®

Check for
updates

NIST Interagency Report
NIST IR 8490

Physical Component Libraries for
SysPhS Modeling and Simulation
in Manufacturing

Charles A. Manion
Conrad Bock
Raphael Barbau

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8490

NATIONAL INSTITUTE OF
STANDARDS AND TECHNOLOGY
U.S.DEPARTMENT OF COMMERCE

https://doi.org/10.6028/NIST.IR.8490
https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.IR.8490

NIST Interagency Report
NIST IR 8490

Physical Component Libraries for
SysPhS Modeling and Simulation
in Manufacturing

Charles A. Manion

Conrad Bock

Smart Connected Systems Division
Communications Technology Laboratory
Raphael Barbau

Associate, Smart Connected Systems Division
Communications Technology Laboratory
University of Maryland

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8490

October 2023

U.S. Department of Commerce
Gina M. Raimondo, Secretary

National Institute of Standards and Technology
Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology

https://doi.org/10.6028/NIST.IR.8490

Certain commercial entities, equipment, or materials may be identified in this document in order to describe
an experimental procedure or concept adequately. Such identification is not intended to imply
recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to
imply that the entities, materials, or equipment are necessarily the best available for the purpose.

NIST Technical Series Policies
Copyright, Fair Use, and Licensing Statements
NIST Technical Series Publication Identifier Syntax

Publication History
Approved by the NIST Editorial Review Board on 2023-09-18

How to cite this NIST Technical Series Publication:

Charles A. Manion, Conrad Bock, Raphael Barbau (2023) Physical Component Libraries for SysPhS
Modeling and Simulation in Manufacturing. (National Institute of Standards and Technology, Gaithersburg,
MD), NIST IR 8490. https://doi.org/10.6028/NIST.IR.8490

NIST Author ORCID iDs

Charles A. Manion: 0009-0008-5273-1995
Conrad Bock: 0009-0009-3172-120X
Raphael Barbau: 0000-0002-0331-2929

https://doi.org/10.6028/NIST.IR.8490

NIST IR 8490
October 2023

Abstract

Computer-interpretable representations of system structure and behavior are at the center
of developing today’s complex systems. Systems engineers create and review these rep-
resentations using graphical languages and information models that capture requirements,
designs, and tests (such as the Systems Modeling Language, SysML®). The SysML Ex-
tension for Physical Interaction and Signal Flow Simulation (SysPhS) is a standard for aug-
menting SysML models with one-dimensional (lumped parameter) simulation information
and translating them to widely-used simulation platforms for testing, without respecifying
the system on those platforms. It includes standard reusable models of system compo-
nents (libraries) corresponding and translated to those in common between the platforms.
This report presents additional physical interaction component libraries, covering areas not
currently standardized. It applies the libraries to some manufacturing examples, translates
them to the simulation platforms, and verifies that they give the same results across plat-
forms.

Key words

SysML; analysis integration; 1D simulation; lumped parameter.

NIST IR 8490
October 2023

1. Introduction

Systems engineers (SEs) help coordinate the work of multiple other engineering disci-
plines (mechanical, material, electrical, software, and so on), requiring information to flow
between SEs and those in other disciplines, particularly between the engineering tools they
use. SEs often specify overall system requirements, structure, behavior, and tests in the
Systems Modeling Language (SysML®) [1]. Each discipline has its own languages and
tools for the aspects of a system concerning them, often significantly overlapping systems
models and other discipline models. This leads to inconsistencies between systems and dis-
cipline models, as well as between models from different disciplines, usually discovered
later as engineers interact, requiring significant additional time to resolve and rework.

One approach to addressing these problems is extend SysML with the additional infor-
mation needed for each discipline and define translations between the extended systems
models and discipline models. This enables SEs and discipline engineers to build on a sin-
gle system model for information used by all the other engineers, ensuring their results can
be reliably used by others. In particular, the results of model analysis, such as simulation
and optimization, can be efficiently communicated to other engineers, checked against re-
quirements and tests, potentially leading to changes in overall system model for everyone.

Many engineering disciplines build simulation models consisting of interconnected compo-
nents (structure), with behavior specified by ordinary and algebraic differential equations
(derivatives of functions of one variable, typically time). This kind of simulation is appli-
cable to a wide range of physical interactions between components (such as mechanical,
electrical, and so on) as well as communication of numeric signals [2][3][4]. This re-
port refers to these kind of simulation models as physical interaction and signal flow (also
known as lumped parameter, one-dimensional, or network models).

The SysML Extension for Physical Interaction and Signal Flow Simulation (SysPhS) [5]
extends SysML to cover the information needed for this kind of simulation and gives trans-
lations to widely-used tools [6][4][2]. System structure, behavior, and simulation infor-
mation can be specified once in SysML/SysPhS, then translated to simulation platforms,
rather than manually recoded for each one. This enables the results of simulations to be
compared against requirements and tests in SysML models to predict how well a system
design will perform when built and operated. It also enables discipline engineers to use
different simulation languages and tools.

SysPhS includes standard models of system components (libraries) corresponding to the
elements of existing simulation platforms libraries that are largely similar between tools
and languages. Models using these SysPhS libraries are translated to use the correspond-
ing elements in platform libraries. This has the advantage of producing smaller simulation
files, due to reuse of platform libraries, but severely limits application of the standard be-
cause most platform libraries differ between tools and languages, even when they cover
useful areas of physical interaction. This report presents additional physical interaction

NIST IR 8490
October 2023

component libraries in some areas where existing simulation libraries differ too much to
be reused in translating SysPhS models: rotational and translational mechanics, as well
as heat transfer. They are defined in standard SysPhS/SysML and translated to simulation
tools and languages using an open implementation of SysPhS [7][8]. This report applies
the additional libraries to manufacturing examples, translates them to two widely used sim-
ulation platforms, and verifies that they give the same results. Section 2.1 reviews physical
interaction and signal flow modeling (also known as lumped parameter, one-dimensional,
or network models) independently of any particular simulation language or tool, as well
how they are modeled in SysML and SysPhS in particular. Section 3 describes a model
library for real signal flow developed for the paper. Section 4 presents libraries for transla-
tional mechanics, rotational mechanics, and entropy (heat) transfer, not included in SysPhS
currently. Section 5 applies the libraries to manufacturing examples, translates them to two
widely used simulation platforms, and presents the results. Section 6 shows the results are
the same on the two platforms. Section 7 summarizes the paper and outlines future work.

2. Physical Interaction and Signal Flow Modeling with SysPhS

Section 2.1 reviews the two ways system components interact in one-dimensional (lumped
parameter) modeling (physical interaction and signal flow), independently of any particular
language or simulation tool. Section 2.2 outlines the capabilities of SysML needed in
SysPhS, while Section 2.3 covers SysPhS itself.

2.1. Physical Interaction and Signal Flow Modeling

Physical interaction and signal flow modeling distinguishes system component interactions
based on whether the things being exchanged are physical or informational (numeric and
boolean only) [9]. Physical interaction is suited for specifying systems with physical behav-
ior, while signal flow is often applied to control and signal-processing systems. In practice,
physical interaction and signal flow are typically combined in the same models. For exam-
ple, many systems have physical components directed by control systems via sensors and
actuators.

Physical and informational things differ in that physical things cannot be:
* “copied” like information can (physical things are conserved, information is not).

* moved without affecting the mover (“bidirectional” effects, with effects determined
during system operation or simulation), while sending of information does not affect
the sender (“unidirectional” effects, from outputs to inputs, as specified in models,
and not changed during system operation or simulation).

e carry energy, while information does not.

Physical interaction and signal flow modeling requires components to interact through their
ports, where physical or information things move into or out of components, along links

NIST IR 8490
October 2023

between ports. The specifics of physical interaction and signal flow modeling are covered
in Sections 2.1.1 and 2.1.2, respectively, while Section 2.1.3 briefly describes a common
misapplication of them.

2.1.1. Physical Interaction

Physical interaction models reduce physical things to one of their physical characteristics,
which are treated as moving along with those things, as well being conserved or converted
to others with them. For example, electrons or positrons can be treated as their electric
charge, or as their momentum, or in large ensembles (many linear momenta aggregated
statistically) as their entropy. These characteristics are conserved as they move between
system components, and are also conserved within components unless they are converted
to others.

Conserved physical characteristics (carried by physical things) move into or out of each
component at their ports, as described by two numeric variables at each port:

» Flow rate: The amount of substance (as a conserved characteristic) per time moving
through a port, such as current (electric charge per time), force and torque (linear and
angular momentum per time), and entropy flow rate (entropy per time).

* Potential to flow: An impetus for substances to move between ports on the same
component, such as voltage for electric charge, linear and angular velocity for mo-
mentum, and temperature for entropy.

Flow (non-zero flow rates) can only happen when potentials on the same component:
* differ between its ports and the component’s resistance to flow is not infinite.
* are the same between its ports and the component’s resistance to flow is zero.

Flow rate is proportional to potential difference between ports on the same component and
inversely proportional to resistance of that component, though flow can happen between
ports of the same potential when the component does not resist it.! Flow rate and potential
variables for each conserved substance multiply to power (energy per time), giving a flow
rate for energy moving through a port. Links between ports act as if they have no effect
on the substances “moving” across them, including no resistance or transformation. This
is reflected in the following mathematical relationships between physical variables (of the
same name) on each port:

* The sum of flow rate variables on linked ports is zero (conservation of the flowing
characteristic).

'The name of this “constitutive” relationship differs by domains, such as Ohm’s law for electricity,
Poiseuille’s law for laminar flow in long pipes with constant cylindrical cross sections, and Fourier’s law for
heat conduction. These laws relate potential differences across a component with flow rates through them
and their resistance to flow due to material characteristics [10].

NIST IR 8490
October 2023

* Potential variables on the ends of each link are equal (no resistance to flow).

Links cannot affect things flowing across them like physical connections can, these effects
must be modeled as additional components.

2.1.2. Signal Flow

Signal flow models limit information to numbers (real or integer) or boolean values (true
or false). Because these are not physical things:

* Only one variable per signal is needed at a port, giving a numeric or boolean value
for the signal. It is not a flow rate or a potential to flow.

 Signal variables are either output or input at a port, with links only between output
and input (flow is unidirectional).

Links between ports require signal variables (of the same name) on each port to have the
same value. Multiple signal output variables cannot be linked to the same input, to prevent
signal values from conflicting.?

2.1.3. Signal Flow of Physical Quantities?

The examples in this paper use physical interaction for modeling physical phenomena,
rather than signal flow.> Signal flow modelers might be tempted to define (unidirectional)
variables representing physical quantities, such as torque and angular velocity, but this re-
sults in much more complex models than physical (bidirectional) variables would. Consider
an electrical resistor governed by equation V = I« R. We could model this as a signal flow
block that takes current as input and provides voltage across the resistor as output. This
only works when the current through the resistor is known, which is not the case when the
resistor is connected to a voltage source or in parallel with other resistors (constant voltage
drop across all resistors). These applications require another signal flow block that takes
voltage as input and provides current as output. Determining which block to use might
not be straightforward in more complicated systems and also might change during a single
simulation run, as when switching dynamically between series and parallel connections.

Physical interaction models resolve these problems by maintaining two bidirectional vari-
ables on each connection, with the choice of independent variable left to the simulator,
including cases where variable dependence changes during a single simulation run. Mod-
els formulated this way are more versatile and easier to compose. Signal flow of physical
quantities is more suited to modeling components that control physical ones, see Section 3.

ZPhysical potential variables are not limited this way, even though they must have the same values like signal
variables do, because bidirectional physical effects enable conflicting potentials to “even out”.
3 An example of applying signal flow modeling to a physical interaction system is in Annex 1.5 of [5].

4

NIST IR 8490
October 2023

2.2. SysML

System structure in SysML describes the kinds of components a system is made of (whole-
part relationships), and how they are interconnected (part-part relationships). Systems and
components are both modeled as blocks, enabling components to be entire systems them-
selves, and systems to be components of other systems. Each block represents potentially
many systems or components built or simulated in the way the block specifies (instances
of the block). Blocks are notated by rectangles, as shown in Figure 1. They can form
taxonomies via generalization, relating specialized blocks to more general ones, appearing
as closed head arrows pointing to more general blocks. Instances of specialized blocks are
instances of more general ones, which means specifications in more general blocks apply
to all its instances, including those of more specialized blocks in a taxonomy. In Figure 1,
the generalizations indicate that all instances of SportsCar and 4WDCar are also instances
of Car. Blocks appear in block definition diagrams (BDDs), indicated on the top right of
the diagram frame.

bdd Vehicles]

«block»

Car

values «interfaceBlock»
weight : Real Fuellnlet

ports flow properties
gaslntake : Fuellnlet in fuelln : Fuel

«block» «block»
SportsCar 4WDCar

Fig. 1. SysML block definition diagram

Blocks can include properties that each instance can give values for. SysML distinguishes
several kinds of properties, one kind being those with data values, such as numbers, booleans,
or strings. These are notated in block compartments labelled values, as shown for the
weight property in Car in Figure 1, which gives the weight of each car separately, includ-
ing sports cars and four wheel drive cars. Property values are instances of the type of the
property, shown the the right of the colon, such as Real for weight (real numbers).

Ports are properties for specifying some of the interactions of an entire block. These appear
in labelled block compartments, as shown for the gasPort in Car in Figure 1. Ports are
often typed by interface blocks, which are blocks that only mediate between the inside
and outside of other blocks, rather than introducing their own behaviors as components
do. They often define flow properties to specify the kinds of things moving across the
boundary of a component, as well the possible directions of flow. The gasPort in Figure 1
is typed by the Fuellnlet interface block, which defines the fuelln flow property, typed by

NIST IR 8490
October 2023

Fuel to specify the kind of thing flowing through it, with direction restricted to being into
components that have this kind of port. Other directions are out and inout (unrestricted).

Blocks can also include connectors between properties (part-part relationships) to specify
links between values of properties of the same object (whole-part relationships). Connec-
tors typically link ports and appear in internal block diagrams (IBDs). For example, Figure
2 defines a connector in a GasStation block that links ports of its customer and pump prop-
erties. Properties in IBDs are notated as rectangles, larger ones for components and smaller
ones for ports. Small arrows in port rectangles indicate the directions of their flow proper-
ties. Connectors between ports that define flow properties can show a small filled triangle
labelled with the types of the flow properties, Fuel in this example.

ibd [Block] GasStation)

. Fuel .
customer : ump :
Car % < % Ft':eIPSm
gas p
: nozzle

intake

Fig. 2. SysML internal block diagram

Blocks can define equations relating values of datatype properties, usually defined in sepa-
rate constraint blocks. The equation variables are presented as properties called constraint
parameters, with the equation written in a textual language referring to these parameters
by name. Constraint blocks are used in potentially many other blocks by being the type of
constraint properties on those blocks. Values of constraint parameters are equated to block
property values by linking them with binding connectors in parametric diagrams.

SysML enables extension of its syntax to be defined in models, via stereotypes, which are
similar to blocks, but with property values directly on blocks they are applied to, rather
than on instances of those blocks. For example, a stereotype might have a property iden-
tifying the engineers who authored each block, giving names on each block the stereotype
is applied to, rather than instances of those blocks during system operation or simulation.
Stereotypes and their properties can appear on any diagram showing the elements they are
applied to, notated between guillemets («»).*

2.3. SysPhS

SysPhS extends SysML to cover information needed for physical interaction and signal
flow simulation. It includes:

* An extension of SysML for adding information specific to this kind of simulation.

“4This extension capability is provided by the Unified Modeling Language® (UML®) [11], which SysML
extends. For example, SysML «block» and «flowProperty» are stereotypes of UML Class and Property,
respectively.

NIST IR 8490
October 2023

* A human-usable textual syntax for mathematical expressions. This includes syntax
for derivatives, which are always with respect to time only.

* Platform-independent libraries of simulation elements that can be reused in system
models.

* Translation patterns between SysML as extended above and two widely-used simu-
lation languages and tools for physical interaction and signal flow simulation (Mod-
elica and Mathworks Simulink®/Simscape™).

Sections 2.3.1 and 2.3.2 describe the language extension and model libraries, respectively.

2.3.1. Stereotypes

SysPhS enables SysML properties to become simulation constants or variables by applying
the PhSConstant or PhSVariable stereotype, respectively, shown in Figure 3 (see Section
2.2 about SysML language extension). Values of constant properties do not change during
each simulation run, though they might between simulation runs. They must be properties
of components, not ports, because they do not characterize flows between components. The
stereotype for variable properties adds this information:

* isContinuous: A boolean telling whether property values change continuously during
simulation (true) or discretely (false), defaulting to true. It can only be true for real-
valued properties.

* isConserved: A boolean telling whether the property gives a flow rate (true) or a
potential to flow (false) during simulation, defaulting to false. It can only be true
when isContinuous is true and the extended property is typed by a flow rate for a
conserved quantity kind from the SysPhS physical interaction library, see below.

* changeCycle: A non-negative real number for the time interval at which discrete
properties change values, defaulting to 0. It can only be positive when isContinuous
is false.

«metaclass»

UML::Property

?

«stereotype» «stereotype»
PhSConstant PhSVariable

isContinuous : Boolean = true
isConserved : Boolean = false
changeCycle : Real =0

Fig. 3. SysPhS stereotypes

NIST IR 8490
October 2023

Properties with PhSVariable applied are either on types of

« Ports, for interaction with other components (port variables).” They appear on blocks
characterizing flow of physical substances through ports, see below.

» Components, for specifying behavior (component variables). They appear as proper-
ties internal to component blocks, related by equations to other component properties
and port variables on the same component. They are not conserved, because they do
not characterize flows, even if they would be considered flow rates when used on
ports.

Another property stereotype is PhSConstant which is for defining values which do not
change during a simulation. For example, the spring constant of a spring may be

2.3.2. Model libraries

SysPhS provides standard models of commonly needed elements for physical interaction
and signal flow modeling, divided by whether they are for ports or components (see Section
2.2 about these). It has two port libraries, for physical interaction and signal flow.® The
component libraries are mostly for processing real numbers and booleans, plus one for
electrical components. This section describes both port libraries and explains how the
component libraries are translated to different platforms, as needed for this paper.

Figure 4 shows the SysPhS library for physical interaction ports. These ports are typed by
the interface blocks along the bottom row of the figure, which have bidirectional (inout)
flow properties typed by the blocks just above them, the ones with names starting "Flow-
ing". These introduce properties for flow rates and potentials of physical characteristics
as they flow through ports, such as force and velocity for linear momentum, indicated as
PhSVariables with isConserved=true or false, respectively. The "flowing" blocks specialize
those in the third row, for physical characteristics in general, such as linear momentum and
charge, which might be flowing or not. All these physical characteristics are conserved
when flowing across links between ports (see Section 2.1.1), as indicted by specializing
ConservedQuantityKind, which specializes SysML’s QuantityKind, the kinds of physical
things (conserved or not) that are measured by units, such as length and force [12].7

>Connectors in Modelica, connection ports in Simscape

The SysPhS specification refers to these as component interaction libraries, but this paper refers to them as
port libraries to avoid confusion with physical interaction.

"The same units can measure different quantity kinds, such as newton-meters measuring work and torque.
Quantity kinds provide a unit-independent way to identify physical characteristics being measured.

NIST IR 8490

October 2023
«block»
SysML::QuantityKind
«block»
ConservedQuantityKind
I [[[|
«block» «block» «block» «block» «block»
LinearMomentum AngularMomentum Charge Volume Entropy
«block» «block» «block» «block» «block»
FlowingLMom FlowingAMom FlowingCharge FlowingVolume FlowingEntropy

phs variables
{isConserved} f : Force
IV : Velocity

{isConserved} trq : Torque
aV : AngularVelocity

phs variables

{isConserved}i : Current
v : Voltage

phs variables

{isConserved} q : VolumeFlowRate
p : Pressure

phs variables

phs variables
{isConserved} sFR : EntropyFlowRate
t: Temperature

«interfaceBlock»
LMomFlowElement

«interfaceBlock»
AMomFlowElement

«interfaceBlock»
ChargeFlowElement

«interfaceBlock»
VolumeFlowElement

«interfaceBlock»
EntropyFlowElement

physical interactions
inout IMomF: FlowingLMom

physical interactions
inout aMomF: FlowingAMom

physical interactions

inout cF: FlowingCharge

physical interactions

inout vF: FlowingVolume

physical interactions
inout sF: FlowingEntropy

Fig. 4. SysPhS standard library for physical interaction

Figure 5 shows the SysPhS library for signal flow ports. It provides port types for each
kind of signal (boolean, real, and integer) in each direction (in and out).

«interfaceBlock»
RealSignalElement

rSig : Real

signal flows

JA

«interfaceBlock»
RealSignallnElement

«interfaceBlock»
RealSignalOutElement

«interfaceBlock»
IntegerSignalElement

signal flows
iSig : Integer

JAN

signal flows
in rSig : Real {redefines rSig}

signal flows
out rSig : Real {redefines rSig}

IntegerSignallnElement

«interfaceBlock»

IntegerSignalOutElement

«interfaceBlock»

in iSig : Integer {redefines iSig}

signal flows

out iSig : Integer {redefines iSig}

signal flows

«interfaceBlock»

BooleanSignalElement

signal flows
bSig : Boolean

Z}

«interfaceBlock»
BooleanSignallnElement

BooleanSignalOutElement

«interfaceBlock»

signal flows
in bSig : Boolean {redefines bSig}

out bSig

: Boolean {redefines bSig}

signal flows

Fig. 5. SysPhS standard library for signal flow

NIST IR 8490
October 2023

SysPhS also provides libraries of predefined components corresponding to those in com-
mon between the two simulation platforms it gives translations for (Modelica and Simulink/
Simscape). These SysPhS components leave it to the platforms to define their behavior,
rather than restating it in SysPhS. The libraries are mostly for processing real numbers and
booleans, plus one for electrical components. All of them identify corresponding Model-
ica elements, with the real number and boolean components identifying ones in Simulink,
and the electrical components identifying corresponding Simscape elements. This paper
only needs real number components, but does not use the ones from SysPhS, see Section 3.
SysPhS may be translated to different platforms by a translator[7]. This translator takes in
a SysPhS xmi and the user selects the model to be translated. Then either a modelica .mo
file or simscape .slx and simscape libraries are output.

