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Abstract 

A new generation of contactless fingerprint capture devices has recently emerged.  These devices 
provide the ability to capture a fingerprint without making physical contact with the finger.  
There is anecdotal evidence that the process of capturing a fingerprint when physical contact is 
made introduces a certain amount of physical distortion to the finger being pressed against the 
collection medium. It is hypothesized that because contactless collection devices do not need to 
make physical contact with the finger being captured, the resulting collections from contactless 
devices are expected to have no mechanical deformation introduced to the finger and provide 
better intraoperability than contact devices and better consistency between captures from the 
same device. 
This hypothesis was rejected in that observations in this study showed that contact collection 
devices have more consistency and less variability between successive captures using the same 
device. Thus, while contactless devices carry with them the promise of faster capture without 
making any contact with the subject, the images captured by these devices may have greater 
variability across successive captures and accordingly impact on performance relative to that of 
contact-collected images should be tested further. 
 

Keywords 

Contactless fingerprint; fingerprint; minutiae displacement; SIVV; skin distortion; Spectral 
Validation Verification Metric; Structural Similarity Index Metric; SSIM. 
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 Introduction 

Significant research has been conducted to examine interoperability of contactless fingerprint 
devices with legacy contact collection devices [1][14][15][16][12]. However, little has been 
offered regarding intraoperability, or repeatability and consistency in captures for the same 
device. Examining intraoperability can uncover causes of pattern variation present for a sensor.  
In this study, our focus was not interoperability of contactless with contact collection fingerprint 
capture devices; rather we examine consistency of a repeated pattern acquisition with the same 
device. Such would have direct bearing, for example, on the use of such devices for personal 
identity verification (PIV) where the same device may be used to make successive collections for 
verification of identity within a short period of time.  While conducting this research, we attempt 
to quantify the consistency of capture through the selection of a set of fidelity metrics that were 
identified in [28]. 
Of particular interest here is the comparative displacement of corresponding minutiae in 
repeat/successive fingerprint captures. It has long been known that with contact capture of 
fingerprints, deformation, or distortion of the skin due to pressure, may result in nonlinear 
displacements of features used for comparison in an Automated Fingerprint Identification 
System (AFIS) [2][3][4][5][6]. It has been suggested that contactless collection does not 
introduce any deformation distortion since no pressure is applied to the skin [7][10][11]. 
Contact collection requires applying mechanical pressure by the finger to a collection medium 
and given the natural plasticity of a finger, this mechanical pressure can introduce deformation to 
the finger relative to its original shape.   
It was hypothesized that because contactless collection devices do not require any mechanical 
force on the finger to conduct a collection, the deformation normally introduced to fingers during 
contact collection would not be present in contactless collection. 
Furthermore, repeated fingerprint collection in close temporal adjacency on the order of seconds 
will yield fingerprint images that have had minimal environmental impact introduced because of 
delayed capture. Therefore, it was hypothesized that because contactless collection devices do 
not introduce any mechanical deformation to the finger, the resulting collections made in close 
temporal proximity from the same contactless devices are expected to have better intraoperability 
and more consistency between captures. 
A few investigators have attempted to develop methods by which to correct fingerprints for such 
deformation to improve performance in an AFIS [7][10][11][20][21][22]. As observed recently 
by several researchers, contactless capture avoids skin distortion [7][10][11]. While not directly 
claimed, the implication is that minutiae or singular features used for matching avoid the 
displacement that might occur with skin deformation typical of contact acquisition of 
fingerprints. While true that contactless fingerprint capture avoids mechanically induced 
minutiae displacement due to skin deformation, we are interested here in testing whether this 
yields measurably smaller displacement of corresponding minutiae across a pair of fingerprints 
sampled with contactless devices relative to that for contact devices.  
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 Method 

 Data 

Fingerprint images were collected from 99 Federal Employee volunteers at the National Institute 
of Standards and Technology (NIST) facility in Boulder, CO in support of the Mobile 
Fingerprinting Innovation Technology (mFIT) Challenge [1]. Fingerprints were acquired using 
three Appendix F [25] FBI certified devices and six mobile fingerprint capture applications 
installed on smartphone devices. Two samples of index and middle fingers from each hand were 
acquired in close succession of time from each subject using each of the devices. This yielded 
396 pairs of fingerprint images for comparison from each of the devices. Contact (Appendix F) 
devices yielded fingerprint images at 500 pixels per inch (ppi)2 or 19.7 pixels per millimeter 
(ppmm) and contactless devices yielded images targeted3 at 500 ppi. 
 
