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14.1 Introduction 

In the period of 2015 to 2019, US fire departments responded to an estimated 
average of 346,800 home structure fires per year [1]. As compared to the estimate 
of 734,000 reported in 1980, the number of home structure fires is lower by 
approximately 50 % (i.e., an estimate of 356,500 in 2020). The reduction in home 
structure fires is possibly attributed by the presence of smoke alarms [2] and/or 
sprinkler systems [3-5], the use of fire-resistant building materials [6,7], better fire 
consumer education and awareness in fires [8,9], and the implementation of home 
safety codes [10-12]. However, the current home structure fires are more hazardous. 
In [13], experimental burns comparing spaces containing items common to modern 
homes and rooms with legacy furnishings were conducted. It is clearly seen that 
temperature rises rapidly for relatively shorter duration in case of fires in the modern 
(i.e., at ~ 5 min of fire in the modern room vs. after 29 min in case of the legacy 
room). This rapid temperature increase is largely due to the near-simultaneous 
ignition of most of the directly exposed combustible materials in the enclosed area. 
As seen in the figure, the temperature can exceed 800 °C in less than 20 seconds. 
This extreme fire event is known as flashover [14] and it presents an increased fire 
risks to the firefighters.  

Backdraft is the abrupt burning of superheated gasses in a fire, caused when 
oxygen rapidly enters a hot, oxygen-depleted environment [15]. The backdraft 
explosion often happens when firefighters open a door or window of an enclosure 
room when conducting firefighting operation. The backdraft can occur without 
warning and is one of the most dangerous threats to firefighters’ lives. According 
to statistics of 127 fire accidents involving explosions in different countries, 109 
cases were related to the backdraft phenomenon [16]. Therefore, the dangerous 
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flashover and backdraft are major hazardous critical events in firefighting and raises 
the attention of fire researchers worldwide. 

Currently, firefighters solely rely on their experience to detect critical fire events. 
There can be four warning signs [17] in a structure fire. Outside of the building 
structure, the presence of thick, black smoke and free-burning fires from windows 
and doors are two reliable signs of an impending flashover event. Inside the building 
structure, firefighters can try to seek for a fire phenomenon called rollover [17] near 
the ceiling and/or try to use their hands to feel the intense heat from the hot gas 
layer. However, these warning signs are generally difficult to be recognized 
accurately and it could take many years of experience to build up the necessary 
proficiency. Therefore, if the firefighters do not read flashovers correctly in time, 
their lives are in danger. 

In the fire research community, a great deal of research efforts has been made to 
foster data-driven firefighting. Different methods are utilized to develop real-time 
fire hazard prediction models and these methods include empirical correlations [18-
20], inversed modeling techniques [21,22], and computational fluid dynamics 
(CFD) based approaches [23,24]. Since the empirical correlations and the inversed 
modeling techniques use only closed-form mathematical expressions, these 
methods are easy to be implemented and are numerical efficient for quick 
evaluations. However, one drawback for these methods [18-22] is that they are 
limited to single-compartment structural settings and are not designed for multi-
compartment structures. The CFD based approaches, such as [23], provide more 
flexibilities to account for structure variance and offer better prediction capabilities 
and higher prediction accuracy. Yet, the drawback of this kind of approach is that 
the models rely on high-performance computing machines and requires lengthy 
computations. As noted in [23], results from just one simulation time step takes 
more than five minutes to compute. Therefore, the CFD based approach at its 
current form will hardly be able to be used in real-time firefighting.  

In addition, there is another drawback for the existing fire hazard prediction 
models. They do not account for realistic conditions from real fire scenarios. For 
example, the models [18-24] generally rely on both the continuous temperature 
signals from thermocouples in all compartments and the prior knowledge about the 
fire locations and vent opening conditions. However, fire protection devices, such 
as heat detectors, will stop functioning at elevated temperature [2] and the 
information about the fire locations and the opening conditions of windows and 
doors are often unknown. Since these realistic conditions (i.e., sensor temperature 
limit and the effect of arbitrarily fire location and vent opening conditions) have not 
been considered in the development process, the model performance from any of 
these models [18-24] is likely to be diminished. For that, a more robust data-driven 
approach is needed to overcome both the numerical challenge and the modeling 
complexity of realistic conditions from real fire scenarios.  

Machine learning (ML) has made breakthroughs in various practical engineering 
problems, including human activity recognitions [25], recommendation systems 
[26], abnormal heartbeat classification [27], offline learning [28,29], intention 
detections [30], cooktop ignitions [31-33], and thermal radiation analyses [34-39]. 
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ML paradigms have also been used extensively to overcome prediction challenges 
for various fire forecasting tasks. Chenebert et al. [40] provided a decision tree 
classifier for outdoor flame detections using image data. Yin and his co-workers 
[41] developed a deep neural network (DNN) framework for smoke detections. 
Another DNN model was developed and was used to identify flames for high-
resolution videos given in residential building settings [42]. Aslan et al. [43] 
attempted to use generative adversarial networks for fire detections in large building 
structures using videos from surveillance cameras. The scientific advancement in 
ML truly enables reliable real-time predictions. However, these ML models might 
not be applicable to the current fire protection devices, such as heat detectors and 
smoke/CO detectors, where the data are in time-series. In order to fill in this 
knowledge gap, the Fire Research Division (FRD) from the National Institute of 
Standards and Technology (NIST) have collaborated with researchers from the 
Hong Kong Polytechnic University (HKPU) to develop ML technologies that can 
be used to enhance firefighters’ situational awareness in built environments, 
protecting them from hazardous fire environments, and to pave the way for the 
development of data-driven prediction systems. 

This chapter highlights the 4-year research efforts and the chapter is organized 
as follows. Section 2 describes the problem associate with the scarcity of real-life 
flashover data and the solution to overcome this data challenge. Section 3 presents 
the ML-based model development for flashover and backdraft predictions in 
residential settings. Finally, Section 4 summarizes the conclusions of the study and 
provides an overlook to future research directions. 

