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ABSTRACT

The joint automated repository for various integrated simulations (JARVIS) infrastructure at the National Institute of Standards and
Technology is a large-scale collection of curated datasets and tools with more than 80 000 materials and millions of properties. JARVIS uses a
combination of electronic structure, artificial intelligence, advanced computation, and experimental methods to accelerate materials design.
Here, we report some of the new features that were recently included in the infrastructure, such as (1) doubling the number of materials in
the database since its first release, (2) including more accurate electronic structure methods such as quantum Monte Carlo, (3) including
graph neural network-based materials design, (4) development of unified force-field, (5) development of a universal tight-binding model, (6)
addition of computer-vision tools for advanced microscopy applications, (7) development of a natural language processing tool for text-
generation and analysis, (8) debuting a large-scale benchmarking endeavor, (9) including quantum computing algorithms for solids, (10)
integrating several experimental datasets, and (11) staging several community engagement and outreach events. New classes of materials,
properties, and workflows added to the database include superconductors, two-dimensional (2D) magnets, magnetic topological materials,
metal-organic frameworks, defects, and interface systems. The rich and reliable datasets, tools, documentation, and tutorials make JARVIS a
unique platform for modern materials design. JARVIS ensures the openness of data and tools to enhance reproducibility and transparency
and to promote a healthy and collaborative scientific environment.

Published by AIP Publishing. https://doi.org/10.1063/5.0159299
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I. INTRODUCTION

The joint automated repository for various integrated simulations
(JARVIS)1 is an integrated infrastructure to accelerate materials dis-
covery and design. The JARVIS infrastructure can be separated into
electronic structure methods [density functional theory (DFT),2 tight
binding,3 dynamical mean field theory (DMFT),4 many-body
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perturbation theory (PT) (GW),5 and quantum Monte Carlo
(QMC)]6,7 classical force-fields (FF),8 machine learning (ML) techni-
ques,9 quantum computation algorithms,10 and experiments.11

JARVIS is motivated by the materials genome initiative (MGI)12 prin-
ciples of developing open-access databases and tools to reduce the cost
and development time of materials discovery, optimization, and
deployment. A depiction of the major areas of ongoing research as
part of the JARVIS infrastructure is depicted in Fig. 1, and the publicly
available JARVIS tools are listed in Table I.

The main components of the JARVIS infrastructure (databases,
user-friendly web applications, tools) are centrally located at https://
jarvis.nist.gov/. The code behind the JARVIS infrastructure is located
in a collection of separate repositories [i.e., JARVIS tools, atomistic line
graph neural network (ALIGNN), ChemNLP, etc., see Table I] that are
centrally located in the main NIST GitHub repository (https://github.
com/usnistgov/). Each of these repositories contains a myriad of code
with specific separate installation instructions (i.e., using conda envi-
ronments). For example, JARVIS tools is a software package that con-
tains a plethora of PYTHON functions and classes (� tens of thousands
of lines of code) used for automated materials simulations, post-
processing of calculated data, and dissemination of results.
Instructions for basic applications (i.e., example PYTHON code needed to

screen materials in JARVIS or set up a basic DFT calculation) can be
found in the JARVIS documentation (https://pages.nist.gov/jarvis/) or
in the example PYTHON notebooks (see Sec. VII).

In the first three years since its creation in 2017 (see Fig. 2),
JARVIS-DFT grew to include standard material properties1 such as
formation energies, band gaps, elastic constants, piezoelectric con-
stants, dielectric constants, and magnetic moments, as well as more
exotic properties such as exfoliation energies for van der Waals (vdW)
bonded materials,13 spin–orbit coupling (SOC) spillage,14–16 improved
meta-GGA band gaps,17 frequency-dependent dielectric functions,17

solar cell efficiency,18 thermoelectric properties,19 and Wannier tight-
binding Hamiltonians (WTBH).20,21 Protocols such as automatic k-
point convergence22 were developed to improve data reliability.
JARVIS force field (JARVIS-FF)23 offers a framework to use classical
force fields to compute material properties such as defect formation
energies, bulk modulus, and phonon spectra that can be utilized for
molecular dynamics runs. Classical force-field inspired descriptors
(CFID)24 were introduced in 2018 as a part of JARVIS-ML. CFIDs rep-
resent the relation between the chemistry, structure, and charge of a
given material. By training CFIDs on JARVIS-DFT data, several classi-
fication and regression models have been developed. These include
models to predict properties such as band gaps, formation energies,
exfoliation energies, magnetic moments, thermoelectric properties,
and several other properties.1

In this review article, we will give an overview of the several major
updates that have been made to the JARVIS infrastructure (see Fig. 2).
Recent updates to JARVIS-DFT, which now contains over 80000
materials, include identifying the anomalous quantum confinement
effect (AQCE) in materials,31 screening bulk magnetic topological
materials,16 and screening bulk and two-dimensional (2D) supercon-
ducting materials.32,33 With regard to other electronic structure meth-
ods, tight binding models20,21 and QMC methods6,34,35 have recently
been added to the JARVIS infrastructure. JARVIS-ML has been
expanded to include the atomistic line graph neural network
(ALIGNN)25 model that has been utilized for fast and accurate prop-
erty and spectra prediction of formation energies, band gaps, electron
and phonon density-of-states (DOS),36,37 properties of metal-organic
frameworks for carbon capture,38 defect properties,39 and properties of
superconductors.32 The ALIGNNmodel has also been recently used to
develop universal force fields for the periodic table (ALIGNN-FF).40

The AtomVision26 model has been added to JARVIS-ML, with the
intention of generating and analyzing scanning tunneling microscope
(STM) and high angle annular dark field (HAADF) scanning

FIG. 1. Major areas of ongoing research as part of the JARVIS infrastructure.

TABLE I. A summary of the publicly available JARVIS tools.

Model name Link Ref.

JARVIS tools https://github.com/usnistgov/jarvis 1
TB3PY https://github.com/usnistgov/tb3py 20, 21
ALIGNN https://github.com/usnistgov/alignn 25
AtomVision https://github.com/usnistgov/atomvision 26
ChemNLP https://github.com/usnistgov/chemnlp 27
AtomQC https://github.com/usnistgov/atomqc 28
JARVIS notebooks https://github.com/JARVIS-Materials-Design/jarvis-tools-notebooks 29
JARVIS leaderboard https://github.com/usnistgov/jarvis_leaderboard 30
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transmission electron microscope (STEM) images to accelerate the
interpretation of experimental images. A natural language processing-
based library for materials chemistry text data (ChemNLP)27 and tools
to perform quantum computation algorithms28 such as variational
quantum eigen solver (VQE)41 and variational quantum deflation
(VQD)42 have also been added to the JARVIS infrastructure. Finally,
several experimental measurements have been performed to validate
our computational predictions. In addition to the major recent updates
of JARVIS, we will detail large-scale data efforts, educational note-
books, leaderboard, and external outreach.

II. ELECTRONIC STRUCTURE
A. Density functional theory

1. Magnetic topological materials screening

There have been few high-quality magnetic topological insulator
and semimetal candidates identified in the literature, which can have
potential applications in spintronics and quantum computation. We
used a screening criteria based on spin–orbit spillage (SOS), which is a
way to quantify spin–orbit-induced band inversion (a property of
topological materials) by comparing the wave functions with and with-
out spin–orbit coupling (SOC).14,15,45 This study is an extension of the
previous work, which used SOS to screen for bulk nonmagnetic mate-
rials and magnetic and nonmagnetic 2D materials.14,15

We used systematic high-throughput DFT calculations to identify
magnetic topological materials from the over 40 000 bulk materials in
the JARVIS-DFT database.16 First, we screen materials with net mag-
netic moment> 0.5lB and SOS> 0.25, resulting in 25 insulating and
564 metallic candidates. We then perform Wannier tight-binding
Hamiltonian (WTBH)-based techniques to calculate Wannier charge
centers, Chern numbers, anomalous Hall conductivities (AHC), sur-
face band structures, and Fermi surfaces to determine interesting topo-
logical characteristics of the screened compounds. After narrowing
down the search, we experimentally synthesized and characterized a
few candidate materials such as CoNb3S6 and Mn3Ge.

The full workflow is given in Fig. 3(a), while a full analysis of the
data trends for the materials is given in Figs. 3(b)–3(e). A summary of
candidate materials with high values of SOS is given in Table II.
Further analysis of the electronic band structure (with and without
SOC) and k-dependent spin–orbit spillage was conducted. Strong
focus was placed on Y3Sn (JVASP-37701), which is a candidate semi-
metal, and further analysis of the Fermi surface (001) surface band
structure, nodal points-lines, and AHC was performed. In addition,
strong focus was placed on NaRuO2 (JVASP-8122), which is a candi-
date Chern insulator, and further analysis of the Wannier charge cen-
ter and AHC was performed. Further details of computational
screening, methodologies, and specific calculated results can be found
in Ref. 16.

2. Anomalous quantum confinement effect

Quantum confinement effects, where the electronic bandgap of a
bulk material is lower in magnitude than the bandgap of its 2D coun-
terpart, are prevalent for vdW bondedmaterials. In contrast, it is possi-
ble that this bandgap trend is reversed, resulting in an anomalous
quantum confinement effect (AQCE). We calculated the band gaps for
bulk and corresponding 2D counterparts using DFT, starting from
structures in the JARVIS-DFT database. We used semilocal functionals
(OptB88vdW46) for � 1000 materials and hybrid functionals
(HSE0647 and PBE048) for � 50 materials. We identify 65 AQCE can-
didates with OptB88vdW, but only confirm this peculiar effect with
hybrid functionals for 14 materials. Depending on the material system,
the bandgap differences (between bulk and monolayer) can range
from less than 0.5 to 2 eV. Figure 4 depicts these computed results. A
large portion of the AQCE candidates are hydroxides and oxide
hydroxides [AlOH2, Mg(OH)2, Mg2H2O3, Ni(OH)2, SrH2O3], alkali-
chalcogenides (RbLiS and RbLiSe), and Sb-halogen-chalcogenides
(SbSBr, SbSeI).

Strikingly, we found examples of 0D and 1D structures included
in the 14 AQCE candidates. To quantify the effect of SOC on the band

FIG. 2. An overview of the history of JARVIS-related projects since its creation in 2017 until present.
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structure predictions and determine the SOS (similar procedure to Sec.
II A 1) to screen for topological properties, we performed
Perdew–Burke–Ernzerhof (PBE)-based SOC calculations. From these
results, we found that SOC does not significantly alter the bandgap,
and none of the 14 materials have topological properties. We further
investigated the change in electronic structure and bond distances with
the goal of understanding the AQCE. We found that in ACQE materi-
als, there is a lowering of the conduction band in the 2D structures
with changes in the contribution of the pz orbitals (z is the non-
periodic direction). We also find for structures that contain OH, there
are significant changes in the H–H bond distances, which can be

responsible for the AQCE. More details on this work and a full list of
AQCEmaterials can be found in Ref. 31.

3. Bulk and 2D BCS superconductors

The search for superconducting materials with high transition
temperatures (TC) has been a goal of condensed matter physicists50,51

since the discovery of superconductivity in 1911.52 The search for
novel superconductors can be expedited with more data-driven and
systematic approaches. In order to identify high-TC conventional

FIG. 3. (a) Flowchart depicting the screening process for high-spillage materials, (b) distribution of the spillage for all materials, (c) pie chart displaying high-spillage metals and
insulators, (d) distribution of the magnetic moment for high-spillage structures, (e) band gaps computed with Perdew–Burke–Ernzerhof (PBE)43 vs strongly constrained and
appropriately normed (SCAN) functionals.44 Reproduced with permission from Choudhary et al., Phys. Rev. B 103, 155131 (2021). Copyright 2021 American Physical Society.

TABLE II. A summary of magnetic topological materials: chemical formula (Form.),
spacegroup number (Spg), JARVIS-DFT ID (JID), and maximum spillage values.
Reproduced with permission from Choudhary et al., Phys. Rev. B 103, 155131
(2021). Copyright 2021 American Physical Society.

Form. Spg JID Spillage

Mn2Sb P63/mmc 15 693 0.5
NaMnTe2 P�3m1 16 806 1.04
Rb3Ga Fm�3m 38 248 0.47
CoSI F�43m 78 508 0.69
Mn3Sn P63/mmc 18 209 0.79
Sc3In P63/mmc 17 478 1.01
Sr3Cr Pm�3m 37 600 1.01
Mn3Ge Fm�3m 78 840 3.01
NaRuO2 R�3m 8122 0.5
CoNb3S6 P6322 21 459 1.03
Y3Sn P63/mmc 37 701 0.29
CaMn2Bi2 P�3m1 18 532 1.17

FIG. 4. Bulk vs monolayer band gaps using OptB88vdW (OPT), HSE06 and PBE0,
demonstrating the AQCE. Reproduced with permission from Choudhary and
Tavazza, Phys. Rev. Mater. 5, 054602 (2021). Copyright 2021 American Physical
Society.