 
  

 
2 Resolution values for fingerprint imagery are specified in pixels per inch (ppi) throughout this document. This is based on widely used 
specification guidelines for such imagery and is accepted as common nomenclature within the industry. SI units for these will be presented only 
once. 
3 Contactless devices are calibrated to produce images of 500 ppi, though for these devices the sample rate is imprecise relative to that of contact 
fingerprint acquisition. 
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 NFRaCT Comparison 

To facilitate this study, fingerprint image pairs were compared using NFRaCT. As described in 
[28], NFRaCT performs rigid registration [31] of the image pair using sets of corresponding 
minutiae points. These sets of corresponding minutiae points can be either automatically detected 
by the software or interactively selected by the operator. Rigid registration of image pairs 
facilitates our analysis while preserving any deformation that may have been introduced between 
subsequent captures. Hence, given a pair of corresponding images, I1 and I2, registration and 
cropping to areas of overlap, yields images, I´1 and I´2, used for all measurements requiring 
images of equal dimension and region correspondence. 
 
For most image pairs, NFRaCT’s utilization of the open-source comparison algorithm, 
SourceAFIS [30] was able to automatically detect up to five pairs of corresponding minutiae. For 
image pairs where this automatic operation failed, the operator attempted to select at least two 
pairs of corresponding minutiae or other landmarks4 to support rigid registration of the 
fingerprint pairs.   When this manual selection of registration points was not possible processing 
could not proceed resulting in loss of data for the purpose of this study.  The sample sizes were 
adjusted accordingly due to inability to register the image pair. 
 
Given the 99 subjects, each contributing four fingers for each of two captures, the expected total 
number of finger pairs (encounter 1 and encounter 2) for each device should have been 396. 
While examining the data via the NIST Fingerprint Registration and Comparison Tool 
(NFRaCT) [28],  we noticed several cases of fingerprint mislabeling preventing registration and 
consequent data loss. In other cases, one of the paired fingerprints had some image quality issues 
of sufficient impact as to prevent SourceAFIS from identifying at least two pairs of 
corresponding minutiae points needed for the rigid registration of fingerprint images. If it was 
not possible for these image pairs to be recovered via manual selection of minutiae points, these 
cases would also be missing from the analysis. Thus, the sample sizes repeated in all the 
preceding plots may represent roughly the general quality of images collected by each of the 
devices. They are not failures to acquire, per se, as images were acquired. The image quality of 
one or both images in these cases prevented comparison that relied upon registration [31]. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
4  In some fingers, the friction ridge pattern might be damaged such that features such as cracks or fissures can be used as control points instead of 
ridge bifurcations or endings normally identified as “minutiae.” 
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Table 1 – Image pairs successfully registered 
Device Samples 
02 388 
03 386 
04 380 
05 206 
06 351 
09 338 
10 330 
12 317 
13 384 

 

 Analysis  

NFRaCT outputs results of the image comparisons it performs as an Extensible Markup 
Language (XML) file containing the measurands detailed in [28].  A subset of the data contained 
in the XML file is then extracted and collated for the present analysis.  The measurands used for 
this study are described in this section. 

2.3.1. Free Minutia Pair Displacement 

In NFRaCT, registration of a pair of images is performed as a two-step process: First, the moving 
image is translated such that one set of control points is brought into coincidence with those of 
the fixed image. This pair of points is referred to as ‘constrained,’ as the distance between these 
two points will always be zero. Then, the moving image is rotated such that the other pair of 
points are brought into closest proximity. This pair of points is referred to as ‘unconstrained’ or 
‘free’ and the Euclidean distance of their offset is taken as this metric. When multiple 
registration attempts occur due to the selection of more than two pairs of registration candidate 
points, this metric will represent the offset between the free pair of points that yielded the 
registration transform which maximized the Mean Structural Similarity Index Metric (MSSIM) 
[32] value (i.e., the optimal registration result for a set of registration candidates). 