14.2 Flashover Prediction by Numerical Database  

To develop a robust ML-based prediction model, the dataset must contain 
sufficiently large amounts of relevant data that cover the desired ranges of fire 
conditions and geometric settings. Because flashover is an extreme fire event, the 
data collection is challenging. Unlike the classification tasks [44,45] and/or the 
regression tasks [46,47] being well established in the AI/ML community, the study 
of the flashover predictions for full-scale building structures in the ML domain has 
not been adequately addressed. For that, sensor data, such temperature, involving 
flashover in multi-compartment building structures is not available in any public 
data repositories such as [48]. Although fire data can be obtained by physically 
conducting the required full-scale experiments, when more complex building 
structures (i.e., with increasing number of compartments) and various realistic 
conditions (i.e., different fire and vent opening conditions) are needed to be 
accounted for, the required number of physical experiments is expected to be 
increased dramatically. When factors, such as cost and time, are of concern, 
physically conducting all full-scale experiments is not feasible. Therefore, in order 
to facilitate the development of ML-based flashover prediction models, the 
learning-by-synthesis approach is utilized for data collection. 
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The learning-by-synthesis (LBS) approach [49] provides an alternative means 
for data collection. To relate this concept to fire research, this approach makes use 
of computer simulation programs to conduct full-scale experiments with the desired 
fire and vent opening settings. Since the cost and time for running the numerical 
experiments are considerably lower than physically conducting the full-scale 
experiments, LBS provides flexibility to optimize the data quality through trial-and-
error and to ensure the acquisition of a large amount of relevant data. 

A series of research thrusts on the development of real-time flashover prediction 
models for residential building structures has begun since 2019 and these efforts 
have also been one of the primary research focuses for the smart fire fighting (SFF) 
project. The objective of this section is to describe the ML-based models that are 
developed to account for various realistic conditions encountered from real-life 
firefighting and how the fire problem is being addressed systematically.  

There are three main challenges that the SFF project has overcome in terms of 
developing functional real-time flashover prediction models for residential building 
structures: 1) loss of data from sensors (i.e., heat detectors) at elevated temperature 
in a three-compartment home, 2) unknown fire conditions and venting opening 
configurations in a typical single-story residential home, and 3) application at-scale 
with different residential homes. Consequently, three different ML-based models 
are developed to address the three challenges: 1) P-Flash with SVR [50], 2) P-Flash 
with attention-based Bi-LSTM [51], and 3) FlashNet [52] and key information is 
presented in Sec. 16.3.1, Sec. 16.3.2, and Sec. 16.3.3, respectively. Readers are 
suggested to seek for complete details from the literature [50-52].  

 
14.2.1 Zone-Model Fire Data Generation and Validation 

A computational tool, CFAST Fire Data Generator (CData) [53,54], is developed 
to generate time series data for typical devices/sensors (i.e., heat detector, smoke 
detector, and other targets) in any user-specified building configurations. CData has 
three main modules: 1) preprocessor, 2) executor, and 3) accumulator.  

 
Preprocessor Module: The preprocessor module is used to generate individual 
CFAST [55] input files. The CData input file utilizes the CFAST Namelist format. 
Seven different probability density functions are included to allow users to specify 
different simulation parameters, such as building layouts, surface materials, fire 
conditions, ventilation configurations, location of detector(s), and output intervals. 
Examples are provided in page 4 of reference [53]. Depending on the problem 
complexity and using approximately 200 nodes from a Linux cluster, approximately 
10,000 CFAST cases can be completed in a day. 
 
Executor Module: As part of the process of creating the individual CFAST inputs 
files, CData creates batch scripts for both Windows (see Pg. 25 from [54]) and 
Linux (see Pg. 26 from [54]) operating systems. Each batch script depends on 
external software to support running multiple CFAST jobs in parallel. Both of these 
scripts include information on the locations of these external files. With that, 
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running the set of CFAST simulations is accomplished by running the appropriate 
script for Windows or Linux. By default, a maximum of 100,000 iterations are set 
for each run to ensure that jobs which take an extremely long time to run do not 
prevent the rest from running. This value can be changed in both of the batch scripts. 
 
Accumulator Module: A summary spreadsheet containing detailed information 
about all input parameters for each of the CFAST cases can be generated in this 
module. This spreadsheet can be used to carry out data inspection to eliminate any 
parameters. This information is crucial to ensure the quality and the covering range 
of the fire data. Readers who are interested in CData can refer to [54] for additional 
details and examples. 

CData uses CFAST as the simulation engine. In general, CFAST is validated 
against more than 15 other sets of full-scale experiments [55] with peak heat release 
rate (HRR), compartment aspect ratio (i.e., compartment length against ceiling 
height), and global equivalence ratio, ranging from approximately 50 kW to 15,700 
kW, 0.4 to 4.9, and roughly 0 to a value larger than 1 for a wide range of ventilation 
factors, respectively. 

In order to ensure data fidelity in a more complex geometric setting, additional 
model validation is carried out. Specifically, temperature measurements obtained 
from two full-scale gas burner experiments (Exp 1 and Exp 2) reported in [56] are 
used to benchmark the synthetic temperature data generated using CFAST. Fig. 1a 
shows the floorplan of the single-story residential structure and it is consisted of a 
living room, kitchen, a dining room, a short hallway, and three bedrooms. The fire 
for both experiments is initiated at the living room and the heat release rate of the 
gas burner fires are the same for the two experiments.  

 

 
Fig. 1. Plan view dimensioned drawing of a) the single story structure and b) vent openings 
with heat sensors (HD) [56]. 

Fig. 2 show the upper gas layer temperature profiles for the two experiments. 
The blue solid lines represent the synthetic temperature data obtained from CFAST. 
The red dash lines are the estimated upper gas layer temperature for the 
experiments, and they are obtained based on the hot gas layer reduction method 
provided in [56]. It can be seen that the magnitudes and trends of the temperature 
profiles match the experimental data for different vent opening events. The window 
opening conditions can be retrieved from [51,57]. This observation indicates that 
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CFAST, the simulation engine of CData, is capable of capturing both the 
corresponding effect of fire and vent openings in the single story multi-compartment 
structure. In terms of uncertainty, the absolute root mean squared error is about 
30 °C and 10 °C for Exp 1 and Exp 2, respectively. Comparison is also made for 
other compartments and the overall agreement is very good. Therefore, it can be 
expected that the generated temperature data can be reliably used for model 
development. 

 

 
Fig. 2. CFAST validation against measurement for a) Experiment 1 and b) Experiment 2. 

