IR = 〈φ1(r1)φ2(r2)rν
12e−ωr12 |R|rν′

12e−ω′r12 φ′1(r1)φ
′
2(r2)〉, (24)

where the operator R = [2, 1, 0]i0 for transition moment integrals. The key to evaluating
these integrals is to recognize that we can convert these integrals into overlap integrals
(R = 1) by recognizing that [2, 1, 0]i0 and φ′i(ri) are STOs and can be expanded in terms of
STO-like functions fi(r)

fi(r) = [Ni, Li, Mi]ωi = rNi−1e−ωiri YMi
Li
(θ, ϕ) (25)

in a manner similar to the way “charge distributions” Ω(r)

Ω(r) = φ∗(r)φ′(r) = [n, l, m]∗α[n
′, l′, m′]α′ (26)



Atoms 2023, 11, 107 6 of 20

are expanded. When Ω′i(r) is given by

Ω′(r) = φ(r)φ′(r) = [n, l, m]α[n′, l′, m′]α′ (27)

the formula becomes

Ω′i(r) = (−1)mi ∑
Li

{
(2Li + 1)

4π

}1/2

cLi
(
l′i , m′i; li,−mi

)
fi(r), (28)

where Ni = ni + n′i − 1 and the exponents are wi = αi + α′i. Li satisfies the triangular
inequality |li − l′i | ≤ Li ≤ li + l′i , with li + l′i + Li = 2g (g integral, i.e., the summation goes
in steps of 2), and with the further restriction Li ≥ |Mi|, Mi = m′i + mi. The cLi are standard
Condon and Shortley coefficients (the so-called cks) [19,30–32]. Using Equation (28) trans-
forms the transition moment integrals into the form of Equation (19) of the first paper in this
series [6] withR = 1, which can be evaluated by the methods of Section 3.1 of that paper.

4. Upper and Lower Bounds to Oscillator Strengths

The f -value or multiplet oscillator strength is notoriously sensitive to the wave func-
tions employed in computing S via Equation (19) (S is then used in Equation (18) to compute
f) [33,34] because significant contributions to the integral may arise from regions that do not
significantly affect the energies of either state. To remedy this situation, Weinhold showed
how to calculate rigorous upper and lower bounds to f -values (dipole oscillator strengths)
from non-relativistic quantum mechanical principles [35,36]. While bounds were computed
for a few atomic and molecular oscillator strengths [29,37–39], the rigorous bounds did not
reflect the true precision of the computed oscillator strengths. For example, one of the co-
authors calculated oscillator strengths, including rigorous (non-relativistic, infinite nuclear
mass) quantum mechanical upper and lower bounds, for the lowest 1S→ 1P transition of
Be I, C III and O V [29] of (7–10)% and probable accuracy of ≤2%. The same co-author
computed oscillator strengths, with rigorous upper and lower bounds, for the 16 lines
arising from allowed transitions among the four lowest 2S and four lowest 2P states of Li
I [38] of 3.5% in the best case (1s22s 2S → 1s22p 2P) (the error in the best case was later
shown to actually be approximately 0.3% [26]).

To obtain good bounds, the calculations have to be of higher precision, as was the case
in the Anderson and Weinhold calculations of dipole oscillator strengths for He and Li+ in
1974 [37] in which a third of the calculated f -values were guaranteed to be 1% or better; in
the best case (Li+ 2 3S→ 2 3P), the bounds tightened to approximately 0.05%, around two
orders of magnitude better than the corresponding experimental results. Perhaps because
of the need for high precision, the most recent bounds calculation took place in 1976 (except
for one in 1986 for the special case of the hydrogen atom [40] and one in 1988 for the special
case of Hartree–Fock wave functions [41]). However, computational capacity has continued
to evolve so that more and more high-precision wave functions are becoming available,
and, in the case of the two-electron helium atom, the E-Hy-CI wave functions are precise
enough energetically to suggest using them to compute oscillator strengths with upper and
lower bounds to provide rigorous estimates of the uncertainty in the computed f -values.

Method of Calculation

Weinhold’s procedure [35] for calculating rigorous upper and lower bounds to dipole
strengths actually computes bounds to the transition moment, from which, as we have seen,
f -values (oscillator strengths) can be computed. In terms of approximate wave functions
ψa and ψb for states a and b, respectively, the approximate transition moment is

W̃ab = 〈ψa|Wl |ψb〉. (29)
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The following additional quantities are required for the calculation of error bounds
(see Section 2.C in [29]): the overlap integrals of the approximate wave functions ψa, ψb
with the true wave functions Ψa, Ψb,

Sa ≡ 〈ψa|Ψa〉, Sb ≡ 〈ψb|Ψb〉, (30)

the corresponding overlap errors εa+, εb+,

εa+ ≡ (1− S2
a−)

1
2 , εb+ ≡ (1− S2

b−)
1
2 , (31)

and an uncertainty ∆ab that is defined by

∆ab ≡ (〈ψb|W2
l |ψb〉 − W̃2

ab)
1/2. (32)

Upper and lower bounds can then be calculated from the inequalities

Wab ≶ Sa±Sb±W̃ab ± εa+Sb±∆ab ± εb+[〈Ψa|W2
l |Ψa〉+ − (Sa−W̃ab − εa+∆ab)

2]
1
2 , (33)

where the subscript ± signs mean the upper (+) or lower (-) bounds to the correspond-
ing quantities.

With |W̃|’s defined by Equation (23), we have that

S(γ 1S; γ′ 1P) = 4π|W̃0|2 = 3W̃2
ab, (34)

which relates upper and lower bounds to transition moments and upper and lower bounds
to oscillator strengths.

5. 1P Wave Functions

The basis set orbitals in Hy-CI and E-Hy-CI atomic calculations are STOs; see Equation (5).
For the nonlinear orbital exponent parameters for 1s2 1S (1 1S) states, the use of the “doubled”
(orbital exponent) basis set E-Hy-CI introduced in paper I and continued in paper II was
also continued here. In this treatment, the first set has an orbital with an orbital exponent
ξ that makes it essentially a valence shell orbital, whereas, for the second set, the orbital
has a large exponent ξ ′ that brings it in closer to the nucleus. This approach is due to
Drake [42,43], who pointed out the need for “doubling” basis sets so there is a natural
partition of the basis set into two distinct distance scales: one appropriate for the complex
correlated motion near the nucleus, and the other appropriate further out. The results are
very good for the ground 1S state of helium [6] and Li+ ground and excited states [7] of
1S symmetry; that approach was continued here in the treatment of other members of the
helium 1S isoelectronic sequence.