2.3.2. Mean Minutiae Displacement 

As mentioned previously, each combination of corresponding minutiae is used to perform a 
candidate transformation. The displacement of minutiae pairs in each case is tabulated and the 
mean reported as one of our metrics. The NFRaCT GUI displays up to five pairs of 
corresponding minutiae, but the SourceAFIS algorithm finds more than this. The selection of the 
optimum transform considers all pairs as does the calculation of mean minutiae displacement, the 
value of which can be influenced by the number of minutiae pairs available for this computation. 
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2.3.3. Scale Factor 

Given that the points selected from the image pair correspond, we compute a scale factor by 
comparing the distances between the point pairs on the two images. Hence, given that we have 
two images I1 and I2, we can designate sampled points from I1 as P1x1, P1y1, and P1x2, P1y2. 
Corresponding points sampled from I2 are then P2x1, P2y1, and P2x2, P2y2. We calculate the 
distances between the sampled points as 
 

 

2 2
1 1 2 1 1 1 2 1 1

2 2
2 2 2 2 1 2 2 2 1

( ) ( )

( ) ( )

d Px Px P y P y

d P x P x P y P y

= − + −

= − + −        (1) 
 
The scale factor is the ratio between the two distances 
 

 
1 2

1 2

min( , )
max( , )

d dSF
d d

=
         (2) 

 

2.3.4. Comparison Score 

The Comparison Score is the comparison score yielded by SourceAFIS [30].  
 

2.3.5. Structural Similarity Index (SSIM)  

The Structural Similarity Index (SSIM) [32] compares a pair of registered images, assessing their 
visual similarity. The formulation is applied block-wise to corresponding Regions of Interest 
(ROIs) of the registered images, I´1 and I´2, and then pooled via averaging over all blocks to 
yield a single figure of merit for similarity of the image pair. Moving an 11 x 11 block over each 
pixel of the image with padding on the edges yields a matrix of structural similarity values equal 
in dimension to the images under comparison.  
 
The SSIM quality assessment is based on the computation of three terms, namely the luminance 
term, the contrast term, and the structural term. The overall index is a multiplicative combination 
of the three terms. 
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      (3) 
Where , , , ,x y x yµ µ σ σ  and xyσ  are local means, standard deviations, and cross-covariance for 
images x, y.  
 
By default, regularization constants for the three components, luminance, contrast, and structure 
are  

• C1 = (0.01*L)^2, where L is the specified dynamic range value of 255. 
• C2 = (0.03*L)^2, where L is the specified dynamic range value of 255. 
• C3 = C2/2. 

 
The SSIM function uses these regularization constants to avoid instability for image regions 
where the local mean or standard deviation is close to zero. Therefore, small non-zero values 
should be used for these constants. 
 
We set 1.0α β γ= = = . This simplifies the formula to  

 1 2
2 2 2 2

1 3

(2 )(2 )
( , )

( )( )
x y xy

x y x y

C C
SSIM x y

C C
µ µ σ

µ µ σ σ
+ +

=
+ + + +

       (4) 

The SSIM values are pooled by averaging, hence we have the Mean SSIM, or MSSIM. 
 

2.3.6. Ridge Orientation Correlation 

We compare via correlation the block-wise estimates of ridge orientation. We create an 
orientation map of ridge orientation for each of the two overlapping regions of the registered 
images, I´1 and I´2. For this we apply the method described in [33] as modified by Kovesi for a 
MATLAB function [34]. The method estimates the local orientation of ridges within a 7 x 7-
pixel block centered on each pixel of the image being processed. The output is a map of angles in 
radians corresponding to the size of the input image. Thus, applying the procedure to the cropped 
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regions of overlap, I´1 and I´2, we get orientation maps, O1 and O2. We then compute the 2D 
correlation of the two orientation maps. 
 

2.3.7. Inverse RMS Difference of Spectral Image Validation Verification (SIVV) 
Signals 

Both differences and ratios of SIVV signals can provide quantitative measures for the 
comparison of images. For the present study, we examine image differences between pairs of 
images, I´1 and I´2, with respect to the Root Mean Squared Difference (RMSD) between their 
two SIVV signals, s1 and s2, over the entire frequency range 0 - 0.5 cycles/pixel. 
 

