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Parametrically driven pure-Kerr temporal 
solitons in a chip-integrated microcavity

Grégory Moille    1,2, Miriam Leonhardt    3,4, David Paligora3,4, 
Nicolas Englebert    5, François Leo    5, Julien Fatome    6, Kartik Srinivasan    1,2 & 
Miro Erkintalo    3,4 

The discovery that externally driven nonlinear optical resonators can 
sustain ultrashort pulses (solitons) corresponding to coherent optical 
frequency combs has enabled landmark advances in applications from 
telecommunications to sensing. Most previous research has focused on 
resonators with purely cubic (Kerr-type) nonlinearity that are externally 
driven with a monochromatic continuous-wave laser—in such systems, the 
solitons manifest themselves as unique attractors whose carrier frequency 
coincides with that of the external driving field. Recent experiments have, 
however, shown that a qualitatively different type of temporal soliton can arise 
via parametric downconversion in resonators with simultaneous quadratic 
and cubic nonlinearity. In contrast to conventional solitons in pure-Kerr 
resonators, these parametrically driven solitons come in two different flavours 
with opposite phases, and they are spectrally centred at half of the frequency 
of the driving field. Here we theoretically predict and experimentally 
demonstrate that parametrically driven solitons can also arise in resonators 
with pure-Kerr nonlinearity under conditions of bichromatic driving. In this 
case, the solitons arise through four-wave-mixing-mediated phase-sensitive 
amplification, come with two distinct phases and have a carrier frequency in 
between the two external driving fields. Our experiments are performed in 
an integrated silicon nitride microcavity, and we observe frequency comb 
spectra in remarkable agreement with theoretical predictions. In addition 
to representing the discovery of a new type of temporal dissipative soliton, 
our results constitute an unequivocal realization of parametrically driven 
soliton frequency combs in a microcavity platform that is compatible with 
foundry-ready mass fabrication.

The injection of monochromatic continuous-wave (CW) laser light into 
dispersive optical resonators with purely Kerr-type χ(3) nonlinearity 
can lead to the generation of localized structures known as dissipa-
tive Kerr cavity solitons (CSs)1,2. These CSs correspond to ultrashort 

pulses of light that can persist in the resonator (Fig. 1a), indefinitely 
maintaining constant shape and energy3. Since first observed in mac-
roscopic optical fibre ring resonators1, CSs have attracted particular 
attention in the context of monolithic Kerr microcavities2, where they 
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are spectrally separated from the driving frequency (for example, ω0 
versus 2ω0), and they come in two binary forms with opposite phase. 
These traits render PDCSs of interest for an altogether new range of 
applications.

Optical PDCSs have so far been generated only via the quadratic 
χ(2) nonlinearity, which is not yet intrinsically available in integrated 
(foundry-ready) resonator platforms, such as silicon28 or silicon 
nitride29–31. However, it is well known that phase-sensitive amplifica-
tion analogous to χ(2) parametric downconversion can also be realized 
in pure-Kerr resonators when driven using two lasers with different 
carrier frequencies32–35, enabling, for example, novel random number 
generators22,23 and coherent optical Ising machines24,25. While this anal-
ogy may allude to the possibility of generating PDCSs in foundry-ready, 
pure-Kerr resonators with bichromatic driving36, fundamental dif-
ferences between dispersive χ(2) and χ(3) parametric oscillators (for 
example, the number of potentially resonant fields, the frequency 
spacing of interacting waves, dispersive phase matching and spurious 
non-degenerate FWM interactions) prohibit a priori conclusions. The 
impact of bichromatic driving in the dynamics of conventional Kerr 
CSs has been considered37–41, but the possibility of using the scheme 
to generate temporal PDCSs remains entirely unexplored.

Here we theoretically predict and experimentally demonstrate 
that a dispersive resonator with pure-Kerr nonlinearity can support 
PDCSs in the presence of bichromatic driving (Fig. 1c). We reveal that, 
under appropriate conditions, a signal field with a carrier frequency 
in between two spectrally separated driving fields obeys the damped, 
parametrically driven nonlinear Schrödinger equation (PDNLSE) that 
admits PDCS solutions, and we unveil the system requirements for the 
practical excitation of such solutions. Our experiments are performed 
using a 23-μm-radius, chip-integrated silicon nitride microring 

underpin the generation of coherent and broadband optical frequency 
combs4–6. By offering a route to coherent frequency comb genera-
tion in chip-integrated, foundry-ready platforms, CSs have enabled 
groundbreaking advances in applications including telecommunica-
tions7,8, artificial intelligence9,10, astronomy11,12, frequency synthesis13, 
microwave generation14,15 and distance measurements16,17.

The conventional CSs that manifest themselves in resonators 
with pure-Kerr nonlinearity sit atop a CW background, and they gain 
their energy through four-wave mixing (FWM) interactions with that 
background1. In the frequency domain, the solitons are (to first order) 
centred around ω0, the frequency of the external CW laser that drives 
the resonator (Fig. 1a). They are (barring some special exceptions18–21) 
unique attracting states: except for trivial time translations, all of the 
CSs that exist for given system parameters are identical. These fea-
tures can be disadvantageous or altogether prohibitive for selected 
applications: noise on the external CW laser can degrade the coher-
ence of nearby comb lines, and removal of the CW background may 
require careful spectral filtering to avoid the saturation of amplifiers 
or detectors (a drop-port can mitigate this issue but comes with addi-
tional losses), whereas applications that require the coexistence of 
distinguishable binary elements22–25 are fundamentally beyond reach. 
Interestingly, recent experiments have revealed that qualitatively dif-
ferent types of CS can exist in resonators that display a quadratic χ(2) 
in addition to a cubic χ(3) nonlinearity (Fig. 1b); in particular, degener-
ate optical parametric oscillators driven at 2ω0 can support CSs at ω0  
(refs. 26,27). In this configuration, the solitons are parametrically driven 
through the quadratic downconversion of the externally injected field, 
which endows them with fundamental differences compared with the 
conventional CSs emerging in monochromatically driven, pure-Kerr 
resonators. Specifically, parametrically driven cavity solitons (PDCSs) 
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Fig. 1 | Comparison of platforms and schematic illustration of parametrically 
driven cavity soliton (PDCS) generation in Kerr resonators. a, Conventional 
Kerr CSs1,2,4 form around the input frequency ω0 in dispersive resonators with χ(3) 
Kerr nonlinearity; for given parameters, all solitons in the resonator are identical. 
b, Parametric downconversion of an input field at 2ω0 can yield PDCSs at ω0 in a 
resonator with combined χ(2) and χ(3) nonlinearity26,27. Here, the solitons come in 
two forms with opposite phase26: the complex soliton electric field 
E±(τ) ∝ ±E0(τ) exp(iω0τ), where ±E0(τ) is the slowly varying envelope (the real part 
visualized in a–c) and i is the imaginary unit. c, The bichromatically driven Kerr 
resonator configuration studied in this work, where PDCSs arise in between two 
input frequencies ω±. d, Schematic of the non-degenerate FWM process (and the 
corresponding energy flow diagram) through which the intracavity fields at ω± 
provide coherent parametric driving to all of the PDCS comb lines around ω0. 