14.2.2 Flashover Prediction Using Recovered Temperature Data (P-Flash 
with SVR) 

The primary question to be addressed in the first study is to develop a modeling 
framework that can be used to provide predictions even when temperature data are 
not available due to malfunctioning heat detectors at elevated temperature. The 
subsequent sections will provide discussion on: i) numerical setup for the three-
compartment home, ii) corresponding temperature behaviors, iii) heat detector 
operational temperature limit, iv) flashover criteria, v) methods to overcome 
missing data, vi) model development of P-Flash, and vii) model performance.  
 
Numerical Setup: Consider a single-story building with three compartments as 
shown in Fig. 3a, the dimensions of Room 1 are 3.5 m x 3.5 m, and the dimensions 
of Room 2 and Corridor are 4.5 m x 4.5 m and 3.5 m x 1 m, respectively. The ceiling 
height is 2.5 m, and it is identical for all compartments. For simplicity, the material 
of all walls, ceilings, and floors is gypsum wallboard. As seen in Fig. 3a, there are 
4 openings: 1) a window in Room 1, 2) a door between Room 1 and Corridor, 3) a 
door between Corridor and Room 2, and 4) an exit-door in Room 2. The openings 
are fully opened. There is one heat detector in every compartment, and they are all 
located at the center of each compartment about 4.5 cm away from the ceiling. The 
response time index for the heat detector is 35 (ms)0.5. 
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Temperature Behaviors: CData is used to obtain 1000 different simulation runs 
with a t-squared fire at the center in Room 1. Based on references provided in [58], 
a range of fires are selected in this study. Fig. 3b shows the scatter plot of peak HRR 
and time to peak for the 1000 cases. It can be seen that the peak HRR and the time 
to peak ranges from approximately 50 kW to 2200 kW and from 50 s to 1400 s, 
respectively. The selected range of peak HRR and time to peak cover various 
burning items from an office trash can with a slow fire growth rate to an upholstered 
furniture fire with an ultra-fast fire growth rate. 
 For all simulation runs, a fire is started in Room 1. Subsequently, the upper 
layer gas temperature rises, and the layer thickness increases. Some hot gases leave 
the building structure, and some flow through the door. Air mixing between Room 1 
and Corridor occurs. Due to the mixing, the upper gas layer temperature in Corridor 
also increases. Similar mass transfer and heat transfer processes take place between 
Corridor and Room 2, and the Room 2 upper gas layer temperature gradually rises. 
It can be imagined that the overall temperature profile from Room 1 for a given fire 
is likely to be the highest and the Room 2 overall temperature is going to be the 
lowest (see Pg. 4 from [50]). 
 
Heat Detector Maximum Operational Temperature Limits: Loss of heat 
detector (HD) temperature signal is a realistic condition in actual fire scenarios and 
the HDs are very unlikely to survive at elevated temperature and would fail at 
temperatures well below the flashover conditions. According to NFPA 72 [2], heat 
sensing fire detectors are categorized into seven different classes with temperature 
classifications ranging from low to ultra-high, and the maximum operational 
temperature ranging from approximately 29 °C to 302 °C. In order to find a balance 
in between applicability and model challenge, the extra high class HD with a 
maximum operational temperature limit of ~ 150 °C is selected. 
 
Flashover Criteria: Numerous variables can affect the transition of a compartment 
fire to full room involvement (i.e., flashover) [14]. Thermal influences including 
radiative and convective heat flux are assumed to be the driving forces and are 
clearly important. Ventilation conditions, compartment volume, and the chemistry 

    
Fig 3. a) Schematic of the single-story three compartments with a fire in action and b) scatter 
plot for peak HRR vs time to peak.  
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of the hot gas layer can also influence the occurrence of flashover. Based on the 
experimental studies reviewed in [14], the onset of flashover within a compartment 
can be quantified by two measurable criterions: 1) heat flux and 2) temperature. 
Peacock and his co-workers [14] demonstrated that when the incident heat flux onto 
the floor surface is between approximately 15 kW/m2 to 33 kW/m2, there can be a 
potential occurrence of flashover. However, the measurement of heat flux can rarely 
be measured in typical building environments because heat flux gauges are usually 
not installed. For that, the flashover criteria associated with heat flux cannot be used 
and it will not be considered in this study. For the temperature criterion, the range 
of values obtained from nine different literature sources in [14] ranges from 450 °C 
to 771 °C. The wide range of values for the temperature criterion is due to the large 
change in temperature within a very short period of time. Yet, it can be observed 
from [14] that most of the values are in the 550 °C to 650 °C range. To be 
conservative, the upper gas layer temperature of 600 °C is used as the threshold to 
determine the flashover moment. 
 
Sequence Segmentation: Fig. 4 depicts the temperature profiles of a medium 
growth fire with high peak HRR case with a temperature cut-off at 150 °C. The dash 
lines are the ideal temperature profiles and the solid lines are the available 
temperature information. It can be seen that HDs begin to fail. There are only two 
and one remaining temperature information from the HDs in Phase II and Phase III, 
respectively. This missing temperature information imposes significant challenges 
for the model development and it is well known that developing a ML model based 
on unphysical data significantly jeopardizes the model performance. For that, the 
sequence segmentation is applied to the temperature data. There are three benefits 
from using the segmented data: a) the unphysical information due to any 
malfunctioning detectors is eliminated, b) the ML model can take full advantage of 
the available data associated with a specified phase, and c) the new data structure 
provides the basis for the model development of P-Flash. 

 
Fig. 4. Sequence segmentation and temperature profiles with 150 °C cut-off in 4 phases 
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P-Flash with SVR: A traditional machine learning algorithm, namely Support 
Vector Regression (SVR) [59], is used to develop the Prediction model for 
Flashover (P-Flash) to recover the missing temperature in different phases. Since 
SVR does not have capabilities to extract features itself, feature extraction is needed 
to obtain more useful features from the raw data. Two types of features are extracted 
for Phase I, II, and III and they are temperature-based features and trend-based 
features. These extracted features are the inputs and they help to build a more robust 
model. It should be noted that the list of extracted features can be found from page5 
from [50].  