3. Real Signal Component Library

The examples in this paper require some real number processing. SysPhS provides most
of the real signal blocks needed, but they correspond to Simulink elements (see Section
2.3.2), which are not easily used with Simscape, one of the platforms for simulating SysPhS
physical interaction (see Section 2.1.3). This section redefines a few of these real signal
blocks and adds one specifically for control, as shown in Figure 6. Most blocks include
constraint properties referencing constraint blocks defined in Figure 7 (see Section 2.2
about constraint modeling in SysML). All are described with their parametric diagrams in
the rest of the section.

10

NIST IR 8490
October 2023

bdd [Package] SysPhS Real Signal[Control Components])

«block»

PIDControl

constraints

pIDCC : PIDControlConstraint

values
kp : Real
ki : Real
kd : Time{unit = second}

i : Real{changeCycle = 0.0, isConserved = false, isContinuous}
deriv2Signal : Time = 1.0 s {unit = second} ports

«block»
ConstantRealSignal

values

e : Real{changeCycle = 0.0, isConserved = false, isContinuous} cnsnt : Real

const : RealSignalOutElement

ports
curValue : RealSignallnElement
outSig : RealSignalOutElement
setPoint : RealSignallnElement

«block»
Gain

constraints
gc : GainConstraint

values
gain : Real

ports
inSig : RealSignallnElement
outSig : RealSignalOutElement

«block»
SineRealSignal

constraints

sRSC : SineRealSignalConstraint

values
frequency : Frequency{unit = hertz}
amplitude : Real
centerAmplitude : Real

ports
i : RealSignalOutElement

Fig. 6. R

eal signal component library

bdd [Package] SysPhS Real Signal [Control Constraints])

«constraint»
PIDControlConstraint

«constraint»
SineRealSignalConstraint

constraints
{e=set-cur}
{der(i)*cf=e}

constraints
{rsig=amp*sin(f*2*2*asin(1.0)*time)+d}

{out=kp*e+ki*i+kd*der(e)}

parameters
cf : Time{unit = second}
cur : Real
e : Real

parameters
amp : Real
d: Real
f: Frequency{unit = hertz}
rsig : Real

i : Real
kd : Real
ki : Real
kp : Real
out : Real
set : Real

«constraint»
GainConstraint

constraints
{out=ins*k}

parameters
ins : Real
k : Real
out : Real

Fig. 7. Real signal component library constraints

11

NIST IR 8490
October 2023

ConstantRealSignal outputs a real signal that is constant over time, defined by the PhSCon-
stant cnsnt, as shown in Figure 8.

par [Block] ConstantRealSignal [ConstantRealSignal])

«PhSConstant»

const : RealSignalOutElement

«equal»

cnsnt : Real

—_

rSE: Ri

|
eal
]

Fig. 8. Constant parametric diagram

Gain takes in a real signal and outputs a real signal multiplying it by the constant value of
gain, as shown in Figure 9.

par [Block] Gain[Gain] J

inSig : RealSignallnElement
I rsig : Real!

gc:

«constraint»
GainConstraint

{out=ins*k}

«equal»

— J

—_ —

ins

k
|_|

out

«equaly

outSig : RealSignalOutElement
] rSig : Real!

«equal»

«PhSConstant»
gain : Real

— J

Fig. 9. Gain parametric diagram

SineRealSignal, shown in Figure 10, outputs a real signal that forms a sine wave over time.
The PhSConstants frequency, amplitude, and offset characterize the wave, with frequency
in units of Hz, oscillating around the value of offset.

par [Block] SineRealSignal [SineReaISignal])

«constraint»

sRSC : SineRealSignalConstraint
{rsig=amp*sin(f*2*2*asin(1.0)*time)+d}

rsig
f amp d
«equal» «equ’aﬂ «equal»
«PhSConstant» «PhSConstant» «PhSConstant»
frequency : Frequency amplitude : Real offset : Real

«equal»

i : RealSignalOutElement

I rsig : Real!

— J

[E—

Fig. 10. SineRealSignal parametric diagram

12

NIST IR 8490
October 2023

PIDControl, shown in 11, models Proportional Integral Derivative (PID) controllers. The
input setPoint gives the desired value of the plant output as a realSignal, curValue is the
present value of the plant output, and outSig is the output control value to be provided to
the plant. The proportional coefficient is kp, the integral coefficient is ki, and the derivative
coefficient is kd.

par [Block] PIDControl [PIDControID

setPoint : RealSignallnElement

«constraint»

== pIDCC : PIDControlConstraint
rSig : Real {e=set-cur,

| der(i)*cf=e,

out=kp*e+ki*i+kd*der(e)}

outSig : RealSignalOutElement

«equal»

:lset out E «equal» rrSE: Real '
| I |
«equal» cur . «equal»
curValue : RealSignalinElement J 4 :‘ i E
e o1
| rSig : Real] «equal» :l cf e E
kp ki kd «equal»
«equal» «equaly «Jﬁ‘al»
«PhSConstant» «PhSConstant» «PhSConstant» «PhSConstant» «PhSVariable» «PhSVariable»
deriv2Signal : Time kp : Real ki : Real kd : Time e : Real i:Real

Fig. 11. PIDControl parametric diagram

The control signals in these libraries are real signals that do not have units, to avoid defin-
ing new interface blocks that add units to the real signal blocks in SysPhS. For example,
PIDControl, which is widely applicable as it is, would need many specialized interface
blocks with various units. Simscape, a platform SysPhS gives translations for, requires
the two sides of each equations have the same units. However, many elements, such as
sensors and source elements, have equations that relate physical quantities that have units
to unitless real signals. The library introduces conversion factors with units that balance
units on each of an equation by multiplying a real signal to add units or dividing a physical
quantity to remove units. For example, a velocity sensor that outputs a unitless real signal
needs to have an equation where both sides do not have units. The sensed velocity must
be multiplied with a factor with inverse units of velocity to remove its units. Equations in
these libraries that convert between unitless quantities and those with units are written to
not require implementing new units. For example, the equation for converting a quantity
with units into a real signal is typically signal = g/cf, where q is the quantity to be converted
and cf is the conversion factor in the same units as quantity. This avoids introducing units
that are inverse of those of quantity.

13

NIST IR 8490
October 2023

4. Physical Interaction Libraries

This section presents physical interaction component libraries for areas not covered by
SysPhS currently (see Section 1). They are defined with the standard SysPhS extensions
and physical interaction library (see Figures 3 and 4 in Section 2.3), enabling them to trans-
lated in a standard way to simulation tools and languages. The libraries are for translational
mechanics, rotational mechanics, and entropy (heat) transfer, in Sections 4.1, 4.2, and 4.3,
respectively.

4.1. Translational Mechanics Library

The translational mechanics library enables SysPhS modeling of mechanical components
moving in one dimension, including point masses affected by springs, dampers, and in-
ertia, but not changing orientation (angle). It also supports linear motion along multiple
independent axes, for pseudo-2D and 3D modeling.

Figure 12 shows an example translational system to illustrate the library. It is a mass-
spring-damper attached to a fixed wall, with a sinusoidally varying force applied to the
mass. A sinusoidal force f is applied to m, giving and taking linear momentum from it,
which passes through k; and d; to and from the fixed wall. The sinusoidal force and fixed
wall make this an open system, but the change in system momentum equals the net impulse
applied to the system (force integrated over time, which is linear momentum). The mass
develops some oscillation, but its exact behavior is dependent on the values of parameters
and starting conditions chosen.

Ky

d;

Fig. 12. An example translational system

The system in Figure 12 is modeled with SysPhS in Figure 13, an IBD connecting com-
ponents defined by the translational mechanics library BDD in Figure 14 (see Section 2.2
about these kind of diagrams). Figure 13 refers to blocks in library by their names, appear-
ing to the right of the colon at the top of each larger rectangle. The role each block plays in
the system appears to the left of the colon in each, following the labels in Figure 12. The
force f applied to m1 varies as a sine wave, controlled by a component via a signal port,
notated by a small rectangle with an unidirectional arrow inside (see Section 3 about signal
components).

14

NIST IR 8490
October 2023

ibd [Block] MassSpringDamper MassSpringDamper])

LinearMomentum a ,J—| k1 : TransLinearSpring IJ‘I b

v initialValues ~ LinearMomentum
disp=0.0m

k=1.0N/m

m1 : Translnertia
a] fixed : TransFixed
signal2Force = 1.0 N

| a a —
initialValues
hia <>| mass = 1.0 kg <>
. . tV=0.0m/s .
LinearMomentum
™1 .
! | d1 : TranslLinearDamper | b LinearMomentum
i a initialValues
d=1.0N-s/m
Real LinearMomentum

sine : SineRealSignal pj i

initialValues

f: TransForceSource

b

initialValues

amplitude = 1.0
frequency = 1.0 1/s
offset = 0.0

Fig. 13. Figure 12 modeled in SysPhS with initial conditions and sources

Figure 13 connects translational components at their physical interaction ports, notated by
small rectangles with bidirectional arrows inside. Flows of (linear) momentum through
these ports are described by their force and (linear) velocity, which are momentum’s rate
of flow and potential to flow, respectively (conserved and non-conserved variables, respec-
tively).® SysPhS uses force and velocity to enable flows between components to be taken
as energy flows, with rate of energy flow (power) being the product of the variables. Force is
the rate of flow of momentum, following the physical definition that it is the rate of change
of momentum. Velocity is the potential to flow of momentum, since two objects moving
at the same velocity cannot exchange momentum (see Section 2.1.1 about potentials). Ve-
locity, acceleration and force have a direction, indicated by the sign of their variables. This
library assumes the sign of acceleration and the force causing it are the same.

Figure 14 defines the translational mechanics library introduced by this paper and used in
Figure 13. All the components have physical interaction ports for linear momentum and
some have real signal ports (see Section 2.3.2). The library includes TwoFlangeTransCom-
ponent, which has two momentum ports and a variable forceThru for the force it exerts or
exerted on it (rate of momentum flow through the component), as defined in its special-
izations. One of these is CompliantTransComponent, where the ports can move relative to
each other along the same line, such as springs and dampers. It has two variables, relV
for the relative velocity between the ports, and disp, for the relative displacement between
them.

8Some translational mechanics modeling software use absolute position and force as port variables, such as
the Modelica Standard Library for Translational Mechanics [13].

15

NIST IR 8490
October 2023

bdd [Package] SysPhS Translational Mechanics [Translational Mech Components]) Hodk
«DIOCK»
<block» TransPositionSensor
constraints
TwoFlangeTransComponent «block» IPSC : TransPositionSensorConstraint
values :
q—
forceThru : Force Transinertia values
constraints linearPosition : Length
ports tIC : TranslnertiaConstraint position2Signal : Length = 1.0 m
a : LMomFlowElement
b : LMomFlowElement values ports
mass : Mass a: LMomFlowElement
tV : Velocity i : RealSignalOutElement
tA : Acceleration
disp : Length
«block»
«block» T 3Dinerti
CompliantTransComponent ranss-nertia
values oonstraints_)
relV : Velocity ki t3DIC : Trans3DInertiaConstraint
disp : Length values
mass : Mass
lr xAccel : Acceleration
«block» «block» zﬁg: :ﬁggg:g::}:gg
TransLinearSpring TransLinearDamper xPosition : Length
constraints constraints yPosition : Length
tLSC : TransLinearSpringConstraint tLDC : TransLinearDamperConstraint zPosition : Length
xVel : Velocity
values values yVel : Velocity
k : TransStiffness d : TransDamping ZVel : Velocity
ports
aX : LMomFlowElement
«block» <block» aY : LMomFlowElement
TransVelSource . aZ : LMomFlowElement
pe———— TransFixed bX : LMomFlowElement
. i constraints bY : LMomFlowElement
tVSC : TransVelSourceConstraint e - TransFixedConstraint bZ - LMomFlowElement
values ports
signal2Velocity : Velocity{unit = metrePerSecond} a: LMomFlowElement Biod
ports -
a : LMomFlowElement Trans2Dinertia
i : RealSignallnElement constraints
t2DIC : Trans2DInertiaConstraint
1l
«block» «block» mass: Mass
TransForceSource TransVelocitySensor xPosition : Length
constraints constraints yPosition : Length
tFSC : TransForceSourceConstraint IVSC : TransVelocitySensorConstraint XVel: Velocity
xAccel : Acceleration
values values yAccel : Acceleration
signal2Force : Force velocity2Signal : Velocity = 1.0 m/s yVel : Velocity
ports ports ports
a : LMomFlowElement a : LMomFlowElement aX : LMomFlowElement
i : RealSignallnElement i : RealSignalOutElement aY : LMomFlowElement
bX : LMomFlowElement
bY : LMomFlowElement

Fig. 14. Translational mechanics library

Figure 15 defines the constraint blocks referenced by constraint properties in Figure 14,
appearing in a compartment of each translational library block (see Section 2.2 about con-
straint modeling in SysML). BinaryCompliantTransConstraint defines constraints for all
components with two ports that might have different velocities, corresponding to system
components with two ends that might move with respect to each other, such as springs
and dampers. Forces on these components sum to zero, as specified by fa + fb = 0, while

16

NIST IR 8490
October 2023

relV=Vb-Va defines the relative velocity between ports a and b.” The derivative of dis-
placement is relative velocity, expressed as der(disp)=relV, which means displacement is
an integral of relative velocity. Initial displacement must be defined if it is not supplied by
additional equations.

bdd [Package] SysPhS Translational Mechanics [Translational Mech Constraints])

«constraint»

«constraint» TransForceSourceConstraint
BlnaryCompI|antTra.nsConstra|nt «constraint» . _ognsﬂainfs
(fa+b=0) constraints TransFixedConstraint {foroeOut=-sigcf)

- i ters
{der(disp)=relV} =0} constraints of: Force{unit = newton}
(reD/=tVb»tVa) forceOut : Force{unit = newton}
{fa=-forceThru} parameters sig : Real
parameters tV : Velocity{unit = metrePerSecond}
disp : Length{unit = metre}
fa : Force{unit = newton} traint:
fb : Force{unit = newton} Transi «m.nsc raint» .
forceThru : Force{unit = newton} - ranslnertiaConstraint
relV : Velocity{unit = metrePerSecond} «constraint» constraints
tVa : Velocity{unit = metrePerSecond} TransVelSourceConstraint {forceThru=m*tA}
Vb : Velocity{unit = metrePerSecond} constraints {tA=der(tV)}
(vel=sigch {tva=tvb}
{tv=tva}
parameters {forceThru=fa+fb}
cf : Velocity{unit = metrePerSecond} {tV=der(x)}
«constraint» «constraint» sig : Real
TransLinearSpringConstraint TransLinearDamperConstraint vel : Velocity{unit = metrePerSecond} fa: Foroe{unit= newto‘r:?mmetem
*cqnstramts . constraints fb : Force{unit = newton}
{forceThru=k*disp} {forceThru=b*relV} forceThru : Force{unit = newton}
" o m : Mass{unit = kilogram}

k: Real parameters b: Real parameters A : Acceleration{unit = metrePerSecondSquared}
tV : Velocity{unit = metrePerSecond}
tVa : Velocity{unit = metrePerSecond}

- Vb : Velocity{unit = metrePerSecond}
«constraint» T 30;(00:5"2“; int x:: Length{unit = metre}
TransPositionSensorConstraint ranssYnertiabonstrain
constraints % consiaints
{tv=der(x)} :E:xziggx;m*w? «constraint»
=0 y+EDy=m ¥y, . .
{ = tFaz+Fbz=m*"tAZ} Trans2DInertiaConstraint
{sig=x/cf} tAx=der(tVx)} constaits
parameters tAy=der(tVy)} {tFax+tFbx=m*tAx}
cf : Length{unit = metre} tAz=der(tVz)} {tFay+tFby=mtAy}
f: Force{unit = newton} tVx=der(x)} {tAx=der(tVx)}
sig : Real tVy=der(y)} tAy=der(tVy)}
tV : Velocity{unit = metrePerSecond} tVz=der(z)} tVx=der(x)}
x : Length{unit = metre} pm—— tVy=der(y)}
m : Mass{unit = kilogram} parameters
tAx : Acceleration{unit = metrePerSecondSquared} m : Mass{unit = kilogram}
tAy : Acceleration{unit = metrePerSecondSquared} tAX : Acceleration{unit = metrePerSecondSquared}
Az : Acceleration{unit = metrePerSecondSquared} tAy : Acceleration{unit = metrePerSecondSquared}
<constrainty tFax: Force{un!t = newton tFax : Force{unit = newton}
§ . tFay : Force{unit = newton tFay : Force{unit = newton}
TransVelocitySensorConstraint tFaz : Force{unit = newton tFbx : Force{unit = newton}
constraints tFbx : Force{unit = newton tFby : Force{unit = newton}
{sig=tV/cf} tFby : Force{unit = newton tVx : Velocity{unit = metrePerSecond}
{f=0} tFbz : Force{unit = newton, tVy : Velocity{unit = metrePerSecond}
" tVx : Velocity{unit = metrePerSecond} x : Length{unit = metre}
§ parameters tVy : Velocity{unit = metrePerSecond} y : Length{unit = metre}
cf Velocity{unit = metrePerSecond} tVz : Velocity{unit = metrePerSecond}
f : Force{unit = newton} x : Length{unit = metre}
sig: Real B y : Length{unit = metre}
tV : Velocity{unit = metrePerSecond} 2 : Length{unit = metre}

Fig. 15. Constraints for the translational mechanics library

9BinaryCompliantTransConstraint is analogous to BinaryElectricalComponentConstraint in the electrical ex-
ample in SysPhs Annex A1.2 [5]. The two equations above in BinaryCompliantTransConstraint are analo-
gous to current at the ports summing to zero and voltage drop across the ports, respectively.

17

NIST IR 8490
October 2023

The rest of this section covers the other components in Figure 14 and parametric diagrams
that bind their properties to constraint parameters in Figure 15 (see 2.2 about these kind of
diagrams).

The TransLinearSpring block in Figure 14 models a component in which force exerted at
its ports is linearly proportional to the displacement between them (Hooke’s Law), without
any losses or inertia. This is expressed in TransLinearSpringConstraint in Figure 15, a kind
of BinaryCompliantTransConstraint. Figure 16 shows a parametric diagram for TransLin-
earSpring that binds its properties to parameters from TransLinearSpringConstraint. Prop-
erties on the momentum ports bind to parameters on the constraint. TransLinearSpring has
a parameter k for stiffness in units of N/m. The spring k; in Figure 12 is modeled with
TrsntlLinearSpring in Figure 13.

par [Block] TransLinearSpring[TransLinearSpring])

«constraint»

a : LMomFlowElement tLsC: TransLlnearSprlngConstral_nt* . b : LMomFlowElement
{forceThru=k*disp} | = &@F—————]
_____ 1]
IMomF.f : Force «equal» A N «equal» | IMomF.f: Force
L g [] Ma o[b——— a
IMomE IV - Velogity | «equal» «equal» “IMomF.IV : Velocity!
IMomF.IV : Velocit | IMomF.IV : Velocity
| omp-V: Velodly [] ~tva MV [O 70 |
«PhSVariable» . «equal» [«PhSVariable»
«equaly Adis| MorceThr
disp : Length :‘ 5P Y I: forceThru : Force
«equal» k
:‘ ArelV |_|
«equal»
«PhSVariable»
relV : Velocity «PhSConstant»

k : TransStiffness

Fig. 16. TransLinearSpring parametric diagram

TransLinearDamper in Figure 14 models a component in which the force between the two
ports is linearly proportional to the difference in velocity between its ports, as expressed
in TransLinearDamperConstraint in Figure 15, a kind of BinaryCompliantTransConstraint.
Figure 17 shows the parametric diagram that binds its properties to constraint parameters
in TransinearDamperConstraint. It is applicable to dampers with a linear response, such
as viscous friction between two objects or elastic deformation with heat loss. TransLinear-
Damper has a parameter k specifying the damping coefficient in N*s/m. The damper k; in
Figure 12 is modeled with a TransLinearDamper.