Note that this energy flow is in contrast to the standard Kerr CS case in a, where 
only the mode ω0 is driven. The shaded curves in the background of the 
schematic depict cavity modes. e, PDCSs arise under conditions close to linear 
phase matching of degenerate FWM, which in terms of cavity modes occurs when 
the frequency deviation δω = (ω′

+ + ω′
−)/2− ω′

0 ≈ 0, with ω′
± being the driven 

cavity modes and ω′
0 the mode closest to ω0. f, Schematic of the slowly varying 

electric field amplitudes around the parametric signal frequency ω0 (E0, green) 
and the pump frequencies ω± (E±, blue and red). The fields E± must be approximately 
CW to ensure a homogeneous parametric driving strength, calling for (1) 
sufficient dispersive walk-off to mitigate pump depletion and (2) suppression of 
modulation instabilities. g, Because the full intracavity field consists of a 
superposition of the E± and E0 components, the PDCS manifests itself as a 
localized structure amidst a rapidly oscillating background.
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resonator whose dispersion enables PDCS generation at 253 THz 
(1,185 nm) when bichromatically pumped at 314 THz (955 nm) and 
192 THz (1,560 nm). We observe PDCS frequency comb spectra that 
are in good agreement with numerical simulations, as well as clear 
signatures of the anticipated ℤ2 symmetry, that is, the coexistence of 
two PDCSs with opposite phase. By revealing a new pathway for the 
generation of coherent PDCS frequency combs far from any pump 
frequency, in a platform that has direct compatibility with 
foundry-ready fabrication, our work paves the way for integrated, 
low-noise frequency comb generation in new spectral regions, as well 
as the photonic integration of applications requiring combs with a 
binary degree of freedom.

Results
We first summarize the main points that lead to the prediction of PDCSs 
in bichromatically driven Kerr resonators (see Methods for full details). 
To this end, we consider a resonator made from a dispersive, χ(3) non-
linear waveguide that is driven with two coherent CW fields with angu-
lar frequencies ω± (see Fig. 1c). The dispersion of the resonator is 
described by the integrated dispersion (Dint)

6 at the cavity resonance 
ω′
0 (primes highlight resonance frequencies throughout the article) 

closest to the frequency ω0 = (ω+ + ω−)/2:

Dint(μ) = ω′
μ − ω′

0 − μD1 = ∑
k≥2

Dk
k! μ

k. (1)

Here, μ is a relative mode number with respect to the resonance ω′
0 and 

D1/(2π) is the cavity free-spectral range (FSR) at ω′
0. The terms Dk with 

k > 1 account for deviations of the resonance frequencies ω′
μ from an 

equidistant grid defined by ω′
0 + μD1.

Under particular conditions (see Methods), the evolution of the 
slowly varying electric field envelope centred at ω0 can be shown to be 
(approximately) governed by the PDNLSE, with the parametric driving 
ensuing from non-degenerate FWM driven by the intracavity fields at 
the pump frequencies (ω+ + ω− → ωμ + ω−μ; Fig. 1d). (Note that in stark 
contrast to standard Kerr CSs, for which only one comb line is externally 
driven, all of the components of a PDCS frequency comb are separately 
driven via non-degenerate FWM.) Because the PDNLSE is well known to 
admit PDCS solutions26,42, it follows that the system may support such 
solitons with a carrier frequency ω0 in between the two driving frequen-
cies, provided, however, that the system parameters—particularly the 
resonator dispersion—are conducive for soliton existence.

The resonator dispersion must meet three key conditions for PDCS 
excitation to be viable (Methods). First, for solitons to exist, the disper-
sion around the degenerate FWM frequency ω0 must be anomalous, 
that is, D2 > 0 in equation (1). Second, the effective detuning (see Meth-
ods) between the degenerate FWM frequency (ω0) and the closest cavity 
resonance (ω′

0) must be within the range of soliton existence, essen-
tially requiring that the degenerate FWM process ω+ + ω− → 2ω0 (approx-
imately) satisfies linear phase matching (Fig. 1e). This second condition 
can be written as δω = (ω′

+ + ω′
−)/2 − ω′

0 = [Dint(p) + Dint(−p)]/2 ≈ 0, 
where ±p corresponds to the modes excited by the driving lasers at ω±. 
Given that D2 > 0, this requires at least one higher-even-order coeffi-
cient (for example, D4) to be negative. Third, the intracavity field ampli-
tudes at the driving frequencies, |E±|, must remain (approximately) 
homogeneous and stationary to ensure a constant parametric driving 
strength for the PDCS field E0 centred at ω0 (Fig. 1f). This final condition 
can be met by ensuring that the dispersion at the driving frequencies 
is (1) normal (or driving amplitudes small), such that the corresponding 
intracavity fields do not undergo pattern forming (modulation) insta-
bilities43 and (2) such that the temporal walk-off between the driving 
frequencies ω± and the signal frequency ω0 is sufficiently large so as to 
mitigate pump depletion in the vicinity of the soliton that would oth-
erwise break the homogeneity of the fields at ω± (Fig. 1f). As will be 
demonstrated below, all of these conditions can be met through 

judicious dispersion engineering that is well within the reach of con-
temporary photonic integrated circuit fabrication.

Simulations
Before discussing our experiments, we present results from numerical 
simulations that illustrate the salient physics. Our simulations are based 
on a full iterative ‘Ikeda’ map of the system without any approximations 
(Methods), and they consider a toy resonator with 25 GHz FSR and 
minimal dispersion that is necessary for PDCS existence (see Fig. 2a). 
Specifically, we assume a quartic dispersion with D2 = 2π × 4.1 kHz and 
D4 = −2π × 33 mHz, yielding Dint(p) + Dint(−p) ≈ 0 for a pump frequency 
shift Ωp = 2π × 30.4 THz (corresponding to relative mode number 
μ± = ±p = ±1,217). We assume for simplicity that the two driving fields 
are coincident on their respective linear cavity resonances (zero detun-
ing) and both carry a CW laser power of about 140 mW (see Methods for 
other parameters). Because the group-velocity dispersion at the pump 
frequencies is normal, modulational instabilities are suppressed and 
the intracavity fields converge to stable homogeneous states with an 
equal circulating CW power of about 43 W, thus yielding an effective 
parametric driving strength and detuning within the regime of PDCS 
existence (see Methods). Figure 2b shows the evolution of the numeri-
cally simulated intracavity intensity profile with an initial condition 
consisting of two hyperbolic secant pulses with opposite phases. As can 
be seen, after a short transient, the field reaches a steady state that is 
indicative of two pulses circulating around the resonator. The pulses sit 
atop a rapidly oscillating background that is due to the beating between 
the quasi-homogeneous fields at the pump frequencies (Fig. 2c).  
Correspondingly, the spectrum of the simulation output (Fig. 2d) shows 
clearly the presence of a hyperbolic secant-shaped feature that sits in 
between the strong quasi-monochromatic components at the pump 
frequencies, with a spectral width similar to the bandwidth of para-
metric gain provided by the pump fields (see Supplementary Note 1). 
In accordance with PDCS theory (see Methods), there is no notable CW 
peak at the parametric signal frequency ω0 at which the solitons are 
spectrally centred. To highlight the phase disparity of the steady-state 
pulses, we apply a numerical filter to remove the quasi-monochromatic 
intracavity components around the pump frequencies and plot in  
Fig. 2e the real part (Re) of the complex intracavity electric field enve-
lope. The simulation results in Fig. 2e are compared against the real 
parts of the exact, analytical PDCS solutions (Methods), and we clearly 
observe excellent agreement.