Fig. 5 shows the overview of P-Flash model architecture. As seen in the figure, 
P-Flash is consisted of two regression models (Rcor and RR2) and a memory 
component. ①, ②, and ③ are the extracted features. Both regression models, RCorr 
and RR2, are executed simultaneously and three outputs are obtained. Two 
temperature outputs from RCorr and RR2 using features ① and ② are averaged to 
yield the recovered Room 1 temperature in Phase II and the recovered Room 1 
temperature output for Phase III is directed obtained from RR2 using features ③. 
The Room 1 temperature information (Phase I to Phase III) is stored the memory 
component (M). Since temperature information is not available in Phase IV, curve 
fitting is carried out to extrapolate the missing temperature in Phase IV. 

 
Results and Discussion: Fig. 6 show the temperature predictions obtained from P-
Flash for two selected cases: 1) a fast growth fire with low peak HRR case and 2) a 
medium growth fire with high peak HRR case. There are three sets of curves in each 
figure: i) ground truth/Room 1 temperature, ii) prediction with learning from fitting 
(LFF), and iii) prediction without LFF. For each prediction curve, it can be 
composed of up to two lines: a) red line represents the Room 1 temperature 
predictions associated with Phase II and III and b) blue line is for predictions in 
Phase IV. Since no prediction is needed for Phase I, comparison is omitted.  

 
Fig. 5. Overview of model architecture for P-Flash. 
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In Fig. 6a, it can be seen that P-Flash provides accurate temperature predictions 
of Room 1 in all phases, and the benefit of using LFF is noticeable. After 
approximately 1150 s, when all detectors are lost, P-Flash is still capable to provide 
predictions with similar trend and magnitude. For P-Flash without LFF, the 
prediction relies on the regression models, and it can be shown that the temperature 
prediction is unrealistic (i.e., showing a temperature increase to as high as 910 °C). 
This observation demonstrates that unphysical inputs will lead to unphysical 
outputs. 

 

 
Fig. 6. Comparison between ground truth and predictions obtained from P-Flash a) with 
and b) without LFF. 
 

In Fig. 6b, it can be seen that the temperature of Room 1 being recovered from 
Phase II and III is still growing exponentially. Since P-Flash does not have any 
information about the change of increase of the temperature, it over-predicts the 
Room 1 temperature significantly after ~ 1250 s. However, it should be noted that 
although P-Flash is capable to project the temperature increase in which the 
determination of flashover (i.e., temperature approaching 600 ̊C) in Room 1 can be 
made, the model can only be applied for cases with fires at a fixed location and 
static (i.e., always open) vent conditions. In the following section, a more robust 
approach is presented.  It is designed to account for arbitrary fire conditions and 
vent opening configurations in a realistic residential home and it is able to predict 
flashover for as many as 60 seconds before flashover occurs. 

 
14.2.3 Flashover Prediction Using Surrogate Temperature Data (P-Flash 

with Attention-Based Bi-LSTM) 

This section presents i) the numerical setup for the fire problem (an early flashover 
prediction task with a more complex building structure), ii) the unique temperature 
behaviors due to an arbitrary open door and the corresponding challenges, iii) the 
model development of P-Flash with attention-based Bi-LSTM, iv) results and 
discussion, and v) model limitations. 
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Numerical Setup: Consider a single-story ranch-style home structure as shown in 
Fig. 1a. There are seven major compartments: a living room, a dining room, a 
kitchen, three bedrooms, and a hallway connecting the living room and the three 
bedrooms. The overall interior dimensions of the structure are about 13.92 m x 
7.7 m with a ceiling height of 2.44 m. The detailed dimensions associated with each 
of the compartments are shown in Fig. 1a.  

Fig. 1b shows the relative position of the vent openings and the heat detectors in 
different compartments. For vent openings, there are two exterior doors (front and 
back), three bedrooms doors, and seven windows (from A to G). There is one heat 
detector (HD shown in Fig. 1b) located at each compartment and they are 
approximately 0.02 m away from the ceiling. The response time index of the HDs 
is similar to that mentioned in Sec. 16.2.2 and it is 35 (m-s)0.5. The reason for 
selecting this single-story ranch-style structure is because about 90 % of residential 
buildings were built using this layout since the mid-1950s and this structure layout 
remains the most popular style of homes in 34 states across the United States [60]. 
For that, the research efforts with this structure are useful for the development 
process of real-time flashover predictions for firefighting across the U.S. 

For each simulation case, there will only be one fire and it is either initiated at 
the center, against a wall surface, or at a corner within a compartment (except the 
hallway). The fire is located on the floor and this setting allows entrainment of 
oxygen-rich air and facilitates a more idealized condition for burning. A burning 
item is assumed to consist of four different fire growth stages and there is a linear 
growth (i.e., smoldering fire), t-squared growth (i.e., flaming fire), a peak, and a 
decay stage. Three items are considered and they are flaming chairs, polyurethane 
foam mattresses, and cotton-based mattresses. There items are found to be the 
leading items first ignited in home structure fires [1]. The transition HRR from 
smoldering to flaming fire (Q1), peak HRR (Qmax), time to transition (t1), time to 
peak HRR (t2), peak time (t3 – t3), and decay time (t4 – t2) are summarized in Table 1. 
The peak HHR and time to peak HRR are obtained from [61], and the fire growth 
rate, α, is determined to be in between 0.000329 kW/s2 and 0.041387 kW/s2 which 
yields fires ranging from slow to fast fire growth rate. 

For vent opening conditions, all doors and windows are initially closed and they 
can be opened based on the following two settings: a time-trigger setting for doors 
and a temperature-trigger setting for windows. For the time-trigger setting, the doors 

Table 1. Approximate HRR parameters for chair and mattresses [61]. 

Items 
Q1  

(kW) 
Qmax (kW) t1 (s) t2 (s) 

t3-t2 
(s) 

t4-t3 

(s) 
Chair 10 – 30 270 – 3500 150 – 1200 295 – 675 200 10 

Mattress 
(foam) 

10 – 30 2275 – 4620 150 – 1200 305 – 435 200 10 

Mattress 
(cotton) 

10 – 30 130 – 1670 150 – 1200 360 – 1240 200 10 
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in any compartments within the building structure can be opened at any given time 
within the t-squared fire growing stage. This setting allows mimicking door opening 
events due to activities, such as leaving the room of the fire origin and/or leaving 
the building structure. In addition, the arbitrarily open conditions of doors indirectly 
introduce double-peak fire growth behaviors that cannot be provided by just a 
simple t-squared fire.  

