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We simulate the capture process of MgF molecules into a frequency-chirped molecular MOT. Our calculations
show that by chirping the frequency, the MOT capture velocity is increased by about of factor of 4 to 80 m/s,
allowing for direct loading from a two-stage cryogenic buffer gas beam source. Moreover, we simulate the effect
of this frequency chirp for molecules already present in the MOT. We find that the MOT should be stable with
little to no molecule loss. The chirped MOT should thus allow loading of multiple molecule pulses to increase
the number of trapped molecules

I. INTRODUCTION

All molecular magneto-optical traps (MOTs) produced to-
date [1–8] have been loaded from a laser-slowed cryogenic
buffer gas beam (CBGB). Laser slowing is necessitated by the
mismatch in velocity scales: the single-stage CBGB source
typically produces molecular beams with peak velocities of
over 100 m/s [9, 10] while the typical capture velocity of the
MOT is of the order of 10 m/s [6, 11]. Two-stage CBGB
sources are capable of producing slower beams with mean ve-
locities approaching 60 m/s, but still larger than the typical
capture velocity of molecular MOTs [9, 12–14].

In principle, direct loading of molecular MOTs is possible
if the MOT laser beam is larger than the stopping distance for
a incident molecule. Consider a laser cooling scheme with ng
ground states and ne excited states. The maximum possible
deceleration is amax = hΓne/((ne +ng)mλ ) [15, 16], so large
deceleration is possible in molecules with low mass m, fast
radiative decay rate Γ, and short wavelength λ . In order to
maintain a large deceleration, direct MOT loading further re-
quires that within the spatial extent of the MOT laser beams,
the trapping laser frequency is nearly resonant with the range
of Doppler shifts corresponding to velocities between the ini-
tial molecular beam velocity and rest. Typically, this require-
ment is fulfilled by the MOT’s spherical quadrupole magnetic
field, which provides a range of Zeeman shifts spanning the
requesite range of Doppler shifts. However, as we shall show,
the small g factor of the A2Π1/2 excited state typically used
for laser cooling alkaline-earth fluoride molecules provides
insufficient variation in the Zeeman shift to maintain a res-
onant interaction over the entire stopping distance. Therefore,
molecular structure, not MOT geometry, generally limits the
capture velocity to around 10 m/s.

Absent a substantial excited state g-factor, it is possible to
engineer a temporally varying laser frequency such that res-
onant deceleration is maintained as molecules are slowed to
a stop. In this work, we simulate such a “chirped MOT” and
show that capture velocities up to roughly 100 m/s are possi-
ble with realistic experimental parameters. We focus on MgF,
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which has been extensively studied in single-stage CBGBs as
a candidate laser coolable molecule [17–19] but has not yet
been slowed or trapped. MgF is a good test case because of its
relatively large recoil velocity (2.6 cm/s) and large radiative
decay rate (Γ = 131.6(1.4) s−1) [19]. The large capture ve-
locity of the MgF chirped MOT is sufficient to capture nearly
all molecules from a two-stage CBGB source (or from a one
stage CBGB source with modest laser slowing). Moreover,
we show that trapped molecules in the MOT are retained dur-
ing a subsequent frequency chirp, thus allowing multiple suc-
cessive molecular beam pulses to be captured by the MOT.
This result contrasts with typical chirped slowing techniques,
which use a single slowing beam that intersects the MOT and
causes molecule loss during its frequency chirp.

The concept of chirped laser slowing was proposed in
Ref. [20] and utilized in some of the earliest atomic laser
cooling experiments [21–24]. Frequency-chirped MOTs are
a common feature in alkaline-earth laser-cooling experiments
because of the similar mismatch between capture velocity and
velocity of the source [25–27]. In the case of Sr, the source
is typically a “blue” MOT, operating on the 1S0 → 1P1 tran-
sition at 461 nm. Sr atoms are generally cooled to root-mean-
square velocities on the order of 1 m/s, well above the 5 mm/s
molasses capture velocity of the Sr “red” MOT, which oper-
ates on the 1S0 → 3P1 intercombination transition [25, 28–
30]. To increase the capture velocity, the frequency of the
“red” MOT light is modulated from ∆/Γ ≈ −200 to ∆/Γ ≈
−10 [25, 31, 32]. This extends the capture velocity to on the
order of 1 m/s.

Our discussion is organized as follows: Section II describes
our MOT geometry, level structure and molecular Hamilto-
nian, and the details of the calculations. Section III details the
properties of static MOTs and their respective capture pro-
cesses, using a MOT of 87Rb as a prototypical example. Sec-
tion IV discusses our proposed frequency chirped MOT, and
shows that it can increase the capture velocity by almost a fac-
tor of 4. The results of section V reveal that our MOT should
be stable against the chirp, enabling multi-pulse loading. Fi-
nally, we conclude in Sec. VI.