The results in Fig. 2a–e corroborate the fundamental viability 
of our scheme. However, they were obtained assuming a completely 
symmetric dispersion profile with no odd-order terms, which may 
be difficult to realize even with state-of-the-art microphotonic fab-
rication (including the resonators considered in our experiments). 
We find, however, that PDCSs can exist even in the presence of 
odd-order dispersion, albeit in a perturbed form. This point is high-
lighted in Fig. 2f–h, which show results from simulations with all of 
the parameters as in Fig. 2a–e but with an additional non-zero 
third-order dispersion term D3 = −2π × 58 Hz. As for conventional 
(externally driven) Kerr CSs5,44, we find that third-order dispersion 
causes the solitons to emit dispersive radiation at a spectral position 
determined by the phase-matching condition Dint(μDW) ≈ (ω0 − ω′

0) 
(Fig. 2g). This emission results in the solitons experiencing constant 
drift in the temporal domain and endows them with oscillatory tails 
(Fig. 2h). However, as can clearly be seen, the PDCSs continue to exist 
in two distinct forms with near-opposite phase. It is worth noting 
that, for the parameters considered in Fig. 2f–h, the low-frequency 
driving field experiences anomalous group-velocity dispersion; 
however, the intracavity intensity at that frequency is below the 
modulation instability threshold43, thus allowing the corresponding 
field to remain quasi-homogeneous (the modulation on the total 
intensity profile arises solely from the linear beating between the 
different fields).
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Experiments
For experimental demonstration (see Fig. 3a and Methods), we use 
a microring resonator made from a 690-nm-thick, 850-nm-wide sili-
con nitride layer embedded in fused silica, fabricated in a commercial 
foundry. The ring, which exhibits a radius of 23 μm and an FSR of 1 THz, 
was not specifically designed for this work; it was available to us ‘off 
the shelf’ because of earlier research on conventional Kerr CSs45, high-
lighting that the dispersion requirements for PDCS generation are not 
overtly stringent. We use two external cavity diode lasers to drive the 
resonator: one tunable in the telecommunications C-band (from 186 to 
198 THz, that is, from 1,613 to 1,515 nm) and the other tunable from 306 to 
330 THz (980 to 910 nm). Both driving fields are optically amplified and 
combined using a wavelength-division multiplexer before being coupled 
into the resonator via a pulley scheme that ensures efficient coupling 
at all of the relevant frequencies46. At the output of the resonator, 90% 
of the signal is routed to an optical spectrum analyser for analysis. The 
remaining 10% is passed through a bandpass filter to remove spectral 
components around the driving frequencies, thus enabling the para-
metrically generated signal field to be isolated for characterization.

The orange curve in Fig. 3b depicts the numerically estimated 
integrated dispersion of the resonator around a cavity mode at 253 THz, 
obtained through a combination of finite-element modelling and fit-
ting to our experimental observations (see Methods). These data are 
consistent with experimentally measured resonance frequencies (blue 
circles), although we caution that our inability to probe the resonances 
around 253 THz prevents unequivocal evaluation of the integrated dis-
persion around that frequency (see Methods for a detailed description 
of how the measured resonance frequencies are extrapolated to yield 
the data in Fig. 3b). The estimated dispersion can be seen to be such 
that the requisite phase matching for generating a PDCS at 253 THz 
(δω ≈ 0) can be satisfied, provided that the pump lasers are configured 
to drive cavity modes at 314 and 192 THz (Fig. 3c).

In our experiments, we set the on-chip driving power for both 
driving fields to be about 150 mW and tune the high-frequency pump 
to the cavity mode at 314 THz. We then adiabatically (much slower than 
any characteristic timescale of the system) tune the low-frequency 
pump to the cavity mode at 192 THz (from blue to red), maintaining the 
high-frequency pump at a fixed frequency. As the low-frequency pump 
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Fig. 2 | Illustrative simulations of PDCSs in dispersive Kerr resonators.  
a–e, Simulation results obtained for a 25 GHz toy resonator with D2 = 2π × 4.1 kHz 
and D4 = −2π × 33 mHz. a, Integrated dispersion, with the grey shading 
highlighting a region of anomalous (A) dispersion sandwiched between regions 
of normal (N) dispersion. Note that, because Dint is completely symmetric in this 
example, the frequency mismatch δω(p) is equal to Dint(p), such that the pump 
frequencies satisfying linear phase matching (δω ≈ 0) can be directly read off 
the graph. The vertical dashed lines indicate those pump frequencies and were 
used in the simulations. b, Dynamical evolution of two hyperbolic secant pulses 
with opposite phase (see also Supplementary Video 1). The colourmap depicts 
instantaneous power in watts. c, Temporal intensity profile around one of the 
steady-state solitons at the output of the simulation in b; see Extended Data Fig. 1  
for an expanded intensity profile. d, Optical spectrum corresponding to the 
output of the simulation in b. e, The real parts of the analytical PDCS solution 
(dashed red curve; see Methods) and the simulated intracavity field about zero 
frequency shift (solid blue curve). The simulation result was obtained by first 

spectrally filtering out the intracavity fields at the pump frequencies (green 
shaded area in d indicates the filter passband). The orange curve shows the 
(mean-subtracted) total field amplitude for reference. f–h, Simulation results 
with the same parameters as in a–e but with an additional third-order dispersion 
term D3 = −2π × 58 Hz. f, Integrated dispersion (left axis) and corresponding 
group-velocity dispersion D2 (right axis). Note that the frequency mismatch, 
δω(p), for this dispersion is identical to the one in a (and can thus be read directly 
from the graph in a). g, PDCS spectrum in the presence of third-order dispersion. 
The vertical dashed red line indicates the predicted dispersive wave position. In 
f and g, the vertical dash-dotted black line indicates the zero-dispersion point 
that demarcates regions of normal (N) and anomalous (A) dispersion. h, The 
real part of the simulated intracavity field about zero frequency shift (solid blue 
curve) and the (mean-subtracted) total field amplitude (orange curve) added for 
reference (as in e) but with third-order dispersion. No analytical solution exists in 
the presence of third-order dispersion.

http://www.nature.com/naturephotonics


Nature Photonics

Article https://doi.org/10.1038/s41566-024-01401-6

tunes into resonance, we initially observe non-degenerate parametric 
oscillation characterized by the generation of two CW components 
symmetrically detuned about 253 THz. These CW components pro-
gressively shift closer to each other as the pump tunes into the reso-
nance, concomitant with the formation of a frequency comb around 
the degenerate FWM frequency ω0 (Fig. 3d). To characterize the comb 
noise, we performed a heterodyne beat measurement using a helper 
laser at 230 THz in the vicinity of a single comb line. Initially, no beat 
note is observed, which is characteristic of an unstable, non-solitonic 
state within the resonator. Remarkably, as the 192 THz driving field is 
tuned further into resonance, we observe that the parametric signals 
reach degeneracy, concomitant with the emergence of a broadband 
comb state with a smooth spectral envelope (Fig. 3e) and a heterodyne 

beat note (comparable with the helper laser linewidth of 250 kHz) that 
is considerably narrower than the 300 MHz microcavity linewidth  
(Fig. 3f and Supplementary Fig. 1).