 
2

, ,1
( )

1 ( )
n

i iiRMSD
n

=
−

− = ∑ 1 2
1 2

s s
s ,s        (5) 

 

where 1 2n = =s s (i.e., the lengths of the signal vectors). 

 
We subtract the RMSD from one such that such that higher inverted RMSD scores will 
correspond with greater spectral similarity between the two images.  
 

2.3.8. SIVV Correlation 

The RMSD measures the total deviation of point-wise comparison of the SIVV signals. The 
Pearson product moment correlation coefficient measures the parallelism between the two 
signals irrespective of the magnitude of the difference between them. Accordingly, we compute 
the correlation coefficient between s1 and s2 as 

 

( )( )
( ) ( )

1 1 2 21
1 2 2 2

1 1 2 21

( , )
n

i
n n

i i

r =

= =

− −
=

− −

∑
∑ ∑

s s s s
s s

s s s s
       (6) 

 
where 1s and 2s  are the arithmetic means of their respective SIVV signal vectors.



NIST IR 8488 
September 2023 

 
Legend: D02 : Contact, Electroluminescent D03 : Contact, FTIR D04 : Contact, FTIR D05 : Contactless, Mobile D06 : Contactless, Mobile 

      
 D07 : Contactless, Mobile D09 : Contactless, Mobile D10 : Contactless, Mobile D12 : Contactless, Mobile D13 : Contactless, Mobile 

8 

 Results and Discussion 

 Free Minutiae Pair Displacement 

Despite possible minutiae displacement due to skin deformation in contact fingerprint capture, 
we see from our direct measurements of corresponding minutiae displacement that contact 
devices have lower median displacement and smaller variation than contactless devices. Thus, 
while true that contactless capture avoids potential problems of skin deformation, this 
displacement appears more consistent (and smaller) within captures from contact devices and 
collection from contact devices shows less variation with respect to minutiae displacement.  

 
Small displacement is clearly the case with contact capture of “plain” or “flat” fingerprint 
impressions. It is possible that this aspect of repeatability may be impacted to a greater extent 
with acquisition of rolled fingerprints – to be studied in subsequent experiments. However, the 
mobile contactless devices such as those used in the mFIT Challenge can capture more friction 
ridge area than that captured in a slap-four contact acquisition. With contactless collection, much 

Figure 1 – Distributions of displacement of the “free minutiae pair” for contact devices 02, 03, 
and 04 compared to that of mobile contactless fingerprint capture devices.  
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of the additional area of friction ridge is generally less useful due to imaging problems such as 
poor focus, poor lighting (shadow and specularities), and parallax deformation. Even in areas of 
good focus, lighting polarity inversion [13] has been observed and may account for some 
apparent minutiae displacement. For example, with polarity inversion a minutiae may change 
from bifurcation to ridge ending thereby resulting in a small shift in location with respect to the 
same image that is not impacted by this inversion. SourceAFIS [30] does consider minutiae type 
in establishing the score for a fingerprint comparison but does not require minutiae to be of the 
same type in establishing correspondence. 

 Mean Minutiae Pair Displacement 

As described in [28], NFRaCT measures the distance between all corresponding minutiae pairs 
detected by the SourceAFIS module and reports the mean of these measurements. Displacement 
for all corresponding minutiae pairs identified by the SourceAFIS matcher shows higher medians 
for all contactless devices. This displacement is on average five or fewer pixels offset for contact 
devices, and up to twice that many for contactless devices with greater variability in 
displacement distance. 
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Figure 2 Distributions of mean displacement of all minutiae pairs detected by the SourceAFIS 
comparison algorithm for contact devices 02, 03, and 04 compared to that of mobile 

contactless fingerprint capture devices. 
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 Scale Factor 

Based on anecdotal observations in prior data collections, scale control remains a challenge for 
contactless fingerprint capture due to the relatively unconstrained capture geometries of the 
mobile devices. Scale, of course, has a direct impact on image sample rate which in turn must 
conform to expectations on fingerprint comparison systems. The FBI EBTS Appendix F [25] 
specifies that fingerprint images must be sampled at 500 pixels per inch (ppi) with a tolerance of 
one percent, or ± 5 ppi. The less demanding specification for Personal Identity Verification (PIV) 
devices [26] allows a tolerance of two percent, or ± 10 ppi for an expected 500 ppi sample rate. 
 