The temperature-trigger setting allows windows to be arbitrarily opened when a 
temperature threshold is reached. In a fire scenario, a window is subjected to heating 
either from the local gas temperature and/or from the fire. Due to temperature or a 
flux gradient [62], a window may crack and eventually break out and create an 
opening to the outside environment. Based on [63], breakage of a single-pane float 
glass is experimentally observed at temperature between 100 °C and 200 °C. For 
that, when the window temperature reaches these thresholds (i.e., 100 °C – 200 °C), 
the window will then be opened. It is believed that the arbitrarily opening of doors 
and windows will provide more complex data behavior for development of a more 
robust ML-based model. 
 
Temperature Behaviors and Challenges: Understanding the temperature data 
behaviors is vital to design a robust model architecture such that the ML-based 
prediction model is capable of learning the important relationship between 
temperature and flashover conditions. Fig. 7a shows temperature data for a double-
peak fire case. Consider a fire occurs in Bedroom 1 with all the doors and windows 
in the building structure being initially closed. This setting creates a “sealed” 
compartment for Bedroom 1. As seen in the figure, the temperature first increases 
and then decreases due to the lack of oxygen. At around 470 s, the door is opened 
and the fire is approaching its peak. The temperature increases in bedroom 1, living 
room, kitchen, and dining room, but the temperatures in bedrooms 2 and 3 remain 
at ambient temperature. Physically, it is completely understandable because the 
doors are closed and the heated gases cannot enter the bedrooms. However, the 
modeling challenge presents here is that the information about the opening of the 
doors in not known in a real fire scenario. So, the model needs to learn to omit data 
that are not important. Fig. 7b shows the fire case with the heat detector maximum 

 
Fig. 7. a) Temperature profiles of different compartments for a ventilation-controlled fire 
case and b) temperature profiles with a cut-off value of 150 °C. 
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operational temperature limit at 150 °C. As shown in Fig. 7a, the flashover 
condition in the living room is met at about 500 s. Yet, the living room temperature 
is no longer available after ~ 300 s. Therefore, it can be seen that the model does 
not only need to discriminate data with higher importance, but it also needs to relate 
the temperature from other compartments for flashover conditions. 
 
P-Flash with Attention-Based Bi-LSTM: In order to overcome the two 
abovementioned challenges, a bi-directional long short-term memory (Bi-LSTM) 
with self-attention mechanism is formulated. The Bi-LSTM algorithm [64] is to 
capture the complex data behaviors and the overall model structure is shown in 
Fig. 8a. The figure shows that for a temperature signal: 𝑆𝑆 = (𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝜏𝜏) and a 
time step 𝑖𝑖, Bi-LSTM includes a forward hidden state ℎ𝚤𝚤���⃗  and a backward hidden 
state ℎ𝚤𝚤�⃖��. Since the complete behavior for temperature signals is needed, only the last 
hidden state of ℎ𝜏𝜏����⃗  and ℎ𝜏𝜏�⃖��� are extracted from the Bi-LSTM. As shown in the figure, 
concatenation is applied to yield ℎ𝜏𝜏 = [ℎ𝜏𝜏����⃗ , ℎ𝜏𝜏�⃖���] to encode temperature behavior with 
flashover conditions. 

 
Fig. 8. a) Model architecture of BiLSTM and b) BiLSTM with sensor-wise self-attention. 
 
 In order to enhance the learning capability of the model in discriminating 
temperature signals with higher significance (i.e., neglecting bedrooms 2 and 3 
temperature signal in Fig. 7b), a self-attention mechanism (see Fig. 8b) is used to 
model the sensor-wise relationships. With that, the contextual temperature 
information of all compartments within the structure can be extracted and it is 
believed that the contextual information can contribute to provide more accurate 
flashover predictions within the coming 30 s and 60 s based on the available 
temperature signals. Detailed mathematical formulations of the model are provided 
in page 6 from [51].  
 
Results and Discussion: Table 2 shows the model performance for flashover 
predictions with a lead time of 30 s and 60 s. Based on the overall accuracy, the 
attention-based Bi-LSTM outperforms the original Bi-LSTM. The attention-based 
model also yields a significantly better recall score, indicating the benefits of 
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including the sensor-wise self-attention mechanism, and this is important because 
there are fewer false negatives for flashover events. As shown in Table 2, the overall 
performance for cases with a lead time of 60 s is generally better. One possible 
reason is due to the fact that it has a larger set of training samples. 
 

Table 2. Performance of P-Flash. 

x Model Acc. Prec. Rec. F1 

60s 
BiLSTM 81.8% 86.9% 74.9% 80.5% 
BiLSTM-
Attention 86.5% 84.6% 89.2% 86.8% 

30s 
BiLSTM 78.2% 77.0% 80.5% 78.7% 
BiLSTM-
Attention 81.8% 79.5% 85.6% 82.3% 

 
 Fig. 9 illustrates the learned attention weights between the sensor signals in fire 
origin room and other compartments: kitchen (K), dining room (D), living room 
(L), and bedrooms 1 to 3 (B1, B2, B3), for two door opening conditions: all opened 
denoted as Open and all closed denoted as Close. As shown in the figure, the 
attention-based model can discover the spatial relation between sensor signals from 
different compartments. For example, when fire occurs in kitchen, the signal of 
dining room and living room are determined as the most discriminating surrogate 
signals (see Fig. 9a). This is expected because the sensors placed in these two rooms 
are very close to the kitchen. On the other hand, the signals from dining room and 
kitchen are barely important for our model when fire occurs in bedroom 1, 
regardless of the door opening conditions (see Fig. 9b). This also agrees with their 
spatial relations that the sensors in dining room and kitchen are farer away from that 
in bedroom 1. It can be seen that the learned attention weights suggest that the 
attention-based model can effectively learn the useful relationships between 
different sensor signals under different door opening conditions without the need of 
providing any prior information. 
 