The emergence of the smooth comb state (Fig. 3e) is associated 
with an abrupt drop in the photodetector signal recorded around 
253 THz, giving rise to a noticeable step-like feature (Fig. 3g). Similar 
steps are well-known signatures of conventional CSs in monochromati-
cally driven Kerr resonators4. It is also well known from that (conven-
tional CS) context that the abrupt drop in intracavity energy makes 
it challenging to adiabatically reach the soliton regime due to the 
concomitant drop in resonator temperature; a powerful method to 
overcome this challenge is to use a second (auxiliary) laser to effectively 
stabilize the resonator temperature47,48. We believe that the bichromatic 

ESA

OSC

P1 red
detuned

P1
192 THz 

P2
314 THz 

LO
230 THz

EDFA

TA
WDM

Microring
resonator

BPF
OSA

P1 blue
detuned

a d

200200200

–100

0

100

D
in

t/(
2π

) (
G

H
z)

δω
/(

2π
) (

G
H

z)

b c

f e

20

–20

0

225 250250250 275

Frequency (THz)

Frequency (THz)

Frequency (THz)

Experiment

Re
la

tiv
e 

po
w

er
 (d

B)

Simulation

–80
Detuning (1 GHz per division)

1

2

3

–60

–40

–20

0

1,500 1,333 1,200 1,090

293.8
–80

–60

294.2

Wavelength (nm)
1,000 923 857

Frequency (THz)

Re
la

tiv
e 

po
w

er
 (2

0 
dB

 p
er

 d
iv

is
io

n)

300300300

Estimate

Experimental fit

Estimate

192 THz 314 THz

Experimental fit

350 325 350

200 225 250 275 300 325 350

P1 P2

ω0

C
om

b 
po

w
er

 (a
.u

.)g
Frequency (MHz)

Po
w

er
 (d

B)

–200

–80

–60

–40

–100 100

PDCS
step

2000

Fig. 3 | Experimental observation of pure-Kerr temporal PDCSs in an  
on-chip microcavity. a, Experimental setup. EDFA, erbium-doped fibre 
amplifier; TA, semiconductor taper amplifier; WDM, wavelength-division 
multiplexer; OSA, optical spectrum analyser; BPF, bandpass filter; LO, local 
oscillator; ESA, electrical spectrum analyser; OSC, oscilloscope. b, Integrated 
dispersion around 253 THz used to simulate our experiments (orange curve) 
and the dispersion fitted from experimental data (blue circles; see Methods). 
c, Linear phase mismatch for the degenerate FWM process computed from the 
integrated dispersion data in b. In b and c, the fit uncertainties are smaller than 
the circle markers shown (Methods). d, Experimentally measured spectra as  
the low-frequency pump (P1) tunes into resonance from the blue (the  

high-frequency pump P2 is kept fixed). The vertical arrow highlights the redshift 
of the pump P1. e, As the low-frequency pump tunes sufficiently into resonance, 
the frequency comb spectrum abruptly transitions into a smooth envelope. This 
transition is indicative of the generation of a single PDCS inside the resonator; 
the experimentally measured comb spectrum is indeed in good agreement with 
the numerically simulated spectrum of a single PDCS (blue curve; see Methods). 
The inset highlights the offset between the PDCS frequency comb and the comb 
around the P2 pump frequency. f, Heterodyne beat note observed in the PDCS 
regime (the instrument resolution bandwidth is 10 kHz). g, Photodetector signal 
as the low-frequency pump is tuned across a resonance, revealing a step feature 
that coincides with the emergence of the smooth PDCS comb envelope in e.
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pumping at the core of our PDCS scheme inherently provides such 
thermal stabilization, explaining how we are able to adiabatically tune 
into the step region despite the abrupt drop in comb energy.

As shown in Fig. 3e, the smooth spectral envelope observed in 
the step region is in very good agreement with the spectrum of a 24 fs 
(full-width at half-maximum) PDCS derived from numerical model-
ling that uses estimated experimental parameters (Supplementary 
Fig. 2). The simulations faithfully reproduce the main features of the 
experimentally observed spectrum, including a strong dispersive wave 
peak at about 210 THz. We note that the prominent dip at about 275 THz 
arises due to the frequency dependence of the pulley coupler46, which 
was taken into account ad hoc in our simulations when estimating the 
spectrum of the out-coupled PDCS (shown as a blue curve in Fig. 3e; 
see also Methods and Supplementary Fig. 2). The spectral features 
around 350 THz originate from nonlinear Bragg-scattering-type FWM, 
whereby the two pumps at ω± spectrally translate a portion of the 
soliton spectrum to an idler at higher frequencies39: we find that this 
process is linearly phase matched for soliton spectral components at 
ωS ≈ 2π × 232 THz, yielding a high-frequency idler at ωI ≈ 2π × 354 THz 
(see Extended Data Fig. 2).

It is interesting to note that, in addition to the frequency comb 
around the degenerate FWM frequency at 253 THz, frequency combs 
arise also around both of the pump frequencies. These combs originate 
from FWM interactions between the pump fields and the comb lines 
around 253 THz (see also Supplementary Note 2), in a manner similar 
to spectral extension38–40 and two-dimensional frequency comb49 
schemes studied in the context of conventional Kerr CSs. The combs 
around the pump frequencies share the line spacing with the comb 
around 253 THz, but there is a constant offset between the pump and 
PDCS combs. In our experiments, this comb offset is directly observ-
able in the optical spectrum (inset of Fig. 3e) and is found to be about 
50 ± 2 GHz (where the uncertainty is defined by the resolution of the 
optical spectrum analyser), which is in good agreement with the value 
of 49 GHz predicted by our modelling (see Methods). All in all, given 
the considerable uncertainties in key experimental parameters (par-
ticularly dispersion and detunings), we find that the level of agreement 
between the simulations and experiments is remarkable.