II. MODEL

We model a six-beam molecular MOT, incorporating the
relevant MgF level structure, multiple frequency components
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FIG. 1. Level diagram and laser cooling scheme for a MgF chirped
MOT. The

∣∣X2Σ+,N = 1
〉
→

∣∣∣A2Π1/2,J
′ = 1/2

〉
transition spin-

rotation/hyperfine levels are shown with energy spacing E/h. Four
laser frequencies labeled (1)–(4) address the transitions with polar-
izations σ±. The respective detunings ∆ are shown schematically to
vary with time t. Once frequency components (1)-(3) reach their fi-
nal value, frequency (4) is added.

in the MOT beams, and changing laser detuning and intensity
with time. Molecules enter the MOT along the x axis with a
longitudinal velocity v and a much smaller transverse veloc-
ity. The magnetic field gradient B = B′(−xx̂/2− yŷ/2+ zẑ)
has its strong axial gradient along z. Six laser beams propa-
gate along ±x′, ±y′ and ±z directions, where the x′ and y′ axes
are rotated from the x and y axes about z by 45◦. Because the
MOT beams enter at 45◦ with respect to the molecular beam,
longitudinal slowing in a chirped MOT should not be substan-
tially different for molecules with a small transverse velocity
component. Hence, we simulate motion only along the x̂ axis.
In our simulations, we use both infinite plane wave beams and
elliptical Gaussian beams, depending on the situation. For the
latter, the beams with k in the x-y plane of the MOT have a
1/e2 radius parallel to the x-y plane of wxy and a 1/e2 radius
along ẑ of wz. Likewise, the beams with k̂ along the z axis
have 1/e2 radius of wxy along x and a 1/e2 radius of wz along
y. All six beams are assumed to have equal peak intensity.

Our model molecular Hamiltonian is computed us-
ing parameters of the MgF

∣∣X2
Σ+,v = 0;N = 1

〉
→∣∣A2

Π1/2,v′ = 0;J′ = 1/2
〉

laser cooling transition
[18, 33], with relevant parameters shown in Fig. 2.
For this transition, Γ = 2π × [20.9(2) MHz] [19],
ω ≈ 2π × (834.3 THz), and the effective two-level
saturation intensity is Isat = h̄ω3Γ/(12πc2) ≈ 60
mW/cm2. Higher vibrational levels v ≥ 1 are ignored
in our model; assuming v = 1 is repumped on the∣∣X2

Σ+,v = 1;N = 1
〉

→
∣∣B2

Σ+,v′ = 0;N′ = 0
〉

transition,
this approximation should only affect the computed capture
velocity at the percent level because decays to v ≥ 1 occur

with roughly 3 % probability [19]. The
∣∣X2

Σ+,v = 0;N = 1
〉

ground state is split into a manifold of four levels by the
combinination of spin-rotation and hyperfine interactions.

The effective Hamiltonian is computed in a basis comprised
of the 16 Zeeman sublevels of the

∣∣X2
Σ+,v = 0;N = 1

〉
and∣∣A2

Π1/2,v′ = 0;J′ = 1/2
〉

states. This Hamiltonian accounts
for the ground state spin-rotation and dipolar hyperfine inter-
actions, all relevant Zeeman interactions, and the coupling be-
tween the states due to the laser fields. Because we are only
considering transitions between the Zeeman sublevels of the
single N = 1 rotational level of the X2

Σ+ state and a single Λ-
doublet component of the J′ = 1/2 level of the A2

Π1/2 state,
the effects of the rotational and Λ-doubling interactions are
neglected. Additionally, mixing with states outside of this
manifold due to the Zeeman interaction are negligible. The
relevant spectroscopic parameters of MgF can be found in
Ref. [18, 34]

The g-factor of the
∣∣A2

Π1/2,v′ = 0;J′ = 1/2
〉

state is
nearly zero. The effective Zeeman Hamiltonian of a 2Π1/2
state can be modeled by six distinct magnetic interactions
H1, . . . ,H6 plus a nuclear spin Hamiltonian H(i)

7 for each nu-
cleus i possessing a spin (here, the subscripts correspond to
terms of Eq. (17) in Ref. [35]). Typically, the Zeeman interac-
tions are dominated by the electron spin Zeeman Hamiltonian
H1 = gSµBB · S and the electron orbital angular momentum
Zeeman Hamiltonian H2 = g′LµBB ·L, so that g is proportional
to g′LΛ+ gSΣ. Here, gS ≈ 2.002 is the electron g-factor cor-
rected for relativistic effects, g′L ≈ 1 is the orbital g-factor cor-
rected for relativistic effects, and the prime indicates a small
additional correction to account for adiabatic effects [35, 36].
In 2Π1/2 states, these terms nearly cancel: g′LΛ+gSΣ≈ 0.002.
In heavier systems which are isoelectronic to MgF (e.g. CaF,
SrF, and YO), the effective A2