Applied Physics Reviews REVIEW pubs.aip.org/aip/are

Appl. Phys. Rev. 10, 041302 (2023); doi: 10.1063/5.0159299 10, 041302-4

Published by AIP Publishing

 18 O
ctober 2023 14:17:30

pubs.aip.org/aip/are


Bardeen–Cooper–Schrieffer (BCS) superconductors,53,54 a curated
database of materials that can assist in screening candidates and an
efficient high-throughput workflow to perform electron–phonon cou-
pling (EPC) calculations are both required. The EPC that can be used
to reliably predict TC can be obtained from the density functional the-
ory perturbation theory (DFT-PT) calculations.54,55

We combined several approaches, each with different levels of
computational expense, to design a high-throughput workflow to dis-
cover new BCS superconductors. This workflow, depicted in Fig. 5,
begins with a prescreening step to identify materials in the JARVIS-
DFT database with a high electron density of states (DOS) at Fermi-
level [N(0)] and high Debye temperature (hD). Next, we developed and
applied a DFT-PT workflow to obtain the EPC properties and calcu-
lated TC using the McMillan–Allen–Dynes formula56 (with initially
low k-point and q-point convergence settings). Before applying this
DFT-PT workflow to materials from the prescreening step, we
validated our methods by benchmarking the workflow for several well-
known superconductors. We performed additional k-point and
q-point convergence for the top candidates from our prescreening step.
As discussed in Sec. IIIA 3, we used our EPC computed data to develop
a deep-learning property prediction model for superconducting prop-
erties using the atomistic line-graph graph neural network (ALIGNN).

We specifically prescreened 1736 materials with high Debye tem-
perature and electronic density of states. From our prescreening step,
we identified 1736 candidates (high electronic density of states at the
Fermi level and high Debye temperature) and performed DFT-PT for

1058 of them to obtain EPC properties and TC. From this, we found
105 stable structures with a TC above 5K (top candidates are shown in
Table III). The superconductors with the highest TC include MoN, VC,
Mn, MnN, LaN2, KB6, and TaC. Most notably, we discover a new hex-
agonal form of MoN, which has not been experimentally observed (in
contrast to the superconducting rock salt phase which has a TC of
30K57,58). Further details of this work on 3D BCS superconductors
can be found in Ref. 32.

Superconductivity in 2D has attracted attention59–61 due to
the potential applications in quantum interferometers, supercon-
ducting transistors, and superconducting qubits.62–66 Since very
few high TC 2D materials have been computationally or experi-
mentally identified, we decided to extend our high-throughput
workflow to 2D superconductors. First, we prescreened over 1000
2D materials in the JARVIS-DFT database on the basis of DOS at
the Fermi level, electronic bandgap, and the total magnetic
moment. This screening criterion is modified from our workflow
on bulk superconductors because the elastic tensor is available only
for a limited number of monolayers in JARVIS (it is more compu-
tationally expensive to calculate for 2D structures). This modified
screening procedure is based on the fact that a candidate 2D super-
conductor will have a high density of states at the Fermi level
(metallic) and zero magnetic moment per unit cell. We additionally
found 24 monolayers based on a literature search of bulk and
monolayer superconductors. A full depiction of this workflow for
2D materials and a summary of the results are given in Fig. 6.

FIG. 5. The main workflow used to identify bulk BCS superconductors: (a) statistical distribution of the Debye temperature (in K) and (b) statistical distribution of the electronic
density of states (DOS) (in states per eV per number of electrons) at the Fermi level, (c) the likelihood that a material contains a given element for hD greater than 300 K.
Reproduced with permission from Choudhary and Garrity, npj Comput. Mater. 8, 244 (2022). Copyright 2022 Nature Publications.
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Several nitrides, borides, and carbides are found to be among the
2D materials found to have a high TC. Also, many oxide and niobium-
based structures and transition metal dichalcogenides (such as NbS2
and NbSe2) are found to be good candidate superconductors. Similar
to a recent computational study,59 we find W2N3 to possess a signifi-
cantly high Tc of 18.7K. We observe the highest Tc of 21.8K for 2D
Mg2B4N2, which has been previously undiscovered in 2D and 3D
form. In addition, we studied 2D analogs of non-layered materials
such as ScC, NbC, B2N, and MgB2 and oxide-based materials such as
TiClO, ZrBrO, and NbO2, all of which are superconducting. Further
information on 2D superconductors can be found in Ref. 33.

B. Tight binding

There are two types of tight-binding projects available in JARVIS:
(1) Wannier tight-binding Hamiltonians (WTBH)20 and (2) a parame-
trized universal tight-binding model fit to first principles calculations
(ThreeBodyTB.jl).21 The WTBH database provides a computationally
efficient way to interpolate and understand the electronic properties of
a set of 1771 preselected materials, based on a DFT calculation for
each of those materials. The quality of the WTBH is evaluated by com-
paring the Wannier band structures to directly calculated DFT band
structures, including SOC. The WTBH database is used for predicting
the AHC, surface band structures, and various topological indexes.

In contrast to the WTBH database, the goal of the ThreeBodyTB.
jl parametrized tight-binding model is to produce a tight-binding
Hamiltonian and total energy without doing a computationally expen-
sive DFT calculation first. Because tight-binding uses a minimal basis
set of atomic orbitals, the calculations are up to three orders of magni-
tude faster than comparable plane wave DFT calculations, enabling
computationally efficient materials prediction. Despite their simplicity,
tight-binding approaches incorporate single-particle quantum
mechanics as well as electrostatics as a self-consistency step.67–69 This
built-in physics can enable improved predictions outside the set of
training data, relative to classical force-fields or pure machine-learning
approaches.

Unlike typical parametrized tight-binding models that consider
only interactions between pairs of atoms when generating the tight-
binding Hamiltonian,69,70 our model includes three-body contribu-
tions that modify the two-body contributions as well. These extra
terms allow for improved transferability as compared to simpler mod-
els, at the cost of needing to fit more parameters.

Our fitting procedure is summarized in Fig. 7. For a given ele-
mental or binary system, we first generate a set of standard crystal
structures, perform DFT calculations, and fit an initial parameter set to
reproduce the band structures and total energies. Then, we employ an
active learning strategy to test and improve the model by using the cur-
rent model to relax randomly generated crystal structures71 and test
our tight-binding results vs new DFT calculations. If the results are
poor, we add these new structures to our fitting database and repeat
the process until the results improve.

Our current parameter set can predict total energies, volumes,
and band gaps with comparable accuracy to machine learning
approaches, as well as produce band structures. Importantly, the
results generalize to surfaces and vacancy calculations that are
completely outside the fitting dataset, as shown in Fig. 8. For testing
results and details, see Ref. 21. The JULIA code with a PYTHON interface is
available, and an underlying DFT database with over 1� 106 materials
is available in JARVIS-QETB.

C. Quantum Monte Carlo

A recent effort of the JARVIS infrastructure has been to incorpo-
rate many-body methods that go beyond the standard accuracy of
DFT for selected materials that have a complicated or correlated elec-
tronic structure. Diffusion Monte Carlo (DMC)6 is a many-body cor-
related electronic structure method that has been applied successfully
to the calculation of electronic and magnetic properties of a variety of
periodic systems. It involves solving the imaginary-time Schr€odinger
equation for the near-exact ground state wavefunction using projector
techniques (more details can be found in Ref. 6). Although it is a more
computationally expensive method, DMC has a weaker dependence
on the starting density functional and Hubbard U parameters,72 scales
similarly to DFT with respect to the number of electrons in the simula-
tion (� N3�4Þ,6 and can achieve results that are more accurate than
DFT.6

1. Systematic benchmark of 2D CrX3

We designed a workflow that applied a combination of DFTþU
and DMC techniques to compute accurate magnetic properties for 2D
CrX3 materials (X¼ I, Br, Cl, F).34 We chose these materials [depicted

TABLE III. JARVIS screening workflow for some of the potential candidate supercon-
ductors: (Tc), chemical formula (Form.), spacegroup number (Spg), JARVIS ID (JID),
inorganic crystal structure database ID (ICSD)49 wherever available, JARVIS-DFT
based formation energy [Eform (eV/atom)] and energy above convex hull [Ehull (eV)].
Reproduced with permission from Choudhary and Garrity, npj Comput. Mater. 8, 244
(2022). Copyright 2022 Nature Publications.

Form. Spg JID ICSD Eform Ehull TC (K)

MoN 187 16 897 187 185 �0.47 0.09 33.4
CaB2 191 36 379 237 011 �0.25 0.09 31.0
ZrN 194 13 861 161 885 �1.76 0.18 30.0
VC 225 19 657 619 079 �0.48 0.06 28.1
V2CN 123 105 356 � � � �0.82 0.11 26.2
Mn 225 25 344 41 509 0.08 0.08 23.0
NbFeB 187 4546 � � � �0.15 0.39 22.1
NbVC2 5 102 190 � � � �0.46 0.08 21.9
ScN 225 15 086 290 470 �2.15 0.0 20.8
LaN2 2 118 592 � � � �1.05 0.0 20.4
VRu 221 19 694 106 010 �0.22 0.01 20.3
TiReN3 161 36 745 � � � �0.68 0.10 20.0
B2CN 51 91 700 183 794 �0.53 0.19 19.4
KB6 221 20 067 98 987 �0.09 0.0 19.0
ZrMoC2 166 99 893 � � � �0.49 0.08 17.9
TaB2 191 20 082 30 420 �0.60 0.0 17.2
NbS 194 18 923 44 992 �0.98 0.05 17.0
TaVC2 166 101 106 � � � �0.54 0.05 16.3
TaC 187 36 405 � � � �0.24 0.40 16.1
MgBH 11 120 827 � � � �0.03 0.11 15.5
CoN 216 14 724 236 792 �0.02 0.0 15.0
NbRu3C 221 8528 77 216 �0.02 0.19 15.0
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in Fig. 9(b)] as a case study since they have been experimentally syn-
thesized,73–75 have a nonzero critical temperature,73,76 and have been
studied with DFT extensively.76 Our first-principles data can be
mapped to a 2D model spin Hamiltonian to extract useful observable
quantities such as Tc.

77,78 In our case, this Hamiltonian was a function
of Heisenberg isotropic exchange (J), easy axis single ion anisotropy
(D), and anisotropic exchange (k). Note, this k is different than the k
that represents the electron–phonon coupling strength in supercon-
ductors (previously mentioned). To obtain J, k, and D, we performed
spin–orbit (noncollinear) DFTþU calculations by rotating the easy
axis by 90� and calculating the energy difference between the rotated
and non-rotated configurations for ferromagnetic (FM) and antiferro-
magnetic (AFM) separately. We automated these four calculations
using the JARVIS workflow, where four distinct total energy values
were obtained for each structure. We benchmarked this for 2D CrI3
(JVASP-76195), CrBr3 (JVASP-6088), CrCl3 (JVASP-76498), and
CrF3 (JVASP-153105) using multiple DFT functionals and values of
U. The influence of the geometric structure on the magnetic properties
was also assessed (see Ref. 34 for more details).

It is possible to systematically improve these results with QMC.
This can be accomplished by variationally determining the optimal U
value with DMC and computing a statistical bound for the J parame-
ter, which involves DMC calculations for the FM and AFM states sepa-
rately. In comparison to the previous noncollinear (spin–orbit) DFT

calculations, the energies in QMC are from collinear (spin-polarized)
calculations. Due to the fact that spin–orbit calculations are limited
in DMC at the moment, we are forced to neglect the k contribution
(spin–orbit dependent term) when computing J with DMC. However,
since J � k, this has negligible impact on the end result for J. Figure
9(a) displays the full QMC and DFTþU high-throughput workflow
that allows us to accurately estimate the 2D critical temperature77 with
the extracted J from DMC and the anisotropy parameters (D, k) from
DFTþU (at the optimal U value determined from DMC). We esti-
mated a maximum value of 43.56K for the Tc of CrI3 and 20.78K for
the Tc of CrBr3. Additionally, we present a comparison between the
magnetic moments and spin-density computed with DFTþU and
DMC. For more details of this work, see Ref. 34.

2. Structure and phase stability of 2D 1T- and 2H-VSe2

Throughout the theoretical and experimental landscape, there
have been controversies involving 2D VSe2 such as reports of near-
room temperature ferromagnetism (Curie temperature ranging from
291 to 470K).79–82 A coupling of structural parameters to magnetic
properties is a likely cause for the discrepancies in experimental and
calculated results79–83 for monolayer VSe2 in the T [octahedral phase
(1T)-centered honeycombs] phase and the H [the trigonal prismatic
(2H)-hexagonal honeycombs] phase. These structures are shown in

FIG. 6. (a) High-throughput workflow used to screen for 2D superconductors with high Tc and (b) and (c) the relationship between k and xlog (electron–phonon coupling) for
the materials in this study. Reproduced with permission from Wines et al., Nano Lett. 23, 969–978 (2023). Copyright 2023 American Chemical Society.
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the insets of Fig. 10. Both the T- and H-phases have a close lattice
match and similar total energies, which makes it a challenge to distin-
guish which phase is being experimentally observed.79,80,84,85 In order
to resolve the discrepancies in geometric properties and relative phase
stability of 2D VSe2 (T- and H-phase), we used a combination of DFT,
DMC, and a newly developed surrogate Hessian line-search geometric
optimization tool.86

In Fig. 10, DFT benchmarking results are shown for multiple
DFT functionals (with and without U correction) for structural param-
eters such as lattice constant (a) and V–Se distance (dV�Se) and the rel-
ative energy between the T- and H-phase (ET�H). We observe a large
deviation between DFT methods, which indicates the need to incorpo-
rate more accurate theories such as DMC. Using DMC, we computed
the lattice constants to be 3.414(12) and 3.335(8) Å for T–VSe2 and
H–VSe2, respectively. We also computed the V–Se distance to be 2.505
(7) and 2.503(5) Å for T–VSe2 and H–VSe2. We find the DMC relative
energy to be 0.06(2) eV per formula unit, which indicates that the H-
phase is energetically more favorable than the T-phase in freestanding
form. Using the DMC potential energy surface, we estimated a phase
diagram between the phases and found that applying small amounts of
strain can induce a phase transition. We also computed the magnetic
moments and spin densities with DMC and find substantial differ-
ences between DMC and DFTþU. More detailed information on this
study can be found in Ref. 35.