The results shown in Fig. 3 are strongly indicative of PDCS gen-
eration in our experiments. Further confirmation is provided by 
observations of low-noise combs with complex spectral structures 
that afford a straightforward interpretation in terms of multi-PDCS 
states (Fig. 4). Specifically, while a single PDCS circulating in the reso-
nator yields a smooth spectral envelope (as in Fig. 3e), the presence of 
multiple PDCSs results in a spectral interference pattern whose details 
depend on the soliton’s relative temporal delay and—importantly—
phase. In our experiments, we can routinely observe comb states 
indicative of two PDCSs (albeit less frequently than single-soliton 
states). Figure 4a,b shows selected examples of two-soliton comb 
spectra measured in our experiments. We draw particular attention 
to the fact that, in the measured data shown in Fig. 4b, the comb 
component at the degenerate FWM frequency ω0 is suppressed (as 
in Fig. 2d) by about 40 dB compared with neighbouring lines, which 
is in stark contrast with results in Fig. 4a, in which the degenerate 
FWM component is dominant. The suppression of the degenerate 
FWM component in Fig. 4b—together with a narrow heterodyne beat 
signal and the conspicuous spectral interference features—strongly 
suggests that the intracavity field consists of two localized structures 
with near-opposite phase.

The spectral measurements shown in Fig. 4a,b are consistent 
with the interpretation of two PDCSs with equal (Fig. 4a) or opposite  
(Fig. 4b) phase. To more quantitatively demonstrate this consistency, 
we construct theoretical fields consisting of two linearly superposed, 
temporally delayed PDCSs, with the relative delay (Δτ) and phase (Δϕ) 
between the solitons inferred by fitting to the experimentally meas-
ured spectra (see also Methods). For Fig. 4a, we obtain a best fit with 

Δτ = 533 fs and Δϕ = 0; for Fig. 4b, we obtain a best fit with Δτ = 525 fs 
and Δϕ = 0.992π.

Figure 4c,d shows the real parts of the theoretically constructed 
complex field envelopes that yield the best fits to the experimental 
data, whereas the solid curves in Fig. 4a,b show the corresponding 
intensity spectra. We see that the theoretically constructed spectra are 
in good agreement with the experimental observations, supporting the 
interpretation that the measured comb states are indeed composed 
of two PDCSs with equal or opposite phase. Unequivocal conclusions 
would require direct temporal measurements that resolve the inten-
sity and phase of the intracavity waveform26, but such measurements 
are not possible due to our resonator’s very large (1 THz) FSR and the 
soliton’s unconventional 1,200 nm centre wavelength. Nonetheless, 
the experimental data available (for example, spectral interference 
profiles, suppression of degenerate FWM component and clean het-
erodyne beat signal) provide strong support for the proposition that 
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Fig. 4 | Observations of multi-soliton interference. a–d, Comb spectra 
indicative of coherent states with two PDCSs with equal (a) or opposite (b) 
phase simultaneously circulating in the resonator. The red and green shaded 
curves of a and b, respectively, depict theoretically constructed, out-coupled 
spectral envelopes of the two-soliton fields, whose real parts are shown in c and 
d, respectively. The two-soliton fields were created by linearly superposing 
two PDCS solutions with different relative delay and phase as inferred from 
fitting to the experimental spectra (Methods). In c, the solitons are in phase and 
have a relative temporal separation of 533 fs, whereas in d the solitons are out 
of phase (relative phase 0.992π) and have a temporal separation of 525 fs. The 
insets in a and b show expanded views of the measured comb spectra around 
the degenerate FWM frequency 253 THz, highlighting how the degenerate FWM 
component at 253 THz is maximized (a) and minimized (b).
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our bichromatically driven Kerr resonator can support the coexistence 
of pulses with opposite phase—a clear signature of PDCSs.

Discussion
Our work predicts and demonstrates that, in addition to conventional 
Kerr CSs, dispersive Kerr resonators can support a new type of dissipa-
tive structure—the PDCS—when bichromatically driven under appropri-
ate conditions. The PDCSs observed in our experiments display similar 
long-term (free-running) stability as conventional CSs generated in similar 
systems: once generated, the PDCSs can persist virtually indefinitely 
provided that the system is not actively perturbed (we have tried and 
succeeded in maintaining the solitons for a period exceeding 24 hours). 
While the generation of PDCSs may fundamentally place more stringent 
requirements on the resonator dispersion and pumping, the differences 
in complexity rapidly erode when considering conventional CSs with 
specific characteristics or in specific resonators. For example, CSs with 
broad (octave-spanning) spectra, or strong dispersive wave components 
at desired frequencies, already require careful dispersion engineering on 
a par with the requirements for PDCSs (see also Supplementary Note 3); 
likewise, bichromatic pumping may be needed even in conventional CS 
experiments to facilitate soliton excitation47,48, to extend and manipulate 
the spectrum38–40 or to phase lock the soliton comb to a known reference50.

We envisage that studying the rich nonlinear dynamics51,52, inter-
actions53,54 and characteristics (including quantum55,56) of pure-Kerr 
PDCSs will draw substantial future research interest, echoing the  
extensive exploration of conventional Kerr CS dynamics over the past 
decade51–56. Our prediction and observation that PDCSs can emit dis-
persive waves when perturbed by higher-order dispersion already 
exemplify the types of explorations enabled by our work.

From a practical vantage, our scheme offers a route to generate 
PDCS frequency combs in foundry-ready, chip-integrated platforms 
with characteristics that are different (and potentially advanta-
geous) compared with those associated with conventional Kerr CSs. 
For example, owing to the nature of the parametric driving, PDCS 
combs can be generated at spectral regions where pump lasers are not 
directly available, and if suitably optimized, they can exhibit improved 
pump-to-soliton conversion efficiencies (see Supplementary Note 3). 
The lack of a dominating CW component at the PDCS carrier frequency 
also alleviates the need for careful spectral shaping, and could result in 
advantages to noise characteristics. In this context, we emphasize that 
PDCSs are underpinned by phase-sensitive amplification32, which can 
theoretically offer a subquantum-limited (squeezed) noise figure57–59. 
Finally, the fact that PDCSs come in two forms with opposite phase can 
open the doors to a new range of applications that require a binary 
degree of freedom, including all-optical random number generation 
and the realization of coherent optical Ising machines. Although the 
prospect of such applications has been noted previously in the context 
of χ(2) PDCSs26, the use of pure-Kerr χ(3) resonators can potentially offer 
complementary advantages, such as spectral flexibility, efficiency and 
compatibility with existing mass-manufacturing capabilities.
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Methods
Simulation models
We first describe the theoretical models that describe the dynamics of 
bichromatically driven Kerr resonators and underpin the simulation 
results in our work. Our starting point is a polychromatic Ikeda-like 
map, which we will use to derive an extended mean-field Lugiato–
Lefever equation that has been used in previous studies37–41,60. To this 
end, we consider a Kerr resonator made out of a dispersive waveguide 
(with length L and propagation constant β(ω)) that is driven using two 
coherent fields with angular frequencies ω± (see Fig. 1c). The evolution 
of the electric field envelope (referenced against the degenerate FWM 
frequency ω0 = (ω+ + ω−)/2) during the mth transit around the resona-
tor is governed by the generalized nonlinear Schrödinger equation:

∂E(m)(z, τ)
∂z

= iβ̂S (i
∂
∂τ )

E(m) + iγ|E(m)|2E(m). (2)

Here, z is a coordinate along the waveguide that forms the resonator,  
τ is time in a reference frame that moves with the group velocity of light at 
ω0, γ is the Kerr nonlinearity coefficient and β̂S is the dispersion operator

β̂S (i
∂
∂τ )

= ∑
k≥2

βk
k! (i

∂
∂τ )

k
, (3)

with βk = dβ/dω|ω0  the Taylor series expansion coefficients of β(ω) 
around ω0. Note that the single electric field envelope E(m)(τ, z) contains 
all the frequency components pertinent to the nonlinear interactions, 
including the fields at the pump frequencies ω± and the signal fre-
quency at ω0. Note also that the Taylor series expansion coefficients βk 
are linked to the resonance frequency expansion coefficients in equa-
tion (1) as Dk ≈ −Dk+11 Lβk/(2π) (ref. 6), such that

Dint(μ) ≈ −D1L2π β̂S(μD1). (4)

The Ikeda-like map consists of equation (2) together with a bound-
ary equation that describes the coupling of light into the resonator. 
Considering bichromatic driving, the boundary equation reads (see 
also Supplementary Note 4):

E(m+1)(0, τ) = √1 − 2αE(m)(L, τ)e−iδ0

+√θ+Ein,+e−iΩpτ+imb+

+√θ−Ein,−eiΩpτ+imb− .

(5)

Here, α is half of the fraction of power dissipated by the intracavity 
field over one roundtrip, δ0 = 2πk − β(ω0)L is the linear phase detuning 
of the reference frequency ω0 from the closest cavity resonance (with 
order k), Ein,± are the complex amplitudes of the driving fields at ω±, 
respectively, Ωp = pD1 (with p a positive integer) represents the angular 
frequency shifts of the pumps from the reference frequency ω0, and θ± 
are the power transmission coefficients that describe the coupling of 
the driving fields into the resonator. The coefficients b± enable us to 
introduce the phase detunings δ± that describe the detunings of the 
pump frequencies from the cavity resonances closest to them (thus 
accounting for the fact that the frequency shifts ω0 − ω± may not be an 
exact integer multiple of D1):

b± = δ± − δ0 + β̂S(±Ωp)L. (6)

Note that the phase detunings δ described above are related to the 
frequency detunings of the corresponding carrier frequency ω from 
the closest cavity resonance at ω′ as δ ≈ 2π(ω′ − ω)/D1.

Before proceeding, we note that, in our specific configuration, 
only two of the three detuning terms introduced above (δ0 and δ±) are 

independent. This is because the degenerate FWM frequency is com-
pletely determined by the pump frequencies, namely, ω0 = (ω+ + ω−)/2; 
therefore, the signal detuning δ0 can be written in terms of the pump 
detunings δ± as (see Supplementary Note 5):

δ0 =
δ+ + δ− + L[β̂S(Ωp) + β̂S(−Ωp)]

2 . (7)

Substituting this expression for δ0 into equation (6) yields b± = ±b, 
where

b =
δ+ − δ− + L[β̂S(Ωp) − β̂S(−Ωp)]

2 . (8)

It can be shown (see Supplementary Note 6) that this coefficient 
describes the offset, Δf, between the frequency combs forming around 
ω0 and ω±, namely,

Δf = |b|D1
(2π)2

. (9)

PDCS theory
All of the simulations presented in our work use the full Ikeda-like 
map defined by equations (2) and (5). However, the system’s ability 
to sustain PDCSs can be inferred more readily from the mean-field 
limit, obtained under the assumption that the intracavity envelope 
E(m)(z, τ) evolves slowly over a single roundtrip (that is, the cavity has a 
high finesse and the linear and nonlinear phase shifts are all small). In 
this case, the Ikeda-like map described above can be averaged into the 
generalized Lugiato–Lefever mean-field equation similar to the one 
used, for example, in refs. 38–41. We write the equation in normalized 
form as (see Supplementary Note 7):

∂E(t, τ)
∂t

= [−1 + i(|E|2 − Δ0) + iβ̂ (i
∂
∂τ )]

E

+ S+e−iΩpτ+iat + S−eiΩpτ−iat.
(10)

Here, t is a slow time variable that describes the evolution of the intra-
cavity field over consecutive roundtrips (and is thus directly related 
to the index m of the Ikeda-like map), S± = Ein,±√γLθ±/α3  are the  
normalized strengths of the driving fields, Δ0 = δ0/α is the normalized 
detuning of the signal field, and the normalized dispersion operator β̂ 
is defined as in equation (3) but with normalized Taylor series coeffi-
cients dk such that βk → dk = [2α/(|β2|L)]k/2βkL/α. Finally, the coefficient

a = b
α =

Δ+ − Δ− + [β̂(Ωp) − β̂(−Ωp)]
2 , (11)

where Δ± = δ±/α are the normalized detunings of the external driving  
fields. To avoid notational clutter, we use the symbol Ωp to represent pump 
frequency shifts both in our dimensional and normalized equations.

We now make the assumption that the intracavity fields E± at the 
pump frequencies are homogeneous and stationary. (Note that this 
assumption is not used in any of our simulations.) To this end, we 
substitute the ansatz

E(t, τ) = E0(t, τ)

+ E+e−iΩpτ+iat + E−eiΩpτ−iat
(12)

into equation (10). We then assume further that the (soliton) spectrum 
around the degenerate FWM frequency (the Fourier transform of 
E0(t, τ)) does not exhibit significant overlap with the pump frequencies. 
This enables us to separate terms that oscillate with different frequen-
cies, yielding the following equation for the signal field:
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∂E0(t, τ)
∂t

= [−1 + i(|E0|2 − Δeff) + iβ̂ (i
∂
∂τ )]

E0

+ 2iE+E−E∗0,
(13)

where the effective detuning Δeff = Δ0 − 2(Y+ + Y−), with Y± = |E±|2 the 
normalized intensities at the pump frequencies, includes both linear 
and nonlinear (cross-phase modulation) phase shifts, and the asterisk 
denotes complex conjugation. Equation (13) has the form of the PDN-
LSE61 with effective detuning Δeff and the parametric driving coefficient 
ν = 2iE+E−. Accordingly, assuming that the resonator group-velocity 
dispersion is anomalous (β2 < 0) and that higher-order dispersion is 
weak at the signal frequency, the equation admits (parametrically 
driven) soliton solutions of the form26:

E0(τ) = √2ζ sech (ζτ)ei(ϕ+θ), (14)

where cos(2ϕ) = 1/|ν|, ζ = √Δeff + |ν| sin(2ϕ) and θ = arg[iE+E−]. It should 
be clear from the last term of equation (13) that all of the frequency 
components of E0 are parametrically driven. This is particularly evident 
when expanding the field as a Fourier series, E0(t, τ) = ∑ncn(t)e−inD1τ: the 
equation of motion for each modal amplitude cn will include a para-
metric driving term 2iE+E−c∗−n. It is also worth noting that equation (14) 
and the accompanying normalization show that the PDCS temporal 
and spectral characteristics follow similar parameter scaling laws as 
conventional Kerr CSs (see Supplementary Note 3).