Π1/2 g-factor is still of order
|g| ∼ 0.1 [11]. This is because the Zeeman interaction in these
systems is dominated by two parity-dependent Zeeman inter-
actions H5 and H6 which arise from spin-orbit mixing and ro-
tation mixing, respectively, with 2Σ and 2∆ states. For MgF
this mixing is substantially smaller (using parameters from
Ref. [18], the parity dependent g-factor for the J′ = 1/2 state is
(g′l −ge′

r )/3≈ p/6B= 2×10−4). At this level of accuracy, the
totality of all seven Zeeman interactions must be considered.
The remaining g-factors have magnitudes 10−3 to 10−4. Some
of these g-factors can be estimated from other spectroscopic
parameters in the pure precession limit, but such estimates
are suspect for MgF as the pure precession hypothesis does
not accurately predict the observed Λ-doubling of the MgF
A2

Π1/2 state [18]. Without precision Zeeman spectroscopy,
we cannot at present time definitively say much about the MgF
A2

Π1/2 g-factor beyond |g|<∼ 10−3. The sign of the g-factor is
currently not known but will be determined experimentally by
the laser polarizations which successfully trap molecules. For
our simulations, we use g = 0.001 as a representative value.

To address each of the ground state hyperfine levels, we
simulate each laser beam as having three or four frequency
components, denoted as (1)–(4) in Fig. 1. Frequency compo-
nents (1)–(3) are all red-detuned by an equal amount ∆ from
their respective F = 1→F ′, F = 0→F ′ and F = 2→F ′ tran-
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sition. Frequency component (4) is blue detuned by 2Γ from
the upper F = 1 → F ′ transition. The blue-detuned frequency
component provides additional spatial confinement at the cost
of less damping for faster moving molecules [11]. Each of the
six MOT beams has the same frequency components.

Experimentally, the four frequencies will be generated by
acousto-optic modulators and subsequently recombined with
polarizing and non-polarizing beamsplitters. As such, it is
technically easiest to have two of the four beams have the
same polarization. The chosen polarizations for the beams
along ±z are shown in Fig. 1. We use Ref. [11] as a guide for
choosing the optimal polarization configuration.

We model the equations of motion and the population in
each level using a rate equation model [37] implemented
in pylcp [38, 39], a python package capable of simulating
laser cooling with complicated geometries and level struc-
tures. Rate equations are used to compute the population of
all 16 Zeeman sublevels, indexed by i, of either the ground
X2Σ+(N = 1) or excited A2Π1/2(J′ = 1/2) manifolds, NX,A

i ,
in the presence of lasers indexed by l, through

ṄX
i = ∑

j,l
Ri j,ln(NA

j −NX
i )+∑

j
Γ jir jiNA

j (1)

ṄA
i = ∑

j,l
R ji,ln(NX

j −NA
i )−ΓNA

i (2)

where Γ is the total decay rate of the A2Π1/2(J′ = 1/2) and
Γ ji is the decay rate from state j to state i. Here, Ri j,ln is
the optical pumping rate of frequency component n of laser l
defined by

Ri j,lm =
Ω2

i j,lm/Γ

1+4{ωlm(t)− [ω j(r)−ωi(r)]−kl ·v}2/Γ2 , (3)

where ωln(t) is the time-dependent frequency of component
n of laser l, h̄ω j(r) is the position-dependent, Zeeman-shifted
energy of state j in the A manifold, h̄ωi(r) is the energy of
state i in the X manifold, kl is the wavevector of laser l, v is
the velocity of the molecule,

Ωi j,ln =
Γ

2
(di j · ε ′l)

√
2sln(r, t) (4)

is the Rabi rate, di j is the transition dipole moment between
states i and j, ε ′l is the polarization of laser l, sln(r, t) =
Iln(r, t)/Isat is the saturation parameter of frequency compo-
nent m of laser l at position r and time t, and Iln is the intensity
of frequency component n of laser l. The average force on the
molecule is given by

f = ∑
l

h̄kl

2 ∑
i, j

Ri j,l(NA
j −NX

i ) . (5)

The equilibrium force is determined by setting ṄX ,A
i = 0, solv-

ing for the populations, and inserting the result into Eq. 5.
Because this rate equation approximates optical coherences
as having constant values, various sub-Doppler heating and
cooling effects will be missing from the simulation. For the
loading process at large r, the Zeeman shift is sufficient to

force the optical coherences to oscillate rapidly and the rate
equation approximation will be valid. For simulations near
the center of the MOT, the rate equation will most likely un-
derestimate the temperature and size of the molecular cloud
because it neglects sub-Doppler heating.