 
We see very consistent image capture scale for repeat contact collected fingerprints, with the 
median of 1.0 at the desired sample rate. In Figure 3 we see that the boxes and at least half of the 
“whiskers” for the contact devices are fully within one percent shows these devices to be largely 
conformant to the Appendix F standard. This is not surprising as the capture geometry of the 
contact devices would be relatively constant with only pressure variation on the platen 
accounting for the observed variability. 
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Figure 3 – Distributions of Scale Factor measurements computed from the offset distance of 
the reference “fixed” minutia of the registered images to the “free” minutia. 
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Only two of the mobile contactless devices, D06 and D12, show medians of 1.0 but with higher 
variability than that of the contact devices. Other contactless devices show both higher median 
values and greater variability. The geometry of contactless capture is not as well constrained 
relative to contact acquisition, but these devices show reasonable control of scale relative to that 
observed in earlier measurements [13][14], and most of their distributions fall within the PIV 
“two percent” specification. 
 

 Comparison Score 

In nearly all cases, the contactless devices yielded lower comparison similarity scores between 
repeat captures compared to contact-collected images being matched to other contact-collected 
images from the same device. We find it notable that one of the contactless devices, D13, a 
smartphone based contactless collection device, reaches scores comparable to contact collection 
devices and was the exception in the aforementioned observation. That being said, scores from 
D13 do still show higher variability when compared to a contact collection device. 
 

 

Figure 4 Distributions of mated comparison scores for contact devices 02, 03, and 04 
compared to that of mobile contactless fingerprint capture devices. 
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Keep in mind that these comparison scores are for pairs of images collected from identical 
fingers sampled closely in time using the same device. Anecdotally, a very high comparison 
score is expected in this well constrained one-to-one scenario with close longitudinal adjacency. 
 

 Structural Similarity Index (SSIM) 

 
The Structural Similarity Index Metric measures on a block-wise basis the fidelity between a pair 
of registered images based on local similarity of luminance (gray level), contrast, and structure. 
With a maximum value of 1.0 for identical images we see in Figure 5 that even the contact 
images are far from identical. The three contact collection devices do however show higher 
SSIM (i.e., greater structural similarity) between successive captures than do the contactless 
devices. 
 
What is interesting is the disproportionately higher SSIM for D02 relative to D03 and D04. D02 
uses electro-luminescent technology in contrast to the FTIR optical technology of the other two 
contact devices. While this finding may be a function of the small subject pool, it is pronounced 
enough to warrant further investigation in future studies. 
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Figure 5 – Distributions of Structural Similarity Index (SSIM) for contact devices 02, 03, and 04 
compared to that of mobile contactless fingerprint capture devices 
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 Ridge Orientation Correlation 

 
Figure 6 shows higher correlations of local ridge orientation for contact images in contrast to 
contactless. Ridge orientation represents the angle orthogonal to the dominant gradient in a 7 x 7 
block sample of the image. This calculation can be adversely affected by feature noise [13] 
where a spurious feature is created by the rendering algorithm where the actual ridge is not 
apparent possibly due to poor focus or lighting. 

 Inverse RMS Difference of Spectral Image Validation Verification (SIVV) 
Signals 

 
This metric examines the difference in overall power spectral content (frequency domain, as 
opposed to spatial domain as is the case for many of the other tests in this study) for the images 
being compared. Of course, in the present experimental case these are two fingerprint images 
collected from the same finger using the same device in very close temporal proximity. Identical 

Figure 6 – Distributions of Ridge Orientation Correlation for contact devices 02, 03, and 04 
compared to that of mobile contactless fingerprint capture devices. 
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images should score 1.0 on this metric. In the present case we see all devices with medians in 
approximately the same range of the high ninety percent.  Variance is similar across most 
devices with D05 and D12 being exceptions. This could be the result of noise in the contactless 
images contributing to spectral differences. 
 