Of course, the viability of sustaining the PDCS solution described 
by equation (14) in an actual bichromatically driven Kerr resonator 
system is contingent on the applicability of the assumptions outlined 
above. As described in the main text, the assumption that the intracav-
ity fields E± at the pump frequencies are homogeneous and stationary 
leads to the requirements of dispersive walk-off and suppression of 
modulation instabilities. The requirement for phase matching of the 
degenerate FWM process ensues from the fact that stable PDCS solu-
tions generically exist only if the effective detuning Δeff is sufficiently 
small61. Indeed, recalling equation (7), we have

Δeff =
Δ+ + Δ− + β̂(Ωp) + β̂(−Ωp)

2 − 2 (Y+ + Y−) . (15)

Considering typical parameters, Δeff and |ν| = 2√Y+Y−  are of the order 
of unity for stable solitons to exist26,61, whereas the detunings Δ± can be 
assumed to be small to ensure that sufficient intracavity powers Y± can 
be attained without excessive driving powers X± = |S±|2. This implies, 
then, that the pump frequency shift Ωp must satisfy [β̂(Ωp) + β̂(−Ωp)] ≈ 0. 
Unpeeling the normalization, and converting to the integrated disper-
sion defined as equation (1) in the main text, shows that this condition 
is equivalent with the linear phase matching of degenerate FWM: 
Dint(p) + Dint(−p) ≈ 0.

Resonator used in experiments
The chip-integrated microring resonator used in our experiments was 
fabricated in a commercially available foundry service provided by 
Ligentec (certain commercial products or names are identified to foster 
understanding, and such identification does not constitute recom-
mendation or endorsement by the National Institute of Standards and 
Technology, nor is it intended to imply that the products or names 
identified are necessarily the best available for the purpose); see ref. 29 
for a study of the quality of related fabrication. The resonators are made 
of a 690-nm-thick layer of silicon nitride, grown via low-pressure chemi-
cal vapour deposition, that is fully embedded in fused silica. The ring 
has a width of 850 nm and a radius of 23 μm, thus yielding a roundtrip 
length L = 144.5 μm. Light is coupled into the ring via a 460-nm-wide 
integrated bus waveguide, with a 32-μm-long pulley coupler ensuring 
good coupling at all of the different frequencies of interest (ω0, ω±). The 
resonator has intrinsic and loaded Q factors of 1.5 × 106 and 0.75 × 106, 

respectively, corresponding to a finesse of ℱ  ≈ 3,000, a resonance 
linewidth of Δfr ≈ 300 MHz and linear propagation losses of about 
0.2 dB cm−1. The chip has an input-to-output insertion loss of about 
5.6 dB at 980 nm and 8.4 dB at 1,550 nm. To estimate the resonator’s 
nonlinearity, we used finite-element modelling to simulate the electric 
field distributions at different frequencies of interest. Considering the 
nonlinear refractive index of n2 ≈ 3.1 × 10−15 cm2 W−1 for silicon nitride62 
(and zero for air), we estimate that the Kerr nonlinearity coefficient γ 
ranges from 1 to 4 W−1 m−1 across the frequencies of interest. In our 
simulations, we use a constant value of 1 W−1 m−1 for simplicity.

Measurement of comb power signal
The photodetector signal shown in Fig. 3g was obtained by first spectrally 
filtering out components around the pump frequencies so as to isolate 
the parametrically generated comb. This filtering incurs significant 
losses, which cannot be optically compensated due to the unavailability 
of amplifiers around the comb’s 1,200 nm centre wavelength. Owing to 
the small signal level, the trace shown in Fig. 3g was obtained using a 1 ns 
photodetector with an electronic pre-amplifier that has a bandwidth of 
1 MHz. The comparatively low bandwidth of the pre-amplifier effectively 
acts as a low-pass filter, explaining why the unstable (noisy) states before 
the soliton step do not show rapid fluctuations.

Resonator dispersion and thermal nonlinearity
The theoretically estimated resonator dispersion (orange curve in  
Fig. 3b) was obtained in two steps. We first calculated the theoreti-
cal resonance frequencies using finite-element modelling, and then 
slightly modified those data (see Supplementary Fig. 3 for a com-
parison of the two integrated dispersion curves) to match the PDCS 
simulations to the experimentally obtained spectra. This second step 
can be considered as a ‘free parameter’ that is necessary to obtain a 
dispersion profile consistent with our experimental observations. 
Experimentally, we characterized the dispersion at various spectral 
regions by measuring the resonance frequencies using a set of widely 
tunable lasers and a high-resolution wavemeter. Unfortunately, the 
unavailability of a suitable laser around the degenerate FWM fre-
quency (253 THz) prevented us from probing the dispersion directly 
at that frequency.

Because we are not able to probe the dispersion around 253 THz, 
it is not possible to unequivocally compare the experimentally meas-
ured dispersion with our theoretical estimate. This is because the 
integrated dispersion Dint depends on the precise resonance frequency 
ω′
0 and the FSR [D1/(2π)] at ω′

0, which we are unable to probe experi-
mentally. To nonetheless show that our measurements in different 
spectral regions are consistent with our theoretical estimate, we can 
use a nonlinear least-squares method to fit our experimental data to 
the theoretical data and in doing so obtain experimental estimates for 
ω′
0 and D1, which then enable us to compute the integrated dispersion. 

The blue dots in Fig. 3a were obtained using this procedure. The fitting 
also provides the one-standard-deviation errors for the parameter 
estimates, Δω′

0 and ΔD1, which then enable us to compute the fitting 
errors for ΔDint(μ) and Δδω(μ). We find that the maximum error (across 
relative mode order μ) in the estimated Dint is max[ΔDint(μ)/(2π)] ≈  
0.50 GHz, yielding max[Δδω(μ)/(2π)] ≈ 0.35 GHz. These errors are 
smaller than the markers used in Fig. 3b,c, which is why error bars are 
not shown.

Owing to the resonator’s small size, it exhibits a strong thermal 
nonlinearity63. We leverage this effect to achieve self-stabilization, 
such that the input lasers can remain free-running but still maintain 
near-constant detunings. In addition, the thermal nonlinearity causes 
the resonance frequencies to shift over several gigahertz as the pump 
laser(s) are tuned into resonance (see, for example, Fig. 3f), which we 
suspect is key to achieving phase-matched operation (and thus PDCS 
generation). We also note that the thermal nonlinearity may influence 
the resonator dispersion directly64; while this effect is generally weak 
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(and underexamined), it is possible that it also influences the precise 
phase-matching conditions, thus playing a role in our experiments. 
A detailed study on the impact of the thermal nonlinearity on PDCS 
generation is beyond the scope of our present work.