18

NIST IR 8490
October 2023

par [Block] TransLinearDamper TransLinearDamper])

«constraint»

a : LMomFlowElement tLDC : TransLinearDamperConstraint b : LMomFlowElement
_____ 1 {forceThru=b*relV} - — — = —
| IMomF.f: Force «equal»] Aa "o [] «equal» , IMomF.f: Force

_____ J |
————— «equal» «equal» - = = = —

| IMomF_IV : Velocity g] "va "o [] g | IMomF_IV : Velocity'
_____ J - - — — — 4

«PhSVariable» | «equal» :l Adisp

disp : Length
I» «PhSVariable»
PhSVariable «equal» b «equa
<;eIV : Velocity» :l relV I—I “orceThru E forceThru : Force
«equal»
«PhSConstant»

d : TransDamping

Fig. 17. TransLinearDamper parametric diagram

TransInertia in Figure 14 models a component where its acceleration is proportional to
an applied force (a point mass), as expressed in TransIntertiaConstraint in Figure 15 by
the equation F' = ma. Figure 18 shows the parametric diagram that binds its properties
to constraint parameters in TransIntertiaConstraint. It has two ports that have the same
variable values, to resemble typical systems where other components are attached to either
’side’ of the inertial object, as if the ports were moving at the same velocity (rigidly fixed
to each other), though it is not necessary to connect to both ports.

par [Block] Translnertia[Translnertia])

«constraint»
tIC : TranslnertiaConstraint
{forceThru=m*tA,
tA=der(tV),
tVa=tVb,
tV=tVa,
a : LMomFlowElement forceTT\r/Lizf::(-il;i b : LMomFlowElement
————— «equal» «equal» _- = = = -
| IMomF:f: Force 1] d :I fa fb E q { IMomF:f: Force 1]
e «equal» «equal» e
| IMomF,IV:VeIocity-; |] wva tvo [] | IMomF.IV:VeIocity]
«PhSVariable» «equal» «equal» «PhSVariable»
disp : Length :I X forceThru |: forceThru : Force
«PhSVariable» «equal» tv
tV : Velocity :l tA m
«equal» «equal»
«PhSVariable» «PhSConstant»
tA : Acceleration mass : Mass

Fig. 18. Translational inertia parametric diagram

The sign convention in this library is such that a a positive force will create a positive

19

NIST IR 8490
October 2023

acceleration on a mass. Regardless of which side a positive force is applied on, a positive
acceleration will result.

Trans2DInertia and Trans3DlInertia in Figure 14 model components that can translate along
two and three perpendicular axes, but not rotate, enabling pseudo-2D and 3D simulation,
as in Sections 5.2 and 5.3. They have two ports for each degree of freedom.'® This is
simpler and less error-prone than modeling the same mass repeatedly for the dynamics of
each axis separately, which would need to be kept consistent. The parametric diagrams for
Trans2DInertia and Trans3DInertia are shown in Figure 19 and Figure 20, respectively.

aY : LMomFlowElement

—_— = = = =

par [Block] Trans2DInertia[Trans2DInertia])

aX : LMomFlowElement

_——

«equal»

_____ al

«equal»

| IMomF.IV : Velocity
]

_____ al

| IMomF.IV : Velocity
J

bX : LMomFlowElement

= =
IMomF.f : Force
|
1 IMomFIV : Velocity "

«constraint»
t2DIC : Trans2DInertiaConstraint mass : Mass
{tFax+tFbx=m*tAx,)
tFay+tFby=m*tAy,
tAx=der(tVx),
tAy=der(tVy),
tVx=der(x),
tVy=der(y)}
:|tFay m l: «equal»
«equal»
tFax
:l 1Fbx|: «equal»
«equal» PhSVariabl ' PhSVariabl
«| ‘ariable» «equal» «equal» « ‘ariable»
tAXx
xAccel : Acceleration 1 wl| YAccel : Acceleration
«equal»
«PhSVariable» | €342l Jtvx v
XVel : Velocity < y «PhSVariable»
J—l ‘—\ ‘—\ yVel : Velocity
«equal» tFby «equal»
«equaly»
enSvarable «PhSVariable»
) 9 yPosition : Length
«equal»

bY : LMomF|owElement

— == ==
IMomF.f : Force

| IMomF.IV : Velocity
J

1

«equal»

Fig. 19. Translational 2D inertia parametric diagram

10T ransInertia with only two ports is 1D.

20

NIST IR 8490
October 2023

par [Block] Trans3DInertia[Trans3DInertia])

aX : LMomFlowElement «equal» traint] : T«con:s!l';allnt:r C traint «PhSVariable» bX : LMomFlowElement
"IMomF : Force - i «PhSvariable o s tFoxemtA ZPosition : Length A e omF - Force
| o | XVel : Velocity {tFax+Fbx=m"tAx, | 1 |
— = = = "=, | «equal» tFay+tFby=m"tAy, «equaly| — = = = = 4
| IMomF.IV : Velocity tFaz+tFbz=m*tAz, { IMomF.IV : Velocity
_____ J tAx=der(tVx), |
[tAy=der(tVy), T
aY : LMomFlowElement tAz=der(tvz), bY : LMomFlowElement
—_—— = wequaby «equal» tVx=der(x), «equal» —_—— =
| IMomF.f : Force &l v tvy=der(y), i IMomF.f : Force
t =
Ao === [Jivx Wz=der@) | (equal» ewalf 1= ==="
| IMomF.IV : Velocity «equaly z |: { IMomF.IV : Velocity
_____ J jFax - = —
o |
aZ : LMomFlowElement jtFay ‘FbE bZ : LMomFlowElement
"IMomFf : Force . tequaly F tFb; «eauab [omFf - Force
lomF.f : Force az lomF.f : Force
Mo Fore) T e s
————— «equaly| ———— "=
I IMomF IV : Velocity —-<€34a> |«equaly vy «equab | MomFIV : Velocity”
_____] j tAX tAy tAz X y tVzl: o — —
«equal» j
m [1] [] [1 [11]
«equal» «PhSVariable»
«PhSConstants cequal» | cequal» g JPositon - Longth
mass : Mass «equal» «equal»
— —
«PhSVariable» «PhSVariable» «PhSVariable» «PhSVariable» «PhSVariable»
xAccel : Acceleration yAccel : Acceleration zAccel : Acceleration xPosition : Length 2zVel : Velocity
«PhSVariable» |
yVel : Velocity

Fig. 20. Translational 3D inertia parametric diagram

TransVelocitySensor and TransPositionSensor in Figure 14 are components that have a
linear momentum port and a signal output port that produces a real number proportional
to the linear velocity or position derived from the momentum port variables, respectively.
Neither affects the momentum of components connected to the momentum port, as ensured
by the rate of flow through the port (force) always being zero, as shown by their parametric
diagrams in Figures 21 and 22. TransVelocitySensor has a parameter ’velocity2Signal’ for
the inverse conversion factor between output signal and velocity measured on the port given
in units of m/s. TransPositionSensor integrates the velocity of the momentum port over time
and starting at TransPosition, the initial position. The parameter ’position2Signal’ gives the
inverse conversion factor between position and realSignal given in units of m.

par [Block] TransVelocitySensor [TransVelocitySensor])

(«constraint»)
a : LMomFlowElement IVSC : TransVeIocntySensorCons?tralnt
{sig=tV/cf,
I Iﬁoni:.f:_Fogel «equal» ; =0} cequal i: RealSlgrEIOitElement
- — — — :l sig E lrSig:ReaI-I
_____ cf L
| IMomF.V : Velocity || <23uab v
_____ J C [])
«equal»
«PhSConstant»

velocity2Signal : Velocity

Fig. 21. TransVelocitySensor parametric diagram

21

NIST IR 8490
October 2023

par [Block] TransPositionSensor| TransPositionSensor])

a : LMomFlowElement

_____ 1

I IMomF.IV : Velocity
_____ J

«equal»

i : RealSignalOutElement

'_rSE : F\’_eal-|

«constraint»
IPSC : TransPositionSensorConstraint
{tV=der(x),
=0,
sig=x/cf}
«equal» :I K
f sig E
«equal» :l
tv
cf X
«equal» «equal»
«PhSConstant» «PhSVariable»

position2Signal : Length

linearPosition : Length

— |

Fig. 22. TransPositionSensor parametric diagram

TransForceSource and TransVelSource in Figure 14 are components that accept a real sig-
nal and apply a force or velocity to other components via a momentum port, respectively.
Figures 23 and 24 show the parametric diagrams for these components. TransForceSource
has a parameter signal2Force for the conversion factor between signal and force in units of
N. The force f in Figure 12 is modeled with a TransForceSource connected to a sinusoidal
realSignal in Figure 13. TransVelSource applies a velocity is relative to a fixed frame. The
parameter ’signal2Velocity’ gives the conversion factor between velocity and realSignal in

units of m/s.

par [Block] TransForceSource [TransForceSource])

i : RealSignallnElement

rrSE: R_eal-I
— —

«equal»

«constraint»
tFSC : TransForceSourceConstraint

sig

cf

{forceOut=-sig*cf}

forceOut

&

«equal»

«PhSConstant»
signal2Force : Force

«equal»

a : LMomFlowElement

Fig. 23. Parametric diagram for force source

22

NIST IR 8490
October 2023

par [Block] TransVelSource [TransVelSource])

a : LMomFlowElement

«constraint»

i : RealSignallnElement tvSC: TransVeISourceConstralnt(I=sigcf) | Iﬁorﬁ:.f:_FoEeI
vel=sig*c
'_S'_' R_ l'l of 9 «equal» : - - - _—'
| o'9-Rea] sig M vel = IMomF.IV : Velocity!
e e U T P | [J
«equal»
«PhSConstant»

signal2Velocity : Velocity

Fig. 24. Parametric diagram for velocity source

TransFixed in Figure 14 has only a momentum port, with a velocity required to be zero, as
shown in Figure 25. The fixed boundary condition in Figure 12 is modeled by TransFixed
in Figure 13.

| par [Block] TransFixed[TransFixed])

a : LMomFlowElement
i_IMc;nF?: Fgrce_' «constraint»
N | " tfc : TransFixedConstraint
————— «equal» -
| IMomF.IV : Velocity * d {tv=0}
_____]

Fig. 25. Parametric diagram for fixed boundary condition

4.2. Rotational Mechanics Library

The rotational mechanics library enables SysPhS modeling of mechanical components
changing orientation (angle) in one dimension, such as rotary springs, dampers, inertia,
as well as gear trains, but not changing position. Position and orientation of rotational
axes, and multi-axis rotational effects, such as gyroscopic precession, are not considered.

Figure 26 shows an example rotational system, based on one from [14], Figure 4.16. It
consists of flywheels with significant inertia (i1,i2,i3) connected by long shafts (k1,k2) act-
ing as torsional springs, gears (G1,G2) with non-negligible inertia (i4,i5), a torsion spring
(k3), a rotary damper (d3) and an angle sensor.

23

NIST IR 8490
October 2023

i1 kl kz i2
T —
; s« H |«
[@l@] —— (@[]
77 —— 77
942 i
li Eo% ks & 0
4 —
2 :77 d 77
is/vE 1

Fig. 26. An example rotational system

The system in Figure 26 is modeled with SysPhS in Figure 27, an IBD connecting compo-
nents defined by the rotational mechanics library BDD in Figure 28 (see Section 2.2 about
these kind of diagrams). Figure 27 refers to blocks in library by their names, appearing
to the right of the colon at the top of each larger rectangle. The role each block plays
in the system appears to the left of the colon in each, following the labels in Figure 27.
The applied torque 7 to i; varies as a sine wave, controlled by a component by a signal
(unidirectional) port (see Section 3 about signal components).

ibd [Block] ystem [basicRotary 1)

i1 : Rotinertia] b a l k1 : RotLinearSpring] b i i b a k2 : RotLinearSpring 12+ Rotinertia
[>] ntiavates nlialVales [+ 2 v {<] nitalVales < P
aV=00rads k=1.0N-m/rad =10 kgm? k=1.0N-m/rad H=10kgme
r=20kgm? relPhi=0.0 relPhi=0.0 Okg
Rt
*

Lv |
gearPair : IdealFixedGearbox
initalValues
gearRatio =-2.0

sine : SineRealSignal ;1 i 1

inialValues
amplitude = 1.0
frequency =1.0 1/s
offset=0.0

I

i3 : Rotlnertia] l ang : AngleSensor]

initalValues 3 initialValues
= aV=0.0rad/s = angle=0.0
r=1.0kgm? angle2Signal = 1.0

initalValues
[<»] aVRel = 0.0 rad/s
k=1.0N-m/rad

relPhi=0.0

d=1.0Nm-sirad

—F

Fig. 27. Figure 26 modeled in SysPhS with initial conditions and sources

Figure 27 connects rotary components at their physical interaction ports, notated by small
rectangles with bidirectional arrows inside. Flows of angular momentum through these
ports are described by torque and angular velocity, which are angular momentum’s rate of
flow and potential to flow, respectively (conserved and non-conserved variables, respec-
tively).!! Angular velocity is the potential to flow of angular momentum, since two objects

"1Some rotational mechanics modeling software use absolute angle and angular velocity as port variables,

24

NIST IR 8490
October 2023

rotating at the same velocity cannot exchange angular momentum. Angular velocity, ac-
celeration and torque have a direction, indicated by the sign of their variables. This library
assumes the sign of angular acceleration and the torque causing it are the same. Torque is
the rate of change of angular momentum, allowing allow one to consider angular momen-
tum flow separately from rotational inertia.

Torques on ports of the same rotational inertia element can differ when some of the an-
gular momentum is stored in the element or released from it. Figure 28 defines the ro-
tational mechanics library introduced by this paper and used in Figure 27. It includes
TwoFlangeRotComponent, which includes components with two angular momentum ports.
CompliantRotComponent is a TwoFlangeRotComponent where the ports rotate relative to
each other, such as rotational springs and dampers. It has two component variables, aVRel
for the relative angular velocity between the ports and torqueThru for the rate at which
angular momentum is flowing through the component. This component does not include
a variable for relative displacement between the two ports, because it may be desirable to
have rotary components which do not integrate displacement (relPhi).

such as the Modelica Standard Library for Rotational Mechanics [15]. SysPhS uses torque and angular
velocity to enable flows between components to the taken as energy flows, with rate of energy flow (power)
being the product of the variables.

25

NIST IR 8490
October 2023

bdd [Package] SysPhS Rotational Mechanics [Rotational Mech Components])

«interfaceBlock»
AMomFlowElement

flow properties
inout aMomF : FlowingAMol

«block»
FixedaVSource «block»
constraints Fixed
fCaVSc : FixedaVSourceConstraint constraints

m [1]

signal2AngVel : AngularVelocity = 1.0 rad/s

values

fC : FixedConstraint

«block»

TwoFlangeRotComponent

a: AMomFlowElement
aVCommand : RealSignallnElement

ports
aV : AMomFlowElement

ports
a : AMomFlowElement
b : AMomFlowElement

q—

«block»
«block» FixedTorqueSource
R i) constraints)
otinerta fCTSc : FixedTorqueSourceConstraint
constraints

flc : RotationallnertiaConstraint{readOnly}

values

T

signal2Torque : Torque = 1.0 N'm

«block»
CompliantRotComponent

aV : AngularVelocity
torqueThru : Torque
rl : Rotationallnertia c

values

ports
a: AMomFlowElement
: RealSignallnElement

angularAcceleration : AngularAcceleration

values phi: Angle
aVRel : AngularVelocity
torqueThru : Torque
T «block»
«block» y
«block» «block» AngleSensor AngularVelomFySensor
RotLinearSpring RotLinearDamper constraints . constraints)
po—— p— aSC : AngleSensorConstraint aVSC : AngularVelocitySensorConstraint

rLSC : RotLinearSpringConstraint

rLDc : RotLinearDamperConstraint

values

values

angVel2Signal : AngularVelocity = 1.0 rad/s

values values angle : Angle
k : RotationalStifiness d : RotationalDampingCoeff angle2Signal : Angle = 1.0 ports
relPhi : Angle relPhi : Angle s a :AM%mFIOVéEIement
a: AMomFlowElement i : RealSignalOutElement
i : RealSignalOutElement
«block» «block» «block»
RotLinearSpringWithDisplacementSensor IdealFixedGearbox IdealGearR2T
constraints constraints constraints

rLSWDSC : RotLinearSpringWithDisplacementSensorConstraint [0..*{redefines rLSC}

iGc : IdealFixedGearboxConstraint r2tc : [dealR2TConstraint

displacement2Signal : Angle = 1.

values

0

values
gearRatio : Real

values
ratio : RadianPerMetre

disp : RealSignalOutElement

ports

ports
a : AMomFlowElement

ports
rotA : AMomFlowElement

rotB : AMomFlowElement b : LMomFlowElement

Fig. 28. Rotational mechanics library

Figure 29 defines the constraint blocks referenced by constraint properties in Figure 28, ap-
pearing in compartments of each rotational library block (see Section 2.2 about constraint
modeling in SysML). BinaryCompliantRotConstraint defines constraints for all compo-
nents with two ports that might have different angular velocities, corresponding to system
components with two ends that might rotate with respect to each other, such as rotational
springs and dampers. Torques on these components sum to zero, as specified by ta + tb
= 0, while aVRel=aVb-aVa defines the relative angular velocity between ports a and b.!2
The derivative of relative angle is relative angular velocity, expressed as der(relPhi)=aVRel,
which means relative angle is an integral of relative angular velocity. Integration requires
an initial value, defined with a PhSVariable or by additional equations.

2Footnote 9 in Section 4.1 about applies to BinaryCompliantRotConstraint also, except for angular momen-
tum instead of linear.

26

NIST IR 8490
October 2023

bdd [Package] SysPhS Rotational Mechanics [Rotational Mech Constraints])

«constraint»
BinaryCompliantRotConstraint

constraints
{ta+tb=0}
{der(relPhi}=aVRel}
{ta=-torq}
{aVRel=aVb-aVa}

parameters
aVa : AngularVelocity{unit = radianPerSecond}
aVb : AngularVelocity{unit = radianPerSecond}
aVRel : AngularVelocity{unit = radianPerSecond}
relPhi : Angle
ta : Torque{unit = newtonMetre}
tb : Torque{unit = newtonMetre}
torq : Torque{unit = newtonMetre}

| I

«constraint»
FixedConstraint
constraints
{av=0}
parameters
aV : AngularVelocity{unit = radianPerSecond}

«constraint»
RotationallnertiaConstraint
constraints
torg=rl*aA}
torg=ta+tb}
{aVa=aVb}
aV=aVa}
aA=der(aV)}
(@V=der(phi)}
parameters

aA : AngularAcceleration{unit = radianPerSecondSquared}
aV : AngularVelocity{unit = radianPerSecond}

aVa : AngularVelocity{unit = radianPerSecond}

aVb : AngularVelocity{unit = radianPerSecond}

phi : Angle

rl: Real

ta : Torque{unit = newtonMetre}

tb : Torque{unit = newtonMetre}

torq : Torque{unit = newtonMetre}

«constraint»
IdealFixedGearboxConstraint
constraints
{0=gr'ta+tb}
{aVb*gr=aVa}
parameters

aVa : AngularVelocity{unit = radianPerSecond}
aVb : AngularVelocity{unit = radianPerSecond}

gr: Real

ta : Torque{unit = newtonMetre}
tb : Torque{unit = newtonMetre}

«constraint» «constraint» "
RotLinearSpringConstraint RotLinearDamperConstraint «oonstraint>
IdealR2TConstraint
constraints constraints -
{torq=k*relPhi} {torq=d*aVRel} {O=ratio*ta+fb} constraints . «constraint»)
parameters parameters {aVa=ratio*tvb} FixedTorqueSourceConstraint
k: Real d:Real m—— constraints
torg=-cf*si
‘r aVa : AngularVelocity{unit = radianPerSecond} ftorg sigh
fb : Force{unit = newton} parameters
«constraint» ratio : RadianPerMetre{unit = radianPerMetre} cf : Torque{unit = newtonMetre}
i i i i ta : Torque{unit = newtonMetre} sig : Real
Di .
RotLinearSpringWith tSensorC t tVb : Velocity{unit = metrePerSecond} torq : Torque{unit = newtonMetre}
constraints
{sig=relPhi/cf}
parameters «constraint»
cf: A’gglel «constraint» AngleSensorConstraint
g Rea AngularVelocitySensorConstraint constraints
constraints Ea_\/=dﬁ§§;\i))
- {sig=aV/cf} SIg=p
] «constraint») {torg=0} {torq=0}
FixedaVSourceConstraint
straints parameters . para_meters)
{aV=cPsig) constraim aV : AngularVelocity{unit = radianPerSecond} aV : AngularVelocity{unit = radianPerSecond}
9 cf : AngularVelocity{unit = radianPerSecond} cf : Angle
parameters sig : Real phi : Angle
aV : AngularVelocity{unit = radianPerSecond} torq : Torque{unit = newtonMetre} sig : Real)
cf : AngularVelocity{unit = radianPerSecond} torg : Torque{unit = newtonMetre}
sig : Real

Fig. 29. Constraints for rotational mechanics library

The rest of this section covers the components in Figure 28 and parametric diagrams that
bind their properties to constraint parameters in Figure 29 (see 2.2 about these kind of

diagrams).

The block RotLinearSpring in Figure 28 models a torsional spring in which torque is lin-
early proportional to angle between its ports, without any losses or inertia, as expressed
in RotLinearSpringConstraint, a specialization of BinaryCompliantRotConstraint in Fig-
ure 29. Figure 30 shows the parametric diagram for RotLinearSpring. That is this spring
implements the rotary version of Hooke’s law. RotLinearSpring has a parameter k for ro-
tational stiffness which is in units of N*m/rad. The RotLinearSpringConstraint is derived
from BinaryCompliantRotConstraint, so angle is calculated by integrating relative angular
velocity between the two ports. In Figure 26, the long shafts ki, ko, and torsional spring k3
are modeled using RotLinearSpring blocks in Figure 27.