In contrast to the closed-shell 1s2 1S states, the 1P states are open-shell 1s2p 1P states
with the two electrons having different symmetries. The two different orbital exponent
basis sets for 1P are chosen to be representative of the two different electrons; there is no
natural partition of the basis set into two distinct distance scales. In this case, pairing an
exponential r12 factor with linear r12 may have an enhanced role in providing the right
behavior in the vicinitiy of the r12 cusp and also the right behavior as r12 goes to infinity.
How well this approach works for non-S states was studied by carrying out calculations on
the lowest helium 1P state (2 1P) and then extending the He 2 1P state calculation to other
members of the He 2 1P isoelectronic sequence.

It is worth noting that the 1P calculations are formally no different from the 1S calcula-
tions since the idempotent orbital and spin angular momentum projection operators of the
Löwdin type in Equation (4) will project out linear combinations of the basis set orbitals
with the correct orbital and spin angular momentum.
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5.1. Comparison with Orthogonal Hy-CI

Table 1 presents a comparison of the convergence of an E-Hy-CI wave function expan-
sion for He 1P with that of the Hy-CI wave function without exponential factors. Included
also for comparison with these non-orthogonal wave function results are the orthogonal
Hy-CI (O-Hy-CI) results of Zhang et al. [17]. The groundwork for O-Hy-CI was laid out
in the 1960s by Szasz in his “General Theory of Correlated Wave Functions” [44], but his
calculations were orthogonal Hy [45,46] (the orbitals were s-only STOs and not p-, d-, . . .
orbitals, which are the hallmark of CI). The first genuine O-Hy-CI was carried out by Plute
in 1984 [47] with calculations on four He states, the He 1P being the one relevant to this
research. Using an s-, p-, d- and f - STO basis, Plute was able to achieve an energy of
−2.1238 4260 hartree with 90 terms in the expansion, better at the time than all but the
perimetric calculation of Schiff et al. [48] and the Hy calculation of Anderson and Wein-
hold [37]. To the authors’ knowledge, this remained the only O-Hy-CI calculation until the
O-Hy-CI calculation of Zhang et al. [17], which is significant, as will be seen, in that the
O-Hy-CI results, as do the E-Hy-CI results, speed up convergence over non-orthogonal
Hy-CI wave functions and hence might help to overcome the ultimately slow conver-
gence of “the rijrkl double cusp”, analogous to the rij cusp problem for CI, that arises for
Ne ≥ four-electron systems.

5.2. Comparison of E-Hy-CI and Hy-CI

To clarify the E-Hy-CI and Hy-CI approach of the authors to orbital basis sets (and
their optimization) for 1P states, consider Table 1. In contrast to 1S states, each line in the
table specifies an inner set for the first electron and its associated l quantum number (=lmax),
and an outer set with its associated and l′ = l + 1 quantum number for the second electron.
In the table, only the minimum information needed to specify the basis set is listed, namely
an exponent ξ, the l quantum number for orbitals with that exponent, norbs, the number
of orbitals with that exponent (the ni in Equation (5) run from li + 1 to li + norbs), and ω12,
the exponent of the exponentially correlated r12 factor if this is an E-Hy-CI calculation.
In all of the tables, N is used to refer to the number of terms in the wave function (see
Equation (3)).

Table 1 displays the steps leading to the final 7744-term 2 1P state wave function used
in this work. Starting with a fixed ξ ′ = 1.085 for l, l′ = {0,1}, ξ was varied until the energy
went through a minimum and there were enough data points to fit a smooth curve and
yield an optimized ξ = 2.272. Next, ξ was fixed at 2.272 and ξ ′ was optimized in a similar
fashion, yielding the optimized values of ξ, ξ ′ = {2.272,1.291} for the l, l′ = {0, 1} 480 term
wave function used in the optimization. norbs and n′orbs were then extended to 19 for an
l, l′ = {0,1} 722-term Hy-CI wave function of ≈0.015 millihartree precision. The effect of
the exponential r12 on the precision of the calculation is clearly evident when adding to
each term an exponentially correlated e−ω12r12 factor whose exponent ω12 is chosen to be
the one (0.5) that satisfies the Kato cusp condition [49], yielding a 1444-term E-Hy-CI wave
function of ≈15 µhartree precision. The speedup of O-Hy-CI over non-orthogonal Hy-CI
wave functions is readily apparent at this point as the 514-term O-Hy-CI calculation of
Zhang et al. [17] improves the 1444-term Hy-CI to greater than nanohartee precision (but the
E-Hy-CI precision is better). This strategy was continued to the l, l′ = {1,2} block, yielding
optimized values of ξ, ξ ′ = {1.955,2.25} for the 1444-term Hy-CI wave function and the
2888-term E-Hy-CI wave function, which is of ≈ picohartree precision. Thanks to the very
high-precision exponentially correlated Hylleraas (E-Hy) calculation of Aznabaev et al. [50],
it is clear that the lmax = 3 (s-, p-, d- and f - STO) Hy-CI precision for this state is 10 decimal
places and the E-Hy-CI precision is >13 decimal places, which is better than all previous
calculations except for the Hy calculation of Drake [43] and the calculation by Aznabaev
et al. The results from continuing the comparison through lmax = 7 are tabulated in Table 1.
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Table 1. Comparison of theoretical Hy-CI, E-Hy-CI and O-Hy-CI energies for the He 2 1P state using
two different orbital exponents (ξ 6= ξ ′) for electrons 1 and 2. Calculations utilized in obtaining the
optimal ξ, ξ ′ are included. For each lmax, l′max = lmax + 1. N is the number of terms in the expansion.