III. ARTIFICIAL INTELLIGENCE (AI)/ML
A. ALIGNN

Non-Euclidean graphs are increasingly being used to represent
crystal structures in deep-learning models. In comparison to
composition-only based descriptors, the graph representation pre-
serves the bond connectivity of atoms. Graph neural networks (GNN)
are deep-learning frameworks that perform inference on graph data
structures, and several high-performing GNN models have been pro-
posed for the prediction of material properties, including but not lim-
ited to: SchNet,87 crystal graph convolutional neural networks
(CGCNN),88 improved Crystal Graph Convolutional Neural
Networks (iCGCNN),89 materials graph network (MEGNet),90 and
OrbNet.91 In these frameworks, the graph nodes represent atoms
and encode for elemental features, while the edges represent bonds
and encode for bond distances. Therefore, only pairwise interactions
are explicitly encoded in the materials representation. Through the use
of multiple graph convolutional layers in the neural network, nodes

FIG. 7. Overview of the three-body tight binding (TB) model fitting workflow.
Reproduced with permission from Garrity and Choudhary, Phys. Rev. Mater. 7,
044603 (2023). Copyright 2023 American Physical Society.

FIG. 8. DFT results vs three-body tight-binding results for unrelaxed (a) point vacancy formation energy (in eV) and (b) (111) surface energies (in J mm�2) of various elemental
solids. The results from tight-binding are out-of-sample. Reproduced with permission from Garrity and Choudhary, Phys. Rev. Mater. 7, 044603 (2023). Copyright 2023
American Physical Society.
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(atoms) are updated based on neighboring states, allowing for an
implicit handling of many-body interactions.25

However, several material properties, for example, those related
to wave-like electronic and phononic states, are influenced by local
geometric distortions captured by changes in bond angles. In order to
explicitly encode bond angles and three-body configurations of atoms,
we introduced the atomistic line graph neural network (ALIGNN)25

into the suite of JARVIS tools. Following the original work on line
graph neural networks by Chen et al.,92 the ALIGNN framework
sequentially updates two graph representations: (1) the crystal graph
with nodes representing atoms and edges representing bonds, and (2)
the line graph built from the crystal graph with nodes representing
bonds and edges representing bond pairs sharing a common atom or
triplets of atoms. Note that the edges of the crystal graph and nodes of
the line graph share the same latent representation. Figure 11 depicts
how the compositional and structural features of a material are
encoded in both graph representations. The atomistic feature set (�i
for the ith atom) describing a crystal graph node includes the following
elemental descriptors: electronegativity, covalent radius, group num-
ber, block, valence electron count, atomic volume, first ionization
energy, and electron affinity.25 The bond features (eij for pairs of atoms
i and j) are the bond distances, represented using a radial basis func-
tion (RBF) expansion. Finally, the triplet features (tijk for set of atoms i,
j and k) are an RBF expansion of the bond angle cosines.

The ALIGNN model was first applied to predict 52 solid-states
and molecular properties, including formation energy, elastic con-
stants, electronic band structure attributes, dielectric constants, and
thermoelectric coefficients.25 In almost every task, the ALIGNN model
outperformed classical force-field inspired descriptors (CFID)24 and
the original CGCNN model88 by yielding a lower mean absolute error

(MAE) for predictions using comparable or improved training speed.
In comparison to 18 other machine learning algorithms, the ALIGNN
model also yields the lowest prediction MAE error for several tasks
including bandgap and formation energy prediction, as documented
on the matbench website.93 Since then, the ALIGNN model has also
been used to guide new materials searches in the realm of metal-
organic frameworks for carbon capture,38 defect properties,39 and
high-Tc conventional superconductors.

32

Since the initial presentation of the ALIGNN model in 2021,25

additional models built from ALIGNN have been introduced.
ALIGNN-d is an extension of the ALIGNN representation to explicitly
include four-body dihedral angles, which was successfully used to pre-
dict the peak location and intensity in the optical spectra of Cu(II)-
aqua complexes.94 The de-ALIGNN model introduced by Gong
et al.95 concatenates global descriptors of the material, such as average
bond length or lattice parameters, to the learned features in the
ALIGNN representation. Over 13 property prediction tasks, only two
phonon-related tasks, phonon internal energy and heat capacity,
showed large (>10%) prediction improvement in the de-ALIGNN
model vs the original ALIGNN model. In Sec. IIIA 1, however, we
show that phonon properties can be quickly and accurately predicted
using ALIGNN through a direct prediction of the phonon density-of-
states.37

In Secs. III A 1–III A3, we will discuss specialized uses of
ALIGNN to predict defect properties, spectral properties, and forces.

1. ALIGNN-spectra

Thus far, the performance of ALIGNN has mainly been discussed
in terms of scalar material property predictions, but the model has also

FIG. 9. (a) High throughput workflow used to calculate the magnetic properties using DFTþU in conjunction with QMC for a 2D material and (b) side and top views of the struc-
ture of 2D CrX3 (X¼ I, Br, Cl, F). Reproduced with permission from Wines et al., J. Phys. Chem. C 127, 1176–1188 (2023). Copyright 2023 American Chemical Society.
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been applied to predict spectral or frequency-dependent properties.
The latter task requires multi-output predictions, which is relatively
less well-developed for machine learning algorithms. Kaundiya et al.
first extended the ALIGNN model to enable multiple output features

for the prediction of the electronic density-of-states (DOS).36 Two
ALIGNN models trained using different representations of the DOS
were compared: (1) a discretized electronic DOS with 300 evenly
spaced frequency bins (D-ALIGNN), and (2) a low-dimensional repre-
sentation of the electronic DOS generated using an autoencoder
network with a latent dimensionality of 8, 12, 16, or 20 features
(AE-ALIGNN). The D-ALIGNNmodel slightly outperformed the AE-
ALIGNN model, but both yielded good prediction accuracy with over
80% of test samples showing an MAE of less than 0.2 states per eV per
electron.

The phonon DOS is the subject of a later work, which further
emphasizes DOS-derived properties obtained using a weighted inte-
gration of the phonon DOS.37 These thermal and thermodynamic
properties include the heat capacity (CV), vibrational entropy (Svib),
and the phonon-isotope scattering rate (s�1

i ). The phonon DOS
ALIGNN model was trained on a database of 14000 DFT-computed
phonon spectra calculated using the finite-difference method.1 As
shown in the histogram and example spectra of Fig. 12(a), the spectra
in the test set are concentrated at low prediction error levels, and the
ALIGNN model does a good job of capturing the location of peaks
and general distribution of phonon modes, although the shape of the
peaks is often altered. The ALIGNN phonon DOS predictions yield
highly accurate estimates of the DOS-derived properties with correla-
tion coefficients between ALIGNN and DFT values greater than 0.97
for all properties of interest. A general conclusion shown in this work
is that a DOS-mediated approach outperforms a direct deep-learning
approach for phononic properties. In other words, calculating proper-
ties like CV and Svib from the ALIGNN-predicted phonon DOS yields
higher accuracy than training an ALIGNNmodel to predict CV or Svib
directly. More details can be found in Ref. 37.

2. ALIGNN-FF

In Secs. III A and A1, we described the application of the
ALIGNN model for scalar and vector data, which are graph level out-
puts. Node level outputs such as forces, charges, and magnetic
moments are the motivation for which the ALIGNN-atomwise model

FIG. 10. Deviation of the structural properties [lattice constant (a) and V–Se distance
(dV�Se)] compared to the DMC computed structural properties for (a) T–VSe2 and (b)
H–VSe2 and (c) the deviation of T–H energy compared to the DMC computed T–H
energy (ET�H) for different DFT functionals (U¼ 2 eV), where the DMC error bar (stan-
dard error about the mean) is indicated by red bars. The side and top view of the geo-
metric structure is shown in the insets. Reproduced with permission from Wines et al., J.
Phys. Chem. Lett. 14, 3553–3560 (2023). Copyright 2023 American Chemical Society.

FIG. 11. (a) A schematic of the encoding of the crystal and line graphs for Mg2Si. (b) Depicts the crystal graph, where the nodes represent the atomic sites and include an
atomic feature set [ionization energy (E), volume per atom (V0i ), electronegativity (v)]. Bonds are represented by edges in the crystal graph, and bond distances (rij) are repre-
sented by the edge features, which use a radial basis function (RBF) to encode rij in the model. (c) Depicts the line graph (constructed from the previous crystal graph), where
the bonds of the structure are now represented by the nodes. Pairs of bonds with an atom in common (“triplets”) featurized by the bond angles are represented by the edges,
which are also encoded using a RBF. Reproduced with permission from Choudhary and DeCost, npj Comput. Mater. 7, 185 (2021). Copyright 2021 Nature Publications.

Applied Physics Reviews REVIEW pubs.aip.org/aip/are

Appl. Phys. Rev. 10, 041302 (2023); doi: 10.1063/5.0159299 10, 041302-10

Published by AIP Publishing

 18 O
ctober 2023 14:17:30

pubs.aip.org/aip/are


was developed. Specifically, for atomwise properties such as forces,
they should be derivatives of energy and should be equivariant96 as the
material system is rotated. For this task, we developed the ALIGNN
force field (ALIGNN-FF)40 to treat diverse crystals (chemically and
structurally) with a combination of 89 periodic table elements. The
entire JARVIS-DFT dataset was used to train ALIGNN-FF, which con-
sists of 4� 106 energy-force entries (where 307113 are taken).

Machine learning force fields (MLFFs) are a useful tool for the sim-
ulations of solids at a large scale. Previously, MLFFs have been designed
for specific chemical environments and are not usually able to be trans-
ferred to chemistries that differ from the training set. In recent years,
efforts to develop a universal interatomic potential that is generalizable
to diverse chemistries have been successful [i.e., M3GNET (MatGL)97

and GemNet-OC.98] We demonstrate ALIGNN-FF applicability beyond
specific system-types, as it is built to predict atomistic properties for
solids made of any combination of 89 periodic table elements. It was
validated on predictions of properties such as lattice constants, and
energy-volume curve. As an example, Fig. 13 shows ALIGNN-FF ability
to distinguish the polymorphs of various compounds (Si, SiO2, Ni3Al,
and vdW-bonded MoS2).

ALIGNN-FF can also be used for fast optimization of atomic
structures and structure prediction using evolution algorithms such as
genetic algorithms. When compared to DFT and embedded-atom
method (EAM) force fields, ALIGN-FF produced very similar

equation of state curves. Moreover, ALIGNN-FF was used to optimize
crystal structures in the crystallography open database (COD) as well
as in the JARVIS database. For additional testing, ALIGNN-FF was
used along with a genetic algorithm to predict the convex hull of a
Ni–Al alloy system. Promisingly, the resulting convex hull reproduced
the expected low energy structures without generating any unphysical
low energy structures for the Ni–Al phase diagram. As timing analysis
shows that ALIGNN-FF is over 100 times faster than DFT methods, it
can be used as pre-structure-optimizer before carrying out DFT calcu-
lations. More details on ALIGNN-FF can be found in Ref. 40.

3. ALIGNN-superconducting

In order to accelerate the initial BCS-inspired screening and
direct computation of the electron–phonon coupling (EPC) parame-
ters (see Sec. II A3), we developed deep learning tools (trained on
JARVIS-DFT data) for direct property prediction from an arbitrary
crystal structure. The BCS prescreening step is far less computationally
expensive than a full EPC calculation, but still requires a DFT calcula-
tion for the DOS at the Fermi level and hD, which can still require sig-
nificant computational expense. The results of these deep learning
models for DOS and hD (on 5% held-out test sets) are depicted in Figs.
14(a) and 14(b). Additionally, we developed machine-learning models
to directly predict EPC properties trained exclusively on our DFT-PT

FIG. 12. Performance of the ALIGNN phonon density-of-states (DOS) model. Panel (a) shows the distribution of ALIGNN-predicted phonon density of states (DOS) with respect
to mean absolute error (MAE), indicating that 78% of samples show an MAE of less than 0.086. The example spectra below show the ALIGNN prediction (colored) against the
DFT spectrum (black) to highlight the types of prediction errors that occur at each MAE level. In panels (b) and (c), we show that the room temperature heat capacity (CV) and
vibrational entropy (Svib) derived from the ALIGNN phonon DOS closely corresponds to the target DFT-derived values. Reproduced with permission from Gurunathan et al.,
Phys. Rev. Mater. 7, 023803 (2023). Copyright 2023 American Physical Society.
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calculations in Ref. 32. We used two methods (CFID and ALIGNN)
and trained models for TC directly, in addition to training models for
the EPC parameters (xlog and k). It is important to note that often
deep learning models require much larger amounts of data. Although
this is the case, our result show preliminary success with a smaller
dataset, which is continually growing.