 
Fig. 9. Learned attention for a) Kitchen and b) Bedroom 1, under different door opening 
conditions. 
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Limitations: One major limitation of existing prediction models such as [50, 51] 
lies in their generalizability across different building structures. The model 
architecture from these models does not support a variable number of input data and 
floorplans. For example, a model trained for one building structure with 3 channels 
of temperature data (Fig. 4) does not generalize to another with 7 channels (Fig. 7). 
This model limitation imposes the need of prior knowledge about the exact 
floorplan of the building structure. However, this kind of information is usually 
unknown in practical firefighting. 
 
14.2.4 Generic Flashover Prediction Model (FlashNet) 

This section presents the model development efforts to account for a wide range of 
residential homes with different floorplans and this section includes 4 subsections: 
i) the home structures, ii) the concept of graph structured data, iii) the model 
formulation for FlashNet, and iv) results and discussion. 
 
Home Structures and Numerical Settings: Seventeen typical single-floor home 
structures are selected from [65], which defines 209 dwellings to represent 
approximately 80 % of U.S. housing layouts. These 17 structures can be categorized 
into three types of residential buildings: 1) apartment homes, 2) attached homes, 
and 3) detached homes . The overall floor area ranges from 65 m2 to 275 m2 with 
three to fourteen compartments.  

 
Graph Structured Data: The graph structured data is made up of two components: 
node attribute matrix which is the extracted instances for temperature and adjacency 
matrix. The adjacency matrix is formulated using two steps. The first step is to 
convert the home floorplan into a graph representation. An example is shown in 
Fig. 10 where each compartment is represented by a node and the corresponding 
opening or connection between two compartments is represented by an edge. The 
non-diagonal matrix elements are determined based on the size of opening between 
two compartments (i.e., the height and the width of a door from a bedroom to the 

 
Fig. 10. A schematic of a) a graph representation and b) an adjacency matrix for the six-
compartment home. 
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hallway). For the diagonal elements, since the temperature information is crucial to 
correlate the potential occurrence of flashover, they are taken to be the maximum 
value of the non-diagonal elements. For the six-compartment building structure, the 
maximum value is 2.88 m2. The same procedure is carried out to generate the graph 
representations for the rest of the sixteen building structures.  

The second step is to obtain a geometric averaged adjacency matrix (GAAM) 
that can be used for all home structures. By visual inspection of the seventeen 
building structures from [52], there can be a possible of 15 x 15 compartment 
combinations a living room (L), kitchen (K), bedroom1 (BR1), bathroom1 (BA1), 
hall1 (H1), bathroom2 (BA2), bedroom2 (BR2), bathroom3 (BA3), den (Den), 
bedroom3 (BR3), family room (Fam), bedroom4 (BR4), hall2 (H2), hall3 (H3), or 
a dining room (D). The use of this information provides the dimensions of the 
GAAM. Final GAAM matrix elements are determined using the statistical mean of 
the normalized adjacency matrices from the seventeen home structures. Additional 
explanation for the determination of GAAM and the corresponding GAAM for the 
fourteen-compartment detached home are provided in page 6 to 7 in [52]. 
 
Model Formulation: The overall structure of the Flashover prediction neural 
Network , namely FlashNet, is presented in Fig. 11 and the model has a single block 
of a spatial temporal graph convolutional network (ST-GConvN). The ST-GConvN 
block is used to capture the spatial and the temporal dependencies from the 
multivariate temperature data and consists of two temporal convolution layers and 
one spatial graph convolution layer. The required number of layers is determined 
based on numerical experiment [47]. For each temporal convolution layer, there is 
a 1-D convolution following by a rectified linear unit (ReLU), and this operation 
provides additional non-linearity to the temporal convolution layer to learn 
important features/information (i.e., how fast the temperature increase, how much 
time it takes to reach a certain temperature condition, etc.) in the time domain.  

 

Fig. 11. Model structure of FlashNet. 
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Model Performance and Benchmarks: Table 3 shows the results for flashover 
prediction with a lead time of 10 s. FlashNet is benchmarked against five state-of-
the-art prediction models. The baseline models include i) P-Flash with SVR [50], 
ii) MLP – a feedforward multiple-layer perceptron [66], iii) LSTM – a two-layer 
long short-term memory [67], iv) P-Flash with attention-based Bi-LSTM [51], and 
v) CNN – a three-layer standard convolutional neural network [68]. As shown in 
Table 5, FlashNet outperforms the existing machine learning based prediction 
models and achieves an overall accuracy of about 85.2 %. Also, the scores from 
precision, recall, and F1 suggest that FlashNet is a well-balanced model which 
minimizes the false positive and the false negative. The main reason why FlashNet 
improves the model performance is that the nature for temperature data in flashover 
predictions accounting for different building structures with a wide range of fire and 
vent opening conditions is better suited for the modeling assumptions about 
temporal and spatial dependencies. In terms of training time, most of models, except 
ANN and the linear SVM, require about 30 minutes for convergence. For testing, 
models generally take about 3 seconds to make predictions for testing subset. On 
average, one prediction uses about a fraction of a second per instance. 

14.3 Flashover and Backdraft Prediction Using Real Data 

Section 16.2.1 to Sec. 16.2.4 presents the machine learning model development 
using synthetic fire data. In this section, the development of the deep learning model 
uses real fire data from both small and real scale chamber fire experiments. Similar 
to the previous sections, descriptions for the experimental setup and the data 
behavior are first given. Then, the model formulations and important observation 
are presented.   

Table 3. Baseline comparison against five existing machine learning based flashover 
prediction models. 

Methods Acc. Prec. Recall F1 Training 
(s) 

Testing 
(s) 

SVM 53.6% 52.8% 66.6% 58.9% 37.5 0.01 
MPL 62.1% 49.4% 74.3% 59.3% 710.6 2.42 

LSTM 66.6% 75.7% 49.7% 60.1% 1594.1 2.87 
BiLSTM-ATT 70.0% 66.6% 81.2% 73.2% 1834.8 2.93 

CNN 79.8% 85.0% 74.8% 79.5% 1351.0 2.38 
FlashNet 85.2% 83.5% 87.8% 85.6% 1657.3 2.91 
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14.3.1 Flashover forecast in Scaled Room Fire Tests 

This study [67] considers a standard 1/5th scale cubical enclosure with side lengths 
of approximately 0.5 m. The enclosure is primarily constructed with 4 mm thick 
galvanized steel. In order to observe the fire growth, a refractory glass is installed 
on the right side of the enclosure. In additional, there is an adjustable opening in the 
front side of the enclosure. Within the enclosure, three thermocouples are placed, 
along the centerline, on the ceiling. The first thermocouple is about 0.05 m away 
from the front opening and the second and third thermocouples are about 0.2 m 
apart. Two digital cameras are placed outside of the enclosure to visualize the fire 
development and to determine when there is an onset of flashover. 