Technique Author lmax norbs ξ l′max n′
orbs ξ′ ω12 N Energy (Hartree)

Hy-CI 1 This work 0 16 2.28 1 15 1.085 480 −2.1238 2778 5160 1660 5130

Hy-CI This work 0 16 2.272 1 15 1.085 480 −2.1238 2778 5160 4328 8615

Hy-CI This work 0 16 2.270 1 15 1.085 480 −2.1238 2778 5160 4106 3517

Hy-CI This work 0 16 2.272 1 15 1.300 480 −2.1238 2780 3592 4727 1690

Hy-CI This work 0 16 2.272 1 15 1.291 480 −2.1238 2780 3657 1217 9787

Hy-CI This work 0 16 2.272 1 15 1.290 480 −2.1238 2780 3655 3377 1118

Hy-CI This work 0 16 2.272 1 15 1.291 480 −2.1238 2780 3657 1217 9787

E-Hy-CI This work 0 16 2.272 1 15 1.291 0.5 960 −2.1238 4308 3927 0924 8309

Hy-CI This work 0 19 2.272 1 19 1.291 722 −2.1238 2782 6872 0251 1341

E-Hy-CI This work 0 19 2.272 1 19 1.291 0.5 1444 −2.1238 4308 5062 4897 8422

Hy-CI This work 1 15 2.000 2 14 0.75 900 −2.1238 4303 4769 4360 5998

Hy-CI This work 1 15 1.955 2 14 0.75 900 −2.1238 4303 4770 5696 3685

Hy-CI This work 1 15 1.900 2 14 0.75 900 −2.1238 4303 4768 6097 2667

Hy-CI This work 1 15 1.955 2 14 2.30 900 −2.1238 4307 3318 1068 7228

Hy-CI This work 1 15 1.955 2 14 2.25 900 −2.1238 4307 3463 3468 4622

Hy-CI This work 1 15 1.955 2 14 2.20 900 −2.1238 4307 2960 1221 3901

Hy-CI This work 1 15 1.955 2 14 2.25 900 −2.1238 4307 3463 3468 4622

E-Hy-CI This work 1 15 1.955 2 14 2.25 0.5 1800 −2.1238 4308 6441 2634 4197

Hy-CI This work 1 19 1.955 2 19 2.25 1444 −2.1238 4307 5774 3704 6662

O-Hy-CI Zhang et al. [17] 6 2 1.169 3 4 4 0.28419 3 514 −2.1238 4308 6457 05

E-Hy-CI This work 1 19 1.955 2 19 2.25 0.5 2888 −2.1238 4308 6497 9644 7703

Hy-CI This work 2 19 2.40 3 18 2.30 2128 −2.1238 4308 6479 8938 8807

E-Hy-CI This work 2 19 2.40 3 18 2.30 0.5 4256 −2.1238 4308 6498 0912 9534

Hy-CI This work 3 18 2.40 4 15 2.30 2668 −2.1238 4308 6491 8108 5041

E-Hy-CI This work 3 18 2.40 4 15 2.30 0.5 5336 −2.1238 4308 6498 0989 3227

Hy-CI This work 4 15 2.40 5 14 2.30 3088 −2.1238 4308 6491 9211 6091

E-Hy-CI This work 4 15 2.40 5 14 2.30 0.5 6176 −2.1238 4308 6498 1004 0079

Hy-CI This work 5 14 2.40 6 14 2.30 3480 −2.1238 4308 6491 9773 5726

E-Hy-CI This work 5 14 2.40 6 14 2.30 0.5 6960 −2.1238 4308 6498 1008 1958

Hy-CI This work 6 14 2.40 7 14 2.30 3872 −2.1238 4308 6492 0145 5741

E-Hy-CI This work 6 14 2.40 7 14 2.30 0.5 7744 −2.1238 4308 6498 1009 6317

O-Hy-CI Plute (1984) [47] 90 −2.1238 4260

Hy AW 5 (1974) [37] 2.00 0.88 137 −2.1238 4303 14

Hy SLPR 6 (1965) [48] 560 −2.1238 4308 5800

O-Hy-CI Zhang et al. [17] 6 2 1.169 3 4 4 0.28419 3 514 −2.1238 4308 6457 05

Hy Drake (1996) [43] 804 −2.1238 4308 6498 091

E-Hy-CI This work 6 14 2.40 7 14 2.30 0.5 7744 −2.1238 4308 6498 1009 6317

Reference Aznabaev et al. [50] 22,000 −2.1238 4308 6498 1013 5924

(E-Hy) 7 (2018) . . . 7333 1423 74

Note: All energies in this work are variational; all calculations were carried out in quadruple-double-with
exponent (QDE) precision. 1 For a detailed discussion of both E-Hy-CI and Hy-CI, including how they compare
with the other methods in this table and elsewhere in this research, see the authors’ review article [14]. 2 6 here
represents norbs = 7, 6, 5, 4, 3, 2 and 1, respectively, for l = 0−6. 3 Jiao [51]. 4 4 here represents n′orbs = 5, 4, 3, 2
and 1, respectively, for l′ = 0−4. 5 Anderson and Weinhold. 6 Schiff, Lifson, Pekeris and Rabinowitz. 7 This line
continues the line above, giving the trailing digits from Table II of Aznabaev et al. [50].



Atoms 2023, 11, 107 10 of 20

The formula of Pekeris and co-workers [48],

Eextrapolated = E1 +
(E1 − E0)(E2 − E1)

2E1 − E0 − E2
, (35)

where the E0, E1 and E2 values are the 6176, 6960 and 7744-term results in Table 1, is used
to extrapolate to an estimated exact non-relativistic energy of this state.

These Table 1 results show dramatic improvements:

• Hy-CI sp-wave 4 decimal place precision becomes 8 decimal place E-Hy-CI sp-wave
precision (> Hy-CI pd-wave precision),

• Hy-CI pd-wave 7 decimal place precision becomes 11 decimal place E-Hy-CI pd-wave
precision (> Hy-CI l = 7 precision),

• already at the E-Hy-CI pd-wave expansion, the result is better than the Hy-CI l = 7 result.

It is clear from the Table 1 results that the 14 decimal place l = 7 Hy-CI result can be
improved on with just an l = 3 E-Hy-CI basis; this demonstrates that the E-Hy-CI speed-up
convergence over non-orthogonal Hy-CI wave functions for S states continues for non-S
states as well (specifically, for P states).

6. Isoelectronic Sequences

The 8568-term wave function for the 1s2 1S state of He I of estimated 20 decimal digit
precision and the 7744-term wave function for the 1s2p 1P state of estimated 16 decimal
digit precision were used to calculate wave functions and energies for other members of
the He isoelectronic sequence, namely Li II, Be III, C V and O VII. For these results, no
exponent minimization was performed, just a simple nuclear charge-based scaling of the
wave functions of Table 4 of Sims et al. [6] and Table 1, respectively. For example, the results
for Be III were obtained by scaling the orbital exponents by a factor of 4.0/2.0 and, for C V,
the orbital exponents were scaled by a factor of 6.0/2.0. Our results are tabulated in Table 2
and compared with the best previous calculations for these states. Since the 7744-term
result is better than the best previous calculation for Li II through O VIII, the formula of
Pekeris and co-workers [48] given in Equation (35) was again used to extrapolate to an
estimated exact non-relativistic energy for these states; the E0, E1 and E2 6176, 6960 and
7744-term results are included in Table 2. The complete E-Hy-CI wave function expansions
for all calculations used in this study are enumerated in Appendix A Table A1 (1S) and
Table A2 (1P).