The performance of the CFID-based predictions is shown in Figs.
14(c)–14(e) for TC, xlog, and k, and the performance of the ALIGNN-
based predictions is shown in Figs. 14(f)–14(h). It is clear that
ALIGNN outperforms CFID in terms of computing xlog, while the
MAE for TC and k are quite similar, indicating that it is easier to learn
xlog. By computing xlog and k with ALIGNN and plugging the quanti-
ties into the McMillan–Allen–Dynes equation,56 TC is predicted with
an MAE of 1.77K. Alternatively, we attempted to compute TC from
the ALIGNN predicted Eliashberg function. We observed that the
ALIGNN model can capture the peaks of the Eliashberg function.
From this alternative method, we predict a TC with an MAE of 1.39,
which has over a 24% improvement over the direct ALIGNN predic-
tion. This implies that in comparison to direct ML predictions of prop-
erties, learning more fundamental physics-based quantities (such as
the Eliashberg function) can be helpful for deep learning approaches
with smaller amounts of data. Additionally, we used this supercon-
ducting ALIGNN model in conjunction with a generative diffusion
model (crystal diffusion variational autoencoder99) to inversely design
new superconducting materials.100 More information on the ALIGNN
superconducting model can be found in Ref. 32.

B. AtomVision

The AtomVision library is designed to be a general toolkit for
both generating and analyzing image databases.26 Currently, the
library implements contrast models that can be used to simulate

scanning tunneling microscope (STM) and high angle annular dark
field (HAADF) scanning transmission electron microscope (STEM)
images given the crystal structure, and easily generate databases of sim-
ulated atomistic images. The STM images are computed using the
Tersoff–Hamann formalism, which models the STM tip as an s-wave
spherical state.101 The HAADF STEM images are simulated using a
convolution approximation often applied to thin film samples. This
method convolves a point-spread function centered around the probe
with a transmission function that considers the atomic number of the
imaged specimen.102 The atomic number (Z) dependence of the inten-
sity of the imaged atom is roughly proportional to Z2, as predicted by
Rutherford scattering.103 Relevant images can also be curated from the
literature through integration with the ChemNLP natural language
processing package27 (more information in Sec. IIIC). In contrast to
other image datasets, which focus on a specific chemistry, the
AtomVision package prioritizes chemical and structural diversity.

Numerous analysis tools are also provided, primarily based on
machine learning methods. Although the datasets published with the
package are focused on STM and STEM images, the analysis scripts
can be used to easily train deep learning methods on any user-
provided image data by simply providing directory paths for the train-
ing and test set of images.

First, the t-distributed stochastic neighbor embedding (t-SNE)104

is implemented, which performs a dimensionality reduction in the
high-dimensional image data, allowing the spread of samples (images)
to be visualized in a two- or three-dimensional plot. The Euclidean dis-
tance between data points in a t-SNE plot relates to their similarity;
however, the distances can only be interpreted qualitatively. Images
that cluster together in the plot will tend to be more similar in their
featurization, be it pixel intensity, red, green, blue triplets, or graph rep-
resentations of images, which will be described in the next paragraph.

One critical image analysis task that is implemented in
AtomVision, known as segmentation, consists of classifying pixels
based on whether they compose the background or an object of inter-
est. We utilize the U-Net pre-trained model105 to distinguish atoms
from background in the atomistic images. After this pixelwise classifi-
cation, we can identify atom positions as well as characteristics of their
intensity peak (e.g., peak width, maximum intensity) using a blob
detection method implemented in the scikit-learn package.106 With
the atom positions identified, it is then possible to construct a non-
Euclidean graph representation of the atomistic image. The atom peaks
in the image become the nodes, which are featurized using the blob
characteristics described above, and edges (representing bond vectors)
are formed between atoms using the k–d tree nearest neighbor search
algorithm. An additional line graph can then be constructed, as in the
ALIGNN model, where bond vectors are the graph nodes and bond
angles are the graph edges.

There are then two main representations of images in the
AtomVision package: 2D arrays of pixel intensities, and the graph rep-
resentation. The AtomVision package allows the user to train neural
networks based on either image representation to perform tasks such
as image classification. The pixel-based data can be used to train con-
volutional neural networks (CNN) based on popular frameworks that
include VGG,107 ResNet,108 and DenseNet109 amongst others that are
included in the AtomVision package. Similarly, the graph-based data
can be used to train graph neural networks like the ALIGNN method
described in Sec. III A. We demonstrate both model types in an image

FIG. 13. ALIGNN-FF computed energy-volume curves for (a) Si, (b) SiO2, (c) Ni3Al,
and (d) MoS2, with the ultimate goal of distinguishing polymorphs. Reproduced with
permission from Choudhary et al., Digital Discovery 2, 346–355 (2023). Copyright
2023 Royal Society of Chemistry.
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FIG. 14. ALIGNN performance on a 5% test set for (a) Debye temperature and (b) electronic DOS. CFID [(c)–(e)] and ALIGNN [(f)–(h)] performance on a 5% test set for DFT
computed TC, xlog, and k. Performance of a direct TC prediction (red), TC prediction using the Eliashberg function (black), and TC prediction utilizing the direct prediction of
xlog and k and then using McMillan–Allen–Dynes formula56 (green) are shown in (f). Reproduced with permission from Choudhary and Garrity, npj Comput. Mater. 8, 244
(2022). Copyright 2022 Nature Publications.
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classification task performed on the HAADF STEM image dataset in
which we train a model to classify images into the 2D Bravais lattice
type of the material in the image. In this particular test, the best per-
forming CNN was the DenseNet with a classification accuracy of 83%,
while the ALIGNN classifier had an accuracy of 78%.

The pixelated images in the atomistic image datasets are
described by 50176 pixel intensities, and therefore exist in a very high-
dimensional feature space. The manifold hypothesis suggests that the
underlying structure of the data can be described by relatively fewer
dimensions using feature extraction methods. The AtomVision pack-
age facilitates training and usage of an autoencoder network, which
can create a low-dimensional representation of the image and then
reconstruct the pixelated image from that latent representation.

The final functionality currently implemented in the AtomVision
package is a super-resolution generative adversarial network (SRGAN)
model,110 which can upsample a low-resolution image to produce a
high-resolution image. The SRGAN uses two separate deep learning
models that compete with each other during optimization: (1) the gener-
ator produces a super-resolution image by first performing a feature
extraction step, akin to the autoencoder model, and then interpolating
within the learned latent representation; and (2) the discriminator
should classify the image as either real or generated. As a result of the
competition loop, the generator learns to “trick” the discriminator model
with increasingly realistic super-resolution images. We apply this model
to the atomistic images and demonstrate a successful conversion of a
low resolution image (64 � 64 pixels) to a high resolution image (256
� 256 pixels), showing the same image window. Additional information
about the AtomVision package can be found in Ref. 26 (Fig. 15).

C. ChemNLP

Much of the data on materials science is available in text format
in the form of articles that are not easily amenable to standard auto-
mated analysis. To address this barrier, we developed ChemNLP,27 a
library that utilizes natural language processing (NLP) for chemistry
and materials science data. Currently, ChemNLP is based on publicly
available platforms such arXiv (https://arxiv.org/), Pubchem (https://
pubchem.ncbi.nlm.nih.gov/) datasets and Huggingface (https://hug-
gingface.co/)111 libraries.

ChemNLP organizes the NLP data and tools for materials chem-
istry application in a format suitable for model training. In addition to
data curation, it allows the integration of useful analyses, such as (1)
classifying and clustering texts based on their categories, (2) named
entity recognition for large-scale text-mining, (3) abstractive summari-
zation for generating titles of articles from abstracts, (4) text generation
for suggesting abstracts from titles, (5) integration with the density
functional theory datasets for identification of potential candidate
materials, and (6) web-interface development for text and reference
query. A schematic of the ChemNLP library is given in Fig. 16.

ChemNLP uses several conventional machine learning algo-
rithms as well as state of the art transformer models for comparison
and validation. Some of the algorithms in ChemNLP include support
vector machines, random forest, graph neural networks, Google’s
T5,112 OpenAI’s GPT-2 (Ref. 113), and Meta AI’s OPT114 transformer
models, all of which are fine-tuned on materials chemistry text data.
The web-app of ChemNLP allows for the searching of various text
information (such as material properties, synthesis procedure, etc.)
given the chemistry information (stoichiometry). As an application of
transformer models, ChemNLP showed that fine-tuning general large
language models (LLMs) for abstract to title and vice versa can result
in an improvement in performance compared to the original pre-
trained model.

Specifically, we applied text classification models for the arXiv
and PubChem datasets where we chose title, abstracts, and titles along
with abstracts to classify the articles. We used ML algorithms such as
random forest, support vector machine, logistic regression, and graph
neural network and found that the highest classification accuracy
(91.3% for arXiv and 97.6% for PubChem) was achieved for linear sup-
port vector machine. In order to mine text and extract meaningful
information, named entity recognition or token classification can be
used. Information such as material name, sample descriptor, symmetry
label, synthesis/characterization method, property, and application can
be extracted and utilized. We used the MatScholar115 dataset to train a
transformer model with XLNet116 and applied it to the arXiv titles and
abstracts and full texts, where we found the F1 score to be 87%. With
regard to text-to-text generation models, we focused on abstract sum-
marization (creating a title from the abstract) and text generation

FIG. 15. Schematic of select capabilities in the AtomVision package. (a) An example 2D crystal structure is sampled from the JARVIS-2D DFT database1 and a Rutherford
scattering contrast model is applied to produce a synthetic HAADF-STEM image (b). Next, image analysis tasks implemented in the package are demonstrated, including: (c)
localizing atom positions, (d) generating a non-Euclidean graph over the image, and (e) reconstructing the image from a low-dimensional representation using an autoencoder.
Reproduced with permission from Choudhary et al., J. Chem. Inf. Model. 63(6), 1708–1722 (2023). Copyright 2023 American Chemical Society.
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(generating an abstract from the title). We used a pre-trained T5112

model for abstract summarization and fine-tuned it for the arXiv data-
set. As a metric of success, we used the ROGUE (recall-oriented under-
study for gisting evaluation) score. For the fine-tuned T5 model, we
obtained a ROGUE score of 46.5% (as opposed to the 30.8% of the
pre-trained model). To generate the abstract from the title, we fine-
tuned a pre-trained OPT114 model and obtained a ROGUE score of
37%. This proves that ChemNLP provides a flexible format to fine-
tune existing text generation models that may be developed in the
future.

Finally, ChemNLP allows a seamless integration of arXiv and
DFT databases (i.e., JARVIS-DFT). In our work, we demonstrated
how ChemNLP can aid in the discovery of new superconductors by
simultaneously searching the JARVIS Superconductor dataset32 and
the arXiv dataset. With regard to materials with a Tc above 1K, we
found 635 in the DFT dataset and 1071 chemical formulas in the arXiv
dataset, with only 43 common materials. This integration of the litera-
ture and calculated results can motivate further screening of potential
candidate superconductors. In addition to aiding the search for materi-
als for specific applications, ChemNLP can be used along with DFT
databases to generate formatted descriptions of atomic structure infor-
mation that can be used for training future large language models (i.e.,
json formatted text). Further details of ChemNLP and the success met-
rics used (classification accuracy, F1 score, ROGUE score) can be
found in Ref. 27.

D. Uncertainty analysis

Uncertainty quantification in ML-based material property predic-
tion is important for assessing the accuracy and reliability of machine
learning methods for material property predictions.117,118 For example,

if the uncertainty in the prediction is not known or is too large, predic-
tions can be challenged. For this reason, the field of uncertainty quanti-
fication for materials AI/ML-based predictions is a field that could
benefit from advancements.117,118 Confidence intervals are widely
reported for ML predictions, but the evaluation of individual uncer-
tainties on each prediction (prediction intervals) is not as commonly
reported. Due to this, JARVIS has focused on individual property
uncertainty predictions for ML models.119 To compute individual
uncertainties, we specifically used machine learning the prediction
intervals directly, Quantile loss function, and Gaussian processes.
These uncertainty prediction methods were tested and compared for
12 ML-computed properties. The JARVIS-DFT dataset was used for
all training and testing.

In summary, we found that direct modeling of the individual
uncertainty is favored due to the fact that the overestimation and
underestimation of the errors is minimized in most cases. In addition,
it is the easiest method to fit and implement.119 The Quantile method
requires the fitting of three different models. Gaussian processes give a
reasonable estimate for the prediction intervals, but are overestimated
and more time consuming to fit compared to the other methods.
Additionally, direct prediction of individual uncertainty has an advan-
tage because it allows the use of any loss function. One caveat is that it
requires splitting the data into three parts, which can be a potential
issue if the dataset is too small. The codes developed for evaluating the
prediction intervals are publicly available within JARVIS-tools. More
details of this work can be found in Ref. 119.