27

NIST IR 8490
October 2023

par [Block] RotLinearSpring [RotLinearSpring])

«equal»

b : AMomFlowElement

«equal»

«equal»

k : RotationalStiffness

«constraint»
rLSC : RotLinearSpringConstraint
a: AMomFlowElement {torg=K'relPhi}
oM emEr - Tame «equal»
aMomF.trq : Torque
L _ 2MomPim:Toque HEY " []
MomF.aV : AngularVelocty | «equab
a_om_a /i guar_ eoEty_ :I AaVa "aVbl:
«PhSVariable» «equal» A .
relPhi M
relPhi : Angle 1 org [
«PhSVariable» «equal» N
aVRel : AngularVelocity :I aVRel K
«equal»
«PhSConstant»

«PhSVariable»
torqueThru : Torque

Fig. 30. Rotary linear spring parametric diagram

RotLinearDamper in Figure 28 defines a component where torque is linearly proportional
to the angular velocity difference between the two ports, as expressed in RotLinearDamper-
Constraint in Figure 15. Figure 31 shows a parametric diagram for RotLinearDamper that
binds its properties to parameters from TransLinearSpringConstraint. Figure 31 shows the
parametric diagram for RotLinearDamper. Rotational damping coefficient is defined in
units of N* m*s/rad. This component exhibits no inertia and torque is linearly proportional
to velocity difference. This component is used to model rotary damper k; in Figure 26.
This may also be used to model linear/viscous friction between components or be used
to add a simple model of mechanical loss. Although care should be taken when using this
component to model friction as viscous friction and coulomb friction result in very different

behavior.

par [Block] RotLinearDamper [RotLinearDamper])

28

«constraint»
rLDc : RotLinearDamperConstraint

a: AMomFlowElement {torg=d*aVRel} b : AMomFlowElement

- = = = — — — «equal» «equal» e = = = == =
r aMomF.trq : Torque | :‘ “ta A‘bE Lo anrrf.trq_.ToEue_ |
L — — — — — —

——————— | «equab» _ = = = — = —
'_aMomF.aV:AnguIal‘Velocity T equa® :‘ “aVa "aVbl: d '_aMomF.aV:AnguIarVelocity |
L e e - = = = L - - - - — — =

«PhSVariable» «equal» A . I «PhSVariable»
relPhi «equaly»
relPhi : Angle :l “torq I: torqueThru : Torque
i ual
«PhSVanabIe». «equal» :"‘aVReI d
aVRel : AngularVelocity |_|
«equal»
«PhSConstant»
d : RotationalDampingCoeff
Fig. 31. Rotary damper parametric diagram

NIST IR 8490
October 2023

One component in Figure 28 that does not use a constraint generalized from BinaryCompli-
antConstraint is RotInertia, where the rate of change of angular velocity of a rotational in-
ertia is proportional to applied torque (the rotational equivalent of F' = ma), as expressed in
RotlInertiaConstraint in Figure 15. Figure 32 shows the parametric diagram for RotInertia
that binds its properties to parameters from RotInertiaConstraint.RotInertia has two ports
that have the same variable values, to resemble typical systems where other components
are attached to either ’side’ of the inertial object, as if the ports were rotating at the same
angular velocity (rigidly fixed to each other), though it is not necessary to connect to both
ports. This means Switching the connections on each ’side’ of Rotlnertia does not change
the direction of rotation. The whole inertial element has the same angular velocity, which
is given with respect to a global frame. Rotlnertia also has an angle which is given relative
to a user specified start angle.

par [Block] RotInertia[Rotlnerﬁa])

«constraint»
flc : RotationallnertiaConstraint
{torg=rl*aA,
torq=ta+tb,
aVa=aVb,
aV=aVa,
a : AMomFlowElement aA=der(aV), b : AMomFlowElement
F— = - — = — — | aV=der(phi)} F— = - — = — — |
aMomF.trq : Torque «equal» aMomF.trq : Torque
Lo T «equal» :l ta tb E e
= = = = =
aMomF.aV : Angularvelocity| (| | = = = = - — —
L - — _ _ «equal» :‘ aVa avb E «equal» raMomF.aV:AnguIarVeIocityI
«equal» :l aA phi I: «equal»
rl av torq «PhSVariable»
[[[] phi : Angle
«PhSVariable» «equal» «equal»
angularAcceleration : AngularAcceleration «equaly «PhSVariable»

torqueThru : Torque

«PhSConstant» «PhSVariable»
rl : Rotationallnertia| aV : AngularVelocity

Fig. 32. Rotational inertia parametric diagram

Rotlnertia is applied in Figure 26, where it is used to model flywheels i;,i», and the inertia
of gearwheels 14 and i5. Inertia i3 connects with a damper on the left side and a rotation
sensor on the left side. It would be equivalent to connect the rotation sensor to the left port,
however, by connecting to the right port, we can better capture that the rotation sensor is
on the right of the component. RotInertia has a parameter I which defines rotational inertia
in units of kg*m?.

The library in Figure 28 provides two elements for transforming angular momentum, Ideal-
FixedGearBox and IdealGearR2T. IdealFixedGearbox(parametric diagram shown in Figure
33) models a ideal rotary transformer that permits transformation of rotation with unlimited
rotation angle. It assumes no damping, backlash, elasticity, and that the gearbox itself may
not rotate. IdealFixedGearbox has two ports, rotA and rotB and PhSConstant gearRatio is
the ratio of the angular velocity of rotA to rotB. When it is used to model a pair of external

29

NIST IR 8490
October 2023

gears,!3 as with G| and G, in Figure 26, gearRatio should be a negative number to ensure

the gears will rotate in opposite directions. This component will not necessarily convserve
angular momentum because it is implicity fixed. Some angular momentum flows to or
from the rotational ground. Some elasticity, damping, and inertia can be approximated by
connecting the elements for those effects. Figure 27 does this for the inertia of each gear,
modeled with Rotlnertia blocks connected on either side of the IdealFixedGearbox.

par [Block] idealFixedGearbox| ideaIFixedGearbox])

«constraint»
IGc : IdealFixedGearboxConstraint

rotA : AMomFlowElement {0=gr*ta+tb, rotB : AMomFlowElement
aVb*gr=aVa}
T 7 aMomF.trq: Torque | «equaly] ta o [] «equab | r aMomF.trq : Torque |
L - - - - - =1 - | b - __
ra\lqom_F.aV—: A;gugrvaocall «equaly :‘ aVa or aVb I: «equaly raMom_F.a\T: A_nguErvaocFyl
L - - - - - - = |_| _______
«equal»
«PhSConstant»

gearRatio : Real

Fig. 33. Ideal fixed gearbox parametric diagram

IdealGearR2T(parametric diagram shown in Figure 33) enables transforming angular mo-
mentum to translational momentum without losses, elasticity, backlash in a manner similar
to how a gear rack converts rotary motion to linear motion and vice versa. IdealGearR2T
has a parameter ratio which defines the ratio of between angular velocity to linear velocity
in units of rad/m. This component can be used to represent an ideal gear rack or a belt/screw
drive in which elasticity and losses are ignored.

13Gears with teeth on the outside

30

NIST IR 8490
October 2023

par [Block] IdealGearR2T [IdealGearR2T])

«constraint»
r2tc : IdealR2TConstraint

a : AMomFlowElement {O=ratio*ta+fb, b : LMomFlowElement
_______ aVa=ratio*tVb} - _ _ _— _— _— —
'_aMomF.aV:AnguIarVeIocity «equab :l aVa b «equal» r IMomFf : Force
T oy !] L e
r _aM;mlqrq :Tl'orq:e o equab :l ta ratio Vb l: «equal» r _IM;mFK/:\TeIon T
L ————— - ' [] Lo oo -
«equal»

«PhSConstant»
ratio : RadianPerMetre

Fig. 34. Ideal rotary to translational converter

Figure 27 models gears G; and G; as a single IdealFixedGearbox with a gear ratio of -
2, which is negative to capture that the gear pair reverses rotation direction between the
shafts connected to it. If one were to reverse the way rotA and rotB were connected in
the diagram, in order for the model to be equivalent the gear ratio would need to be -1/2
because gear ratio is defined as rotA angular velocity to rotB angular velocity.

The library in Figure 28 has source and sensing elements for providing or sensing quanti-
ties derived from ports. This library has two source elements for providing either angular
velocity or torque. Both source elements take in a real signal and output the corresponding
controlled variable on an angular momentum port.

FixedTorqueSource(parametric diagram shown in Figure 35) is a block which connects to
an angular momentum port and applies a torque proportional to an input real signal. It is
considered fixed as it is implicitly fixed to the ground. As opposed to being free floating
and applying a torque between two components it applies a torque between a fixed ground
and anything attached to its port. Fixed torque source has a parameter signal2Torque which
specifies the conversion factor between the unitless real signal and torque output which
is in units of Nm. A FixedTorqueSource is added to the system shown in Figure 26 and
Figure 27 to model the torque boundary condition. FixedTorqueSource is connected to a
block which outputs a sine wave real signal and to the left port of i;.

31

NIST IR 8490
October 2023

par [Block] FixedTorqueSource[FixedTorqueSource])

¢ : RealSignallnElement
'_rSE: F\;eal
L

B «equal»

«constraint»

FCTSc : FixedTorqueSourceConstraint
{torq=-cf*sig}

sig

cf torq

-

«equal»

«PhSConstant»
signal2Torque : Torque

a : AMomFlowElement

«equal»

" aMomF.av : A?guErvaoci_ty |
L

Fig. 35. Fixed torque source parametric diagram

FixedaVSource provides angular velocity at a port which is proportional to an input real
signal. It is fixed in the same manner as FixedTorqueSource is fixed. It applies an angular
velocity with respect to a non rotating frame. As shown in Figure 36 FixedaVSource,
defined in Figure 36, has a parameter signal2AngVelocity which is a conversion factor
between unitless signal and angular velocity, it is given in units of rad/s.

par [Block] FixedaVSource [FixedaVSource])

aVCommand : RealSignallnElement

«equal»

'_rSE: F\;eaI-|
]

«constraint»
FCaVSc : FixedaVSourceConstraint
{aV=cf*sig}

sig of aVv

O

«equal»

«equal»

«PhSConstant»
signal2AngVel : AngularVelocity

a : AMomFlowElement

" aMomF.aV : A:guErvaocFy |

Fig. 36. Fixed angular velocity source parametric diagram

In contrast to source elements there are also sensing elements. Sensing elements connect
to a port and output a real signal proportional to a quantity sensed on that port. The library
in Figure 28 includes two sensing elements AngularVelocitySensor and AngleSensor.

32

NIST IR 8490
October 2023

par [Block] AngularVelocitySensor [AngularVelocitySensor])

«constraint»
aVSC : AngularVelocitySensorConstraint
{sig=aV/cf,
a : AMomFlowElement torq=0}
T aMomF.av - AFguErvaocE || «equal» :l AV |:ReiISEnal_0utElement
Lo - sig «equal» rSig : Real !
T ™ aMomF.trq: Torque | «equal» :‘ torg cf L
e [1
«equal»
«PhSConstant»

angVel2Signal : AngularVelocity

Fig. 37. Angular velocity sensor parametric diagram

AngularVelocitySensor(parametric diagram shown in Figure 37) outputs a real signal pro-
portional to the angular velocity on the attached angular momentum port. The parameter
angVel2Signal gives the inverse of the conversion factor between angular velocity and sig-
nal and is given in units of rad/s.

AngleSensor, defined in Figure 38, outputs a real signal proportional to angle. It must
be noted that the angle sensor works by integrating velocity and requires that an initial
angle be specified. This sensor has a parameter angle2Signal which specifies the inverse
of the conversion factor between angle and signal, and is given in units of rads. There is
also a generalization of rotational linear spring, RotLinearSpringWithDisplacementSensor
which outputs a real signal proportional to the displacement of the spring. RotLinear-
SpringWithDisplacementSensor has a parameter displacement2Signal which specifies the
inverse conversion factor between realSignal and displacement. This is given in units of
rads.

par [Block] AngleSensor [AngleSensor])

«constraint»)
aSC : AngleSensorConstraint
{aV=der(phi),
sig=phi/cf,
a : AMomFlowElement torq=0}
— = — — — = — | i : RealSignalOutElement
aMomF.aV : AngularVelocity } «equa :‘ aVv _ «equal» ,_g_ —
L - - - - - - sig E IrSig:ReaI
_______) o
L aMomF.trq : Torque | «equay :I torq cf phi
«equal» «equal»
«PhSConstant» «PhSVariable»

angle2Signal : Angle angle : Angle

Fig. 38. Angle sensor parametric diagram

33

NIST IR 8490
October 2023

4.3. Entropy (Heat) Transfer Library

The entropy (heat) flow library enables SysPhS modeling of one dimensional movement
of entropy (heat). It includes 1D models of all basic heat transfer processes including
conduction, radiation, and convection.

Figure 39 shows an example thermal system. It is the heated bed of a Fused Deposition
Modeling (FDM) 3D printer, see Section 5.2.4. Heat flows from a heater on the bottom to
an insulating layer above it (glass), which stores some heat and sends the rest through its
top surface to air of constant temperature. The heater and surface are treated as having uni-
form temperatures Tjeqrer and Ty, r, respectively, with the surface temperature measured
by a sensor on the surface of the bed. The air is assumed to be a large thermal reservoir
with constant temperature T,;-. The heated bed insulation and heater are assumed to have
some heat capacity, but with negligible heat loss through the sides and bottom of the bed.
While the uniform temperature assumption for the heater and insulation is not necessarily
realistic, it offers a simple approximation useful for estimating the warm up time and a
rough simulation of whether the controller will keep the surface temperature within accept-
able bounds. The effects of changes in bed temperature due to addition of hot filament have
been excluded. Simulation of this system is covered in Section 5.2.

convection Tair
bed insulation //// Tsurf
Theater \ // /

heater——

Temperature Sensor

Fig. 39. An example thermal system

The system in Figure 39 is modeled with SysPhS in Figure 40, an IBD connecting compo-
nents defined by the thermal library BDD in Figure 41 (see Section 2.2 about these kind of
diagrams). Figure 40 refers to blocks in library by their names, appearing to the right of the
colon at the top of each larger rectangle. The role each block plays in the system appears
to the left of the colon in each, following the labels in Figure 40.

34

NIST IR 8490
October 2023

ibd [Block] HeatedBed[HeatedBed | - - =
setTemp defaultValue
]) glassPlate : BedPart] R cnsnt = 0.55
setPoint T ™ tempControl : PIDControl __LjoutSig i - bedHeater : Heater
<]

defaultValue defaultValue i -
bedHeatCapacity : ThermalCapacitor
kp=7.0 signal2Power = 1.0 W < pacity P:

initialValues
heatCapacity = 385.0 J/K
Temp = 293.0 K

convect : Convection

defaultValue
signal2EntropyRate = 1.0 W/K

bedlnsulation : ThermalConductor |

: initialValues
i d 4 conductance = 91.6 W/K
defaultValue
signal2Temperature = 1.0 K

Fig. 40. Figure 39 modeled in SysPhS with initial conditions and ports for control signals and
coupling to environment

Figure 40 connects thermal components at their physical interaction ports, notated by small
rectangles with bidirectional arrows inside. Flows of entropy through these ports are de-
scribed by entropy flow rate and temperature, which are entropy’s rate of flow and potential
to flow, respectively (conserved and non-conserved variables, respectively).!* Temperature
is the potential to flow of entropy, since two objects at the same temperature cannot ex-
change entropy. >

The heated bed includes a 214 x 214 mm glass pane that is 4 mm thick. The thermal
conductivity of glass is about 0.8 W/(m*K) and thermal conductance along a rectangular
section is g = k* A /L, where g is the thermal conductance, k is the thermal conductivity of
the material the section is made from, L is the thickness, and A is the area of the section,
resulting in G= 0.8W /(m * K) * (0.214m)? /0.004m = 91.592W /k, the conductance of the
ThermalConductor block bed insulation. It is assumed the heat capacity of the heated
bed is largely due to the heat capacity of the glass. The specific heat of glass is taken as
0.84 J/(g*K) and the density of glass is 2500 kg/m?, giving a thermal capacity of 385 J/K.
Assuming a constant convection coefficient of 12, which is reasonable for a horizontal plate
in free convection, the convection conductance is 0.55 W/K.

Entropy flow ports use the variables of entropy flow rate and temperature, which multiply
to power. Entropy flow can be more general than heat transfer. This convention has been
shown to be useful in the analysis of systems including heat engines and heat pumps [17].
One should keep in mind that while entropy is the analog of electric charge and momentum,
it is often not conserved in heat transfer. All heat transfer elements in this library do not
conserve entropy. So the entropy flow rate out of each element will exceed the entropy flow
rate into each element for any finite temperature difference. In heat conduction with a finite
temperature difference entropy is produced. So in the elements which model this, Thermal
Conductor, ConductiveBar, Convection, and Radiation, with any temperature difference,

4Heat transfer is typically modeled with power (energy rate) and temperature, such as the Modelica Standard
Library for Heat Transfer [16]. SysPhS uses entropy rate and temperature to enable flows between compo-
nents to the taken as energy flows, with rate of energy flow (power) being the product of the variables.
I5This assumes no mass flow, which this library does not currently address.

35

NIST IR 8490
October 2023

the entropy flow rate out will exceed the entropy flow rate in because these elements gener-
ate entropy. Although between ports, entropy flow is always conserved. Non-zero entropy
flow rates can happen when temperature on the same component differs between two ports.

Figure 41 defines the thermal library introduced by this paper and used in Figure 40. It
includes ThermalTwoPort, which has two entropy ports and is specialized to describe ele-
ments which transfer heat between the ports. Figure 42 defines the constraint blocks ref-
erenced by constraint properties in the library, appearing in compartments of each thermal
block (see Section 2.2 about constraint modeling in SysML).

36

NIST IR 8490
October 2023

bdd [Package] SysPhS Thermal [Thermal Components])

«block» < «block»
ThermalTwoPort FixedTemperature
ports constraints
a : EntropyFlowElement fTC : FixedTemperatureConstraint <block»
b : EntropyFlowElement
values Heater

AN .
t_set: Temperature PR
ports hC : HeaterConstraint

a : EntropyFlowElement valros

signal2Power : Power = 1.0 W

ports
a : EntropyFlowElement
i : RealSignallnElement

«block»
ThermalConductor

«block» constraints)
ConductiveBar tCC : ThermalConductorConstraint
constraints values
¢BC : ConductiveBarConstraint conductance : EntropyFlowRate
values
barArea : Area «block»
leng : Length BodyRadiation

conductivity : ThermalConductivity

constraints

bRC : BodyRadiationConstraint

values
radiationConductance : Area
stefanBoltzmannConstant : Stefan-Boltzmann = 5.670374419E-8 W-m~2-K~*
powerAToB : Power

«block» «block»
T tureS «block» c i
emperatureSource ThermalCapacitor onvection
constraints) . . constraint§
tSC : TemperatureSourceConstraint {CC : ThermalCapacitorConstraint cC : ConvectionConstraint
values valies values
signal2Temperature : Temperature heatCapadity : Heat Capacity signal2EntropyRate : EntropyFlowRate

ports temp : Temperature ports

a : EntropyFlowElement fluid : EntropyFlowElement
i : RealSignallnElement . ports gc : RealSignallnElement
a: EntropyFlowElement solid : EntropyFlowElement

«block» «block»
TemperatureSensor FixedThermalPower
constraints constraints
tSC : TemperatureSensorConstraint fTPC : FixedThermalPowerConstraint
values values
signal2Temperature : Temperature power : Power
ports ports
a : EntropyFlowElement p1 : EntropyFlowElement
i : RealSignalOutElement

Fig. 41. Entropy (heat) transfer library

37

NIST IR 8490
October 2023

bdd [Package] SysPhS Thermal [Thermal Constraints])

«constraint» «constraint» «constraint»
HeaterConstraint ConductiveBarConstraint FixedThermalPowerConstraint

constraints constraints constaints

{if (pow*cf)>0 then {-srb=sra+k*(area/leng)*((ta-tb)"2/(ta*tb))} " _

—pow*cf=sfrt: {sra=((k*(arealleng))"(ta-tb))/ta} {t out's_out=-pow}

else parameters

0=sfr't; area : Real parameters pow : Real

end if} K: Réal s_out : EntropyFlowRate{unit = wattPerKelvin}
parameters leng : Length{unit = metre} t out: Temperature{unit = kelvin}

cf: Real sra : EntropyFlowRate{unit = wattPerKelvin}

pow : Real srb : EntropyFlowRate{unit = wattPerKelvin}

sfr : EntropyFlowRate{unit = wattPerKelvin} ta : Temperature{unit = kelvin}

t : Temperature{unit = kelvin} tb : Temperature{unit = kelvin}

«constraint»
ThermalCapacitorConstraint

constraints
{tm*sr=c*der(tm)}
{tin=tm}

parameters
¢:Real
sr : EntropyFlowRate{unit = wattPerKelvin}
tin : Temperature{unit = kelvin}
tm : Temperature{unit = kelvin}

«constraint»

constraint
ThermalConductorConstraint \ n

TemperatureSourceConstraint

constraints

{-srb=sra+g*((ta-tb)*2/(ta*tb))} o constraints
{sra=(g*(ta-tb))ta} {t=cf"signal}
parameters
parameters cf : Temperature{unit = kelvin}

g: Real

sra : EntropyFlowRate{unit = wattPerKelvin}
srb : EntropyFlowRate{unit = wattPerKelvin}
ta : Temperature{unit = kelvin}

tb : Temperature{unit = kelvin}

signal : Real
t : Temperature{unit = kelvin}

«constraint»
TemperatureSensorConstraint
constraints
{t=signal*cf}
{sFRate=0}
parameters

cf : Temperature{unit = kelvin}

sFRate : EntropyFlowRate{unit = wattPerKelvin}
signal : Real

t: Temperature{unit = kelvin}

«constraint»
ConvectionConstraint
constraints

{-srf=srs+gcSig*cf*((ts-tfy*2/(ts*tf))}
{srs=(gcSig*cf*(ts-tf))/ts}

parameters
cf : EntropyFlowRate{unit = wattPerKelvin}
gcSig : Real
srf : EntropyFlowRate{unit = wattPerKelvin}
srs : EntropyFlowRate{unit = wattPerKelvin}
tf : Temperature{unit = kelvin}

ts : Temperature{unit = kelvin}

sra : EntropyFlowRate{unit = wattPerKelvin}
srb : EntropyFlowRate{unit = wattPerKelvin}
ta : Temperature{unit = kelvin}
tb : Temperature{unit = kelvin}

«constraint»
BodyRadiationConstraint

constraints «constraint»
{powab=gr*sigma*(ta”4-tb"4)} FixedTemperatureConstraint
{srb=-powab/tb} constraints
{sra=powabl/ta} {ta=tset}

parameters parameters
gg\:vaﬁélPower (unit= Wat) ta : Temperature{unit = kelvin}

: - tset : Te It it = kelvi

sigma : Stefan-Boltzmann {unit = WattPerMetreSquaredKelvinFourthPower} emperature{unit = kelvin}

Fig. 42. Constraints for the thermal library

The rest of this section covers the components in Figure 41 and parametric diagrams that
bind their properties to constraint parameters in Figure 42 (see 2.2 about these kind of

diagrams).