A few notational comments are in order. Because the six
MOT beams have identical intensities and frequency com-
ponents, we drop the superfluous l index unless necessary.
We specify ωm in Eq. 3 in terms of the detuning ∆m =
ωm(t)− [ωF − ωF ′ ] relative to the zero-field energies h̄ωF
and h̄ωF ′ that the frequency component m is intended to
drive. Here, h̄ωF ′ is always the unperturbed energy of the∣∣A2Π1/2,J′ = 1/2

〉
state. For frequency components m = 1

and m = 2, h̄ωF is the energy of the lower F = 1 and F = 0,
respectively. For frequency components m = 3 and m = 4,
h̄ωF is the mean energy of the upper F = 1 and F = 2 states.
Finally, we denote the saturation parameters of the four fre-
quency components as a vector s = (s1,s2,s3,s4). For Gaus-
sian beams, s denotes the maximum saturation parameters at
r = 0.

For the results of Sec. III, we first determine the equilibrium
force as a function of v and x and then evolve the motion of
the molecule using that force. We have verified that, to much
better than the expected accuracy of the simulations, our ap-
proach agrees with the result if the time evolution of both the
motion and the internal state populations are calculated using
the full rate equation model. This simplification greatly re-
duces the computational complexity, reducing the number of
differential equations from 18 (16 internal states, 1 velocity,
and 1 position) to 2 (1 velocity and 1 position), albeit through
a complicated force versus position and velocity profile.

For the results of Sec. IV, we calculate the equilibrium
force not just as a function of v and x, but also as a func-
tion of the common detuning ∆. We evolve the population of
internal states and motion of the molecule through this three-
dimensional force profile, given a function ∆(t).

For Sec. V, we include spontaneous emission effects by in-
cluding random momentum kicks with a probability that is
proportional to the excited state populations. For more de-
tails, see Ref. [38]. Effects of momentum diffusion due to
stimulated emission are neglected.

III. CAPTURE INTO A STATIC MOT

Consider the properties and capture process of a static
MOT, which has constant ∆(t) = ∆0. While this process has
been discussed in the literature before [38, 40], it is nonethe-
less illustrative and will help motivate our choices for MgF.
For this discussion, let us first consider the capture process for
a 87Rb type-I MOT with infinite plane wave beams arranged
in the geometry described above [41]. We use “natural” units
of the MOT, where velocities are measured in terms of Γ/k
and positions are measured in terms h̄Γ/µBB′; that is, velocity
and position are measured by the number of natural linewidths
which equal the Doppler and Zeeman shifts, respectively. For
87Rb with a B′ = 2 mT/cm B-field gradient, h̄Γ/µBB′ ≈ 2 mm
and Γ/k ≈ 46 m/s.
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FIG. 2. Calculated normalized force f/(h̄kΓ) vs. Zeeman-detuning normalized position x/(h̄Γ/µBB′) and normalized velocity v/(Γ/k),
where k is the wavevector of the light, Γ is the excited state decay rate, µB is the Bohr magneton, and B′ is the magnetic field gradient, in
a MOT with infinite plane wave beams for (a) 87Rb using two frequencies components both with ∆0 = −Γ, (b) MgF using three frequency
components with ∆m =−Γ [3], and (c) MgF using three frequency components with ∆m =−Γ and a fourth with ∆4 =+2Γ [3+1] (see Fig. 1).
Note the differences in the color scales between the panels. The white curves overlaid on the plots show the calculated trajectories using
B′ = 20 G/cm.

The calculated force profile driven by a single frequency
component labeled m = 0 with s0 = I0/Isat = 2.5 and ∆0 =−Γ

is shown in Fig 2(a). The force profile consists of three
“bands” of both positive and negative force, which correspond
to when one or more polarization components of the lasers are
Doppler and/or Zeeman shifted into resonance. According to
Eq. 3, and using |k · v| =

√
2kv for our geometry, these reso-

nances occur when

∆0

Γ
± kv√

2
+ εi

µBB′

2h̄Γ
x = 0 ,

where εi = −1,0,1 for the σ−, π and σ+ components of the
light projected onto the x axis. Here, we have inserted the
approximate differential Zeeman shift for an alkali of ωi −
ω j = µBB′x/2h̄. The +(−) sign occurs when the beams are
mostly counter-propagating (co-propagating) to the incoming
atoms. The dominant σ+ from the predominantly counter-
propagating beams and dominant σ− from the predominantly
co-propagating beams form the −1/

√
2 slope positive and

negative forces, respectively. Likewise, the weak σ− compo-
nent from the predominantly counter-propagating beams and
the weak σ+ from the predominantly co-propagating beams
form the +1/

√
2 slope positive and negative forces, respec-

tively. Finally, the π components from the beams form the
zero slope force curves.

The calculated trajectories through the force profile, shown
Fig 2(a), reveal the capture process in a 87Rb MOT. Atoms
enter the MOT with x < 0 and v > 0. For 0 < v <∼ 3Γ/k, atoms
are slowed and stopped by the π component. While these
slowest atoms do not reach the origin after the 20 ms integra-
tion time, a small off-resonant spatial force from the predom-
inantly counter-propagating beams will eventually push these
atoms to x = 0. Faster atoms with 3Γ/k <∼ v <∼ 8Γ/k initially
experience a boost from the predominantly co-propagating
beams, but then fall onto a nearly common trajectory of be-
ing slowed and trapped by the Zeeman- and Doppler-shifted

predominantly counter-propagating beams. These trajecto-
ries terminate at v = 0 and x = 0, indicating successful cap-
ture. For v >∼ 8Γ/k, the boost from the predominantly co-
propagating beams is too large to be overcome by the counter-
propagating beams, and the atoms evade capture.