IV. QUANTUM COMPUTATION

The ability to solve quantum chemistry problems is one of the
most promising near-term applications of a quantum computer.10

Variational quantum eigen solver (VQE)41 and variational quantum

FIG. 16. A schematic overview of ChemNLP. The goal of ChemNLP is to provide a software toolkit with integrated dataset and comprehensive AI/ML tools for expanding the
natural language processing technique applications for tasks such as text classification, clustering, named entity recognition, abstractive summarization, and text generation.
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deflation (VQD)42 are Quantum algorithms that have been applied to
molecules.41 There is a strong desire to implement these Quantum
algorithms for crystals. As a result, we have developed the AtomQC28

package, which adds quantum computation tools to the JARVIS
infrastructure.

WTBH approaches were utilized to demonstrate the application
of VQE and VQD to compute electronic and phonon properties of
various materials, including elemental solids and multi-component
systems. For 307 spin–orbit-based electronic WTBHs and 933 finite-
difference-based phonon WTBHs, we applied VQE and VQD algo-
rithms. We only deal with the single-particle picture in this study, but
we strongly believe our work can set the course for the solution of
interacting Hamiltonians. Such interacting Hamiltonians can be
obtained from methods such as the dynamical mean-field theory
(DMFT) and Green’s function with the screened Coulomb potential
theory (GW), which can be a much more suitable problem to simulate
on a quantum computer. A preliminary workflow that combines the
VQD algorithm with DMFT-based solving of the lattice Green’s func-
tion is provided in this work. Figure 17 shows the entire quantum
computation workflow. These WTBH solvers can be used to test other
various Quantum algorithms and are publicly available. More informa-
tion on AtomQC can be found in Ref. 28.

V. EXPERIMENTS

Although majority of the data in JARVIS originates from compu-
tation, we use data validation and benchmarking with experiments
whenever applicable. In some cases, we obtain experimental data from
the literature or from the in-house standard reference material (SRM)
data at NIST. In other cases, we perform our own experiments along
with our computational efforts. This experimental data include XRD
and neutron diffraction patterns, CO2 adsorption isotherms,120 mag-
netic susceptibility measurements,33 spectroscopic ellipsometry dielec-
tric functions, Raman spectra, STM/STEM images, and transport
measurements.

Most recently and notably, we have conducted our own experi-
ments for magnetic topological materials and 2D superconductors.
With regard to magnetic topological materials, we measured the
Anomalous Hall effect of CoNb3S6 and conducted inverse spin-Hall
signal measurements for Mn3Ge, two materials theoretically predicted
to be topological materials in Ref. 16 (see Sec. II A1). We performed
zero-field-cooled magnetometry experiments to determine the critical
temperature of selected 2D superconductors to verify the theoretical
predictions in Ref. 33 (see Sec. IIA 3). We conducted these experi-
ments for layered 2H-NbSe2, 2H-NbS2, FeSe, and ZrSiS. Figure 18
depicts the measured magnetic susceptibility (using a magnetic field
strength of 0.01T) as a function of temperature. We observe that out
of these layered materials, 2H-NbSe2 has a Tc of 8.3K, 2H-NbS2 has a

Tc of 7.1K, FeSe has a Tc of 7.5K, and ZrSiS does not have a supercon-
ducting transition due to the measured decreasing magnetic suscepti-
bility with increasing temperature. We discuss these measurements
within the context of our DFT-computed results in Ref. 33.

These experimental datasets are now being integrated in the
JARVIS-Leaderboard for benchmarking and validation purpose (see
Sec. VIII). Some simulated experimental data, such as XRD patterns,
can be computed with JARVIS-Tools. As the experimental datasets in
JARVIS are not exceedingly large at the moment, we can currently
apply machine learning algorithms on computational data, and in the
future, apply the same pipeline to experimental data.

VI. OPTIMADE AND NOMAD

Data in JARVIS are being integrated within large-scale data
efforts such as NOMAD121 and OPTIMADE122 for sustainability, and
interoperability.

The Open Databases Integration for Materials Design
(OPTIMADE) consortium has designed a universal application pro-
gramming interface (API) to make materials databases accessible and
interoperable. The OPTIMADE API has a set of well-defined key-
value pairs such as chemical formula name, number of elements, etc.,
for each atomic structure that allows sending a universal API search
for multiple data-efforts. The implementation required a Django-rest-
framework integration with specific data-models, pagination, and
other specification as detailed in OPTIMADE to be compatible with
other infrastructures.

Similarly, NOMAD project allows storage of raw data files and
provides several interactive GUI tools. Although JARVIS has its own
storage mechanism, having data distributed on platforms such as
NOMAD and OPTIMADE allows enhanced transparency, which is
essential for large-scale data-driven materials design.

VII. JARVIS TUTORIAL NOTEBOOKS

A collection of interactive PYTHON notebooks are hosted in the
Jarvis-tools-notebooks GitHub repository29 that can be run on a user’s
local computer or easily through a cloud-based PYTHON development
environment. All package installation steps are included in the note-
books such that they can be executed and edited in a standalone fash-
ion, allowing users to easily make use of JARVIS models. These
interactive notebooks are meant to supply an example calculation that
will execute quickly and reproduce a portion of the results in a
JARVIS-associated publication. The collection of notebooks include
machine learning models that allow users to train and utilize ALIGNN
or AtomVision models for material property prediction and image
classification. There are also several electronic structure and atomistic
calculation notebooks that analyze DFT, tight-binding, or MD outputs
to calculate material properties, including elastic properties, spin–orbit

FIG. 17. The steps used in predicting phonon and electron properties of a material on a quantum computer. Reproduced from with permission from Choudhary, J. Phys.:
Condens. Matter 33, 385501 (2021). Copyright 2021 IOP Science Publishing.
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spillage, dielectric functions, thermoelectric and photovoltaic proper-
ties. Finally, a notebook based on the AtomQC and qiskit123 packages
for quantum computation is provided.

VIII. LEADERBOARD

The JARVIS-Leaderboard30 is a large-scale benchmarking effort
for various computational and experimental methodologies for materi-
als science applications. The main goal of the JARVIS-Leaderboard is
to enhance reproducibility and transparency for various methodologies
within the materials science field. Although leaderboard efforts have
previously been developed for specific applications (i.e., MatBench,93

OpenCatalystProject,124 etc.), there lacks a benchmarking platform
with multiple data modalities for perfect and defective materials as
well as ease to add new benchmarks. The JARVIS-Leaderboard
(https://pages.nist.gov/jarvis_leaderboard/) attempts to bridge the gap
between different methods and material classes by allowing users to set
up benchmarks and make contributions in the form of datasets, codes,
and meta-data submissions (through GitHub actions). These contribu-
tions are compared with experimental data where applicable, and the
accuracy of each contribution is assigned a “score” (MAE with respect
to the ground truth). Some of the categories are: Artificial Intelligence
(AI), Electronic Structure (ES), Quantum Computation (QC), and
Experiments (EXP).

For AI, various methods (descriptor-based, neural network-
based) and data (atomic structure, atomistic images, spectra, text) are
benchmarked. For ES, multiple approaches (DFT, QMC, Tight bind-
ing, GW), software packages, and pseudopotentials are considered,
and the results are compared to experiments whenever applicable.
Multiple FF approaches for material property predictions are com-
pared (classical FF, MLFF). For QC, we compare the performance of
various quantum algorithms and circuits for Hamiltonian simulations.
For experiments, inter-laboratory (round robin) approaches are used.
In addition to prediction results, we attempt to capture the underlying
software, hardware, and instrumental frameworks to enhance repro-
ducibility and method validation, which can aid in developing new
and more reliable techniques. Currently, there are over 1400 user con-
tributions using over 150 different methods, and these numbers are
growing rapidly.

IX. EXTERNAL OUTREACH

In addition to the databases, tools and applications that are part
of the JARVIS infrastructure, there has been substantial effort devoted
to outreach in the materials science research community. The JARVIS
team has annually hosted the Artificial Intelligence for Materials
Science (AIMS) and Quantum Matters in Materials Science (QMMS)
workshops, where speakers have been invited from academia,

FIG. 18. Experimental DC magnetic susceptibility as a function of temperature (used to determine Tc) for layered: (a) 2H NbSe2, (b) 2H-NbS2, (c) FeSe, and (d) ZrSiS.
Reproduced with permission from Wines et al., Nano Lett. 23, 969–978 (2023). Copyright 2023 American Chemical Society.
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government, and industry to discuss key achievements and challenges
in the respective fields. Topics presented at AIMS include: dataset and
tools for employing AI for materials, integrating experiments with AI
techniques, graph neural networks, comparison of AI techniques for
materials, the challenges of applying AI to materials, uncertainty quan-
tification and building trust in AI predictions, generative modeling,
using AI to develop classical force-fields, natural language processing,
and AI-guided autonomous experimentation. Topics presented at
QMMS include: discovery and characterization of new materials, opti-
mization of known quantum materials, investigation of defect induced
behavior and transitions, electronics, spintronics, quantum memory
applications, challenges in applying quantum information systems
technologies at industrial scale, and accurate many-body computa-
tional methods to treat quantum materials.

The JARVIS team has also organized a series of hands-on work-
shops at different academic and government institutions, known as
JARVIS-Schools. JARVIS-Schools consist of a tutorial and hands-on
session to introduce open-access databases and tools for materials-
design. These sessions are accompanied by a series of power-point
presentations on the core-topics, Google-Collab/Jupyter notebook
examples, and discussion. The hands-on session/discussion topics
include: electronic structure calculations (DFT, tight-binding, etc.), the
density functional theory for predicting properties (e.g., solid-state
materials), machine learning (for atomistic, image and text data),
quantum computation and its applications to materials, and classical
force-field calculations for large-scale properties. An updated calendar
of JARVIS events can be found here: https://jarvis.nist.gov/events/.

There are various mechanisms to collect external usage data for
JARVIS inside and outside the materials science community. These
sources include the number of users registered for the JARVIS API,
Google analytics results for viewers, number of citations for papers,
downloads of software tools on GitHub, number of views and down-
loads from the Figshare repository, number of attendees in the AIMS/
QMMS workshops and JARVIS-Schools, and number of collaborators
developed inside and outside NIST from academia, national labs, and
industry. A wide usage of JARVIS resulted in JARVIS being
highlighted as a standard platform for materials design in the NIST US
CHIPS Acts strategic plan (https://www.nist.gov/chips/implementa-
tion-strategy).
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bases to enhance reproducibility in calculations. Different descriptors,
graphs, and datasets for training machine learning models are also
included in JARVIS-Tools. Capabilities can be easily be extended to
HPC systems (Torque/PBS and SLURM). Documentation for
JARVIS-Tools, including installation instructions, can be found here:
https://pages.nist.gov/jarvis/.

REFERENCES
1K. Choudhary, K. F. Garrity, A. C. Reid, B. DeCost, A. J. Biacchi, A. R. Hight
Walker, Z. Trautt, J. Hattrick-Simpers, A. G. Kusne, A. Centrone et al., “The
joint automated repository for various integrated simulations (JARVIS) for
data-driven materials design,” npj Comput. Mater. 6, 1–13 (2020).
2P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136,
B864–B871 (1964).

3N. Ashcroft and N. Mermin, Solid State Physics (Saunders College Publishing,
Fort Worth, 1976).

4D. Vollhardt, K. Byczuk, and M. Kollar, “Dynamical mean-field theory,” in
Strongly Correlated Systems: Theoretical Methods, edited by A. Avella and F.
Mancini (Springer, Berlin, Heidelberg, 2012), pp. 203–236.

Applied Physics Reviews REVIEW pubs.aip.org/aip/are

Appl. Phys. Rev. 10, 041302 (2023); doi: 10.1063/5.0159299 10, 041302-18

Published by AIP Publishing

 18 O
ctober 2023 14:17:30

https://jarvis.nist.gov/events/
https://www.nist.gov/chips/implementation-strategy
https://www.nist.gov/chips/implementation-strategy
https://jarvis.nist.gov/
https://github.com/usnistgov/jarvis
https://pages.nist.gov/jarvis/
https://doi.org/10.1038/s41524-020-00440-1
https://doi.org/10.1103/PhysRev.136.B864
pubs.aip.org/aip/are


5G. Onida, L. Reining, and A. Rubio, “Electronic excitations: Density-
functional versus many-body Green’s-function approaches,” Rev. Mod. Phys.
74, 601–659 (2002).

6W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, “Quantum Monte
Carlo simulations of solids,” Rev. Mod. Phys. 73, 33–83 (2001).

7R. M. Martin, Electronic Structure: Basic Theory and Practical Methods
(Cambridge University Press, 2020).

8M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford
University Press, 2017).

9T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, The Elements of
Statistical Learning: Data Mining, Inference, and Prediction (Springer, 2009),
Vol. 2.

10M. A. Nielsen and I. L. Chuang, “Quantum computation and quantum infor-
mation,” Phys. Today 54(11), 60 (2001).

11Y. Leng, Materials Characterization: Introduction to Microscopic and
Spectroscopic Methods (John Wiley and Sons, 2009).

12J. A. Warren, “The materials genome initiative and artificial intelligence,”
MRS Bull. 43, 452–457 (2018).

13K. Choudhary, I. Kalish, R. Beams, and F. Tavazza, “High-throughput identifi-
cation and characterization of two-dimensional materials using density func-
tional theory,” Sci. Rep. 7, 1–16 (2017).