Simulation parameters
The simulations in Fig. 2 assume a critically coupled (α = θ) resonator 
with a roundtrip length L ≈ 8.3 mm, a nonlinearity coefficient 
γ = 1.2 W−1 km−1 and a finesse ℱ  = π/α = 5,000. The driving fields are 
positioned at an angular frequency shift ±Ωp = 2π × 30.4 THz with 
respect to the degenerate FWM frequency, corresponding to relative 
mode number p = 1,217. The dispersion coefficients are β2 = −5 ps2 km−1, 
β3 = 0.45 ps3 km−1 and β4 = 1.6 × 10−3 ps4 km−1, corresponding to D2/
(2π) = 4.06 kHz, D3/(2π) = −57.90 Hz and D4 = −0.03 Hz, respectively.

The above parameters yield an effective (normalized) driving 
strength |ν| = 1.37 and detuning Δeff = 1.2, which are known to be in the 
regime of soliton existence26. As a matter of fact, the above parameters 
were found by looking for the driving powers and frequency shifts that 
yield these particular values for the driving strength and detuning.

The simulations in Figs. 3 and 4 use experimental values quoted 
in the main text or in the resonator description above, with the addi-
tion that the nonlinearity coefficient was set to γ = 1 W−1 m−1. The pump 
detunings were chosen such that, in Fig. 3, the effective driving strength 
|ν| = 1.28 and Δeff = 6, and in Fig. 4, |ν| = 1.15 and Δeff = 5. (We note that the 
effective detunings were coarsely tuned so as to match the simulations 
to the experimentally measured spectra.) The values of pump detun-
ings (normalized to the resonance half-width) yielding these effective 
parameters were Δ+ = Δ− = −3.4 for Fig. 3 and Δ+ = −3.6 and Δ− = −4.2 for 
Fig. 4. We remark that these detunings are not unequivocal in the sense 
that similar effective parameters can be obtained for several differ-
ent detuning combinations given incremental changes to the system 
parameters (for example, dispersion, pump power).

Frequency-dependent coupling
All of the simulations reported in our manuscript have been obtained 
using the model defined by equations (2) and (5). However, as explained 
in the main text (see also Supplementary Fig. 2), when comparing 
against experimentally measured spectra (Figs. 3 and 4), the simulation 
outputs were post-processed to account for the frequency-dependent 
coupling, thus providing an estimate for the out-coupled spectrum. 
This was achieved by multiplying the simulated intracavity spectra 
with the frequency-dependent coupling coefficient (Supplementary 
Fig. 2) obtained from rigorous coupled-mode simulations46. These 
coupled-mode simulations assumed the coupler length to be 31.25 μm, 
which was found to provide a better agreement with our experiments 
compared with the design value of 32 μm. This discrepancy is reason-
able in terms of fabrication tolerances given the high sensitivity to the 
phase mismatch between the ring and waveguide modes and that any 
small discrepancy in the side-wall angle or waveguide width could cause 
a smaller effective pulley. However we note that the obtained length is 
well within the fabrication tolerance of deep-ultraviolet stepper fabri-
cation. Note that the frequency-dependent coupling was not included 
explicitly in our numerical simulation model for the sake of simplicity.

Multi-soliton states
Because of pump depletion and finite dispersive walk-off, the PDCSs 
carve a depletion region onto the intracavity fields at the pump frequen-
cies (see Fig. 1f and Supplementary Note 2). These depletion regions 
are the time-domain manifestations of the frequency combs that form 
around the pump frequencies, and they give rise to long-range soliton 
interactions. Compounded by the system’s periodic boundary condi-
tions, stable multi-soliton states only exist at selected relative delays 
(or not at all) in our simulations. On the other hand, it is well known 
(from studies of conventional Kerr CSs) that experimental systems 
exhibit imperfections (for example, avoided mode crossings) that, 

along with oscillatory tails from dispersive waves, force multi-soliton 
states to manifest themselves only at some prescribed relative delays54. 
Because the PDCSs in our simulations exhibit long-range coupling, it 
is not possible to obtain a simulation of a multi-soliton state with the 
same relative delays as in our experiments, unless one has access to full 
details of the experimental system (including dispersion that captures 
possible avoided mode crossings), which we do not have.

Because of the above, the theoretical PDCS fields in Fig. 4c,d were 
created from a single steady-state PDCS—obtained via simulations of 
equations (2) and (5). Specifically, the two-soliton fields were obtained 
by linearly adding together two replicas of the single steady-state 
PDCS state, with the relative delay (Δτ) and phase (Δϕ) between the 
replicas inferred from nonlinear least-squares fitting to the experi-
mentally observed spectral interference pattern. For both in- and 
out-of-phase states, our fitting algorithm yields two possible con-
figurations (Δτ, Δϕ) that identically minimize the sum of the squared 
residuals. For the in-phase configuration, these are (533 fs, 1 × 10−3π) 
and (467 fs, 3 × 10−4π), and for the out-of-phase configuration, they are 
(525 fs, 0.99π) and (475 fs, 1.01π). In Fig. 4c,d, we plot the configurations 
associated with the larger delay. The one-standard-deviation errors for 
the fits are all smaller than (0.4 fs, 0.01π).

Data availability
The data that support the plots within this paper and other findings of 
this study are available from the corresponding authors upon reason-
able request.
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Extended Data Fig. 1 | Extended visualization of numerical simulation results 
shown in Fig. 2c. (a) Snapshot of the total temporal intensity profile at the 
simulation output over the entire simulation time window (corresponding to one 
resonator round trip time). Inset shows a zoom around the two solitons.  
(b) Temporal intensity profiles of fields centred around the pump frequencies ω± 

(orange and green curves) and the degenerate FWM frequency ω0 = (ω+ + ω−)/2 
(blue curve). Inset shows a zoom around the two solitons. The intensity traces in 
(b) were obtained from the full simulated field envelope by spectrally isolating 
the relevant frequency components via numerical filtering.
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Extended Data Fig. 2 | Linear phase-matching of nonlinear Bragg scattering. 
Two strong pumps with angular frequencies ω± (with ω+ > ω−) can spectrally 
translate a low-power signal wave at ωS to a new idler frequency ωI via the process 
of nonlinear Bragg scattering four-wave-mixing: ωI = ωS + ω+ − ω−. The blue 
solid curve shows the linear phase-mismatch of the Bragg scattering FWM for 
parameters relevant to our experiment (for example resonator dispersion, pump 

frequencies): Δϕ = β(ωI) + β(ω−) − β(ω+) − β(ωS), where β(ω) is the propagation 
constant of the resonator mode. The phase-mismatch crosses zero at a signal 
frequency of about 232.5 THz, corresponding to an idler frequency of about 354.5 
THz. This phase-matching suggests that the spectral features around 350 THz 
observed in the experimentally measured spectrum shown in Fig. 3(e) originate 
from Bragg scattering translation of soliton components at about 232 THz.
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