We now contrast the capture process of a Rb atom to
that of MgF. Let us first consider a static MOT with infinite
plane wave beams containing frequency components(1)–(3)
from Fig. 1: the transitions F = 1 → F ′, F = 0 → F ′ and
F = 1,2 → F ′ are all addressed by a frequency component
with ∆ = −Γ, labeled by (1)-(3) in Fig. 1. Here, the satura-
tion parameters of the frequency components are chosen to be
s = (1.45,1.45,2.89,0). This s correspond to having relative
saturation parameters s̃ = s/(∑n sn) = (0.25,0.25,0.50,0) in
a “prototypical” 1 W Gaussian beam with waists wxy and wz
equal to 17.5 and 10 mm respectively. For MgF, the natu-
ral length and velocity scales for the MOT are h̄Γ/µBB′ =
7.48(8) mm with B′ = 2 mT/cm and Γ/k = 7.53(8) m/s.

Compared to 87Rb, there are three significant differences.
First, the maximum force is much lower in the MgF MOT
because the type-II level structure requires constant repump-
ing of states which are not coupled to laser beams which pro-
vide a restoring force. With ng = 12 ground states and ne = 4
excited states, our anticipated maximum scattering rate is no
greater than Rmax = Γ/4. Indeed, the maximum scattering
rate (not shown) in Fig. 2(b) and (c) is approximately Rmax/2
at v =±

√
2(Γ/k) and x = 0, due to having sn ≈ 1 for all tran-

sitions. Assuming that all the scattering is due to counter-
propagating beams, one might expect that the maximum force
to be Rmaxh̄k/

√
2, where the factor of

√
2 comes from the pro-

jection of the counter-propagating MOT beams onto the axis.
We instead observe that the force is reduced to approximately
Rmaxh̄k/2 ≈ 0.05× h̄kΓ, because roughly 30 % of the pho-
ton scatters are from the ±ẑ beams and 10 % are from the
co-propagating beams at v =

√
2(Γ/k) and x = 0.

Second, because of the small excited state g-factor and the
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FIG. 3. Force profiles of a MgF MOT using three frequency components, elliptical lasers beams with wxy = 17.5 mm and wz = 10 mm, and
using a total laser power of 1 W. Equilibrium force profiles are shown at select detunings to illustrate the time-varying force profile in a chirped
MOT. The detunings from panels (a) to (d) are ∆ = −8Γ, ∆ = −6Γ, ∆ = −4Γ, and ∆ = −2Γ, respectively. As the detuning becomes less
negative, the force maximizes at progressively slower velocities while the magnitude of the force remains roughly constant.

presence of dark states on the type-II transitions, the MgF
MOT has no appreciable force outside of |x| > 5(h̄Γ/µBB′)
and virtually no slope to the force. This greatly reduces the
capture velocity from v <∼ 10(Γ/k) for Rb to vc ≈ 4(Γ/k) for
MgF.

Third, MgF molecules with initial velocities v <∼ 4(Γ/k)
failed to arrive at x = 0 within the maximum integration time
of 20 ms. This is due to the reduced trapping force in a type-II
MOT. This reduction in spatial trapping force is further com-
pounded by the fact that the unresolved F = 1 and F = 2 states
are driven by the same laser, which has the correct polariza-
tion to trap F = 2 but, necessarily, the incorrect polarization
to trap F = 1 [37].

In Fig. 2(c), we attempt to increase the spatial confine-
ment by adding frequency component (4) shown in Fig. 1,
which is blue-detuned from the unresolved F = 1,2 → F ′

transition [4, 37, 42]. The saturation parameters are cho-
sen to be s = (1.45,1.45,2.17,0.72), corresponding to s̃ =
(0.25,0.25,0.375,0.125) for our prototypical beam parame-
ters. While frequency component (4) again has the correct
polarization to trap F = 2 but the incorrect polarization to
trap F = 1. Nonetheless, with the additional trapping force,
molecules entering the MOT with v <∼ 4(Γ/k) reach the origin
within 20 ms. The presence of this component adds a slight
acceleration at large, negative x that causes v = 4.2(Γ/k) to
just barely be trapped.

We now consider the effect of overall detuning on the force
profiles for MgF given more experimentally realistic ellipti-
cal Gaussian beam profiles, as described in Sec. II. Fig. 3
show the force profiles, without trajectories, for four detun-
ings ∆n/Γ for the three-frequency-component configuration
with s = (1.45,1.45,2.89,0).