14K. Choudhary, K. F. Garrity, and F. Tavazza, “High-throughput discovery of
topologically non-trivial materials using spin-orbit spillage,” Sci. Rep. 9, 8534
(2019).

15K. Choudhary, K. F. Garrity, J. Jiang, R. Pachter, and F. Tavazza,
“Computational search for magnetic and non-magnetic 2d topological materi-
als using unified spin–orbit spillage screening,” npj Comput. Mater. 6, 49
(2020).

16K. Choudhary, K. F. Garrity, N. J. Ghimire, N. Anand, and F. Tavazza, “High-
throughput search for magnetic topological materials using spin-orbit spillage,
machine learning, and experiments,” Phys. Rev. B 103, 155131 (2021).

17K. Choudhary, Q. Zhang, A. C. Reid, S. Chowdhury, N. Van Nguyen, Z.
Trautt, M. W. Newrock, F. Y. Congo, and F. Tavazza, “Computational screen-
ing of high-performance optoelectronic materials using optb88vdw and TB-
mBJ formalisms,” Sci. Data 5, 1–12 (2018).

18K. Choudhary, M. Bercx, J. Jiang, R. Pachter, D. Lamoen, and F. Tavazza,
“Accelerated discovery of efficient solar cell materials using quantum and
machine-learning methods,” Chem. Mater. 31, 5900–5908 (2019).

19K. Choudhary, K. F. Garrity, and F. Tavazza, “Data-driven discovery of 3d and
2d thermoelectric materials,” J. Phys.: Condens. Matter 32, 475501 (2020).

20K. F. Garrity and K. Choudhary, “Database of Wannier tight-binding
Hamiltonians using high-throughput density functional theory,” Sci. Data 8,
106 (2021).

21K. F. Garrity and K. Choudhary, “Fast and accurate prediction of material
properties with three-body tight-binding model for the periodic table,” Phys.
Rev. Mater. 7, 044603 (2023).

22K. Choudhary and F. Tavazza, “Convergence and machine learning predic-
tions of Monkhorst-Pack k-points and plane-wave cut-off in high-throughput
DFT calculations,” Comput. Mater. Sci. 161, 300–308 (2019).

23K. Choudhary, A. J. Biacchi, S. Ghosh, L. Hale, A. R. H. Walker, and F.
Tavazza, “High-throughput assessment of vacancy formation and surface
energies of materials using classical force-fields,” J. Phys.: Condens. Matter 30,
395901 (2018).

24K. Choudhary, B. DeCost, and F. Tavazza, “Machine learning with force-field-
inspired descriptors for materials: Fast screening and mapping energy land-
scape,” Phys. Rev. Mater. 2, 083801 (2018).

25K. Choudhary and B. DeCost, “Atomistic line graph neural network
for improved materials property predictions,” npj Comput. Mater. 7, 185
(2021).

26K. Choudhary, R. Gurunathan, B. DeCost, and A. Biacchi, “AtomVision: A
machine vision library for atomistic images,” J. Chem. Inf. Model. 63,
1708–1722 (2023).

27K. Choudhary and M. L. Kelley, “ChemNLP: A natural language-processing-
based library for materials chemistry text data,” J. Phys. Chem. C 127,
17545–17555 (2023).

28K. Choudhary, “Quantum computation for predicting electron and phonon
properties of solids,” J. Phys.: Condens. Matter 33, 385501 (2021).

29See https://github.com/usnistgov/alignn for “Jarvis-Tools-Notebooks GitHub
Repository;” accessed 23 February 2023.

30K. Choudhary, D. Wines, K. Li, K. F. Garrity, V. Gupta, A. H. Romero, J. T.
Krogel, K. Saritas, A. Fuhr, P. Ganesh, P. R. C. Kent, K. Yan, Y. Lin, S. Ji, B.
Blaiszik, P. Reiser, P. Friederich, A. Agrawal, P. Tiwary, E. Beyerle, P. Minch,
T. D. Rhone, I. Takeuchi, R. B. Wexler, A. Mannodi-Kanakkithodi, E. Ertekin,
A. Mishra, N. Mathew, S. G. Baird, M. Wood, A. D. Rohskopf, J. Hattrick-
Simpers, S.-H. Wang, L. E. K. Achenie, H. Xin, M. Williams, A. J. Biacchi, and
F. Tavazza, “Large scale benchmark of materials design methods,”
arXiv:2306.11688 [cond-mat.mtrl-sci] (2023).

31K. Choudhary and F. Tavazza, “Predicting anomalous quantum confinement
effect in van der Waals materials,” Phys. Rev. Mater. 5, 054602 (2021).

32K. Choudhary and K. Garrity, “Designing high-Tc superconductors with BCS-
inspired screening, density functional theory, and deep-learning,” npj
Comput. Mater. 8, 244 (2022).

33D. Wines, K. Choudhary, A. J. Biacchi, K. F. Garrity, and F. Tavazza, “High-
throughput DFT-based discovery of next generation two-dimensional (2d)
superconductors,” Nano Lett. 23, 969–978 (2023).

34D. Wines, K. Choudhary, and F. Tavazza, “Systematic DFTþU and quantum
Monte Carlo benchmark of magnetic two-dimensional (2D) CrX3 (X¼ I, Br,
Cl, F),” J. Phys. Chem. C 127, 1176–1188 (2023).

35D. Wines, J. Tiihonen, K. Saritas, J. T. Krogel, and C. Ataca, “A quantum
Monte Carlo study of the structural, energetic, and magnetic properties of
two-dimensional H and T phase VSe2,” J. Phys. Chem. Lett. 14, 3553–3560
(2023).

36P. R. Kaundinya, K. Choudhary, and S. R. Kalidindi, “Prediction of the elec-
tron density of states for crystalline compounds with atomistic line graph neu-
ral networks (ALIGNN),” JOM 74, 1395–1405 (2022).

37R. Gurunathan, K. Choudhary, and F. Tavazza, “Rapid prediction of phonon
structure and properties using the atomistic line graph neural network
(ALIGNN),” Phys. Rev. Mater. 7, 023803 (2023).

38K. Choudhary, T. Yildirim, D. W. Siderius, A. G. Kusne, A. McDannald, and
D. L. Ortiz-Montalvo, “Graph neural network predictions of metal organic
framework CO2 adsorption properties,” Comput. Mater. Sci. 210, 111388
(2022).

39K. Choudhary and B. G. Sumpter, “Can a deep-learning model make fast pre-
dictions of vacancy formation in diverse materials?,” AIP Adv. 13, 095109
(2023).

40K. Choudhary, B. DeCost, L. Major, K. Butler, J. Thiyagalingam, and F.
Tavazza, “Unified graph neural network force-field for the periodic table:
Solid state applications,” Digital Discovery 2, 346–355 (2023).

41A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A.
Aspuru-Guzik, and J. L. O’Brien, “A variational eigenvalue solver on a pho-
tonic quantum processor,” Nat. Commun. 5, 4213 (2014).

42O. Higgott, D. Wang, and S. Brierley, “Variational quantum computation of
excited states,” Quantum 3, 156 (2019).

43J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approxima-
tion made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).

44J. Sun, A. Ruzsinszky, and J. P. Perdew, “Strongly constrained and appropri-
ately normed semilocal density functional,” Phys. Rev. Lett. 115, 036402
(2015).

45J. Liu and D. Vanderbilt, “Spin-orbit spillage as a measure of band inversion
in insulators,” Phys. Rev. B 90, 125133 (2014).

46J. Klime�s, D. R. Bowler, and A. Michaelides, “Chemical accuracy for the van
der Waals density functional,” J. Phys.: Condens. Matter 22, 022201 (2009).

47J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid functionals based on a
screened coulomb potential,” J. Chem. Phys. 118, 8207–8215 (2003).

48C. Adamo and V. Barone, “Toward reliable density functional methods with-
out adjustable parameters: The PBE0 model,” J. Chem. Phys. 110, 6158–6170
(1999).

49A. Belsky, M. Hellenbrandt, V. L. Karen, and P. Luksch, “New developments
in the inorganic crystal structure database (ICSD): Accessibility in support of
materials research and design,” Acta Crystallogr., Sect. B: Struct. Sci. 58,
364–369 (2002).

50C. P. Poole, H. A. Farach, and R. J. Creswick, Superconductivity (Academic
Press, 2013).

Applied Physics Reviews REVIEW pubs.aip.org/aip/are

Appl. Phys. Rev. 10, 041302 (2023); doi: 10.1063/5.0159299 10, 041302-19

Published by AIP Publishing

 18 O
ctober 2023 14:17:30

https://doi.org/10.1103/RevModPhys.74.601
https://doi.org/10.1103/RevModPhys.73.33
https://doi.org/10.1063/1.1428442
https://doi.org/10.1557/mrs.2018.122
https://doi.org/10.1038/s41598-017-05402-0
https://doi.org/10.1038/s41598-019-45028-y
https://doi.org/10.1038/s41524-020-0319-4
https://doi.org/10.1103/PhysRevB.103.155131
https://doi.org/10.1038/sdata.2018.82
https://doi.org/10.1021/acs.chemmater.9b02166
https://doi.org/10.1088/1361-648X/aba06b
https://doi.org/10.1038/s41597-021-00885-z
https://doi.org/10.1103/PhysRevMaterials.7.044603
https://doi.org/10.1103/PhysRevMaterials.7.044603
https://doi.org/10.1016/j.commatsci.2019.02.006
https://doi.org/10.1088/1361-648X/aadaff
https://doi.org/10.1103/PhysRevMaterials.2.083801
https://doi.org/10.1038/s41524-021-00650-1
https://doi.org/10.1021/acs.jcim.2c01533
https://doi.org/10.1021/acs.jpcc.3c03106
https://doi.org/10.1088/1361-648X/ac1154
https://github.com/usnistgov/alignn
http://arxiv.org/abs/2306.11688
https://doi.org/10.1103/PhysRevMaterials.5.054602
https://doi.org/10.1038/s41524-022-00933-1
https://doi.org/10.1038/s41524-022-00933-1
https://doi.org/10.1021/acs.nanolett.2c04420
https://doi.org/10.1021/acs.jpcc.2c06733
https://doi.org/10.1021/acs.jpclett.3c00497
https://doi.org/10.1007/s11837-022-05199-y
https://doi.org/10.1103/PhysRevMaterials.7.023803
https://doi.org/10.1016/j.commatsci.2022.111388
https://doi.org/10.1063/5.0135382
https://doi.org/10.1039/D2DD00096B
https://doi.org/10.1038/ncomms5213
https://doi.org/10.22331/q-2019-07-01-156
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.115.036402
https://doi.org/10.1103/PhysRevB.90.125133
https://doi.org/10.1088/0953-8984/22/2/022201
https://doi.org/10.1063/1.1564060
https://doi.org/10.1063/1.478522
https://doi.org/10.1107/S0108768102006948
pubs.aip.org/aip/are


51H. Rogalla and P. H. Kes, 100 Years of Superconductivity (Taylor and Francis,
2011).

52H. K. Onnes, The Resistance of Pure Mercury at Helium Temperatures
(Communications from the Physical Laboratory of the University of Leiden,
1911), p. 120.

53L. N. Cooper and D. Feldman, BCS: 50 Years (World Scientific, 2010).
54F. Giustino, “Electron-phonon interactions from first principles,” Rev. Mod.
Phys. 89, 015003 (2017).

55M. Kawamura, Y. Hizume, and T. Ozaki, “Benchmark of density functional
theory for superconductors in elemental materials,” Phys. Rev. B 101, 134511
(2020).

56W. McMillan, “Transition temperature of strong-coupled superconductors,”
Phys. Rev. 167, 331 (1968).

57K. Inumaru, T. Nishikawa, K. Nakamura, and S. Yamanaka, “High-pressure
synthesis of superconducting molybdenum nitride d-mon by in situ nitrida-
tion,” Chem. Mater. 20, 4756–4761 (2008).

58S. Wang, D. Antonio, X. Yu, J. Zhang, A. L. Cornelius, D. He, and Y. Zhao,
“The hardest superconducting metal nitride,” Sci. Rep. 5, 1–8 (2015).

59D. Campi, S. Kumari, and N. Marzari, “Prediction of phonon-mediated super-
conductivity with high critical temperature in the two-dimensional topologi-
cal semimetal W2N3,” Nano Lett. 21, 3435–3442 (2021).

60J. Bekaert, A. Aperis, B. Partoens, P. M. Oppeneer, and M. V. Milo�sevi�c,
“Evolution of multigap superconductivity in the atomically thin limit: Strain-
enhanced three-gap superconductivity in monolayer MgB2,” Phys. Rev. B 96,
094510 (2017).

61S. Singh, A. H. Romero, J. Mella, V. Eremeev, E. Mu~noz, A. N. Alexandrova,
K. M. Rabe, D. Vanderbilt, and F. Mu~noz, “High-temperature phonon-
mediated superconductivity in monolayer Mg2B4C2,” npj Quantum Mater. 7,
37 (2022).

62S. De Franceschi, L. Kouwenhoven, C. Sch€onenberger, and W. Wernsdorfer,
“Hybrid superconductor–quantum dot devices,” Nat. Nanotechnol. 5,
703–711 (2010).