Table 2. Correlated wave function He isoelectronic sequence 1 1S and 2 1P non-relativistic energies.
N is the number of terms in the expansion.

State Technique Author N Energy (Hartree)

He 1 1S E-Hy-CI Sims et al. (2020) [6] 8568 −2.9037 2437 7034 1195 9830 94

He 1 1S ICI Nakashima and Nakatsuji (2008) [52] 22,709 −2.9037 2437 7034 1195 9831 12

Li II 1 1S E-Hy-CI Sims et al. (2021) [7] 8568 −7.2799 1341 2669 3059 6491 66

Li II 1 1S ICI Nakashima and Nakatsuji (2008) [52] 22,709 −7.2799 1341 2669 3059 6491 95

Be III 1 1S E-Hy-CI This work 8568 −13.6555 6623 8423 5867 0207 77

Be III 1 1S ICI Nakashima and Nakatsuji (2008) [52] 9682 −13.6555 6623 8423 5867 0208 17

C V 1 1S E-Hy-CI This work 8568 −32.4062 4660 1898 5303 1055 17

C V 1 1S ICI Nakashima and Nakatsuji (2008) [52] 9682 −32.4062 4660 1898 5303 1055 74

O VII 1 1S E-Hy-CI This work 8568 −59.1565 9512 2757 9255 5854 43

O VII 1 1S ICI Nakashima and Nakatsuji (2008) [52] 9682 −59.1565 9512 2757 9255 5854 99
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Table 2. Cont.

State Technique Author N Energy (Hartree)

He 2 1P E-Hy-CI This work 6176 −2.1238 4308 6498 1004 0079

He 2 1P E-Hy-CI This work 6960 −2.1238 4308 6498 1008 1958

He 2 1P E-Hy-CI This work 7744 −2.1238 4308 6498 1009 6317

He 2 1P Extrapolated This work −2.1238 4308 6498 1010(3)

He 2 1P E-Hy Aznabaev et al. (2018) [50] 22,000 −2.1238 4308 6498 1013 5925

Li II 2 1P E-Hy-CI This work 6176 −4.9933 5107 7780 0153 5568

Li II 2 1P E-Hy-CI This work 6960 −4.9933 5107 7780 0155 3584

Li II 2 1P E-Hy-CI This work 7744 −4.9933 5107 7780 0159 3316

Li II 2 1P Extrapolated This work −4.9933 5107 7780 0165(3)

Li II 2 1P ECS 1 Cann and Thakkar (1992) [53] 100 −4.9933 5107 21

Be III 2 1P E-Hy-CI This work 6176 −9.1107 7162 2916 4383 9458

Be III 2 1P E-Hy-CI This work 6960 −9.1107 7162 2916 4397 2592

Be III 2 1P E-Hy-CI This work 7744 −9.1107 7162 2916 4406 7410

Be III 2 1P Extrapolated This work −9.1107 7162 2916 442(2)

Be III 2 1P ECS Cann and Thakkar (1992) [53] 100 −9.1107 7161 42

C V 2 1P E-Hy-CI This work 6176 −21.0933 3231 3388 3968 4013

C V 2 1P E-Hy-CI This work 6960 −21.0933 3231 3388 3993 9969

C V 2 1P E-Hy-CI This work 7744 −21.0933 3231 3388 4009 9911

C V 2 1P Extrapolated This work −21.0933 3231 3388 403(2)

C V 2 1P ECS Cann and Thakkar (1992) [53] 100 −21.0933 3230 09

O VII 2 1P E-Hy-CI This work (QP) 7744 −38.0747 3523 5875 4074

O VII 2 1P E-Hy-CI This work 6176 −38.0747 3523 5875 4922 2755

O VII 2 1P E-Hy-CI This work 6960 −38.0747 3523 5875 5174 8235

O VII 2 1P E-Hy-CI This work 7744 −38.0747 3523 5875 5321 5034

O VII 2 1P Extrapolated This work −38.0747 3523 5875 55(2)

O VII 2 1P ECS Cann and Thakkar (1992) [53] 100 −38.0747 3522 16

Note: All energies in this work are variational except for the extrapolated energy; all calculations were performed
in quadruple-double-with exponent (QDE) precision except for O VII, which includes a quadruple precision (QP)
result for reference. 1Explicitly Correlated Slater wave functions.

7. f -Values and Bounds

As discussed in Sections 3 and 4, theoretical upper and lower bounds to f -values
(multiplet oscillator strengths7) can be computed from non-relativistic quantum mechanical
principles. These bounds do not, however, reflect the true precision of the calculation and
are usually too crude to provide useful error estimates, even with fairly high-precision
electronic wave functions. This has led to efforts by Roginsky and co-workers ([40,41]
to tighten the error bounds. While these efforts have led to improved results for the
special cases of the hydrogen atom [40] and alkali atoms [41], it is not clear to what extent
they will be effective in the more general case. However, in the case of the two-electron
helium atom, the E-Hy-CI wave functions are precise enough energetically to suggest using
them to compute oscillator strengths with upper and lower bounds to provide rigorous
estimates of the uncertainty in the computed f -values. Our computed f -values8 (multiplet
oscillator strengths), along with rigorous non-relativistic quantum mechanical upper and
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lower bounds for the 1s2 1S→ 1s2p 1P resonance transition for some members of the He
isoelectronic sequence, are presented in Table 3.

Froese Fischer [26] presented some general variational methods that rely on precision
indicators and discussed precision in a general way. She pointed out that, for light atoms
(using C III as an example), the relativistic correction is important for a precise energy
but the line strength (and hence the oscillator strength) is close to the non-relativistic one.
Helium is the simplest multi-electron atom and there exists a recent high-precision multi-
configuration Dirac–Hartree–Fock (MCDHF) calculation (using the GRASP2K [54–56] pro-
gram9) of the 1S→ 1P transition [28]. Two lines in the data for He I in the table (the LLWQ
lines [28]) are from this study and are included here to ascertain the magnitude of the
relativistic effects for the He I transition, which turn out to be ≈0.00003 (≈0.01%) and
indeed show relativistic effects to be small. Note that all of the high-precision studies
(all correlated wave function calculations) are in agreement that the oscillator strength is
0.27616. Our results are in agreement and extend the precision of the non-relativistic (NR)
oscillator strength by two orders of magnitude, based on the rigorous quantum mechanical
upper and lower bounds. We note here that these results show that the Anderson and
Weinhold [37] result is better than their bounds suggest, which is probably true for our
results as well. Specifically, we know from the 3040 × 2888 result that the 1088 × 960 and
1520 × 1444-term results are in error in the seventh decimal digit, but the bounds suggest
that the results are only good to three decimal places. We recommend the NR oscillator
strength to be 0.2761 647(28) for He I.