The force profiles reveal well-separated positive and nega-
tive force regions, with extrema at x = 0 and v =±

√
2(|∆|/k).

Each region resembles a “boat”–a two-dimensional Gaussian
with a rough 1/e2 half-width of Γ/k ≈ 7.5 m/s in v and√

2wxy ≈ 25 mm–floating in sea of zero force. The shape in
the x direction is a convolution of the Gaussian beam profile
and the shape seen in Fig. 2(b) caused by Zeeman dark states.
Thus, increasing the beam size beyond

√
2wxy >∼ 4(µBB′/h̄Γ)

or, equivalently, wxy >∼ 21 mm will generally not result in a
larger spatial extent of the force.

Trajectories through the force profiles Fig. 3 (not shown)
are generally not trapped. Consider Fig. 3(a). A molecule en-
tering from the left with velocity v < 50 m/s (6.7×Γ/k) or
v > 120 m/s (6.7×Γ/k) will not be affected by the isolated
negative force centered at v =

√
2×8Γ/k and will fly straight

through the MOT. Likewise, molecules with 50 < v < 120 m/s
will be slowed but will not be trapped in the MOT. Thus,
we see that static-detuning force profiles lack a smoothly-
connected decelerating force from high velocity to zero ve-
locity, an essential feature of an alkali MOT.

IV. CAPTURE IN A FREQUENCY-CHIRPED MOT

To engineer a smoothly-connected force from large v to
small v, we ramp ∆ from large to small negative values over a
duration τ . Note that the maximum force and therefore maxi-
mum deceleration is roughly constant with ∆ (see Fig. 3). Un-
der constant deceleration, the velocity decreases linearly with
time, which requires a linear ramp of ∆ to maintain Doppler-
shifted resonance, i.e.,

∆m(t) =
{

∆I +
∆F−∆I

τ
t 0 < t < τ

∆F t > τ
, (6)

for m = 1,2,3. Choosing the parameters ∆I, ∆F and τ are of
utmost importance.

To make an initial estimate of ∆I, ∆F and τ , let us consider
a simple model where a constant force f is applied over a
distance d. The maximum velocity that can be stopped across
that distance is vc =

√
2 f d/m, which will occur in a time

τ = vc/( f/m) where m is the mass of the molecule. Using
roughly f ≈ 0.03× h̄kΓ from Fig. 3 and d ≈ 30 mm, we find
vc ≈ 80 m/s and τ = 0.8 ms.

We simulate capture into such a frequency-chirped MOT.
Our chirped MOT begins in the three-frequency component
configuration with a common detuning of ∆I = −8Γ and
s = (1.45,1.45,2.89,0), which could potentially address all
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FIG. 4. (a) Classical phase space trajectories of MgF molecules
with various initial velocities in a frequency-chirped MOT with 1/e2

beam radii of wxy = 17.5 mm and wz = 10 mm and axial magnetic
field gradient B′ = 2 mT/cm, using the frequency chirp of Eq. (6)
with ∆0 = −8Γ, ∆1 = −Γ, τ = 1 ms, and total laser power of 1 W.
The thick, black curve shows the trajectory with the largest initial
velocity that is captured. (b) Capture velocity vc for a frequency-
chirped MOT vs. beam waist wxy for various total powers. Other
parameters are the same as in (a).

velocity classes up
√

2× 8Γ/k ≈ 84 m/s. At t = τ = 1 ms,
the frequency chirp ends at ∆F = −Γ. We then instan-
taneously switch to the four-frequency component configu-
ration with s = (1.45,1.45,2.17,0.72) to enhance our spa-
tial confinement, as observed in Sec. III. These two sets of
saturation parameters correspond to the peak saturation pa-
rameters of a 1 W in a Gaussian beam with wxy and wz
equal to 17.5 and 10 mm, respectively, and relative s̃ =
(0.25,0.25,0.5,0) for the three-frequency component case
and s̃ = (0.25,0.25,0.375,0.125) for the four-frequency com-
ponent case. These choices are the same as in Sec. III.

Figure 4(a) shows the resulting trajectories of molecules
through classical phase space. The initial position of the
molecules is x0 = −50 mm, such that they start far from the
position of maximum force (see Fig. 3). In this configura-
tion, the maximum velocity class captured is vc = 7.5(Γ/k)≈
57 m/s. This vc is about double that of the vc observed in the

static MOT of Fig. 2(c) and approaches the velocity observed
in two-stage CBGB sources [9, 12–14].

We also study the dependence of the capture velocity both
on laser power and wxy. Fig. 4(b) shows the results. The max-
imum capture velocity observed in our simulations, with 2 W
of laser power and identical s̃ to those above, is 80 m/s, or
10.5× (Γ/k). We observe two regimes: one with vc < 45 m/s
and a second with vc > 45 m/s. Given that the static MOT
with similar parameters in Fig. 2(b) showed a capture velocity
of vc ≈ 4Γ/k ≈ 32 m/s, we conclude that these two regimes
denote ineffective and effective chirped slowing.