The ThermalCapacitor block in Figure 41 models an component that can store heat, as
expressed in ThermalCapacitorConstraint in Figure 42. Figure 43 shows the parametric
diagram for ThermalCapacitor that binds its properties to parameters from ThermalCapac-
itorConstraint. The component has a variable for its temperature, assumed to be the same

38

NIST IR 8490
October 2023

throughout, and a parameter for heat capacity in units of J/K'®. Heat capacity of an object
is the specific heat of its material times its mass. The heat capacity of the bed in Figure 40,
bedHeatCapacity, is modeled with a ThermalCapacitor.

par [Block] ThermalCapacitorl ThermalCapacitor])

«constraint»
tCC : ThermalCapacitorConstraint
{tm*sr=c*der(tm),
tin=tm}
a : EntropyFlowElement

I SFSFR: Eﬁr(;)yFEwEate_‘ «equab :‘ sr

L o— — — — — _— I

T 7 skt :?em;eragure_ - «equaly :‘ tin

T ' []

«equal» «equal»

«PhSConstant» «PhSVariable»

heatCapacity : Heat Capacity| | temp : Temperature

Fig. 43. Thermal capacitor

ThermalConductor in Figure 41 models a component that conducts heat without storing
or generating any, as expressed in ThermalConductorConstraint in Figure 42. Figure 44
shows the parametric diagram for thermalConductor that binds its properties to parame-
ters from ThermalConductorConstraint. ThermalConductor is based on the description of
thermal conductors given in [14] and [17], but reformulated in SysPhS rather than bond
graphs. ThermalConductor has a parameter conductivity for the thermal conductance of
the connection given in W/K, a measure of entropy flow rate. Calculating the thermal con-
ductance depends on the properties of the connection. For heat conduction along the length
of an object with constant area, thermal conductance may be calculated as G = kxA/L.
Where k is the thermal conductivity of the material in W/(m*K), A is area of the cross
section in m? and L is the length of the section. The block ConductiveBar acts the same
as ThermalConductor, except it allows one to specify the thermal conductivity, area, and
length rather than a thermal conductance. Heat transfer through the heated bed insulation
in Figure 40, bedInsulation, the thermal resistance of the heated bed insulation, is modeled
with ThermalConductor. It should be noted that bedInsulation and bedHeatCapacity are
single physical object which is modeled with the block glassPlate.

16This is the same units as entropy, but heat capacity is a different physical phenomena than entropy. Change

in entropy for a reversible process is kS = STQ whereas heat capacity is defined as C = %

39

NIST IR 8490
October 2023

par [Block] ThermalConductor] ThermaIConductor])

«constraint»)

tCC : ThermalConductorConstraint

{-srb=sra+g*((ta-tb)*2/(ta*tb)),
a : EntropyFlowElement sra=(g*(ta-tb))/ta} b : EntropyFlowElement
[SFSFR: EntropyFIowRate_| «equal» :l sra srb I: «equab | T sFoFR: EntropyFIowRate_|
Lo - - - - I Lo - - I
[aFt - Tammararra | «€qual» «equa» | T 7 oFt- Temneratire

sF.t : Temperature q sF.t : Temperature

o | :I ta I_gl tbl: o

«equal»

«PhSConstant»
conductance : EntropyFlowRate

Fig. 44. Thermal conductor parametric diagram

Convection in Figure 41 is for modeling heat transfer between a solid and a fluid. Figure
45 shows its parametric diagram that binds its properties to parameters from Convection-
Constraint. This is modeled as if the convection medium were a thermal conductor that has
a conductance controllable by a realSignal, to approximate convection from a solid object
by changing the conductivity according to some chosen function of fluid flow. This con-
ductivity is in W/K and may be calculated as & x A for simple geometry and heat transfer
scenarios, where A is the area in contact with the fluid and h is the convection coefficient,
which depends on the fluid, flow properties, geometry, and scenario in question. Heat
transfer from the surface of the heated bed to the air, bedConvection in Figure 40, Section
4.3, is modeled with Convection. Its convection conductivity is determined by the constant
real signal convectionCoefficientBed input. The surface area of the bed is constant, and the
free convection (in which fluid motion is not driven by any external source such as a fan or
pump) on the bed is assumed to be constant so the convective conductivity is constant. This
block is analogous to the convection element in the Heat Transfer library of the Modelica
Standard libraries [16]. The convection model does not include thermal fluid effects and or
address temperature change of a fluid as it moves through a pipe.

40

NIST IR 8490
October 2023

par [Block] Convection[Convection])

«constraint»)
cC : ConvectionConstraint
{-srf=srs+gcSig*cf*((ts-tf)"2/(ts*tf)),
srs=(gcSig*cf*(ts-tf))/ts}
solid : EntropyFlowElement fluid : EntropyFlowElement
—————— = ualp - — — — — — =
[SF.SFR: EntropyFlowRate «equal» :l srs srf d [SFSFR: EntropyFlowRate
o o [| e - - = = — I
______ — |«equal» equalp —_ - - - - = 4
r sF.t : Temperature :l ts tf I__K I sF.t : Temperature
Lo _ _ _ I Lo _ _ _ I
cf gcSig
«equal» «equal»
«PhSConstant»
signal2EntropyRate : EntropyFlowRate
gc : RealSignalinElement
—_ —T —

| rSig : Real-|
]

Fig. 45. Convection parametric diagram

BodyRadiation in Figure 41 is for modeling heat transfer via radiation between the surfaces
of two bodies due to radiation. Figure 46 shows the parametric diagram for BodyRadiation
that binds its properties to parameters from BodyRadiationConstraint. This has a parameter
radiationConductance which specifies the radiation conductance in units of m?. The value
of radiation conductance depends on the emissivities, area, and geometry of the bodies in
which radiation transfer occurs. BodyRadiation has a PhSConstant stefanBoltzmannCon-
stant with an initial value of 5.670374419E-8 W-m—2-K—*, which should not be changed
in the library or its specializations.

par [Block] BodyRadiation[BodyRadiation])

«constraint»
bRC : BodyRadiationConstraint
{powab=gr*sigma*(ta*4-tb"4),

srb=-powab/tb,

a : EntropyFlowElement sra=powabl/ta} b : EntropyFlowElement
[= — — — —, |«equal» :I I: «equal» | — = = — — = -

sF.sFR: EntropyFIv::wRateI sra srb ! sF.sFR: EntropyFIowRateI
o — — — _— «equal» — - - - —
P _ «equal» :l a tb I: . _

sF.t : Temperature sF.t : Temperature
o | sigma gr powab - o _ |
«equal» \L‘Jal»\ | «equal»
«PhSConstant» «PhSConstant» «PhSVariable»
stefanBoltzmannConstant : Stefan-Boltzmann radiationConductance : Area powerAToB : Power

Fig. 46. Body radiation parametric diagram

The only thermal sensing element in the library is a temperature sensor, since entropy flow
sensors do not appear to exist. It outputs a real signal proportional to the temperature on

41

NIST IR 8490
October 2023

its entropy port. The PhSConstant signal2Temperature (shown in Figure 47) gives the con-
version factor between the real number output and the temperature measured. As sources,
a fixed temperature source, a controllable temperature source, a fixed thermal power, and
a model of a heater are used. There is no entropy flow source even though entropy flow
is a power conjugate variable because it is not clear what an entropy flow source would
correspond to in the physical world .

par [Block] TemperatureSensor| TemperatureSensor])

«constrainty»
tSC : TemperatureSensorConstraint
‘E FlowEl {t=signal*cf, i : RealSignalOutEl
ra_nt_ropl T _emiﬂ_‘ sFRate=0} I i : RealSignalOutElement
sF.sFR : EntropyFlowRate «equal» . «equal» - — — 1
- — p_y _ q :I sFRate signal IrS|g:ReaIJ
—————— - «equal» cf = — —
[™ sF.t: Temperature]t
C ' [
«equal»
«PhSConstant»

signal2Temperature : Temperature

Fig. 47. Temperature sensor parametric diagram

Heater in Figure 41 is a heat source controlled by a real signal. Figure 48 shows the para-
metric diagram for Heater, which binds its properties to parameters from HeaterConstraint.
It takes in a real signal and outputs a heat flux out of this part, expressed as a negative flow
rate, proportional to the real signal, as shown in heaterConstraint. If the real signal is less
than zero, no power is output, preventing the heater from extracting heat from the system
rather than providing it. The heater in Figure 39, bedHeater, is modeled in Figure 40 with
Heater.

par [Block] Heater [Heater])

«constraint»
hC : HeaterConstraint
{if (pow*cf)>0 then
-pow*cf=sfr't;
else
0=sfr't, :

i : RealSignalinElement end if} «equal» 2 En_troE(Flo_wEl_emTt —
e o 1 «equal st [] sFSFR : EntropyFlowRate |
| 1Sig: Real :I pow .
— = = J — = ="

«equaly» . |
o t I: q i sF.t: Temperature =
«equal»

«PhSConstant»
signal2Power : Power

Fig. 48. Heater parametric diagram

42

NIST IR 8490
October 2023

FixedThermalPower in Figure 41 models thermal power boundary conditions that do not
change with time, specified by the PhSConstant power in Figure 49, a parametric diagram
that binds its properties to parameters from FixedThermalConstraint. The constant can
be positive, for entropy (heat) flow out of the component, or negative, for flow into the
component.

par [Block] FixedThermalPower{ FixedThermaIPower])

-

«constraint»
fTPC : FixedThermalPowerConstraint

p1 : EntropyFlowElement {t_out*s_out=-pow}
I sFSFR: E_r\tro_pyFTowEat; «equal> :‘ s out
L — — — — _ _ [-
r _sF_.t:?em_pera_ture_ 7| «equab :‘ t_out pow
Lo I [])
«equal»
«PhSConstant»

power : Power

Fig. 49. Fixed thermal power parametric diagram

The library in Figure 41 has two components that approximate a boundary condition where
change in temperature due to heat addition or subtraction is negligible. FixedTemperature
provides a constant temperature boundary condition, while TemperatureSource provides
one that is proportional to an input real signal, as shown in Figures 51 and 50, respec-
tively. The conversion factor between the input real signal and temperature output on tem-
perature source is defined by the PhSConstant signal2Temperature. TemperatureSource is
useful for modeling cases such as environmental temperature variation due to a day night
cycle. The real signal could be constant, but FixedTemperature does this without requiring
an input, only the PhSConstant t_set to specify the temperature.

par [Block] TemperatureSource[TemperatureSource |)

a : EntropyFlowElement
== == = = =

sF.sFR: EntropyFIowRateI

«constraint»
tSC : TemperatureSourceConstraint

i : RealSignallnElement {t=cf*signal} «equal» - — — — — —
'_rSig :Real «equal» signal of t — sF.t : Temperature
L I_l - I
«equal»
«PhSConstant»

signal2Temperature : Temperature

Fig. 50. Parametric diagram for temperature source

43

NIST IR 8490
October 2023

par [Block] FixedTemperature[FixedTemperature])

? :_Entfpy_FlozEle_meEt = «constraint»

sF.sFR : EntropyFlowRate fTC : FixedTemperatureConstraint
- - - — l {ta=tset}

[= = = —| «equal» tset ta

«equal»

«PhSConstant»
t_set : Temperature

Fig. 51. Parametric diagram for fixed temperature
5. Manufacturing Examples

This section applies the model libraries in Section 4 to example manufacturing systems,
translates them to simulation platforms on an open implementation of SysPhS [7][8], and
presents simulation results. They are a collaborative robot, 3D printer, and polishing ma-
chine, in Sections 5.1, 5.2, 5.3, respectively. The collaborative robot model uses the rota-
tional library, the 3D printer applies the translational and thermal libraries, and the polish-
ing machine example uses the translational and rotational libraries. See Section 6 for more
information about the simulation tools used in this section.

5.1. Weight Compensating Robot

Collaborative robots, or robots which work with people, are becoming more common in
manufacturing. One task they perform is helping people handle heavy objects, such as
positioning a large tool during manufacturing or guiding an object through a complex path
during assembly, by compensating for its weight. Operators move or rotate an object while
a robot holds it up, assisting over a more complicated path than is possible with passive
devices, such as constant force springs or combinations of linkages and springs. Operators
can adjust the compensating force or remove it completely if an object is no longer held.
Modeling and simulation help determine whether designs for these robots will provide
the necessary control response, minimizing forces on the operator and ensuring safe robot
behavior.

The example of weight compensation in this section is a robot arm with a single fixed
rotary joint, with the object to be moved attached on the end, as illustrated in Figure 52.
This system may be modeled as a pendulum. The robot senses the arm’s angle and applies
a counter-torque 7 to the arm, counter-acting the weight of the object mg, but still allowing
the operator to move it up and down, as if it were weightless.

44

NIST IR 8490
October 2023

T
mg

Fig. 52. Weight compensating robot example

The system in Figure 52 is modeled with SysPhS in Figure 53, an IBD connecting com-
ponents defined in this section. The robot includes an actuator for the arm (sea0) pdfcom-
mentComment: why the difference in numbering notation for sea0 and pend1? Reply: Will
fix before publication., directed to compensate for weight by a controller (gravityCompen-
sationController) depending on the current angle of the arm/pendulum (pend1) as measured
by a sensor attached to it. The operator connects to the robot to move the arm around.

ibd [Block] Gravity Compensation Test[Gravity Compensation Test Low Res])

robot : LiftRobot

gravityCompensationController : GravityCompensationController «PhSConstant»
initialValues verticalAcceleration : Acceleration = 9.807 m/s*

gain=1.0
torque2Signal = 1.0 N'-m

[t
torqueSignal angleln
Real Real
torqueCmd IllangleOut
pend1 : PendulumWithAngleSensor
sea0 : SimpleSEA initialValues
testOperator : TestOperator
initialValues SEAFlangg ang:e2=sj.57|(J7$)160 . initialValues -
gl=g1 <> angle2Signal = 1. in
motor = smotor0 I: angularAcceleration = 0.0 rad/s? _EE'HE’ dOperator = opDamp
motorController = seacont0 angularVelocity = 0.0 rad/s oam = oam1
s1=s1 AngularMomentum | os = 0s1
'T‘ sOperator = so
, T2

AngularMomentum

Fig. 53. Figure 52 modeled in SysPhS

5.1.1. Pendulum

Pendulum in Figure 54 models a point mass subject to a continuous vertical acceleration
and attached at some distance from a rotational center, without any damping forces. It can
be coupled to other components using its angular momentum flow port. It has a parameter
cmgDist, giving the distance of the point mass from the center of rotation in units of m, and
a parameter mass for the point mass.

45

NIST IR 8490
October 2023

bdd [Package] Misc [PendulumDefinition])

«block»
Pendulum

constraints
Pc : PendulumConstraint

values
verticalAcceleration : Acceleration{changeCycle = 0.0, isConserved = false, isContinuous}
angularVelocity : AngularVelocity{changeCycle = 0.0, isConserved = false, isContinuous}
angularAcceleration : AngularAcceleration{changeCycle = 0.0, isConserved = false, isContinuous}
angle : Angle{changeCycle = 0.0, isConserved = false, isContinuous}
cmgDist : Length{changeCycle = 0.0, isConserved = false, isContinuous}
mass : Mass{changeCycle = 0.0, isConserved = false, isContinuous}

ports

a : AMomFlowElement

«block»
PendulumWithAngleSensor

constraints
constraint1 : PendulumWithAngleSensorConstraint [0..*{redefines Pc}

values

angle2Signal : Angle = 1.0

ports
angleOut : RealSignalOutElement

Fig. 54. Pendulum and PendulumWithAngleSensor

Figure 55 shows the pendulum’s parametric diagram. The rotational inertia of a point mass
pendulum is calculated by mass * cmgDist>. The angle of the pendulum is taken to be zero
when it is at rest.

par [Block] Pendulum[Pendulum])

-

«constraint»
Pc : PendulumConstraint
{torg+ay*m*sin(aPhi)*r=m*r*2*der(aV),
der(aPhi)=aV,

a : AMomFlowElement aVp=aV,
der(aV)=aA}
_______ 1» ;
: - «equal» aVv «equa «PhSVariable»
al\iomEaV_.Aniulai/ekfty_ I] m E mass - Mass
_______ r «equal»
aMomFitrq : Torque i «equal :| torg E
I aVp aA ay
«cqiEn] aPhi L coauay «PhSVariable»
I_l I_l q cmgDist : Length
«equal» «PhSVariable»
«PhSVariable» «equal» verticalAcceleration : Acceleration
angle : Angle
«PhSVariable» «PhSVariable»
angularVelocity : AngularVelocity angularAcceleration : AngularAcceleration

Fig. 55. Pendulum parametric diagram

46

NIST IR 8490
October 2023

The PendulumWithAngleSensor used in Figure 53 is defined in Figure 54 as a specializa-
tion of a Pendulum block which has a sensor built into it to measure angle. PendulumWith-
AngleSensor, parametric diagram shown in Figure 56, outputs this angle on a real signal

port.

par [Block] PendulumWithAngleSensor [PendulumWithAngleSensor])

«PhSVariable»
angularAcceleration : AngularAcceleration

«PhSVariable»
cmgDist : Length

«PhSVariable»
verticalAcceleration : Acceleration

«PhSVariable»
angularVelocity : AngularVelocity

«PhSConstant»

«constraint»
a : AMomFlowElement constraint1 : F WithAr (.tl[O..‘;] Phi/cf}
signal=al
= =, = — = — — «equal» N «equal»
Lal\f)miaV_.AnngaYelogw_ I :‘ aVv AgA E
T oMomFta - Toraue . |
« uabh
. _aﬂom_F.trq_.ToEue_ _'_J—j Morg A I: «equal»
«PhSVariable» «equal» X
angle : Angle :‘ "aPhi . I: «equal»
ay
«PhSVariable» «equal» Am
mass : Mass :I of Aa\/pE «equal»
signal
«equal»
«equal»

angleOut : RealSignalOutElement

— L
rSig : Real
|(direcﬁon=out) |

[—— |

angle2Signal : Angle

Fig. 56. PendulumWithAngleSensor parametric diagram

47

NIST IR 8490
October 2023

5.1.2. Series Elastic Actuator

The actuator sea0 in Figure 53 is a series elastic actuator, a type of actuator where a spring
is placed between the speed reduction transmission and the load being driven, as shown in
Figure 57 [18]. By measuring displacement of the spring the force or torque the actuator
applies can be measured and adjusted rapidly by changing the position or angle of the
transmission. The spring also decouples the inertia of the motor and transmission from
the load, decreasing the chance of injury should a robot using these actuators collide with
a person. In addition, the spring also helps protect the high reduction transmission from
impacts that might damage it.

rotational spring

motor

displacement sensor

transmission

Fig. 57. Series elastic actuator

The actuator in Figure 57 is modeled with SysPhS in Figure 58, an IBD connecting com-
ponents defined in Section 4.2 and this one. It includes an electric motor, gearbox, and
rotational spring with a displacement sensor connected in series. The series elastic actuator
takes in a desired output torque value, measures displacement of the spring to estimate cur-
rent torque, and a controller sends a signal to the motor, attempting to achieve the desired
torque value.

ibd [Block] SimpleSEA [SimpleSEA1] J torqueCmd

Real
demandTorque

[

motorController : SimpleSEAController

inttialValues
deriv2Signal = 1.0 s {unit = second}
integratorValue = 0.0
kd =0.0022 s
ki=1.0
kp=1.0
KTotal = 66.0
stiffness2Signal = 1.0 N-m {unit = newtonMetre}

$EAFlange

]

s1: RotLinearSpringWithDi |

initialValues -
displacement2Signal = 1.0 <>| - AngularMomentum
b

Y
a1

k=38.0 N-m/rad

AngularMomentum

inttialValues
gearRatio =66.0

Fig. 58. Figure 57 modeled in SysPhS

48

NIST IR 8490
October 2023

Figure 59 shows a parametric diagram for the series elastic actuator controller modeled in
Figure 58. It implements proportional—integral-derivative (PID) control of applied torque,
comparing the desired and current torques, estimated from the current displacement of the
spring, to calculate the signal that should be sent to the motor. The PID controller output is

multiplied by a value proportional to the gear ratio, which is output to the motor. !

par [Block] Sil ontroller [Sir Controller])
«constraint»
PhSVariabl -
« emr‘f":;;» $SCC : SimpleSEAControllerConstraint «PhSVariable»
| {e=tauDes-kSpring*x/stiffToSig, integratorValue : Real
der(iy'cf=e,
torg=-kgain*(kp*e+ki*i+kd*der(e))}
i [: «equal»
springDisp : RealSignallnElement e
I Siq- Real |
‘_rSE : Rial b X) «equal» «PhSConstant»
stiffToSig [: stiffness2Signal : Torque
OutElement
R i I ——
demandTorque;ReiISglallnEIement torg [: «equal» | 1Sig: Real 1
- L —
I'rsig : Real tauDes [|
- 4
1y
o KSpring [: «equal
kgain kp ki kd
m m m «PhSVariable»
controllerEstimatedStifiness : RotationalStifiness
«equal»| «equal» «equal» «equal»
«PhSConstant» «PhSConstant» «PhSConstant» «PhSConstant» «PhSConstant»
deriv2Signal : Time kTotal : Real kp : Real ki : Real kd : Time

Fig. 59. Parametric diagram for SimpleSEAController in Figure 58

The electric motor in Figure 58 is modeled as a controllable torque source connected to a
rotational inertia connected to an output with a rotational damper connected to ground, as
shown in Figure 60. The rotational damper models the motor’s internal friction, enabling
it to reach a constant speed rather then accelerating forever when a constant input signal is
applied.

ibd [Block] SimpleMotor [SimpleMotor])

p1 c | motorTorque : FixedTorqueSource motorinertia : Rotinertia
I: defaultValue a a - OEﬁfaUﬁ\;/:i b p :l
—>| . =3,
signal2Torque =1.0 N'm <> <> 5
Real 9 q [|] — [‘]av=o.o rad/s

AngularMomentum

| motorFric : RotLinearDamper
defaultValue

d=0.1 N'm-s/rad
relPhi=1.0

aVv b

motorFixed : Fixed
AngularMomentum

Fig. 60. SimpleMotor used in Figure 58

Tn practice, more complicated controllers are often employed to control series elastic actuators [19].