For Li II, our results are in agreement with the previous high-precision correlated
wave function calculations for this ion, those of Schiff, Pekeris and Accad [58], Anderson
and Weinhold [37] and Cann and Thakkar [53]. These results for Li II are similar to
the He I results in that they show that the Anderson and Weinhold [37] result for Li
II is better than their bounds suggest, which again is probably true for our results as
well. We again note that, from the 3040 × 2888 result, it is clear that the 1088 × 960
and 1520 × 1444-term results are in error in the seventh decimal digit, but the bounds
suggest that the results are only good to three decimal places. For Li II, we recommend
the NR oscillator strength to be 0.4566 298(18) and note the excellent agreement with
Cann and Thakkar [53]. Comparing our recommended NR oscillator strength with the
Wiese and Fuhr [59] reference value, which includes relativistic effects, puts the magnitude
of the relativistic effects for the Li II transition as ≈0.00005 (again ≈0.01%) and shows
relativistic effects to be small for this member of the isoelectronic sequence (similar to
He I). For Be III, C V and O VII (chosen to be representative of the first row of the He-
isoelectronic sequence), our results again agree with the previous high-precision correlated
wave function calculations for these ions. We recommend the NR oscillator strengths to be
0.5515 538(21), 0.6470 674(22) and 0.6944 496 (22).

Table 3. Non-relativistic multiplet oscillator strengths ( f -values) with rigorous upper and lower
bounds for the 1s2 1S→ 1s2p 1P transition for some members of the helium isoelectronic sequence.
Oscillator strengths computed by other authors are included for comparison.

State Technique Author N (1S) E (1S) (Hartree) N (1P) E (1P) (Hartree) f -Value

He E-Hy-CI This work 1088 −2.9037 2435 4189 0888 5088 58 960 −2.1238 4308 3927 0924 8309 0.2761 6466 27 ±0.0012

He E-Hy-CI This work 1520 −2.9037 2435 4275 7390 6714 30 1444 −2.1238 4308 5062 4897 8422 0.2761 6463 24 ±0.0012

He E-Hy-CI This work 3040 −2.9037 2437 7034 1043 9282 03 2888 −2.1238 4308 6497 9644 7703 0.2761 6470 03 ±0.0000 028

He E-Hy-CI Recommended 0.2761 647(28)

He Hy SPA 1 (1971) [58] 1078 −2.9037 2437 48 364 −2.1238 4308 26 0.2761 6

He Hy-CI AW 2 (1974) [37] 135 −2.9037 2436 62 137 −2.1238 4303 14 0.2761 ±0.0014

He Hy KH 3 (1984) [60] 138 −2.9037 2437 51 140 −2.1238 4308 0.2761 6

He E-Hy CT 4 (1992) [53] 100 −2.9037 2437 36 100 −2.1238 4308 02 0.2761 7

He Hy DM 5 (2007) [61] 0.2761 6

He MCHF 6 LLWQ 7 (2021) [28] 0.2762 9
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Table 3. Cont.

State Technique Author N (1S) E (1S) (Hartree) N (1P) E (1P) (Hartree) f -Value

He MCDHF 8 LLWQ 9 (2021) [28] 0.2763 2

He Reference 9 WF 10 (2009) [59] 0.2762 5

Li II E-Hy-CI This work 1088 −7.2799 1332 7713 3474 7954 38 960 −4.9933 5106 5519 3789 3549 0.4566 2972 51 ±0.0016

Li II E-Hy-CI This work 1520 −7.2799 1332 8098 0780 5105 69 1444 −4.9933 5106 5763 9277 0706 0.4566 2972 83 ±0.0016

Li II E-Hy-CI This work 3040 −7.2799 1341 2669 2298 8163 74 2888 −4.9933 5107 7779 9718 5893 0.4566 2984 06 ±0.0000 018

Li II E-Hy-CI Recommended 0.4566 298(18)

Li II Hy SPA (1971) [58] 1078 −7.2799 1341 03 364 −4.9933 5107 46 0.4566

Li II Hy-CI AW (1974) [37] 135 −7.2799 1339 60 137 −4.9933 5102 30 0.4566 ±0.0010

Li II E-Hy CT (1992) [53] 100 −7.2799 1340 96 100 −4.9933 5107 21 0.4566 27

Li II Reference WF (2009) [59] 0.4566 8

Be III E-Hy-CI This work 1088 −13.6555 6607 5022 1216 4675 55 960 −9.1107 7158 4011 3245 7902 0.5515 5367 16 ±0.0019

Be III E-Hy-CI This work 1520 −13.6555 6607 5806 8585 0501 71 1444 −9.1107 7158 4761 1835 3319 0.5515 5367 29 ±0.0019

Be III E-Hy-CI This work 3040 −13.6555 6623 8423 4190 7983 70 2888 −9.1107 7162 2916 2965 8769 0.5515 5380 86 ±0.0000 021

Be III E-Hy-CI Recommended 0.5515 538(21)

Be III Hy SPA (1971) [58] 1078 −13.6555 6623 60 364 −9.1107 7161 94 0.5515 5

Be III E-Hy CT (1992) [53] 100 −13.6555 6623 40 100 −9.1107 7161 42 0.5515 55

C V E-Hy-CI This work 1088 −32.4062 4629 6959 6060 3495 12 960 −21.0933 3219 8896 1611 3442 0.6470 6730 80 ±0.0018

C V E-Hy-CI This work 1520 −32.4062 4629 8488 0267 6781 26 1444 −21.0933 3220 0942 1122 7462 0.6470 6730 91 ±0.0016

C V E-Hy-CI This work 3040 −32.4062 4660 1898 1683 2715 76 2888 −21.0933 3231 3387 9577 8140 0.6470 6746 83 ±0.0000 022

C V E-Hy-CI Recommended 0.6470 674(22)

C V Hy SPA (1971) [58] 1078 −32.4062 4659 96 364 −21.0933 3230 94 0.6470 7

C V E-Hy CT (1992) [53] 100 −32.4062 4659 80 100 −21.0933 3230 09 0.6470 67

O VII E-Hy-CI This work 1088 −59.1565 9471 2148 2530 7571 52 960 −38.0747 3504 8048 8747 6964 0.6944 4942 27 ±0.0014

O VII E-Hy-CI This work 1520 −59.1565 9471 4241 7214 8946 79 1444 −38.0747 3505 0653 6634 6644 0.6944 4942 33 ±0.0014