To understand the ineffective chirped slowing regime, ob-
serve that for a given starting position, molecules require
some initial evolution time to encounter the small-extent spa-
tial force of the MOT. For example, a molecule moving at
50 m/s is unperturbed for at least 0.8 ms before encoun-
tering a force from a wxy ≤ 10 mm MOT beam. By this
time, the velocity at which the slowing force is maximal is
at v = 2.7× (Γ/k)≈ 20 m/s, well below the 50 m/s initial ve-
locity. These molecules simply missed the boat. Likewise,
while we calculate the capture velocity for molecules starting
at the same position; in reality, there will be a distribution of
starting positions, and some of the molecules near the ends of
that distribution may also miss the boat. These complications
highlight the well-known problem of optimizing frequency-
chirp slowing for both starting position and velocity [43].

With a total beam power of 0.5 W and chirp duration τ =
1 ms, chirped slowing is predicted to be ineffective for any
wxy. The slowing force exerted by the chirped beams at 0.5 W
is somewhat weaker at roughly f ≈ 0.015× h̄kΓ, consequently
requiring a longer chirp of at least τ = 1.6 ms to effectively
decelerate the molecules than the τ = 1 ms rate simulated in
Fig. 4. In keeping with our analogy, while these molecules
may have caught the boat, the boat was moving too fast for
the molecules to remain on.

In the second, effective chirped slowing regime, the MOT
beams are both sufficiently large and powerful. The cap-
ture velocity in this regime initially increases with increasing
wxy, reaches a maximum, and subsequently slowly decreases.
To understand this shape, let us approximate vc ≈

√
2 f d/m,

where f is a constant force applied over an effective distance
d. If the transitions were unsaturated and the force at large
distances not attenuated by Zeeman substates being tuned
out of resonance, vc would be independent of wxy, because
f ∝ I ∝ 1/wxy and d ∝ wxy. At small wxy, the transitions are
somewhat saturated, and f decreases more slowly than 1/wxy
with increasing wxy. Coupled with the d ∝ wxy, this modified
dependence of f implies increasing vc with increasing wxy.
At large wxy, d no longer scales directly with wxy, but instead
is set by a convolution of the Gaussian beam shape and the
attenuation of the force at x >∼ 4(h̄Γ/µBB′) due to Zeeman
sublevels being shifted out of resonance, as seen in Fig. 2(b)-
(c)]. Note that, for B′ = 2 mT/cm, this convolution means
that d no longer grows linearly with wxy for wxy >∼ 20 mm.
At these large wxy, d increases slower than linearly with wxy
while f ∝ 1/wxy, and thus vc decreases with increasing wxy.
This could potentially be improved by reducing B′.
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FIG. 5. (a) Simulated temperature T , independently calculated
across all three spatial dimensions x (blue), y (orange) and z (green)
and normalized to the Doppler temperature TD, of a MOT before,
during and after the frequency chirp (gray band) of 320 simulated
molecule trajectories. (b) Size σ(r) of the MOT.

V. STABILITY OF MOT DURING CHIRP

We now turn to the stability of the MOT during the fre-
quency chirp. In order to load multiple molecular pulses
from a CBGB source into a chirped MOT, we need to verify
the stability of any previously loaded molecules in the MOT
when a subsequent frequency chirp occurs. Of greatest con-
cern during the frequency chirp is the heating that may oc-
cur. In particular, as illustrated in Fig. 1, as the detuning is
changed according to Eq. (6), the frequency components (1)
and (2), which are intended to address the lower F = 1 → F ′

and F = 0 → F ′ transitions of the moving molecules, respec-
tively, will incidentally sweep through resonance with the
F = 0 → F ′ and F = 1,2 → F ′ transitions of molecules al-
ready in the MOT, respectively. The first of these resonances
occurs at ∆m ≈−6Γ; the second occurs at ∆m ≈−5.5Γ. Thus,
we anticipate that the MOT will heat during the frequency
chirp.

We simulate the heating by solving for the motion of 320
molecules in a chirped MOT using Eq. (6) with the same pa-
rameters as in Sec. IV. In these simulations, we use plane
waves for computational simplicity. The plane waves have
three frequency components with s = (1.45,1.45,2.89,0)
during the chirp and four frequency components with s =
(1.45,1.45,0.72,2.17) before and after the chirp. As in
Secs. III and IV, these saturation parameters correspond to
the peak saturation parameters of our prototypical 1 W in a
Gaussian beam with wxy and wz equal to 17.5 and 10 mm,
respectively, and relative s̃ = (0.25,0.25,0.5,0) for the three-

frequency component case and s̃ = (0.25,0.25,0.375,0.125)
for the four-frequency component case. The simulated MOT
is spatially compact with typical size σr < 1 mm, thus using
Gaussian beams with a 1/e2 radius > 10 mm induces at most
a small error. Unlike simulations of the capture process, we
compute motion along all three spatial dimensions and include
momentum diffusion due to spontaneous emission.