49

NIST IR 8490
October 2023

5.1.3. Gravity Compensation

In this model the series elastic actuator is used as a means to control torque. In order
to compensate for the weight at the end of the arm we need to apply torque T given by
Equation 1:

T=mx*xg*rxsind (D

where m is the point mass at the end of the arm, g is acceleration due to gravity, r is distance
the point mass is from the center of rotation, and 6 is angle of the arm.

The block GravityCompensationController implements this equation, taking in the current
angle and calculating the torque to be applied, as shown in Figure 61. The torque to be
applied is multiplied by a PhSConstant gain, enabling one to apply more or less torque
than necessary to balance the arm, such as applying slightly more torque to compensate for
friction in the actuator.

par [Block] GravityCompensationController [GravityCompensationController])
«constraint»
- gccc : GravityCompensationControllerConstraint
angleln : Eealignjlln]EIement {torqCmd=kgain*(m*g"r*sin(phi))/cf} torqueSignal : RealSignalOutElement
i «equal» . ——
I"rsig : Real ; (] ohi torgCmd [“equaly | rSig : Real
= = = - — —J
«PhSConstant» | «equal»
gain : Real & :I kgain «equal»
r m o} cf|:
«equal» «equal» «equal»
«PhSVariable» «PhSVariable» «PhSVariable» «PhSConstant»
lengthEst : Length massEst : Mass gest : Acceleration torque2Signal : Torque

Fig. 61. Gravity compensation controller

The PhSVariables lengthEst, massEst, and gest in Figure 61 are the values for the arm’s
center of gravity, mass, and acceleration due to gravity. In this example, these have the same
values as the arm, specified with binding connectors to PhsConstants in the test model, as
shown in Figure 62, enabling the same PhSConstant values to be shared between multiple
parts and changed easily. For example, the arm and controller vertical accelerations are
required to have the same values as vertical Acceleration, the vertical acceleration of the
operating environment of the arm. The PhSConstant pendulumLength in this environment
specifies the distance to the center of gravity of the arm and pendulumMass gives the mass
of the arm and payload.

50

NIST IR 8490
October 2023

ibd [Block] Gravity Compensation Test[Gravity Compensation Property Bindings])

robot : LiftRobot
gravityC i : Gravity i oller
«equal» «PhSVariable» «PhSVariable» «PhSVariable»
gest : Acceleration lengthEst : Length massEst : Mass
' |
«PhSConstant» «PhSConstant» «equal» | «equal» «equal» “r':nh“jc°”§:\;’"t”
verticalAcceleration : Acceleration armLength : Length] «equalyr a ass : Mass
pend1 : PendulumWithAngI4Sensor
| |
I «equal» «PhSVariable» «PhSVariable» «PhSVariable»
verticalAcceleration : Acceleration cmgDist : Length mass : Mass

Fig. 62. Test conditions specified with binding connectors

5.1.4. Operator

The operator is modeled as an angular velocity source connected to the arm with a spring-
damper system modeling the compliance between the operator and the robot, as shown in
Figure 63. The connection between the operator and the robot will not be completely rigid,
so some compliance is necessary. During the simulation the operator remains motionless
for a set time period before moving at a constant set velocity.

ibd [Block] TestOperator [TestOperator])

oam : OperatorActionModel
defaultValue
changeTime =5.0 s

speed1 =0.5

N

dOperator : RotLinearDamper)
action
AngularMomentum 4 defaultValue b R
<>] d =0.2N-m-s/rad ea Ve g

relPhi = 0.0 aVComman

L

os : FixedaVSource

F- e

sOperator : RotLinearSpring
defaultValue

& 5] relPhi = 0.0
AngularMomentum k =2.0 N-m/rad

Fig. 63. Diagram of operator model

AngularMomentum

The block OperatorActionModel, shown in Figure 64, is used to model the operator remain-
ing motionless until a set time and then proceeding at a constant speed. The block outputs
a zero real signal on port ’action’ until a time defined by the PhSConstant ’changeTime,’
after which a real signal defined by the PhSConstant ’speed1’ is output.

51

NIST IR 8490
October 2023

par [Block] OperatorActionModel[OperatorActionModel])

«equal»

action : RealSignalOutElement

r rgg :_Re; 1

f «constraint»]
OAMCc : OperatorActionModelConstraint
{if time<chg then
speedOut=0;
else
speedOut=speed1;
end if} speedOut |:
speed1 chg
«equal» «equal»
«PhSConstant» «PhSConstant»
speed1 : Real changeTime : Time

N
I {direction = out} [
| ———

Fig. 64. Parametric diagram of operation action model

Figure 65 adds detail to Figure 53, showing the total system model for Figure 52, including
operating environment. In this example, the torque on the operator determines whether the
collaborative robot is operating safely and correctly by whether it is within safe bounds.
This example does not define safe bounds, however, it is desirable that the force on the
operator be as low as possible during operation, since the intended function of this device

is to reduce torque on the operator so they can more easily move the load around.

52

53

01 = e o5}
{puooegieduepe = 1 0L = onSuvzieuts oo=wdes | F—— s 086 -1
S0In0SARPeXId : S0 h buelvasT q
0w : 10121980p
puBWWOONE " B [e3] son
v, _ wmuswopeinbuy
B foe—>t1 < EieuRoy : eeuIOW
W
wniuswopseIBuY
uopo
= ool
0= Lpoads et 0.0~ imuowoy
r A Weinbuy
$0°G = awil 3bueyd 0°0 = ydjes v Pe00 0'} = leuBigzajbue. 0'99 = oneyiest
oo PN <% 062026, = o600 =
e TR N e xogieagpaxiaieopl : 16| V'
[Bundsieournon soresodos | JosusSaIBUYIMWNINpURd ; puSd i i
Iojesedoysel : Jotesedoisey
nosiue > Geigbunds
00 = sneLOesBaIUL
{puooas = yun) s BiSzauep
2oy somepve
Jo110RI60V3SAIAWIS : JelOAUGDI0I0W
LS/ 1086 = UONEIBI00Y : UoEIRIEcOYIEIAA uielbue
«ueisuodsud {i} T vaseiduis : geas
W 0°) = [euBiSZanbioy U
0 = ues ey pusganbior
semepven >
0q0uK 1001

(oL Uonesusdinos Ainess el Uonesusawos Ainess Borl pat

NIST IR 8490
October 2023

Fig. 65. Gravity compensation test internal block diagram

NIST IR 8490
October 2023

5.1.5. Simulation

The system was translated to modelica and simulated for 31 seconds with 0.001 second
time steps in OpenModelica. The operator was set to move at 5 seconds to allow very slow
movement of the arm to be detected. The rest of the time of the simulation allows the arm
to complete a rotation after the operator starts moving. The arm starts out horizontal at
7 /2 rads, where the SEA applies a torque that keeps it in place. The SEA experiences a
small initial start up transient as it accepts the arm load, because its spring starts out at zero
displacement, as shown in a plot of the SEA internal motor torque in Figure 66. Internal
torque being the torque produced by the torque source inside the motor.

0.05 Motor Internal Torque

0.04 -

0.03 - \/\

0.02 -

0.01 -

Torque(Nm)

0.00

—0.01 1

_0.02 T T T T T T T
0.0 0.5 1.0 15 2.0 2.5 3.0 3.5

Time(s)
Fig. 66. Motor torque in series elastic actuator

The arm experiences negligible change in angle until the operator starts moving at 5 sec-
onds and the arm follows. Figure 67 shows the arm’s movement (flat line, then increasing
linearly). The arm stays at 7/2 radians until the operator starts moving at 5 seconds at
rad/s. Movement while collaborating with the operator is smooth even as the arm com-
pletes multiple rotations.

54

NIST IR 8490
October 2023

Angle of Arm

14 -

12 1

= 10 1

Angle(rad

o A
(0]

10 15 20 25 30
Time(s)

Fig. 67. Angle of the arm

The operator experiences a torque that peaks when the arm starts moving, as shown in
Figure 68. This maximum torque is fairly low at 0.12 Nm.

Torque on Operator

|
o
o
=

|
o
o
<)

Torgue(Nm)
S
o
(o]

|
©
[
o

—0.12 -

0 5 10 15 20 25 30
Time(s)

Fig. 68. Torque experienced by operator

Figure 69 shows the torque applied by the SEA (curved line) is much more than the torque
the operator experiences (flat line) as it compensates for the weight.

55

NIST IR 8490
October 2023

Torque Comparison

2.0 —— Torque on Operator
Torque on Actuator
1.5 1
1.0 A
€ 05
=
g 0.0 r—
o
© —0.5 1
—1.0 1
—1.51
—2.0 1
0 5 10 15 20 25 30
Time(s)

Fig. 69. Torque on operator compared to torque applied to the arm

In systems modelling is it useful to test different configurations of the system. One way
to do this is by making generalizations of the model with different parameters and ini-
tial conditions. By generalizing the model, the same model structure may be used and
only certain parameters and initial conditions may be changed. Figure 70 shows how this
model is generalized to two different testing scenarios, one in which the payload mass
has been increased(TestCaseHeavierPayload) and another in which the gravity has been
decreased(TestCaseMoon).

bdd [Package] Weight Compensating Robot Example [Weight Compensating Robot Tests])

«block»
Gravity Compensation Test

values
verticalAcceleration : Acceleration = 9.807 m/s? {unit = metrePerSecondSquared}
armLength : Length = 0.2 m {unit = metre}
armMass : Mass = 1.0 kg {unit = kilogram}

T T

«block» «block»
TestCaseMoon TestCaseHeavierPayload
values values
verticalAcceleration : Acceleration = 1.62 m/s? {redefines verticalAcceleration,unit = metrePerSecondSquared} armMass : Mass = 5.0 kg {redefines armMass, unit = kilogram}

Fig. 70. Different test cases by generalizing the original model

In TestCaseHeavierPayload, the payload on the arm has been increased from 1 kg to 10
kg. In TestCaseMoon, gravitational acceleration has been decreased from 9.807 m/s? to
1.62 m/s?. Figure 71 shows a comparison a comparison of these test cases and the original
model. Operating the system in an environment with less gravity(orange), appears to have
less of an effect on the system than increasing the payload(grey) compared to the original

56

NIST IR 8490
October 2023

case(blue). The lower gravity test case and original case appear to have nearly the same
trajectory. This may imply that the system will need to be redesigned if it is to handle more
payload.

Operator Torque Comparison

0.2 1 —— Base
Heavier Payload
0.1 -1 Lower Gravity
—~ 0.01 A —
£
=
g -0.1
o
)
F _o0.2-
_03 4
—-0.4 1
0 5 10 15 20 25 30

Time(s)
Fig. 71. Comparison of torque on operator with different parameter changes

these simulation results show that the system works roughly as intended. The robot arm
can hold an object at a set position and allow the operator to move the object with much
less torque than is needed to support the object. Various cases were tested and it was found
that the system is sensitive to changes in payload mass. Whether this requires redesign is
beyond the scope of this publication. These examples are intended to demonstrate the use
of the libraries in the context of manufacturing systems and do not model real systems.

5.2. Fused Deposition Modeling 3D Printer

Most 3D printers use fused deposition modeling (FDM), a process that melts a plastic
filament in an extruder and deposits it on a surface, layer by layer, to make 3D shapes. The
printer must move the extruder back and forth rapidly as it traces out the part, requiring
simulation to determine whether it can carry out such maneuvers. Figure 72 illustrates the
mechanics of the 3D printer modeled in this example (the controller and thermal aspects
are not shown). Three perpendicular motor drive axes move a tool that extrudes plastic to
produce a part.

57

NIST IR 8490
October 2023

Y Axis moving mass

X Axis moving mass
X AXis ——
+—— Motor

Fig. 72. FDM example (cartesian robot and extruder)

This system is modeled in two parts, one for printer mechanics and another for thermal as-
pects of the heated bed. The printer model includes a cartesian robot that moves an extruder
to trace out a cylinder. Requirements on a 3D printer might include that it produce parts
varying in dimension only within a specific range (tolerances), printing speed is higher than
some value, and peak power usage is below some value. The printer model enables testing
whether a design with given parameters will meet these requirements. The main output is
the trajectory of the extruder as it is moved to produce a part, a cylinder in this example.
The example trajectory traces first in the X and Y axes, then up in the Z direction, repeat-
edly. The model does not account for motion limits, motor saturation, and the extruder
does not model viscoelasticity of the plastic.

The heated bed model is described in Section 4.3, with thermal effects modeled in Figure 83
in Section 5.2.4. This determines how long it takes to warm up the bed to a set temperature
and whether any unsafe temperatures occur in doing this. Thermal effects are not extended
to printer mechanics, because thermal transients occur over a much longer time scale than
mechanical dynamics (minutes vs. seconds). The mechanics model also does not include
collision with the part which has already been printed.

Figure 73 shows the internal block diagram of this system. The control is applied to a
cartesian robot that moves an extruder around. The controller sends signals to the cartesian
robot and extruder and receives position signals from each axis of the cartesian robot. The
extruder is coupled to the cartesian robot and the extruder nozzle is coupled to a zero pres-
sure boundary condition!®. In this model, the interaction of the extruder with the printed

18The zero pressure boundary condition is implemented as a trivial block CnstPressureSource that has a single
VolumeFlow port with pressure set to a specified value, in this case zero.

58

NIST IR 8490
October 2023

part are not modeled.

ibd [Block] FDM-: hine[FDM. ineSimplif)
aFDMController! : FDMC. xPosCmd XTord (2 cartesi : Cartesi
xConnect :
xPosSense xPos Pl pX () aFDMExtruder0 : FDMExtruder

LinearMomentum

::rjlyPosCmd yTorq yCongget p2Y
LinearMomentum

::l'jijosSense yPosrL-Ei zConngct o az

{i]

< » B
2PosCmd zTora o extRate nozzle

»
zPosSense "% zPos ,L-[:
h o [Volume
extruderRate o p1

>
Real

$a3vEATvEAZY

£
'cSE,

Fig. 73. Total system structure of FDM machine

5.2.1. Cartesian Robot

A key part of the printer is a cartesian robot, consisting of linear actuators arranged to
move the extruder along three perpendicular axes. Figure 74 shows detail of an axis actu-
ator. They includes a motor that drives conversion of rotation to translation via a rotating
screw going through a moving mass guided by rails and other components which do not
move along the axis which are expected to have significant mass. The rotary to translation
conversion is taken as ideal even though screws are not typically very efficient, like belts
or gear racks are.

axis damping rotation to translation converter

rail mass

/d

motor moving mass

Fig. 74. Components of a single axis actuator

The axis actuator in Figure 74 is modeled by the block AxisLinearMotion, as shown in
Figure 75. The motor from Figure 60 in Section 5.1.2 is coupled to an ideal rotary to trans-
lational converter (see Figure 34 in Section 4.2), which connects to a spring and damper,

59

NIST IR 8490
October 2023

then to port pl, for connection to the mass being moved. Masses of the actuator parts are
modeled separately, to enable AxisLinearMotion to be reused on all axes, see Figure 76.

ibd [Block] AxisLinearMotion[AxisLinearMotion])

I:torqueln P axisMotor : SimpleMotor > p a amsBalIScrew/; IldeaIGearRZT |b
—>| initialValues
Real ratio = 50.0 rad/m

AngularMomentum

axisStiffness : TransLinearSpring | b

initialValues
disp=0.0 m A
k =100.0 N/m

LineafMomentuny

LinearMomentum

axisDamping : TransLinearDamper

initialValues = =|_‘j
d=1.0N-s/m
disp=0.0m

3
\4

- < »
,J_|a ,J_| a LinearMomentum
A A
L] L]
axisVelSensor : TransVelocitySensor axisPosSensor : TransPositionSensor
initialValues initialValues
velocity2Signal = 1.0 m/s position2Signal = 1.0 m {unit = metre}
{1} {1}
Real W Real '
velOut posOut
o i

Fig. 75. Figure 74 modeled in SysPhS

One factor contributing to speed, accuracy, and cost of the 3D printer is the stiffness of
components between the point at which material is extruded and the surface on which it
is extruded. Stiffer designs deform less, and conversely may produce more accurate parts
or operate faster, but cost more. It is assumed here that the most significant deformation
is in the linear actuators. This is modeled by including a spring in AxisLinearMotion for
the stiffness of an axis (axisStiffness) in between the translation-to-rotation converter and
port pl. The stiffness could correspond to that of the screw (as shown in Figure 74), or all
components of the machine movement axis, or some combination of them. Some damping
is also included between port p1 and the translation to rotation converter, which is present in
real systems and prevents oscillation of the spring from growing forever during simulation.
AxisLinearMotion includes a velocity sensor and position sensor that output the velocity
and position of the spring as real signals, on the velOut and posOut ports, respectively.'?
The motor accepts a control signal for desired motor torque from the port torqueln. The
TransPositionSensor (axisPosSensor) integrates velocity on the port it is attached to, so
the initial position of the sensor on the axis should be specified as an initial value of the
sensor’s linearPosition.?"

Each of the axis actuators is mounted on another actuator in series to move a tool, such as
an extruder, through 3 dimensional space. The tool is moved along the X axis by the X axis
actuator, which is moved along the Y axis by the Y axis actuator, which is moved along the
Z axis by the Z axis actuator. The actuators are expected to have significant mass and each

19Both sensors could correspond to a single absolute linear encoder, for example as found in milling ma-
chines.

20This hypothetical printer uses linear servo motors, rather open loop stepper motors as in most 3D printers,
for simplicity. These have sensors and continuous motors, and are found in some 2D printers and in motion
control systems.

60

NIST IR 8490
October 2023

must take into account the total inertia being moved on its axis, including other actuators
and the tool. For example, the Z axis actuator moves the Y and X axis actuators, as well as
the tool, all contributing to inertia on the Z degree of freedom. This is modeled in Figure
76 with each axis (cXAxis, cYAxis, and cZAxis) combining an AxisLinearMotion (xAxis,
yAxis, and zAxis) with corresponding inertial elements.’! The inertial chain begins with
the tool connected to the robot via momentum ports (xConnect, yConnect, and zConnect).
The X actuator (cXAxis) moves the tool by its connections to these ports, and is moved via
its own ports by the Y actuator (aY, aZ), which in turn has ports for being moved by the Z
actuator (aZ).

The inertia of each of the axes is modeled in Figure 76 by Trans3DInertia blocks (see
Section 4.1), distinguished by whether they represent the part of the actuator that moves
with respect to it (moving mass in Figure 74) or the parts that do not (rail mass in Figure
74). The X and Y actuators have both of these, moving (xMoveMass and yMoveMass,
respectively) and not (xRailMass and yRailMass, respectively). The Z axis actuator only
models its moving mass (zMoveMass), because its rail is assumed to be rigidly fixed to the
ground, not affecting dynamics. All three degrees of freedom of xMoveMass connect to
the tool via ports (bX, bY, bZ) while xMoveMass is moved along the X degree of freedom
by the xAxis actuator and the Y and Z degrees of freedom by the moving part of the Y axis
yMoveMas. The Y and Z freedoms of yMoveMass connect to the corresponding ports of
the X actuator (aY and aZ via bY and bZ), because the Y actuator is directly connected to
the X, moving it only in Y and Z. The Z degree of freedom of zMoveMass connects to the
corresponding port of the Y actuator (aZ via bZ), moving it only in Z.

2I'The inertias could be modeled in AxisLinearMotion to reflect the mechanical structure of the actuator, see
Section 7.