A series of experiments is carried out. There are 11 pool fire experiments and 13 
wood crib fire experiments. Six different vent opening conditions are considered. 
Fig. 15 shows the temperature growth from the three thermocouples for a) a 24 cm 
diameter liquid pool fire with 0.4 m (height) x 0.16 m (width) opening and b) a large 
wood crib fire with 0.2 m x 0.3 m opening. It can be seen in these figures that 
temperature data from real fire test has noticeable temperature oscillations. This 
kind of temperature behavior is missing from the synthetic temperature data 
generated by a zone model (i.e., CFAST). In Fig. 12, there are four primary fire 
stages: 1) growing, 2) flashover, 3) fully developed, and 4) decay. Video recordings 
are used to determine the onset of flashover. Specifically, when spilled flame is 
noted, the corresponding timestamp is marked as flashover. For example, the onset 
of flashover in Fig. 12a is about 320 s.  

 
Model Formulation: The deep learning (DL) model carries out the following two 
tasks: 1) temperature prediction as a regression task and 2) flashover prediction as 
a binary classification task. Fig. 13 depicts the overall workflow and the model 
structure of the DL model. The model inputs are the temperature profiles from the 
three thermocouples. A rolling time window of 20 s is used to facilitate real-time, 
continuous forecasts and the z-score normalization is conducted to normalize the 

 
Fig. 12. Typical temperature growth for different fuels (a) 24-cm diameter liquid pool fire 
with 0.4 m × 0.16 m opening and (b) large wood crib fire with 0.2 m × 0.3 m opening. 
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input data in the same scale. Input data is divided into three subsets and they are 
training, validation, and testing subsets.  

As seen in Fig. 13, the DL model is consisted of a stacked Long Short-Term 
Memory (LSTM). The 1st LSTM has a state number of 120 and the 2nd LSTM has 
a state number of 80. A dropout of 0.2 is applied to both LSTM layers to facilitate 
training stability. The extracted features obtained from the LSTM layers are passed 
to a fully connected layer with a node number of 64. Relu is used to provide 
additional nonlinearity for mapping. Depending on the forecasting task, the output 
layer for the temperature prediction and the flashover prediction has a node number 
of 3 and 1, respectively. 

 

 
Fig. 13. The structure of the LSTM based fire forecast model. 
 
Results and Discussion: Figure 14 shows the predicted results of the DL model for 
a large wood crib fire with 0.2 m × 0.3 m opening. Specifically, the temperature 
forecast and the forecasting flashover probability with a lead time of 10 s are shown 
in Fig. 14a and Fig. 14b, respectively. The solid lines are the ground trues and the 
dash lines are the model predictions. For temperature forecast, it can be seen from 
Fig. 17a that the DL model is capable to predict the future temperature (with a lead 
time of 10 s) and the temperature predictions capture the trend of the temperature 
growth. For this particular case, the overall discrepancy between the predictions and 
the ground true is about 10 %. In term of flashover prediction, it can be seen that 
the model has relatively promising performance and it can forecast the potential 
occurrence of flashover correctly. The results from this study affirm a fact that 
machine learning paradigm can learn the important patterns for various prediction 
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tasks such as temperature and flashover predictions from real fire temperature data 
that has various noise and temperature fluctuations.  
 

 
Fig. 14. Model prediction of a) temperature and b) flashover probability for a large wood crib 
fire with 0.2 m × 0.3 m opening. 
 

It is hoped that these research efforts can continuously overcome limits and/or 
eliminate assumptions that the traditional modeling approaches fail to capture. In 
the next section, another thrust of research efforts is presented to highlight the 
current modeling advancement in other built environments. 

14.3.2 Predicting Backdraft in Real-scale Room 

This section presents a full-scale fire test in a 5.5 m (length) x 2.4 m (width) x 2.4 
m (height) chamber (Fig. 15). Wood planks are adopted as the fuel and arranged to 
simulate the furniture, room ceiling, sidewalls, and floor to simulate the fuel 
distribution in an actual building environment (Fig. 15a-b). At the beginning of each 
test, an advanced flame-thrower burner is employed to ignite the innermost fuel 
until the fire can sustain itself autonomously. When the fire grows to large enough, 
the door is then closed to create a nearly sealed room environment. After the fire 
further developed inside the room for a certain period, the door can be opened to 
generate a spilled flame or a backdraft. The operation of close and open door is 
repeated several times in each fire test with different internal fire scenarios (varied 
oxygen supply and fire HRRs) and door enclosure durations to obtain backdraft 
samples with various intensities. 

Totally, five groups of large-scale fire tests are conducted on different dates 
under varied ambient and weather conditions. Each test includes multiple spilled 
flame and backdraft processes. The temperature profile in each experiment is 
measured by a set of thermocouple arrays (Fig. 15c). Two TC trees (TC#1–6 and 
TC#13–18) are adopted to record the vertical temperature distribution, and these 
data can be used to identify the smoke stratification. The horizontal TC array 
(TC#7–12) are set to measure the temperature distribution of the upper smoke layer. 
Moreover, two fixed cameras and a camera carried by portable Unmanned Aerial 
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Vehicle (UAV) are installed a few meters away from the chamber door to record 
the smoke and flame videos from different view angles. 

 

 
Fig. 15. Experimental setup of the full-scale backdraft test chamber. 

 

 
Fig. 16. Experimental setup of the full-scale backdraft test chamber. 
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The typical temperature growth of the large-scale fire test is plotted in Fig. 16. 
As shown, when closing (opening) the door, the oxygen will be cut off (supplied) 
to induce the temperature decay (rise), respectively. When the fuel gas 
concentration and the internal temperature reach a critical level, an explosion will 
happen when the door is open. This explosion is a typical backdraft phenomenon. 
During the period of 1000 – 2200 s, the door is closed and re-opened several times. 
Then, several no-backdraft cases and backdraft cases with different intensities are 
further observed, depending on different initial states (e.g., the previous door-close 
duration and internal temperature) and door enclosure durations. Finally, the fire is 
either extinguished with a fire hose or continued until the burnout of fuel (the blue 
region). In total, 31 times of backdrafts have been observed in 5 tests. 