O VII E-Hy-CI This work 3040 −59.1565 9512 2757 3982 3860 09 2888 −38.0747 3523 5874 9991 6695 0.6944 4959 41 ±0.0000 022

O VII E-Hy-CI Recommended 0.6944 496 (22)

O VII Hy SPA (1971) [58] 1078 −59.1565 9512 02 364 −38.0747 3523 21 0.6944 5

O VII E-Hy CT (1992) [53] 100 −59.1565 9511 90 100 −38.0747 3522 16 0.6944 49

Note: All energies in this work are variational except for the recommended energy; all calculations were performed
in quadruple-double-with exponent (QDE) precision. 1 Schiff, Pekeris and Accad. 2 Anderson and Weinhold.
3 Kono and Hattori. 4 Cann and Thakkar. 5 Drake and Morton. 6 Multi-configuration Hartree–Fock [62]. 7 Liu, Li,
Wang and Qu [28]. 8 Multi-configuration Dirac–Hartree–Fock [63–65]. 9 Relativistic effects included. 10 Wiese
and Fuhr.

The use of interpolation techniques based on Rayleigh–Schrödinger perturbation
theory to study systematic trends of f -values along an isoelectronic sequence is due to
Wiese and Weiss [66]. The fundamental idea is to scale all distances by the nuclear charge
Z and then apply conventional perturbation theory, treating the interelectronic repulsion
as the perturbation. The dependence of the f -value on Z for an isoelectronic sequence is a
power of Z expansion given by

f = a0 +
f1

Z
+

f2

Z2 + . . . , (36)

where a0 is just the f -value computed in a purely hydrogenic approximation (since there
are no zeroth-order degeneracies). Hence, the infinite Z limit is for the He-isoelectronic
sequence given by a0 = 0.8324 [67] and Z−1 is the natural parameter against which to plot
f -values in a graphical display of the isoelectronic sequence. The entire sequence is then
compressed in the region between Z = 0 and the value of the neutral atom. Since the value
at Z is known, the results for Li II, Be III, C V and O VII can be extrapolated to Z = 0 in the
line presented in Figure 1. The table (Table 3) and graph (Figure 1) give our recommended
f -values for the entire non-relativistic He isoelectronic sequence.
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Figure 1: f -value versus 1/Z for the helium isoelectronic sequence.
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Figure 1. f -values for the helium isoelectronic sequence versus 1/Z.

This research was focused on (1) determining high-precision wave functions and
(2) using these wave functions to compute properties along with obtaining theoretical
bounds to the property of interest; in this case, the oscillator strength. We were not
concerned with obtaining bounds for the energy states because the variational method
guarantees that the solution obtained is an upper bound to the exact energy of the state,
and the error in the calculation (which provides a lower bound) can be estimated from
the convergence of the eigenvalue with respect to our basis sets. It would be nice to be
able to compute lower bounds theoretically, which has been carried out in the past (see,
for example, the calculations on Li of Lüchow and Kleindienst [68] and King [69]), but
the bounds were not very precise and the procedure involved computing matrix elements
of H2 in addition to just H. Fortunately, progress is being made in this regard [70] using
the Pollak–Martinazzo (PM) [71] lower bound theory. Ronto et al. [72] recently used
the explicitly correlated Gaussian (ECG) method to calculate upper and lower bounds to
sub-parts-per-million precision for ground and excited states of the He, Li and Be atoms,
i.e., lower bounds were computed to the same level of accuracy as the upper bounds.

8. Conclusions

The renewed interest in these methods is coming from the incredible precision of
experiments these days, which is the product of sophisticated and refined theoretical
methods. This necessitates the use of correlated wave functions to perform as well or better
theoretically. Of these methods, Hy-CI and E-Hy-CI are unique in that they were designed
(by allowing at most a single r

νij
ij e−ωijrij factor per term or, in the case of Hy-CI, a single rij

factor per term in the wave function) in a way that leads to solvable integrals for Ne > 4
electrons and hence does not limit the methods to systems with Ne ≤ 4 while retaining the
precision of the Hy methods. However, as mentioned in the introduction, there is ultimately
a slow convergence built into Hy-CI that is driving our interest in ascertaining whether
the presence of an exponential correlation factor in E-Hy-CI will lead to a convergence
acceleration in Hy-CI.

In Paper I of this series, we demonstrated that Hy-CI and E-Hy-CI are capable of
greater than 20-digit precision for the ground 1s2 1S state of helium and that E-Hy-CI does
indeed accelerate convergence. Excited states are more diffuse, so, in the second paper,
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we demonstrated that E-Hy-CI accelerates convergence for excited states of 1S symmetry
by examining excited states of the Li+ ion. In this study, states of non-S symmetry were
treated by carrying out calculations on the lowest helium 1P state (2 1P), demonstrating
convergence acceleration for non-S states as well, and then extending the analysis to
other members of the He 2 1P isoelectronic sequence. The very dramatic convergence
improvements of s-, p-, d- and f -wave E-Hy-CI expansions compared to the Hy-CI l-wave
expansions are important because they suggest that the E-Hy-CI method may be the key to
extending Hy-CI to systems with Ne> 4.

Our interest in the P states was also to utilize these very precise wave functions to
compute properties other than the energy; in this case, to compute transition rates in the
form of oscillator strengths for various members of the the lowest (resonance) 1S→ 1P
transition. In addition, the uncertainty in atomic data is of interest, which fueled an
examination of what the upper and lower bounds of these properties are, both from the
consideration of the convergence of our calculated values and from rigorous quantum
mechanical upper and lower bounds.

Our present study produced not just high-precision 1s2 1S and 1s2p 1P energies for the
He I, Li II, Be III, C V and O VII members of the He isoelectronic sequence. Wave functions
were generated to enable the calculation of oscillator strengths, including upper and lower
bounds, for the lowest 1S→ 1P transition. Table 2 summarizes our results along with the
best previous correlated wave function method calculations employing Slater-type orbitals.
Interpolation techniques were used to produce a graph of the oscillator strengths along
the isoelectronic sequence. While it has been demonstrated again that the precision of the
oscillator strengths is better than the bounds predict, recommended values are presented
for the 1s2 1S→ 1s2p 1P He isoelectronic sequence with rigorous non-relativistic quantum
mechanical upper and lower bounds of (0.001–0.003)% and probable precision ≤ 0.0000003.
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Appendix A

This appendix contains the complete E-Hy-CI wave function expansions for all calcu-
lations used in this study. Table A1 contains the 1S expansions and Table A2 contains the
1P expansions.