61

NIST IR 8490
October 2023

ibd [Block] CartesianRobot[CanesianRobot])

cXAxis : CartesianXAxis
xAxis : AxisLinearMotion |
initialValues 4 posOut - = posOut o xPos
axisBallScrew = axisBeltX R;al R:al
axisDamping = fdmAxisDamp
axisMotor = smotor0 velOut > velOut > xVel
axisPosSensor = xaxisposF4 Real Real
axisStiffness = axisStiff1
axisVelSensor = axisvelsense p1
LinearMomentum
xRailMass : Trans3DInertia xMoveMass : Trans3DlInertia |
initialValues initialValues bX Pre
mass = 0.1 kg mass = 0.1 kg LinearMomentum
xPosition = 0.0 m xPosition =0.0 m
xVel = 0.0 m/s xVel = 0.0 m/s = bY yConnect
yPosition = 0.0 m yPosition =0.0 m -
yVel = 0.0 m/s yVel = 0.0 m/s LinearMomentum
zPosition =0.0 m LinearMomentun) zPosition =0.0 m bz zConnect
zVel = 0.0 m/s zVel = 0.0 m/s <>|
Real] LinearMomentum
LinearMomentum
<
al
LinearMomentum
<
l
cYAxis : CartesianYAxis
| yAxis : AxisLinearMotion | Real
torqin " . posOut g 4 posOut . yPos —
> axisBallScrew = axisBeltX R:al Re;
Real axisDamping = fdmAxisDamp1 velOut N velOut > yVel
axisMotor = smotor0 l -
axisPosSensor = xaxisposF2 Real
axisStiffness = axisStiff1 p1
axisVelSensor = axisvelsense6 .
LinearMomentum
[yRailMass : Trans3Dinertia | [ymoveMass : Trans3Dinertia
ax initialValues bX initialValues
[£>] mass = 0.1kg [<*] mass = 0.1 kg
xPosition = 0.0 m xPosition = 0.0 m
aY xVel = 0.0 m/s xVel = 0.0 m/s
= yPosition = 0.0 m yPosition = 0.0 m
az 2 y\éel 7_00 rvgso yVel = 0.0 m/s
9 ZPosition = 0.0 m zPosition =0.0 m
£ = zVel = 0.0 m/s N . zVel = 0.0 m/s
LinearMomentum
A
cZAxis : CartesianZAxis
Qorqu] > lorqueln,J—| zAxis : AxisLinearMotion |
initialValues
Real p1 axisBallScrew = axisBeltX 'J“ pos%t [} Posout > 2Pos
axisDamping = fdmAxisDamp2 Real
axisMotor = smotor6 1Out 1Out Vel
axisPosSensor = xaxisposF3 veop velOu > zve
axisStiffness = axisStiff2 [Real [
. A axisVelSensor = axisvelsense7
LinearMomentum
LinearMomentum
| zMoveMass : Trans3DInertia
initialValues
= mass = 0.1 kg
xPosition =0.0 m
v yPosition = 0.0 m
" K " zPosition = 0.0 m
fixedy0 : TransFixed = = Vel = 0.0 m/s
bz < > bZ =]
Ll—' LinearMomentum

Fi

g. 76. Cartesian robot

The momentum port of each AxisLinearMotion (p1) connects to the port of its moving mass
that corresponds to the axis (aX, aY, aZ in cXAxis, x YAxis, and cZAxis, respectively). The
remaining ports of the moving mass are connected to the corresponding ones on the rail
mass, but only for the axes the rail mass moves on. For the X axis, the rail mass only moves
along Y and Z, modeled by connecting those ports (bY and bZ) to the corresponding ones

62

NIST IR 8490
October 2023

on the the moving mass (aY and aZ). The X degree of freedom (bX) is not connected to
anything, because X rail mass does not move along the X axis. For the Y axis, the rail mass
only moves along Z, modeled by connecting that port (bZ) to the corresponding one on the
the moving mass (aZ). The X and Y degrees of freedom (bX and bY) do not connect to
anything, because they do not move along those axes. The Z axis has no rail mass because
it is rigidly fixed to ground, modeled by connecting TranstlFixed (see Section 4.1) to the
moving mass for the X and Y degrees of freedom (aX and aY).

The same rail mass degrees of freedom that connect to the moving mass in each axis also
connect to another axis that moves it via ports for that purpose (aY and aZ for the X axis,
just aZ for the Y axis), which are connected to the other axis on ports for the things it
moves (bY and bZ for the Y axis, just bZ for the Z axis). This enables the inertia of the X
axis to be propagated to the Y axis, and the inertia of the Y axis to the Z, an example of
multiple components contributing inertia on each axis. The inertial chain begins with tool’s
contribution to inertia (see Section 5.2.2) along all axes, as shown by its connections to the
cartesian robot in Figure 73, with the X portion affecting the X actuator, the Y portion
propagated to the Y actuator along with moving an rail masses of the X actuator, because
all these elements move along the Y axis, and the Z portion propagated to the Z actuator
along with the moving and rail masses of the X and Y actuators, because all these elements
move along the Z axis.

5.2.2. Extruder

FDM printers use an extruder to melt plastic filament and deposit it on the part being
made. The extruder model in Figure 77 includes a Trans3DInertia block (see Section 4.1) to
represent its mass and another block for fluid flow from the extruder, contains a simplified
model of fluid flow, defined in Figure 78, that covers some fluid effects, but ignores thermal
ones. It is for the kind of extruder where a motor, typically with a high gear reduction, turns
a screw or gear that pushes the filament through a hot nozzle to melt it. The motor with a
high reduction gear is modeled as an angular velocity source (extDrive). It is coupled to an
ideal rotary to translation converter (see Figure 34 in Section 4.2) that drives two hydraulic
components modeling how a solid filament interacts with the molten plastic in the extruder,
see next. The output of the extruder is coupled to a zero pressure boundary condition, see
Figure 73.

63

NIST IR 8490
October 2023

ibd [Block] FDMExtruder [FOMExiruderiBD] J

extruderMass : Trans3DInertia

aYy LinearMomentum
d

\ 4

<«
az LinearMomentum

A 4

I
LinearMomentum

initialValues
mass = 0.05 kg
xPosition = 0.05 m
xVel =0.0 m/s
yPosition =0.0 m
yVel=0.0 m/s
zPosition =0.0 m
zVel =0.0 m/s

| extRate extrudeRate sFDMExtruderFlow0 : FDMExtruderSimpleFlow
= >
Real
ry
v
p1
Volume
nozzle
A
Lv]

Fig. 77. Extruder internal block diagram

ibd [Block] FDMExtruderSimpIeFIow[FDMExtruderSimpIeFIowU

L extrudeRate

]

(= [
H Rreal ,J_aIVCommand
i, extruderTube : SimplePipe
extDrive : FixedaVSource initialValues b pl
initialValues dpLaminar = 8.8E7 Pa e—>1]
vflowLaminar = 5.0E-8 m%/s Volume

signal2AngVel = 1.0 rad/s {unit = radianPerSecond}

v

AngularMomentum

a

A
Lv]

screw : IdealGearR2T

initialValues
ratio = 1.0 rad/m

iy
v

b

LinearMomentum

Iy
v

a

FlowingVolume

pres
A
v
fluidArea : IdealTrans2Fluid

initialValues
pistonArea = 2.27E-6 m?

trans

<>

Fig. 78. Extruder flow model

Figure 79 defines the translation to volume flow converter used in Figure 78 (IdealTrans2Fluid).
It models a device that converts translational movement to a volume flow through an area,
such as a piston, except it enables unlimited translational displacement. The element is

ideal without elasticity, friction loss, o

r fluid loss.

64

NIST IR 8490
October 2023

par [Block] IdealTrans2Fluid [IdealTrans2Fluid])

«constraint»
iT2FC : IdealTrans2FluidConstraint
trans : LMomFlowElement {f=p*area, pres : VolumeFlowElement
M e vf=-area*v} e
| IMomF.f : Force | «equal» :l ¢ |: «equal» | VF.p : Pressure |
[R— — p —_—— — -

-t 1 = === = =
| IMomF.IV : Velocity «equal» area vf «equal» | VF.q: VolumeFlowRate
————— ! v M L] -

«equal»

«PhSConstant»

pistonArea : Area

Fig. 79. Translational to volume flow converter

Figure 80 models the hydraulic resistance to forcing molten filament through a nozzle
(SimplePipe) used in Figure 78. The difference in pressure across it (between its ports)
is proportional to flow rate multiplied by some resistance factor. This is expressed as the
ratio of pressure difference (dpC) and volume flow rate (VflowC) that results from the pres-
sure difference, as shown in Figure 80.22 The element does not account for non-newtonian
behavior of molten plastic or changes in resistance due to changes in nozzle height.

par [Block] SimplePipe [SimplePipe])

s N

«constraint»
sPC : SimplePipeConstraint
{vf_a+vf_b=0,
dP=pa-pb,

a : VolumeFlowElement dP=dpLaminar/vflowLaminar*vf_a} b : VolumeFlowElement
T — 7 «equal» «equal» - 7
VF.p : Pressure a b VF.p : Pressure
| VFp:Prossure | P P[]) VFp:Pressure.

—————— equal equal - — = — — —

| VF.q : VolumeFlowRate «cquah :‘ Vi a vi b E «cquah | VF.q : VolumeFlowRate B

dP vilowLaminar dpLaminar
«equal» «equal» «equal»
«PhSVariable» «PhSConstant» «PhSConstant»
deltaP : Pressure vilowLaminar : VolumeFlowRate dpLaminar : Pressure

5.2.3. Controller

The FDM controller directs the axis actuators to move the extruder through a trajectory trac-
ing out a cylindrical part. It starts with a circle in the X and Y dimensions, then moves up in

Fig. 80. Hydraulic resistance

22This model is based on SimpleFriction in the Modelica Standard Library FluidHeatFlow [20].

65

NIST IR 8490
October 2023

the Z dimension, and repeats indefinitely. The controller consists of two parts, a trajectory
generator that outputs positions over time and a PID position controller for each axis, as
shown in Figure 81. The block CylinderMakerFDM outputs positions on each axis for the
extruder to move through a cylinderical trajectory (xPosTarget,yPosTarget,zZPosTarget). It
also turns the extruder on and off (extruderRate), on when tracing a circle and off when
moving up. The position signals are sent to three PID position controllers (see Figure 11 in
Section 3), one for each axis. Each axis PID controller takes in the desired position from
the trajectory generator (setPoint), the present position of the machine axis (curValue) and
outputs a control signal for the corresponding axis (outSig).

ibd [Block] FDMControIIer[FDMControIIer])

cylinderMaker0 : CylinderMakerFDM

xAxisPID : PIDControl outSig

extruderRate

xPosCmd

initialValues

xPosSense

yPosCmd

yPosSense

. defaultValue ,J_l xPosTarget setPoint—— deriv2Signal = 1.0 s {unit = second}
extrusionRate = 1.0 li=00
. _ : curValue
layerHeight = 0.1 m yPosTarget kd=10s
feedrate = 0.05 m/s ki :_0.0
radius = 0.05 m zPosTarget kp = 25.0
position2Signal = 1.0 m
— setPoint, yAxisPID : PIDControl |
ij [initialValues ,—|—| outSig
extruderRate deriv2Signal = 1.0 s {unit = second}
i=0.0
kd=100s curValue
ki=0.0
kp = 30.0

i

setPoint,J—| zAxisPID : PIDControl ,J_l outSig zPosCmd
[initialValues
deriv2Signal = 1.0 s {unit = second} curValue ZzPosSense
i=0.0
kd=0.0s =
ki=0.0
kp=1.0

<l
|

Al

Fig. 81. FDM controller

CylinderMakerFDM generates a trajectory that traces out a circle in X and Y, moves a set
distances up in Z, repeatedly. This circle is centered at x=0,y=0 and tracing starts and stops
at x=1,y=1. CylinderMakerFDM has properties that are constant for each simulation run:

» feedrate is the speed at which the extruder is intended to move.

e radius is the radius of the circle to be traced.

* layerHeight is the Z distance the extruder is intended to move up each cycle. In the
FDM process, this can also correspond to the thickness of an extruded layer.

* position2Signal is the inverse conversion factor between signal output and position

calculated.

* extrusionRate is the real signal that is output to the extruder when it is to be turned
on. This may be used for motor rotation rate as in this model or just to indicate that

the extruder is on.

66

NIST IR 8490
October 2023

Figure 82 shows the parametric diagram for the block CylinderMakerFDM. It includes
variables for intermediate calculations:

¢ circleTime is the time it takes the extruder to trace out a circle.

* cycleTime is the time it takes to complete a cycle, that is tracing a circle and moving
the extruder up.

* layerNumber is number of completed layers.
* cyclePosition is amount of time spent so far towards the completion of a cycle.

CylinderMakerFDM generates positions for a circular trajectory, then for moving up a set
distance in Z repeatedly. The time spent towards completing the current cycle is deter-
mined by b = mod(time,cycleTime). If this is less than the time needed to trace out a
circle, the block uses the parametric equations for a circle to trace a circle. Otherwise, it
outputs a linear increase in Z with time, corresponding to moving the extruder up. It is not
recommended that any of the PhS variables be given initial values, as they are intermediate
variables constrained by the equations. The output might be discontinuous as events are
generated for mod and if statements. This is explained in Section 5.2.5.

par [Block] CylinderMakerFDM [CylinderMakerFDM])

«constraint»
cMFC : CylinderMakerFDMConstraint
{circleTime=(2*2*asin(1.0)*r)/feedrate,
if b<=circleTime then
xPos=(r*cos(b*vellr))/cf,

yPos=(r*sin(b*vel/r))/cf;

zPos=(layerNum*layerH)/cf;
extSig=extRate;

else
xPos=(r*cos(0))/cf;

yPos=(r*sin(0))/cf,
zPos=(vel*(b-circleTime)+layerNum*layerH)/cf;

xPosTarget : RealSignalOutElement

extSig=0;

«PhSConstant»
radius : Length

j extRate

«equal»
Lo -

cycleTime=circleTime+layerH/vel,

end if;,

if ime<>0 then

b=mod(time,cycleTime)}
xPos

yPos I:

«equal»

Irsig: Real |
J

«equal»

I

«PhSConstant» «equal» layerNum=floor(time/cycleTime); yPosTarget : RealSignalOutElement
. Ise
extrusionRate : Real e — — —
layerNum=0; | rSig: Real 1
endff, «equaly | i e

zPosTarget : RealSignalOutElement

I'tsig: Real |
J

I

«equal»
«PhSConstant» j vel zPos I: extruderRate : RealSignalOutElement
feedrate : Velocity " oqual Ca e 1
«equal» . « » 'Sig - Real
layerH ig : Real
] lay extS|g|: _PoRea
«PhSConstant» la «equal» «PhSVariable»
yerNum :
layerHeight : Length j of cyc|E'ime |_b] circleTime |: circleTime : Time
«equal»
«equal» «equal» «equal»
«PhSConstant»
position2Signal : Length
«PhSVariable» «PhSVariable» «PhSVariable»
cycleTime : Time cyclePosition : Time layerNumber : Integer

Fig. 82.

CylinderMakerFDM parametric diagram

67

NIST IR 8490
October 2023

5.2.4. Heated Bed

Fused deposition modeling machines often extrude material onto a heated plate, to slow
down cooling of the part being printed. This reduces warping and provides better adhesion
of the filament. It is useful to determine how long it takes for the heated bed to warm
up and whether it will reach dangerous temperatures. This is modeled separately from the
cartesian robot because the dynamics of the heated bed occur over a much longer time scale
and are not coupled to the dynamics of the robot model (effects of the hot filament on bed
temperature are excluded). It is expected that the FDM machine starts up cold, the bed is
raised to operating temperature, and the printing process begins.

Figure 83 shows the application of the HeatedBed block defined in Figure 40 of Section
4.3, and explained in that section. In this test the heated bed starts out at 293 K in a 293 K
environment. The bed needs to reach a temperature of 373 K in order to operate. Figure
83 connects the heated bed to a FixedTemperature block (see Section 4.3) at 293 K and a
constant real signal of 373.

ibd [Block] Heated Bed Warm Up time[Heated Bed Warm Up timeJJ

absBedTemperature : ConstantRealSignal d;|°0"\3t setTemp,J-I testHeatedBed : HeatedBed ,J_| ar @ |3;| roomTemperature : FixedTemperature

initialValues initialValues

cnsnt = 373.0 T_set=293.0K

Fig. 83. Heated bed warm up time model

5.2.5. Simulation

The cartesian robot and heated bed are simulated separately because the robot operates on
a much shorter time scale than the heated bed.

5.2.5.1. Cartesian robot

Simulations of the cartesian robot, controller, and extruder models in Sections 5.2.1 through
5.2.3 predict how closely the extruder will be from its intended position, to check whether
the resulting part will be out of tolerance. Figures 84, 85, and 86 show how the trajectory
of the extruder(actual) lags behind the intended postion(target). They were produced in
OpenModelica using the integration algorithm DASSL, running for 25 seconds with a 0.001
second step size. This was configured to trace a cylinder with a Scm radius.

68

NIST IR 8490

October 2023
X Position of Extruder
0.04 -
. 0.02-
€
<l
o 0.00 - — Target
-45, ' —— Actual
[e]
o
=< _0.02-
—0.04 1
0 5 10 15 20 25

Time(s)

Fig. 84. X position of the extruder compared to intended position

Y Position of Extruder

—— Target
0.04 1 —— Actual
_ 0.02-
£
C
(o]
S 0.00-
()]
(]
o
> _0.021
~0.04
0 5 10 15 20 25

Time(s)

Fig. 85. Y position of the extruder compared to intended position

69

NIST IR 8490
October 2023

Z Position of Extruder

0.307 — Target
Actual
0.25 A

Z Position(m)
o o o
= = N
o (] o

o

o

w
1

0.00 1

0 5 10 15 20 25
Time(s)

Fig. 86. Z position of the extruder compared to intended position

In the case of the X position, shown in Figure 84, there is a fairly significant deviation
from the intended trajectory. The extruder does not reach the maximum radius in the -X
direction and is too slow to reach the maximum radius in the +X direction. The Y position
is also unable to reach the intended radii and is off from the intended position by a couple
of millimeters. This will result in parts being constructed with incorrect dimensions. The
extruder might collide with the part being built in some cases, because it cannot reach the
intended X position before completing a circle and its Z position lags behind the intended
position. This indicates that the controller should use different parameters or be redesigned
to better trace out the intended trajectory.

5.2.5.2. Heated bed

This model in Section 5.2.4 was simulated for 400 seconds with 0.01 second time steps
on OpenModelica. This is longer time period than the cartesian robot model, because heat
dynamics occur over longer timescales.

70

NIST IR 8490
October 2023

Surface Temperature

370
360 -

< 350

Temperature(
w w w w
= N w B
o o o o

300 - Target
—— Actual

290 -

0 50 100 150 200 250 300 350 400
Time(s)

Fig. 87. Temperature of heated bed surface with time

Figure 87 shows how the surface temperature of the heated bed, shown in blue(actual), ap-
proaches the set temperature, shown in red(flat line, target). Convergence takes around 300
seconds. Convergence to the intended temperature indicates the controller is functioning as
intended as there is no overshoot that may be harmful to the heated bed. This convergence
time might be used as an estimate for how long it takes the bed to warm up.

5.3. Polishing Machine

One task manufacturing robots can perform is polishing and deburring complicated parts.
The robot moves an abrasive tool (rotary or belt) over a part while applying a constant nor-
mal force to it. Variations in applied force are undesirable as they might result in nonuni-
form deburring or finish. Active control is necessary to apply a constant normal force and
keep the robot on the desired trajectory in spite of reactions from the abrasive tool and
workpiece.

Figure 88 illustrates a simplified polishing machine that moves a rotating polishing wheel
through a predefined trajectory over a circular work piece, maintaining a constant normal
force on it. Circular workpieces are simpler than most manufactured parts, but have some
similarities with more complicated workpieces. The contact between two rigid disks will
be unstable when one disk is held in place and force is applied to the other, the other disk
will diverge from the fixed disk if the force does not point exactly to the center of the
fixed disk. Two force controlled axis actuators move the polishing wheel in X and Y, while
applying force to it. The axes in this examples are series elastic actuators (see Section
5.1.2) connected to rotation to translation converters. The polishing wheel is connected to

71

NIST IR 8490
October 2023

a motor (see Figure 60 in Section 5.1.2) that is given a constant torque signal. The circular
workpiece is fixed in space, while the circular polishing wheel moves along the X and
Y axes around it. Friction between the polishing wheel and workpiece is assumed to be
viscous (linearly dependent on normal force and velocity difference at the contact point).
A force is applied normal to the contacting surfaces based on how much the two circles
interpenetrate and their combined stiffness.

y Series elastic actuator

Ul

[NARRRRRRRRRRE)

]
HE
|

|

polishing head

Spi work piece

Fig. 88. Polishing machine

5.3.1. Machine

The polishing machine in Figure 88 consists of two force controlled axes, a spindle, and
a polishing wheel, as model in Figure 89. Each force controlled axis has a series elastic
actuator coupled to a rotary to translational converter. Each axis has a 2D Inertia block
connected to the ForceControlledAxis block output modeling the inertia of the moving part
of the machine axis. The Y axis is moved by the X axis, so it has an additional 2D inertia
block representing the inertia of the part of the Y axis that does not experience motion
in the Y direction. These two axes move the block spindle, which contains a 2D inertia
representing the mass of the tool spindle and a motor. This connects to the polishing wheel
with linear momentum flow elements for X and Y translation of the polishing wheel and an
angular momentum flow element for the rotary degree of freedom of the polishing wheel.