 
Model Formulation: Unlike other critical event in the building fire, which is the 
spontaneous evolution of the fire system, the occurrence of the backdraft is 
associated with the firefighter’s action, i.e., open or close the door so the state of 
the chamber is important information to judge the backdraft risks. Therefore, a 
multimodal deep learning framework to integrate the sensor signal (temperature) 
and visual signal (images) are proposed to forecast the backdraft (Fig. 17). The 
original transformer and Vision-transformer algorithms are adopted as the encoder 
for the sensor data and visual data, respectively. The input image is first divided 
into a grid of patches and linearly embedded into a lower-dimensional vector 
representation. The patch embeddings are then passed through a series of 
transformer encoder layers (four in this work for the visual signal). In each layer, 
two key components, i.e., self-attention and feed-forward neural networks, are 
adopted to capture both local and global dependencies among the patches. Similarly, 
the sensor data are also processed by transformer encoder layers (two in this work) 
to extract the features and dependencies.  
 

 
Fig. 17. Diagram of the Fusion-transformer structure.  
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After the initial encoding of each modality, a cross-modal attention mechanism 
is employed in the fusion-transformer layer, in which the attention scores between 
the representations of different modalities, allowing them to attend and exchange 
information with each other. In this study, the model tries to link the temperature 
variation characteristics (absolute value and gradient) with the firefighter’s 
operation (closing or opening the door) and establish potential connections among 
these features. Finally, the fusion-encoded information from multimodal data passes 
through the LSTM model to obtain the temporal features, and two fully connected 
layers are used to achieve the nonlinear fitting and generate the output, namely, the 
backdraft intensity (represented by the maximum explosion flame height). 
 
Results and Discussion: Figure 18 presents the prediction of the deep learning 
model for backdraft onset with ground truth. As shown, there are eight times of 
close-open cycles in the whole experiment, and seven of them successfully induce 
a backdraft with different intensity while the last time has no backdraft due to the 
water-cooling effect. Accordingly, the proposed model predicts a certain backdraft 
intensity for the seven samples which successfully generate a backdraft and outputs 
a zero for the last time with the water cooling. The model performs a 100 % 
accuracy on predicting the occurrence of the backdraft with a low delay time (less 
than 1.6 s). Meanwhile, the accumulation of the pyrolysis fuel gas and the gradual 
temperature decay can well be reflected by the increase and decrease of predicted 
backdraft risk, respectively, indicating that the results are phenomenological. 
 

 
Fig. 18. Deep learning model prediction VS observed ground truth.   
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14.4 Challenges and Perspectives in AI-Driven Fire Forecast 

14.4.1 Challenges 

Interpretability of the AI/ML fire modeling. Despite the numerical advantages 
from [50-52], there is one sufficient drawback of using ML paradigm and that is, 
the models are not interpretable. Often time, it is considered as a black box. It is 
well understood that being able to explain the model decision is important for 
practical engineering applications, especially when the potential applications 
involve lives. Also, model interpretability provides traceable information to 
scientists or engineers to understand the underlying reasons why a model is making 
such a correct or a wrong decision. In the future study, an explainable ML-based 
flashover prediction model is needed and model interpretability can be introduced 
using various techniques such as feature attention mechanism, feature visualization, 
and/or class activation map [69]. These techniques can help to extract discriminative 
information in both spatial and temporal domains for the multivariate series so that 
a more trust-worthy ML system can be developed to address the fire safety 
problems. 
 
Lack of consistent criteria of critical events. As demonstrated above, many 
phenomena (critical temperature, heat flux, spilled flame, rollover, etc.) can be 
regarded as the flashover onset but a large difference in the predicted moment may 
be caused by the adaptation of those criteria. For example, according to the 
temperature profile in a 1/5 scaled model fire test, the average ceiling temperature 
can reach 600 ℃ in around 120 s, whereas if the visual criterion, spilled flame is 
utilized, the flashover occurs at around 220 s, which is around 100 s later than the 
temperature data-based prediction. Therefore, although many papers claimed that 
they are predicting the flashover onset, they are indeed forecasting different 
moments if there is not a consistent definition. Consequently, the prediction results 
with different models are not comparable, which largely impedes the 
communication and spread of smart forecast models. 
 
Lack of a comprehensive database. Compared with engineering applications in 
other fields, data collection for fire research is always a big challenge. Full-scale 
fire test data are of great significance as they are closest to real fire accidents but 
very dangerous and costly at the same time. In contrast, the scaled model and 
numerical tests are friendly for both money and time, which is a better way to 
generate a large amount of data for AI training. However, the results from scaled 
and numerical models are inevitably affected by the scaling effect and simplifying 
assumptions. Since the prediction accuracy of the AI model relies heavily on the 
quality of the database, the performance of the AI model trained by the ideal 
database is always questionable.  
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14.4.2 Perspectives 

Vision-based fire scenario recognition. Compared with sensor data, which is hard 
to access in real fire incidents, the visual data are more accessible as they can be 
captured by potable cameras, Unmanned Aerial Vehicles (UAVs), and even the cell 
phone of residents. Computer vision technology shows a good performance to 
identify the fire Heat Release Rate (HRR) based on the external smoke [70] and 
flame images [71,72]. Combined with remote sensing technologies, the vision-
based deep learning model is expected to provide more useful fire scene 
information, such as the fuel load, fuel type, potential fire spread path, and thus help 
predict the fire evolution and critical events occurrence accurately. 
 
Physics-guided model training. The issue of interpretability and lacking large-
scale fire test data is expected to be solved by physics-guided model training, which 
is proposed to address the data imbalance problem. The principle is to introduce 
physical knowledge, e.g., the scaling law, government equations, and fire dynamics 
in the training process. To be more specific, the closed-form and partial differential 
physical equations are served as a term in the loss function with a certain weight or 
embedded in each layer to impact the training process directly. Then the multi-
source fire test data can be well understood by AI. 
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