63M. Huefner, C. May, S. Kicin, K. Ensslin, T. Ihn, M. Hilke, K. Suter, N. F. de
Rooij, and U. Staufer, “Scanning gate microscopy measurements on a super-
conducting single-electron transistor,” Phys. Rev. B 79, 134530 (2009).

64J. Delahaye, J. Hassel, R. Lindell, M. Sillanp€a€a, M. Paalanen, H. Sepp€a, and P.
Hakonen, “Low-noise current amplifier based on mesoscopic Josephson junc-
tion,” Science 299, 1045–1048 (2003).

65E. J. Romans, E. J. Osley, L. Young, P. A. Warburton, and W. Li, “Three-
dimensional nanoscale superconducting quantum interference device pickup
loops,” Appl. Phys. Lett. 97, 222506 (2010).

66X. Liu and M. C. Hersam, “2d materials for quantum information science,”
Nat. Rev. Mater. 4, 669–684 (2019).

67M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S.
Suhai, and G. Seifert, “Self-consistent-charge density-functional tight-binding
method for simulations of complex materials properties,” Phys. Rev. B 58,
7260 (1998).

68T. Frauenheim, G. Seifert, M. Elsterner, Z. Hajnal, G. Jungnickel, D. Porezag,
S. Suhai, and R. Scholz, “A self-consistent charge density-functional based
tight-binding method for predictive materials simulations in physics, chemis-
try and biology,” Phys. Status Solidi B 217, 41–62 (2000).

69P. Koskinen and V. M€akinen, “Density-functional tight-binding for begin-
ners,” Comput. Mater. Sci. 47, 237–253 (2009).

70B. Hourahine, B. Aradi, V. Blum, F. Bonaf�e, A. Buccheri, C. Camacho, C.
Cevallos, M. Deshaye, T. Dumitric�a, A. Dominguez et al., “DFTBþ, a software
package for efficient approximate density functional theory based atomistic
simulations,” J. Chem. Phys. 152, 124101 (2020).

71C. J. Pickard and R. J. Needs, “Ab initio random structure searching,” J. Phys.:
Condens. Matter 23, 053201 (2011).

72S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P.
Sutton, “Electron-energy-loss spectra and the structural stability of nickel
oxide: An LSDAþU study,” Phys. Rev. B 57, 1505–1509 (1998).

73B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L.
Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D.
Xiao, P. Jarillo-Herrero, and X. Xu, “Layer-dependent ferromagnetism in a
van der Waals crystal down to the monolayer limit,” Nature 546, 270–273
(2017).

74Z. Zhang, J. Shang, C. Jiang, A. Rasmita, W. Gao, and T. Yu, “Direct photolu-
minescence probing of ferromagnetism in monolayer two-dimensional
CrBr3,” Nano Lett. 19, 3138–3142 (2019).

75X. Cai, T. Song, N. P. Wilson, G. Clark, M. He, X. Zhang, T. Taniguchi, K.
Watanabe, W. Yao, D. Xiao, M. A. McGuire, D. H. Cobden, and X. Xu,
“Atomically thin CrCl3: An in-plane layered antiferromagnetic insulator,”
Nano Lett. 19, 3993–3998 (2019).

76D. Torelli, H. Moustafa, K. W. Jacobsen, and T. Olsen, “High-throughput
computational screening for two-dimensional magnetic materials based on
experimental databases of three-dimensional compounds,” npj Comput.
Mater. 6, 158 (2020).

77D. Torelli and T. Olsen, “Calculating critical temperatures for ferromagnetic
order in two-dimensional materials,” 2D Mater. 6, 015028 (2018).

78J. L. Lado and J. Fern�andez-Rossier, “On the origin of magnetic anisotropy in
two dimensional CrI3,” 2D Mater. 4, 035002 (2017).

79M. Bonilla, S. Kolekar, Y. Ma, H. C. Diaz, V. Kalappattil, R. Das, T. Eggers, H.
R. Gutierrez, M.-H. Phan, and M. Batzill, “Strong room-temperature ferro-
magnetism in VSe2 monolayers on van der Waals substrates,” Nat.
Nanotechnol. 13, 289–293 (2018).

80W. Yu, J. Li, T. S. Herng, Z. Wang, X. Zhao, X. Chi, W. Fu, I. Abdelwahab, J.
Zhou, J. Dan, Z. Chen, Z. Chen, Z. Li, J. Lu, S. J. Pennycook, Y. P. Feng, J.
Ding, and K. P. Loh, “Chemically exfoliated VSe2 monolayers with room-
temperature ferromagnetism,” Adv. Mater. 31, 1903779 (2019).

81X. Wang, D. Li, Z. Li, C. Wu, C.-M. Che, G. Chen, and X. Cui,
“Ferromagnetism in 2d vanadium diselenide,” ACS Nano 15, 16236–16241
(2021).

82H.-R. Fuh, C.-R. Chang, Y.-K. Wang, R. F. L. Evans, R. W. Chantrell, and H.-
T. Jeng, “Newtype single-layer magnetic semiconductor in transition-metal
dichalcogenides VX2 (X¼ S, Se and Te),” Sci. Rep. 6, 32625 (2016).

83G. Duvjir, B. K. Choi, I. Jang, S. Ulstrup, S. Kang, T. Thi Ly, S. Kim, Y. H.
Choi, C. Jozwiak, A. Bostwick, E. Rotenberg, J.-G. Park, R. Sankar, K.-S. Kim,
J. Kim, and Y. J. Chang, “Emergence of a metal–insulator transition and high-
temperature charge-density waves in VSe2 at the monolayer limit,” Nano Lett.
18, 5432–5438 (2018).

84D. Li, X. Wang, C.-M. Kan, D. He, Z. Li, Q. Hao, H. Zhao, C. Wu, C. Jin, and
X. Cui, “Structural phase transition of multilayer VSe2,” ACS Appl. Mater.
Interfaces 12, 25143–25149 (2020).

85G. V. Pushkarev, V. G. Mazurenko, V. V. Mazurenko, and D. W. Boukhvalov,
“Structural phase transitions in VSe2: Energetics, electronic structure and
magnetism,” Phys. Chem. Chem. Phys. 21, 22647–22653 (2019).

86J. Tiihonen, P. R. C. Kent, and J. T. Krogel, “Surrogate Hessian accelerated
structural optimization for stochastic electronic structure theories,” J. Chem.
Phys. 156, 054104 (2022).

87K. T. Sch€utt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, and K.-R.
M€uller, “SchNet—A deep learning architecture for molecules and materials,”
J. Chem. Phys. 148, 241722 (2018).

88T. Xie and J. C. Grossman, “Crystal graph convolutional neural networks for
an accurate and interpretable prediction of material properties,” Phys. Rev.
Lett. 120, 145301 (2018).

89C. W. Park and C. Wolverton, “Developing an improved crystal graph convo-
lutional neural network framework for accelerated materials discovery,” Phys.
Rev. Mater. 4, 063801 (2020).

90C. Chen, W. Ye, Y. Zuo, C. Zheng, and S. P. Ong, “Graph networks as a uni-
versal machine learning framework for molecules and crystals,” Chem. Mater.
31, 3564–3572 (2019).

91Z. Qiao, M. Welborn, A. Anandkumar, F. R. Manby, and T. F. Miller,
“OrbNet: Deep learning for quantum chemistry using symmetry-adapted
atomic-orbital features,” J. Chem. Phys. 153, 124111 (2020).

92Z. Chen, L. Li, and J. Bruna, “Supervised community detection with line graph
neural networks,” in Proceedings of the International Conference on Learning
Representations (2019).

93A. Dunn, Q. Wang, A. Ganose, D. Dopp, and A. Jain, “Benchmarking materi-
als property prediction methods: The matbench test set and automatminer
reference algorithm,” npj Comput. Mater. 6, 138 (2020).

94T. Hsu, T. A. Pham, N. Keilbart, S. Weitzner, J. Chapman, P. Xiao, S. R. Qiu,
X. Chen, and B. C. Wood, “Efficient and interpretable graph network

Applied Physics Reviews REVIEW pubs.aip.org/aip/are

Appl. Phys. Rev. 10, 041302 (2023); doi: 10.1063/5.0159299 10, 041302-20

Published by AIP Publishing

 18 O
ctober 2023 14:17:30

https://doi.org/10.1103/RevModPhys.89.015003
https://doi.org/10.1103/RevModPhys.89.015003
https://doi.org/10.1103/PhysRevB.101.134511
https://doi.org/10.1103/PhysRev.167.331
https://doi.org/10.1021/cm800820d
https://doi.org/10.1038/srep13733
https://doi.org/10.1021/acs.nanolett.0c05125
https://doi.org/10.1103/PhysRevB.96.094510
https://doi.org/10.1038/s41535-022-00446-6
https://doi.org/10.1038/nnano.2010.173
https://doi.org/10.1103/PhysRevB.79.134530
https://doi.org/10.1126/science.299.5609.1045
https://doi.org/10.1063/1.3521262
https://doi.org/10.1038/s41578-019-0136-x
https://doi.org/10.1103/PhysRevB.58.7260
https://doi.org/10.1002/(SICI)1521-3951(200001)217:1<41::AID-PSSB41>3.0.CO;2-V
https://doi.org/10.1016/j.commatsci.2009.07.013
https://doi.org/10.1063/1.5143190
https://doi.org/10.1088/0953-8984/23/5/053201
https://doi.org/10.1088/0953-8984/23/5/053201
https://doi.org/10.1103/PhysRevB.57.1505
https://doi.org/10.1038/nature22391
https://doi.org/10.1021/acs.nanolett.9b00553
https://doi.org/10.1021/acs.nanolett.9b01317
https://doi.org/10.1038/s41524-020-00428-x
https://doi.org/10.1038/s41524-020-00428-x
https://doi.org/10.1088/2053-1583/aaf06d
https://doi.org/10.1088/2053-1583/aa75ed
https://doi.org/10.1038/s41565-018-0063-9
https://doi.org/10.1038/s41565-018-0063-9
https://doi.org/10.1002/adma.201903779
https://doi.org/10.1021/acsnano.1c05232
https://doi.org/10.1038/srep32625
https://doi.org/10.1021/acs.nanolett.8b01764
https://doi.org/10.1021/acsami.0c04449
https://doi.org/10.1021/acsami.0c04449
https://doi.org/10.1039/C9CP03726H
https://doi.org/10.1063/5.0079046
https://doi.org/10.1063/5.0079046
https://doi.org/10.1063/1.5019779
https://doi.org/10.1103/PhysRevLett.120.145301
https://doi.org/10.1103/PhysRevLett.120.145301
https://doi.org/10.1103/PhysRevMaterials.4.063801
https://doi.org/10.1103/PhysRevMaterials.4.063801
https://doi.org/10.1021/acs.chemmater.9b01294
https://doi.org/10.1063/5.0021955
https://doi.org/10.1038/s41524-020-00406-3
pubs.aip.org/aip/are


representation for angle-dependent properties applied to optical spectros-
copy,” npj Comput. Mater. 8, 151 (2022).

95S. Gong, T. Xie, Y. Shao-Horn, R. Gomez-Bombarelli, and J. C. Grossman,
“Examining graph neural networks for crystal structures: Limitations and
opportunities for capturing periodicity,” arXiv:2208.05039 (2022).

96S. Batzner, A. Musaelian, L. Sun, M. Geiger, J. P. Mailoa, M. Kornbluth, N.
Molinari, T. E. Smidt, and B. Kozinsky, “E(3)-equivariant graph neural net-
works for data-efficient and accurate interatomic potentials,” Nat. Commun.
13, 2453 (2022).

97C. Chen and S. P. Ong, “A universal graph deep learning interatomic potential
for the periodic table,” Nat. Comput. Sci. 2, 718–728 (2022).

98J. Gasteiger, M. Shuaibi, A. Sriram, S. G€unnemann, Z. Ulissi, C. L. Zitnick,
and A. Das, “GemNet-OC: Developing graph neural networks for large and
diverse molecular simulation datasets,” arXiv:2204.02782 [cs.LG] (2022).

99T. Xie, X. Fu, O.-E. Ganea, R. Barzilay, and T. Jaakkola, “Crystal diffusion var-
iational autoencoder for periodic material generation,” arXiv:2110.06197
(2021).

100D. Wines, T. Xie, and K. Choudhary, “Inverse design of next-generation
superconductors using data-driven deep generative models,” J. Phys. Chem.
Lett. 14, 6630–6638 (2023).

101J. Tersoff and D. R. Hamann, “Theory and application for the scanning tunnel-
ing microscope,” Phys. Rev. Lett. 50, 1998–2001 (1983).

102A. H. Combs, J. J. Maldonis, J. Feng, Z. Xu, P. M. Voyles, and D. Morgan,
“Fast approximate stem image simulations from a machine learning model,”
Adv. Struct. Chem. Imaging 5, 2 (2019).

103S. Yamashita, J. Kikkawa, K. Yanagisawa, T. Nagai, K. Ishizuka, and K.
Kimoto, “Atomic number dependence of z contrast in scanning transmission
electron microscopy,” Sci. Rep. 8, 12325 (2018).

104L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach.
Learn. Res. 9, 2579–2605 (2008).

105O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for
biomedical image segmentation,” in Proceedings of the International
Conference on Medical Image Computing and Computer-Assisted Intervention
(Springer, 2015), pp. 234–241.