Each line in the Table A1 specifies the {outer,outer} and {inner,inner} sets for each
l quantum number. In the table, only the minimum information needed to specify the
basis set is listed, namely an exponent ξ, the l quantum number for orbitals with that
exponent, norbs, the number of orbitals with that exponent (the n in Equation (5) run from
li + 1 to li + norbs), and ω12, the exponent of the exponentially correlated r12 factor for these
E-Hy-CI calculations. There is an outer norbs and inner n′orbs basis set for these “doubled”
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basis sets. In all of the tables, N is used to refer to the number of terms in the wave function
(see Equation (3)).

In contrast to the 1S states, each line in Table A2 specifies an inner set for the first
electron and its associated l quantum number (=lmax), and an outer set with its associated
and l′ = l + 1 quantum number for the second electron, but is otherwise the same.

Table A1. E-Hy-CI wave function He 1 1S isoelectronic sequence non-relativistic energies (in hartree
atomic units using a doubled basis set of orbitals for each l-wave). N is the number of terms in
the expansion.

State lmax norbs ξ n′
orbs ξ′ ω12 N Energy (Hartree)

He I 1 1S 0 16 2.20 16 25.0 0.5 1088 −2.9037 2435 4189 0888 5088 58

He I 1 1S 0 19 2.20 19 25.0 0.5 1520 −2.9037 2435 4275 7390 6714 30

He I 1 1S 1 19 3.05 19 40.5 0.5 3040 −2.9037 2437 7034 1043 9282 03

He I 1 1S 2 19 3.50 19 40.5 0.5 4560 −2.9037 2437 7034 1195 9808 72

He I 1 1S 3 18 3.90 18 40.5 0.5 5928 −2.9037 2437 7034 1195 9830 82

He I 1 1S 4 15 4.50 15 40.5 0.5 6888 −2.9037 2437 7034 1195 9830 89

He I 1 1S 5 14 5.20 15 40.5 0.5 7728 −2.9037 2437 7034 1195 9830 92

He I 1 1S 6 14 6.00 15 40.5 0.5 8568 −2.9037 2437 7034 1195 9830 94

Li II 1 1S 0 16 3.30 16 37.5 0.5 1088 −7.2799 1332 7713 3474 7954 38

Li II 1 1S 0 19 3.30 19 37.5 0.5 1520 −7.2799 1332 8098 0780 5105 69

Li II 1 1S 1 19 4.575 19 60.75 0.5 3040 −7.2799 1341 2669 2298 8163 74

Li II 1 1S 2 19 5.25 19 60.75 0.5 4560 −7.2799 1341 2669 3059 6348 60

Li II 1 1S 3 18 5.85 18 60.75 0.5 5928 −7.2799 1341 2669 3059 6491 28

Li II 1 1S 4 15 6.75 15 60.75 0.5 6888 −7.2799 1341 2669 3059 6491 59

Li II 1 1S 5 14 7.80 15 60.75 0.5 7728 −7.2799 1341 2669 3059 6491 62

Li II 1 1S 6 14 9.00 15 60.75 0.5 8568 −7.2799 1341 2669 3059 6491 66

Be III 1 1S 0 16 4.40 16 50.0 0.5 1088 −13.6555 6607 5022 1216 4675 55

Be III 1 1S 0 19 4.40 19 50.0 0.5 1520 −13.6555 6607 5806 8585 0501 71

Be III 1 1S 1 19 6.10 19 81.0 0.5 3040 −13.6555 6623 8423 4190 7983 71

Be III 1 1S 2 19 7.00 19 81.0 0.5 4560 −13.6555 6623 8423 5866 9800 72

Be III 1 1S 3 18 7.80 18 81.0 0.5 5928 −13.6555 6623 8423 5867 0206 92

Be III 1 1S 4 15 9.00 15 81.0 0.5 6888 −13.6555 6623 8423 5867 0207 73

Be III 1 1S 5 14 10.40 15 81.0 0.5 7728 −13.6555 6623 8423 5867 0207 76

Be III 1 1S 6 14 12.00 15 81.0 0.5 8568 −13.6555 6623 8423 5867 0207 77

C V 1 1S 0 16 6.60 16 75.0 0.5 1088 −32.4062 4629 6959 6060 3495 12

C V 1 1S 0 19 6.60 19 75.0 0.5 1520 −32.4062 4629 8488 0267 6781 26

C V 1 1S 1 19 9.15 19 121.5 0.5 3040 −32.4062 4660 1898 1683 2715 76

C V 1 1S 2 19 10.50 19 121.5 0.5 4560 −32.4062 4660 1898 5302 9749 39

C V 1 1S 3 18 11.70 18 121.5 0.5 5928 −32.4062 4660 1898 5303 1052 76

C V 1 1S 4 15 13.50 15 121.5 0.5 6888 −32.4062 4660 1898 5303 1055 18
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Table A1. Cont.

State lmax norbs ξ n′
orbs ξ′ ω12 N Energy (hartree)

C V 1 1S 5 14 15.60 15 121.5 0.5 7728 −32.4062 4660 1898 5303 1055 21

C V 1 1S 6 14 18.00 15 121.5 0.5 8568 −32.4062 4660 1898 5303 1055 17

O VII 1 1S 0 16 8.80 16 100.0 0.5 1088 −59.1565 9471 2148 2530 7571 52

O VII 1 1S 0 19 8.80 19 100.0 0.5 1520 −59.1565 9471 4241 7214 8946 79

O VII 1 1S 1 19 12.20 19 162.0 0.5 3040 −59.1565 9512 2757 3982 3860 09

O VII 1 1S 2 19 14.00 19 162.0 0.5 4560 −59.1565 9512 2757 9255 3478 69

O VII 1 1S 3 18 15.60 18 162.0 0.5 5928 −59.1565 9512 2757 9255 5849 99

O VII 1 1S 4 15 18.00 15 162.0 0.5 6888 −59.1565 9512 2757 9255 5854 37

O VII 1 1S 5 14 20.80 15 162.0 0.5 7728 −59.1565 9512 2757 9255 5854 39

O VII 1 1S 6 14 24.00 15 162.0 0.5 8568 −59.1565 9512 2757 9255 5854 43

Note: All energies are variational; all calculations were performed in quadruple-double-with exponent (QDE) pre-
cision.

Table A2. E-Hy-CI energies (in hartrees) for the He 2 1P isoelectronic sequence using two separate
basis sets of orbitals (ξ 6= ξ ′) for the inner and outer electrons. For each lmax, l′max = lmax + 1. N is the
number of terms in the expansion.