We initialize the particles at t = −10 ms with v = 0 and
r = 0. This initial condition is chosen for two reasons: (1) we
do not know a priori the size and temperature of the simulated
MOT, and (2) by observing evolution of the MOT toward equi-
librium, we can extract relaxation times independent of the
frequency chirp. The frequency chirp begins at t = 0 ms and
lasts until t = 1 ms. The simulation continues with four fixed
frequencies until t = 11 ms to understand the trends back to-
ward equilibrium. The state population, position, and velocity
of each molecule are recorded at 2.1 µs intervals. Tempera-
tures at each time are assigned using the relation σ2

vi
= kBT/m,

where kB is the Boltzmann constant and σvi is the standard de-
viation of the velocity vi along i = x,y,z.

The size and temperature of the simulated MOT is shown in
Fig. 5. Before the chirp, the MOT temperature settles to about
1.7 TD, where TD = h̄Γ/2kB is the Doppler temperature. This
temperature is lower than those typically observed in molecu-
lar MOTs [3, 5, 6] because our rate equation model lacks both
momentum diffusion caused by stimulated emission and sub-
Doppler heating. As anticipated, we see a rapid increase in
the temperature of the MOT during the frequency chirp, ris-
ing from 1.7 TD to about 14 TD. After the the chirp, however,
the MOT returns to its equilibrium temperature within 100 µs.
The mean velocity (not shown) remains zero for all t.

The measured size of the MOT is more complicated. Before
the chirp, the MOT trends slowly towards its equilibrium size
of roughly 0.4 mm e−1/2 radius. After the chirp, the MOT
has expanded to roughly 0.7 mm in size due to heating, but
slowly contracts back toward equilibrium, faster along z with
the stronger magnetic field gradient, and slower along x and y.
The mean position (not shown) remains zero for all t.

Critically, no molecule in our simulation appears to be lost,
that is, gaining a velocity that could not be subsequently
damped. Experimentally, the MOT will most likely have
an initial T/TD ≈ 4 and σ ≈ 1 mm. Yet, assuming propor-
tional heating to T/TD ≈ 28, the MOT would only expand to
σz ≈ 3 mm. While approaching the wz = 10 mm, the distance
at which the spatial component of the force is seriously di-
minished, it is still comfortably below that limit. Likewise,
based on Figs. 2(c), damping forces exist for |v| ≈ (Γ/k),
which should effectively cool a molecular cloud with a tem-
perature as high as T/TD ≈ 600. Thus we anticipate that most
molecules remain trapped in the MOT even under this pes-
simistic scenario.

VI. CONCLUSION

We have proposed and theoretically investigated a
frequency-chirped MOT for laser-coolable lightweight
molecules like MgF. The frequency-chirped MOT has a



8

maximum capture velocity for MgF of about 80 m/s, which
is commensurate with typical molecular beam velocities
observed using a two-stage cryogenic buffer gas beam
source [9, 12, 13]. Compared to standard frequency-chirped
slowing, our frequency-chirped MOT has advantages and
disadvantages.

The biggest disadvantage is that the force is reduced by a
factor of cosθ , where θ is the projection of the laser beam’s
k-vector on the molecular beam axis. Thus, each photon scat-
tered is less effective in slowing than in standard frequency-
chirped slowing.

The biggest advantage is the potential for loading of mul-
tiple molecular pulses from a CBGB source, which could
greatly increase the number of captured molecules. We have
shown that the molecules in the MOT should not be lost during
the frequency chirp. This contrasts to traditional chirped slow-
ing, where a single slowing beam intersects the MOT caus-
ing a resonant, directed force during the frequency chirp that
ejects molecules from the MOT. In this limit, the equilibrium
population in the MOT will be determined by the number of
molecules captured per CBGB pulse, the frequency of pulses,
and the lifetime of the MOT. We note that the lifetime of the
MOT must be comparable to or longer than the duration be-
tween CBGB pulses in order to realize this gain, and likely
requires tuning of the MOT beam parameters during the time

between capture of one pulse and the start of the next [5, 6]
beyond the simple parameters simulated here. Further opti-
mization of such parameters will be the subject of future the-
oretical and experimental work.

The proposed technique with likely work for light
molecules such as MgF, BeF, BeH, BH, and AlF. For heav-
ier molecules like CaF, SrF, YbO, and YbF, the stopping dis-
tances are much larger than typical MOT beam sizes. One in-
triguing possibility for such heavy molecules is to combine the
chirped-MOT with the chirped [43] or white-light [44] slow-
ing typically used to load fixed-frequency MOTs. In such a
configuration, laser slowing could enable loading of a chirped-
MOT while being sufficiently far from resonance to not per-
turb trapped molecules. Such a hybrid technique may then en-
able loading multiple pulses of heavier molecules into a MOT
but requires further investigation.
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