106F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine
learning in python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

107K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” arXiv:1409.1556 (2014).

108K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-
tion,” arXiv:1512.03385 (2015).

109G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely con-
nected convolutional networks,” arXiv:1608.06993 (2016).

110C. Ledig, L. Theis, F. Husz�ar, J. Caballero, A. Cunningham, A. Acosta, A.
Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image
super-resolution using a generative adversarial network,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2017),
pp. 4681–4690.

111T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T.
Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y.
Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger, M. Drame, Q. Lhoest, and A. M.
Rush, “Huggingface’s transformers: State-of-the-art natural language process-
ing,” arXiv:1910.03771 [cs.CL] (2020).

112C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W.
Li, and P. J. Liu, “Exploring the limits of transfer learning with a unified text-
to-text transformer,” arXiv:1910.10683 [cs.LG] (2020).

113T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A.
Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models are few-
shot learners,” Adv. Neural Inf. Process. Syst. 33, 1877–1901 (2020).

114S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan, M.
Diab, X. Li, X. V. Lin, T. Mihaylov, M. Ott, S. Shleifer, K. Shuster, D. Simig, P.
S. Koura, A. Sridhar, T. Wang, and L. Zettlemoyer, “Opt: Open pre-trained
transformer language models,” arXiv:2205.01068 [cs.CL] (2022).

115L. Weston, V. Tshitoyan, J. Dagdelen, O. Kononova, A. Trewartha, K. A.
Persson, G. Ceder, and A. Jain, “Named entity recognition and normalization

applied to large-scale information extraction from the materials science litera-
ture,” J. Chem. Inf. Model. 59, 3692–3702 (2019).

116Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le, “XlNet:
Generalized autoregressive pretraining for language understanding,”
arXiv:1906.08237 [cs.CL] (2020).

117D. Morgan and R. Jacobs, “Opportunities and challenges for machine learning
in materials science,” Annu. Rev. Mater. Res. 50, 71–103 (2020).

118Z. Wang, Z. Sun, H. Yin, X. Liu, J. Wang, H. Zhao, C. H. Pang, T. Wu, S. Li, Z.
Yin, and X.-F. Yu, “Data-driven materials innovation and applications,” Adv.
Mater. 34, 2104113 (2022).

119F. Tavazza, B. DeCost, and K. Choudhary, “Uncertainty prediction for machine
learning models of material properties,” ACS Omega 6, 32431–32440 (2021).

120H. G. T. Nguyen, L. Espinal, R. D. van Zee, M. Thommes, B. Toman, M. S. L.
Hudson, E. Mangano, S. Brandani, D. P. Broom, M. J. Benham, K. Cychosz, P.
Bertier, F. Yang, B. M. Krooss, R. L. Siegelman, M. Hakuman, K. Nakai, A. D.
Ebner, L. Erden, J. A. Ritter, A. Moran, O. Talu, Y. Huang, K. S. Walton, P.
Billemont, and G. De Weireld, “A reference high-pressure CO2 adsorption iso-
therm for ammonium ZSM-5 zeolite: Results of an interlaboratory study,”
Adsorption 24, 531–539 (2018).

121C. Draxl and M. Scheffler, “NOMAD: The FAIR concept for big data-driven
materials science,”MRS Bull. 43, 676–682 (2018).

122C. W. Andersen, R. Armiento, E. Blokhin, G. J. Conduit, S. Dwaraknath, M. L.
Evans, �A. Fekete, A. Gopakumar, S. Gra�zulis, A. Merkys et al., “OPTIMADE,
an API for exchanging materials data,” Sci. Data 8, 217 (2021).

123See https://quantum-computing.ibm.com for “IBM Quantum, 2021.”
124L. Chanussot, A. Das, S. Goyal, T. Lavril, M. Shuaibi, M. Riviere, K. Tran, J.

Heras-Domingo, C. Ho, W. Hu et al., “Open catalyst 2020 (OC20) dataset and
community challenges,” ACS Catal. 11, 6059–6072 (2021).

125G. Kresse and J. Furthm€uller, “Efficient iterative schemes for ab initio total-
energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169
(1996).

126G. Kresse and J. Furthm€uller, “Efficiency of ab-initio total energy calculations
for metals and semiconductors using a plane-wave basis set,” Comput. Mater.
Sci. 6, 15–50 (1996).

127P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D.
Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo et al., “Quantum espresso: A
modular and open-source software project for quantum simulations of materi-
als,” J. Phys.: Condens. Matter 21, 395502 (2009).

128P. Giannozzi, O. Baseggio, P. Bonf�a, D. Brunato, R. Car, I. Carnimeo, C.
Cavazzoni, S. De Gironcoli, P. Delugas, F. Ferrari Ruffino et al., “Quantum
espresso toward the exascale,” J. Chem. Phys. 152, 154105 (2020).

129P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G. K. H. Madsen, and L. D.
Marks, “WIEN2K: An APWþlo program for calculating the properties of sol-
ids,” J. Chem. Phys. 152, 074101 (2020).

130G. K. Madsen and D. J. Singh, “BoltzTraP. A code for calculating band-
structure dependent quantities,” Comput. Phys. Commun. 175, 67–71 (2006).

131A. A. Mostofi, J. R. Yates, G. Pizzi, Y.-S. Lee, I. Souza, D. Vanderbilt, and N.
Marzari, “An updated version of wannier90: A tool for obtaining maximally-
localised Wannier functions,” Comput. Phys. Commun. 185, 2309–2310
(2014).

132J. Kim, A. D. Baczewski, T. D. Beaudet, A. Benali, M. C. Bennett, M. A. Berrill,
N. S. Blunt, E. J. L. Borda, M. Casula, D. M. Ceperley, S. Chiesa, B. K. Clark, R.
C. Clay, K. T. Delaney, M. Dewing, K. P. Esler, H. Hao, O. Heinonen, P. R. C.
Kent, J. T. Krogel, I. Kyl€anp€a€a, Y. W. Li, M. G. Lopez, Y. Luo, F. D. Malone, R.
M. Martin, A. Mathuriya, J. McMinis, C. A. Melton, L. Mitas, M. A. Morales,
E. Neuscamman, W. D. Parker, S. D. P. Flores, N. A. Romero, B. M.
Rubenstein, J. A. R. Shea, H. Shin, L. Shulenburger, A. F. Tillack, J. P.
Townsend, N. M. Tubman, B. V. D. Goetz, J. E. Vincent, D. C. Yang, Y. Yang,
S. Zhang, and L. Zhao, “QMCPACK: An open source ab initio quantum
Monte Carlo package for the electronic structure of atoms, molecules and sol-
ids,” J. Phys.: Condens. Matter 30, 195901 (2018).

133P. R. C. Kent, A. Annaberdiyev, A. Benali, M. C. Bennett, E. J. Landinez Borda,
P. Doak, H. Hao, K. D. Jordan, J. T. Krogel, I. Kyl€anp€a€a, J. Lee, Y. Luo, F. D.
Malone, C. A. Melton, L. Mitas, M. A. Morales, E. Neuscamman, F. A.
Reboredo, B. Rubenstein, K. Saritas, S. Upadhyay, G. Wang, S. Zhang, and L.
Zhao, “QMCPACK: Advances in the development, efficiency, and application

Applied Physics Reviews REVIEW pubs.aip.org/aip/are

Appl. Phys. Rev. 10, 041302 (2023); doi: 10.1063/5.0159299 10, 041302-21

Published by AIP Publishing

 18 O
ctober 2023 14:17:30

https://doi.org/10.1038/s41524-022-00841-4
http://arxiv.org/abs/2208.05039
https://doi.org/10.1038/s41467-022-29939-5
https://doi.org/10.1038/s43588-022-00349-3
http://arxiv.org/abs/2204.02782
http://arxiv.org/abs/2110.06197
https://doi.org/10.1021/acs.jpclett.3c01260
https://doi.org/10.1021/acs.jpclett.3c01260
https://doi.org/10.1103/PhysRevLett.50.1998
https://doi.org/10.1186/s40679-019-0064-2
https://doi.org/10.1038/s41598-018-30941-5
https://doi.org/10.5555/1953048.2078195
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/2205.01068
https://doi.org/10.1021/acs.jcim.9b00470
http://arxiv.org/abs/1906.08237
https://doi.org/10.1146/annurev-matsci-070218-010015
https://doi.org/10.1002/adma.202104113
https://doi.org/10.1002/adma.202104113
https://doi.org/10.1021/acsomega.1c03752
https://doi.org/10.1007/s10450-018-9958-x
https://doi.org/10.1557/mrs.2018.208
https://doi.org/10.1038/s41597-021-00974-z
https://quantum-computing.ibm.com
https://doi.org/10.1021/acscatal.0c04525
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1063/5.0005082
https://doi.org/10.1063/1.5143061
https://doi.org/10.1016/j.cpc.2006.03.007
https://doi.org/10.1016/j.cpc.2014.05.003
https://doi.org/10.1088/1361-648X/aab9c3
pubs.aip.org/aip/are


of auxiliary field and real-space variational and diffusion quantum Monte
Carlo,” J. Chem. Phys. 152, 174105 (2020).

134A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown,
P. S. Crozier, P. J. in ’t Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R.
Shan, M. J. Stevens, J. Tranchida, C. Trott, and S. J. Plimpton, “LAMMPS—A
flexible simulation tool for particle-based materials modeling at the atomic,
meso, and continuum scales,” Comput. Phys. Commun. 271, 108171 (2022).

135M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A.
Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M.
Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Man�e, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K.
Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Vi�egas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, see tensorflow.org for
“TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.”

136G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu,
“LightGBM: A highly efficient gradient boosting decision tree,” Adv. Neural
Inf. Process. Syst. 30, 3146–3154 (2017).

137J. S. Kottmann, S. Alperin-Lea, T. Tamayo-Mendoza, A. Cervera-Lierta, C. Lavigne,
T.-C. Yen, V. Verteletskyi, P. Schleich, A. Anand, M. Degroote, S. Chaney, M.
Kesibi, N. G. Curnow, B. Solo, G. Tsilimigkounakis, C. Zendejas-Morales, A. F.
Izmaylov, and A. Aspuru-Guzik, “TEQUILA: A platform for rapid development of
quantum algorithms,” Quantum Sci. Technol. 6, 024009 (2021).

138V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, S. Ahmed, V. Ajith, M. S. Alam,
G. Alonso-Linaje, B. AkashNarayanan, A. Asadi, J. M. Arrazola, U. Azad, S.

Banning, C. Blank, T. R. Bromley, B. A. Cordier, J. Ceroni, A. Delgado, O. D.
Matteo, A. Dusko, T. Garg, D. Guala, A. Hayes, R. Hill, A. Ijaz, T. Isacsson, D.
Ittah, S. Jahangiri, P. Jain, E. Jiang, A. Khandelwal, K. Kottmann, R. A. Lang,
C. Lee, T. Loke, A. Lowe, K. McKiernan, J. J. Meyer, J. A. Monta~nez-Barrera,
R. Moyard, Z. Niu, L. J. O’Riordan, S. Oud, A. Panigrahi, C.-Y. Park, D.
Polatajko, N. Quesada, C. Roberts, N. S�a, I. Schoch, B. Shi, S. Shu, S. Sim, A.
Singh, I. Strandberg, J. Soni, A. Sz�ava, S. Thabet, R. A. Vargas-Hern�andez, T.
Vincent, N. Vitucci, M. Weber, D. Wierichs, R. Wiersema, M. Willmann, V.
Wong, S. Zhang, and N. Killoran, “PennyLane: Automatic differentiation of
hybrid quantum-classical computations,” arXiv:1811.04968 [quant-ph] (2022).

139J. M. Arrazola, S. Jahangiri, A. Delgado, J. Ceroni, J. Izaac, A. Sz�ava, U. Azad,
R. A. Lang, Z. Niu, O. D. Matteo, R. Moyard, J. Soni, M. Schuld, R. A. Vargas-
Hern�andez, T. Tamayo-Mendoza, C. Y.-Y. Lin, A. Aspuru-Guzik, and N.
Killoran, “Differentiable quantum computational chemistry with pennylane,”
arXiv:2111.09967 [quant-ph] (2023).

140M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma, L. Yu, Y.
Gai, T. Xiao, T. He, G. Karypis, J. Li, and Z. Zhang, “Deep graph library: A
graph-centric, highly-performant package for graph neural networks,”
arXiv:1909.01315 [cs.LG] (2020).

141A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z.
Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. K€opf, E. Yang, Z. DeVito, M.
Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,
“PyTorch: An imperative style, high-performance deep learning library,”
arXiv:1912.01703 [cs.LG] (2019).

Applied Physics Reviews REVIEW pubs.aip.org/aip/are

Appl. Phys. Rev. 10, 041302 (2023); doi: 10.1063/5.0159299 10, 041302-22

Published by AIP Publishing

 18 O
ctober 2023 14:17:30

https://doi.org/10.1063/5.0004860
https://doi.org/10.1016/j.cpc.2021.108171
http://tensorflow.org
https://doi.org/10.1088/2058-9565/abe567
http://arxiv.org/abs/1811.04968
http://arxiv.org/abs/2111.09967
http://arxiv.org/abs/1909.01315
http://arxiv.org/abs/1912.01703
pubs.aip.org/aip/are