State lmax norbs ξ l′max n′
orbs ξ′ ω12 N Energy (hartree)

He I 2 1P 0 16 2.272 1 15 1.291 0.5 960 −2.1238 4308 3927 0924 8309

He I 2 1P 0 19 2.272 1 19 1.291 0.5 1444 −2.1238 4308 5062 4897 8422

He I 2 1P 1 19 1.955 2 19 2.25 0.5 2888 −2.1238 4308 6497 9644 7703

He I 2 1P 2 19 2.40 3 18 2.30 0.5 4256 −2.1238 4308 6498 0912 9534

He I 2 1P 3 18 2.40 4 15 2.30 0.5 5336 −2.1238 4308 6498 0989 3227

He I 2 1P 4 15 2.40 5 14 2.30 0.5 6176 −2.1238 4308 6498 1004 0079

He I 2 1P 5 14 2.40 6 14 2.30 0.5 6960 −2.1238 4308 6498 1008 1958

He I 2 1P 6 14 2.40 7 14 2.30 0.5 7744 −2.1238 4308 6498 1009 6317

Li II 2 1P 0 16 3.408 1 15 1.9365 0.5 960 −4.9933 5106 5519 3789 3549

Li II 2 1P 0 19 3.408 1 19 1.9365 0.5 1444 −4.9933 5106 5763 9277 0706

Li II 2 1P 1 19 2.9325 2 19 3.375 0.5 2888 −4.9933 5107 7779 9718 5893

Li II 2 1P 2 19 3.60 3 18 3.45 0.5 4256 −4.9933 5107 7779 9724 9272

Li II 2 1P 3 18 3.60 4 15 3.45 0.5 5336 −4.9933 5107 7780 0140 3745

Li II 2 1P 4 15 3.60 5 14 3.45 0.5 6176 −4.9933 5107 7780 0153 5568

Li II 2 1P 5 14 3.60 6 14 3.45 0.5 6960 −4.9933 5107 7780 0155 3584

Li II 2 1P 6 14 3.60 7 14 3.45 0.5 7744 −4.9933 5107 7780 0159 3316

Be III 2 1P 0 16 4.544 1 15 2.582 0.5 960 −9.1107 7158 4011 3245 7902

Be III 2 1P 0 19 4.544 1 19 2.582 0.5 1444 −9.1107 7158 4761 1835 3319

Be III 2 1P 1 19 3.910 2 19 4.500 0.5 2888 −9.1107 7162 2916 2965 8769

Be III 2 1P 2 19 4.910 3 18 4.600 0.5 4256 −9.1107 7162 2916 2983 6771

Be III 2 1P 3 18 4.800 4 15 4.600 0.5 5336 −9.1107 7162 2916 4364 1540

Be III 2 1P 4 15 4.800 5 14 4.600 0.5 6176 −9.1107 7162 2916 4383 9458

Be III 2 1P 5 14 4.800 6 14 4.600 0.5 6960 −9.1107 7162 2916 4397 2592

Be III 2 1P 6 14 4.800 7 14 4.600 0.5 7744 −9.1107 7162 2916 4406 7410
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Table A2. Cont.

State lmax norbs ξ l′max n′
orbs ξ′ ω12 N Energy (hartree)

C V 2 1P 0 16 6.816 1 15 3.873 0.5 960 −21.0933 3219 8896 1611 3442

C V 2 1P 0 19 6.816 1 19 3.873 0.5 1444 −21.0933 3220 0942 1122 7462

C V 2 1P 1 19 5.865 2 19 6.750 0.5 2888 −21.0933 3231 3387 9577 8140

C V 2 1P 2 19 7.200 3 18 6.900 0.5 4256 −21.0933 3231 3387 9617 4846

C V 2 1P 3 18 7.200 4 15 6.900 0.5 5336 −21.0933 3231 3388 3922 5630

C V 2 1P 4 15 7.200 5 14 6.900 0.5 6176 −21.0933 3231 3388 3968 4013

C V 2 1P 5 14 7.200 6 14 6.900 0.5 6960 −21.0933 3231 3388 3993 9969

C V 2 1P 6 14 7.200 7 14 6.900 0.5 7744 −21.0933 3231 3388 4009 9911

O VII 2 1P 0 16 10.224 1 15 5.8095 0.5 960 −38.0747 3504 8048 8747 6964

O VII 2 1P 0 19 10.224 1 19 5.8095 0.5 1444 −38.0747 3505 0653 6634 6644

O VII 2 1P 1 19 8.7975 2 19 10.125 0.5 2888 −38.0747 3523 5874 9991 6695

O VII 2 1P 2 19 10.800 3 18 9.200 0.5 4256 −38.0747 3523 5875 0015 0005

O VII 2 1P 3 18 10.800 4 15 10.350 0.5 5336 −38.0747 3523 5875 4462 8699

O VII 2 1P 4 15 10.800 5 14 10.350 0.5 6176 −38.0747 3523 5875 4922 2755

O VII 2 1P 5 14 10.800 6 14 10.350 0.5 6960 −38.0747 3523 5875 5174 8235

O VII 2 1P 6 14 10.800 7 14 10.350 0.5 7744 −38.0747 3523 5875 5321 5035

Note: All energies are variational; all calculations were performed in quadruple-double-with exponent (QDE) precision.

Notes
1 Some authors refer to this as fully correlated [5].
2 For our previous studies, papers I and II in this series, see [6,7].
3 For papers discussing the integrals arising in E-Hy-CI, see [8,10–13]; for a review of both Hy-CI and E-Hy-CI, see [14].
4 In the orthogonal Hy-CI of Zhang et al. [17] (see also Jiao et al. [18]) discussed later, νK can be 2 or 3.
5 Actually, the configuration designation is rigorous only for Russell–Saunders (LS) coupling in a central field. We retain the

terminology here to conform to standard spectroscopic notation with the understanding that, by 1s2 1S and 1s2p 1P, we mean the
lowest terms of those respective symmetries (the He 1 1S ground state and the 2 1P lowest state of P symmetry, respectively).

6 In light atoms, the relativistic correction is important for an accurate transition energy but has a small effect on the line strength [26].
For a detailed treatment of line strengths (proportional to transition rates), see Morton et al. [27], where the corrections are shown
to be less than 0.1% for helium, and Liu et al. [28], where they are shown to be ≈0.01% for helium.

7 In this paper, we use f -value and oscillator strength interchangably.
8 Computed using truncations of our final non-relativistic 1S and 1P wave functions.
9 For an introduction to relativistic theory as implemented in GRASP, see [57].
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