 

 SIVV Correlation 

 
Rather than measuring spectral power differences across frequencies, this metric examines the 
parallelism of the 1D SIVV radial power spectra.  
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Figure 7 Distributions of inverse RMSD off SIVV signals for contact devices 02, 03, and 04 
compared to that of mobile contactless fingerprint capture devices. 
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Examination of SIVV Correlation again shows that contact collection devices demonstrate low 
variance in the collected images, as well as higher SIVV correlation. This however is not 
universal and contactless devices D06, D10, D12 and D13 are competitive with contact 
collection devices. 

 Conclusions 

Contact collection requires applying mechanical pressure by the finger to a collection medium, 
and given the plasticity of the finger, this mechanical pressure introduces deformation to the 
finger relative to its original shape.  
Because contactless collection devices do not require any mechanical force on the finger to 
conduct a collection that the deformation normally introduced to fingers during contact 
collection is not present in contactless collection. Accordingly, it was hypothesized that 
displacement of minutiae should be lower for contactless acquisition than for contact. This 
proved to not be the case. We have discussed various sources of distortion with contactless 
fingerprint acquisition in [13] and find here that these distortion factors are present even with 
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Figure 8 Distributions of Correlation of SIVV signals for contact devices 02, 03, and 04 
compared to that of mobile contactless fingerprint capture devices 
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repeat capture using the same device. We note that in the present case the contact-collected 
images were plain impressions requiring only the downward pressure of the finger onto the 
device platen without the lateral stresses that might occur in collection of a rolled fingerprint 
impression. Were rolled fingerprints available we might have found greater minutiae 
displacement. We plan to evaluate this in a follow-on study. 
Furthermore, it was hypothesized that repeat fingerprint collection in close temporal adjacency 
will yield fingerprint images that have had minimal environmental impact introduced as a result 
of the small delay between captures. 
Therefore, it was hypothesized that images captured using contactless devices in close temporal 
proximity should exhibit very little deformation and offer optimal similarity given the repeat 
capture closely in time from the same device and by the same operator. 
Results of this study, with some noted exceptions, showed that in general, contact collection 
devices continue to excel over the contactless collection devices in terms of similarity in repeat 
captures close in time. Furthermore, all experimental cases (again with some noted exceptions) 
showed that contact collected images represent less variability in temporally adjacent captures 
relative to the new contactless devices. 
With this, we conclude that while contactless devices carry with them the promise of faster 
capture without making any contact with the subject, the images captured by these devices may 
have greater variability across successive captures and may not perform as well as contact-
collected images in various stages of friction ridge image processing including automated 
matching. 
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Appendix A. Glossary 

NFRaCT NIST Fingerprint Registration and Comparison Tool (software) 
NIST National Institute of Standards and Technology 
PIV Personal Identity Verification 
ppi Pixels per inch (the customary unit of sampling for digital fingerprints) 
ppmm Pixels per millimeter  
RMSD Root-Mean-Squared Deviation (or Difference) 
ROI Region of Interest 
SIVV Spectral Image Validation Verification 
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Appendix B. Box and Whisker Plots 

In the metric analyses above we summarize the measurement results in most cases using the data 
visualization graphic known as the boxplot or box and whisker plot. This method enables 
simultaneous display of measurement distributions for multiple experimental conditions, or in 
the present case, devices or comparisons of measurements between devices. 

 
Figure 9 – Relationship between the boxplot of normally distributed data compared to the standard 

normal distribution for illustrative purposes. [36] 

In the Figure 9 above we see that the outstanding feature of the boxplot is, of course, the box 
having the median marked by the central line. In the boxplots used in the present study, the 
median is surrounded by a notch representing the 95 % confidence interval about the median 
value. Interpreting the boxplot, it is significant that the box contains 50 % of the distribution and 
24.65 % between the limits of the box, Q1 and Q3, and the ends of each whisker. Note that 
corresponding to the normal distribution, this leaves approximately 0.35 % of the distribution 
beyond the limits of the whiskers. In these boxplots, these values, considered outliers, are 
omitted from the display. 
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