72

NIST IR 8490

October 2023
ibd [Block] el i 9) pwc0 : PolishingWheel
XxAxis : PMachineXAxis
axisTorq

LinearMomentum

XAxisTort
LpEXsTon,, axisTorq] xAxisAct : ForceCntridAxis |
Real Real r'L "
- - — XTraverseMoveMass : Trans2Dinertia
ey xPosSig posSigr posSigl | axisPosSense : TransPositionSensor 2 o J? e | oy LinearMomentum
Real Real 7 | incarposiion = 0111 HinearMomentum 1= mass = 0.025 kg
velSig velSigr L | position2Signal = 1.0 m unit = metre} ay 3 XVel =0.0 mis AngularMomentum
[+ =
Real Real y
bX
fixed2 ; TransFixed LinearMomentum Linearhomentum AngularMomentum
[Y LinearMomentum
H
“ LinearMomentum frange LinearMomentum
@
v
yAxis : PMchineYAxis
fixed : TransFixed a LinearMomentum aX U™ Xa
0 H T v
‘ yTraverseRailMass : Trans2Dinertia | 039
AxisT axisTorq L axisTort
o yAxisTorg =] yAxisAct : ForceCntridAxis] L\¢ nass = 0.25 kg’""’a’”’"“ av| 4
Real Real T2 - v
axisPosSense : TransPositionSensor ‘- %)
yPosSig posSig L posSi nitaivaluos bX Connect
= 3 | inearPosition = 0.0 m
Real Real position2Signal = 1.0 m {unit = metre} L L
aX
velsig 16
velSig - yTraverseMoveMass : Trans2DInertia
Real Real initialValues
mass = 0.1 kg
XVel = 0.0 mis L yconnect
[« yvel = 0.0 mis
LinearMomentu
spindleSpeed : RealSignalinElement Real
= >
>

Fig. 89. Polishing machine axes and spindle

Figure 90 shows a force controlled axis model, which has translational position and velocity
sensors connected to translational output. These are used to provide real signals for the
current position and velocity of the axis. The initial position of the translational position
sensor should be set to define the initial position of the axis. The axes are connected in a
similar manner to the axes in the FDM machine.

ibd [Block] ForceCntrldAxis [ForceCntridAxis])
axisSEA : SimpleSEA axisScrew : IdealGearR2T
axisTorg torqueCmd P SEAFlange 5 [rl\b a L
H—T T—T _|J]
VJ‘Y ? VJ‘Y ?
x x
Ly J Ly]
[— R p— |
(] n
i i
posSig velSig
U U

Fig. 90. Force controlled axis IBD

The block PolishingWheel, shown in Figure 91, represents the inertia of the polishing wheel
and the elastic properties of the mechanical connection between the polishing wheel and
motor. The Linear Momentum port X,y and the angular momentum flow port angA, rep-
resent the mechanical connection to the spindle. The ports px,py, and angB respresent the
connection to the contact model/workpiece. The polishing wheel is expected to have mass
and angular inertia that cannot be ignored, so it contains a 2D translational inertia and an-
gular inertia. The connection between the motor and the polishing wheel that is expected
to be somewhat thin may have a stiffness that cannot be approximated as infinite. In addi-
tion, the polishing wheel may be made of a somewhat deformable material. So springs and
dampers are connected between the X and Y linear momentum ports and the translational
inertia representing the polishing head mass to model this possible deformation.

73

NIST IR 8490
October 2023

ibd [Block] PolishingWheel [PolishingWheel])

phXDamp : TransLinearDamper

initialValues

b
d=10N-s/m

A

| phXStiff : TransLinearSpring

initialValues

disp=0.0m
k=100.0 N/m

g

wheelTlnert : Trans2DInertia

aX
<3

SR

ol

| phYDamp : TransLinearDamper

initialValues
d=10N-s/m

s

S

| phYStiff : TransLinearSpring

initialValues

disp=0.0m
k=100.0 N/m

]

| wheelRDamp : RotLinearDamper

initialValues

d=1.0N-ms/rad

’] angA

wheelStiff : RotLinearSpring

initialValues
>| k=1.0 N-m/rad
relPhi=0.0

o

Ll_l

initialValues
mass = 0.2 kg
xPosition =0.0 m
xVel =0.0 m/s
yPosition=0.0 m
yVel =0.0 m/s

wheelRInert : Rotinertia

.

initialValues
aV=0.0rad/s
phi=0.0
r1=0.1 kg-m?

angB -

The block CircleCircleContact, parametric diagram shown in Figure 92, is used to describe
the contact forces and torques between the polishing wheel and the workpiece. In this
model we assume both the polishing wheel and the work piece are circular. The polishing
wheel is able to translate in X, Y and rotate, while the workpiece is assumed to be rigidly
fixed. Contact can be determined by checking if the distance between the center of the
two circles is less than the sum of their radii. Contact normal force is presumed to be
proportional to the distance the two circles are interpenetrating. If there is no contact, the
forces and torques on the polishing wheel are zero. Tangential forces are calculated using

Fig. 91. Polishing wheel IBD

the relative velocity of the contact point and viscous friction.

74

NIST IR 8490
October 2023

par [Block] CircleCircleContact CircIeCircIeConlact])

{if pd<0 then
Fnx=pd*k*(nx/dist);
Fny=pd*k*(ny/dist);
Ftx=Fnx*b*(ny*w+Vx);
Fty=Fny*b*(-nx*w+Vy);
else

Fnx=0;

Fny=0;

Ftx=0;

Fty=0;

end if,
torg=nx*Ftoty-ny*Ftotx,
dist=sqrt(nx"2+ny”2),
pd=dist-radh-radwp,
Ftotx=Fnx+Ftx,
Ftoty=Fny+Fty,
NX=pOsX-WpXx,

«constraint»
cCCC : CircleCircleContactConstraint

w : AMomFlowElement

e «equal»
- Vx=der(posX),
X : LMomFlowElement Vy=der(posY)} «equal
| IMomF £ : Force L «equaly :] Ftotx w [:
- == T =1 «equal» Vx
| IMomF.V : Velocity] torq [
,,,,, J
S I «equal I
T e = —— Ftoty «equal» «PhSConstant»
: LMomFlowElement :] radh
Yy «equal» [: | radiusPolishingWheel : Length
[«equal»
I IMomF.f : Force L] W radwp [a
—— —= 1 «equal» «PhSConstant»
| IMomF.IV : Velocity - []Fnx P4 radiusWorkPiece : Length
,,,,, J «equal»
«PhSVariable» {_|Fny « O «equal «walueType»
normalForceX : Force . .
:] Fix ny [: penetrationDepth : Length
«PhSVariable» TIFY wpx wpy posX posY dist b ™] «equal» «PhSConstant»
normalForceY : Force m stiffness : TransStiffness
)
«PhSVariable»
«equal» :
tangentialForceX : Force «equal nom:jvh:x::?l?lf:ngm
«PhSVariable» «equal» «equal cequaly
tangentialForceY : Force «equal» q «PhSVariable»
«equal» «equal» «equal» normalVectorX : Length
«PhSConstant» «PhSConstant» «PhSVariable» «PhSVariable» «PhSVariable» «PhSConstant»
centerX : Length centerY : Length posX : Length posY : Length distance : Length viscFriction : InverseSpeed

5.3.2.

Fig. 92. Contact model

Controller

The controller determines the forces that axes should apply to move the polishing head
over a part, while applying a constant normal force to it. Controlling both the force an
end effector applies and its position may be done with a technique known as hybrid po-
sition force control [21]. This works by mixing the force to be applied with a force that
moves the end effector along the trajectory. The controller shown in Figure 93 uses Circu-
larPathGenerator to generate a circular trajectory from time, CircleNormalForceGenerator
to calculate the normal force from the current position of the polishing head, and blocks
that implement hybrid position force control take the intended trajectory and force to de-
termine control force. The controller also outputs a constant signal to the polishing wheel

motor.

75

NIST IR 8490
October 2023

ibd [Block] PolishingMachineControllerForCircle [PolishingMachineControllerForCircle])
wheelSpeedSet : ConstantRealSignal |)
intialValues i const . spindieSpeed .
cnsnt=0.1 |_|_| RV I =2l
eal
xAxisControl : HybridPosForceControl |J‘| force = xiorce
initialValues »
setPos d=-1.0 vel Real xvel
] k=50 < <l
::I:: pos Real
Real <
1] =
setForce
. Real Xpos
xSig X _|<_:|
il]
circlePath : CircularPathGenerator normalForceGen : CircleNormalForceGenerator
initialValues inttialValues v
feedrate = 0.01 m/s normalForce = 0.1 P posX
position2Signal = 1.0 m {unit = metre} sig2Length=1.0m
radius =0.11m
— posY
A
(4]]
ySig fY ypos
—F]
Real setForce
L]
yAxisControl : HybridPosForceControl
\4 initialValues) Pos P
Real setPos EE' E -:13 0 I,:l:: vel P Real yvel —
l
I,:E: force F‘ﬁal yforce
L"I Real

Fig. 93. Polishing machine controller

Hybrid position force control in this example mixes the normal force applied to a part with
a force that pulls the polishing head along a path around it, as calculated in Figure 94.
SEAHybridPositionForceControl takes in the current position along one axis, the target
position along that axis, velocity along that axis, desired force to be applied along that axis,
and outputs a control force. This is calculated by summing the normal force to be applied
to the part with a force proportional to the deviance from the intended position and a force
proportional to present speed. That is we apply force F' = k* e,0s + Fqrger —d *V, where k
is proportionality coefficient, e, is position error, Fy,.¢. is target force, V is velocity, and

d is damping coefficient.

76

NIST IR 8490
October 2023

par [Block] HybridPosForceControl [HybridPosForceControl])

pos : RealSignallnElement

I"rsig: Real !

«equal»

setPos : RealSignallnElement

«equal»

I'rSig:Real |
J

—_- — —

—

«equal»

setForce : RealSignalinElement

«constraint»

sHPFCC : SEAHybridPosForceControlConstraint

{f=k*(setPos-pos)+setF-d*vel}

I'rsig: Real !

vel : RealSignallnElement

I'rSig:Real |

] s f
|]setPos
F
I K d
«equal» «equal»
«PhSConstant» «PhSConstant»
k : Real d:Real

«equal»

_- — = d

force : RealSignalOutElement

|: «equal» —I_rsig; Real |

- — — J

CirclularPathGenerator(parametric diagram shown in Figure 95) outputs x and y coordi-
nates as a function of time, to trace out a circle of specified radius and center position at
a specified rate. The position at time zero is x=1 and y=0, with respect to the center posi-
tion. The parameters centerX and centerY are the center X and Y coordinates, respectively,
while radius is the radius of the circular path and feedrate the velocity at which the path is
to be traced. The parameter position2Signal specifies the inverse conversion factor between

Fig. 94. Hybrid position force control

signal output and position calculated.

par [Block] CircularPathGenerator [CircularPathGenerator])

p

«constraint»
cPGC : CircularPathGeneratorConstraint XSig : RealSignalOutElement
{xPos=(r*cos(time*vel/ry+cx)/cf, —
yPos=(r*sin(time*vel/r)+cy)/cf} | 1 rSig : Real !
XPOSE «equaly| - — _ 4
I
:l cf yPosI: ySig : RealSignalOutElement
vel r [cy «equal» e rag |
rSig : Real
«equal» \ I_l I_l I_l I_l J = — — Jd
| «equal»
«equal» «equal»
«equal»
«PhSConstant» «PhSConstant» «PhSConstant» «PhSConstant» «PhSConstant»
position2Signal : Length feedrate : Velocity radius : Length centerX : Length centerY : Length

CircleNormalForceGenerator calculates a constant normal force to be applied to the circu-
lar workpiece, which is towards its center, as shown in Figure 96. The normal vector is
determined by the position of the tool (given by two real input signals posX, posY) and

Fig. 95. Circular path generator

77

NIST IR 8490
October 2023

center of the workpiece (two real internal constants workpieceX and workpieceY). The
constant normalForce specifies the magnitude of the normal force. From these CircleNor-
malForceGenerator outputs the X and Y components of the normal force as real signals fX

and fY.2

ibd [Block] CircleNormalForceGenerator [CircleNormalForceGenerator |)
posX: Re:lSlgnall_nEl]ement «constraint»
| rSig : Real cNFGC : CircleNormalForceGeneratorConstraint
- = — {nx=posX*cf-wpx,
ny=posY*cf-wpy,
dist=sqrt(nx"2+ny"2),
fX=mag*nx/dist,
posY : RealSignallnElement «equal» :l f:o_sr;ag ny/dist} coqual> fX:ReaIEgniIOu_tElt:ment
rrSi; Roal | X [| 1Sig: Real
: - — — 4
- - — J «equal» :I
posY
«PhSConstant» «equal» :l
" . cof
sig2Length : Length «equab :I fY : RealSignalOutElement
nx «equal» [P |
«equal» n Y |:] rSig : Real }
«PhSVariable»] —
normalVectorX : Length dist WpX wpy mag
«PhSVariable» «equal» qequab «equab»
normalVectorY : Length
«PhSVariable» «equal» «PhSConstant» «PhSConstant» «PhSConstant»
distance : Length workpieceX : Length workpieceY : Length normalForce : Real
Fig. 96. Circle normal force calculation
5.3.3. Simulation

The polishing machine was simulated on OpenModelica for 70 seconds with a 0.001 second
step size. The work piece was set to a larger radius than the polishing wheel, with radii 0.1
m and 0.01 m, respectively. The series elastic actuators are the same as the ones in the
weight compensating robot example, see Section 5.1.2. The polishing wheel starts out in
contact with the workpiece at position x=0.11 m and y=0.0 m, but with no applied normal

force, and zero angular and translational velocities. The normal force to be applied was set
to 0.1 N.

Figure 97 shows the magnitudes of the forces on the polishing wheel. The X component
of the normal force applied to the workpiece (blue line with oscillation which starts at the
bottom) oscillates some at the beginning, due to polishing wheel spinning up and force
being applied to the work piece. Both X and Y (orange line which starts in the middle)
components settle to tracing out a negative cosine, negative sine trajectory, as would be
expected for a vector pointing to the center of a circle. Overall the magnitude of the normal
force applied to the work piece (grey line near the top of the figure), is slightly under 0.1 N
the intended value of the normal force.

23The calculation assumes the position of the tool and workpiece are never the same (posX and posY never
equal workpieceX and workpieceY, respectively).

78

NIST IR 8490

October 2023
Contact Normal Force
0.15 -
0.10 A \
0.05 -
z
Y 0.00
—
(@]
L
—0.05 4
—0.101 —— X Normal Force
Y Normal Force
—0.15 A1 Normal Force Magnitude
0 10 20 30 40 50 60 70
Time(s)

Fig. 97. Forces applied by the polishing wheel on the workpiece

The downward sloping lines in Figure 98 are the position of the actual X position of pol-
ishing wheel over time (blue) and the position output by the circular trajectory generator
(grey). The polishing wheel is never far off from the intended position. The upward sloping
lines are the intended Y position of the polishing wheel (dark grey) and the actual position
of the polishing wheel (orange), which nearly overlap.

Polishing Wheel Trajectory

0.10 -
0.05 -
£
c
S 0.00
)
)
o
o
—0.051— Actual X
Actual Y
Target X
—-0.107 Target Y
0 10 20 30 40 50 60 70

Time(s)

Fig. 98. Trajectory of polishing wheel and intended position of polishing wheel

79

NIST IR 8490
October 2023

6. Evaluating Interoperability

The standard translations of SysPhS to simulation platforms are expected to provide the
same simulation results on all of them. To evaluate this, the models in Sections 5.1 through
5.3 [22] were translated to Simscape and Modelica by an open implementation of the stan-
dard [7][8],%* then simulated on Simscape 10.4 and OpenModelica v1.18.0 with OMSim-
ulator v2.1.1 [3], respectively. The same constant time step size of 0.001 seconds was used
in all cases. The OpenModelica integration method was DASSL with tolerance le-6. The
Simscape solver was local, of type backward Euler. Consistency tolerance was le-09. Its
option for "Use fixed cost runtime consistency iterations" was set to true and 3 nonlinear
iterations were used. The difference between OpenModelica and Simscape simulation re-
sults was found to be relatively negligible for the models simulated and for the time period
simulated. Figure 99 shows a comparison between the arm angle with time for Simscape
and OpenModelica. As can be seen in the figure there is negligible difference as there only
appears to be a single line. Figure 100 shows the X position of the extruder with time for
both OpenModelica and Simscape. In the figure there is no discernible difference between
the two trajectories.

Angle of Arm

—— Modelica
Simscape

14 4

12 1

= 10 1

Angle(rad

0 5 10 15 20 25 30
Time(s)

Fig. 99. Comparison of arm angle for collaborative robot

24The implementation required some minor fixes to work on these models and is included with them [22].
The translator takes in a SysML xmi of the system(which references the libraries), and outputs a modelica
mo file for translation to modelica and outputs a simscape slx file for the system, another .sIx file for a
library of components and a folder for build simscape libraries in .ssc.

80

NIST IR 8490
October 2023

Figure 101 shows the difference between the two trajectories with time, with Simscape’s
subtracted from OpenModelica. The difference between the two trajectories is in microm-
eters. If a smaller difference between OpenModelica and Simscape Simulations is needed,

X Position(m)

X Position of Extruder

0.04
0.02 A
—— Modelica
0.00{ —— Simscape
—0.02 A1
—0.04 -
0 5 10 15 20 25

Time(s)

Fig. 100. Comparison of FDM extruder X position

the simulation tolerance and/or timestep should be decreased.

Difference(m)

le—5 Difference of X Position

1.5

1.0 1

0.5

0.0 1

—0.5 1

—1.0 1

—1.54

10 15 20 25
Time(s)

oA
(6]

Fig. 101. Difference between trajectories of extruder in X

81

NIST IR 8490
October 2023

Figure 102 shows a comparison of the the X trajectory of the polishing head in the polishing
machine produced using Open Modelica and Simscape. As can be seen in the diagram,
there appears to only be one trajectory as the difference in trajectories is negligible.

X Position of Polishing Head

0.10 -

0.05 - \ /

0.00

X Position(m)

~0.05 1 /
—— Modelica \ /

—0.101 Simscape N
0 10 20 30 40 50 60 70
Time(s)

Fig. 102. Comparison of polishing wheel x position

Figure 103 shows the difference between the trajectories, with the simscape trajectory sub-
tracted from the OpenModelica trajectory. The difference is in micrometers.

82

NIST IR 8490
October 2023

Difference of X Position

0.0002 1

0.0000 -

—0.0002 -1

Difference(m)

—0.0004

—0.0006 -

0 10 20 30 40 50 60 70
Time(s)

Fig. 103. Difference between trajectories for polishing machine

All models show negligible difference between the two platforms for these examples for
the time period simulated.

7. Summary and Future Work

This work presents several model libraries for physical interaction modeling not currently
included in SysPhs (Section 4), as well as examples of their application to manufacturing
(Section 5). Libraries for signal flow, translational mechanics, rotational mechanics, and
heat flow were applied to model a weight compensating robot, the mechanics and heated
bed of a 3D printer, and a polishing machine. All of these libraries use SysPhs conventions
for conserved substances. These examples are shown to have the same behavior on multiple
platforms.

Some areas of future work on these libraries and examples are:

» Update elements of the translational and rotational library to always conserve trans-
lational or angular momentum. This could improve extensibility of the models and
help users find issues in them. For example, a rotating component in a satellite might
cause the satellite to point off target, due to gyroscopic effects, which is more diffi-
cult to pinpoint when momentum is not conserved. A second port could be added to
source elements with an equal and opposite force applied. Gearboxes could have a
third port for reaction torque.

* Related to the above, update the examples to avoid modeling translational and rota-
tional fixed boundary conditions inside parts used under those conditions, such as an

83

NIST IR 8490
October 2023

internal component of a device that rigidly holds the device in place. For the device
to remain in place it must have a physical connection to something external to it.?

* Update some of the example models to better reflect mechanical structure of the
system being modeled. For example the inertia of axis actuators in the cartesian
robot could be modeled in the same component as the rest of the actuator, instead of
where the actuators are used.

* Add

Coulomb friction for rotational and translational libraries.

— Lossy rotary transformers for the rotational library.
— Control elements for the real signal library, such as high/low pass filters.

— Detail to the manufacturing examples. The motor model could include a torque-
speed curve. Nonlinear fluid flow could be added to the extruder flow model, to
account for viscoelastic effects.

— Prismatic joints in the translational library. Some aspects of the FDM and pol-
ishing machine could be simplified with prismatic joints, which enable relative
translation between two components along a direction defined by a vector.

* Reduce the size of the real signal library by defining mappings of SysPhS Component
Behavior Blocks to equivalent components in Simscape.

Acknowledgments

The authors thank Thomas Roth and Marcus Richardson for their helpful comments.

References

[1] Object Management Group (2019) OMG Systems Modeling Language Specification,
version 1.6. Available at https://www.omg.org/spec/SysML/1.6.

[2] The MathWorks,Inc (2016) Simulink® Documentation. Available at https://www.
mathworks.com/help/releases/R2016a/simulink/.

[3] Open Source Modelica Consortium (OSMC) (2022) Openmodelica users guide.
Available at https://www.openmodelica.org/doc/OpenModelicaUsersGuide/latest/.

[4] The MathWorks 1 (2016) Simscape™ Documentation. Available at https://www.
mathworks.com/help/releases/R2016a/physmod/simscape/.

[5] Object Management Group (2021) SysML Extension for Physical Interaction and
Signal Flow Simulation. Available at https://www.omg.org/spec/SysPhS.

21n fact, zero velocity boundary conditions cannot exist, they are only approximations of a connection to an
inertia massive enough such the momentum the system exchanges with it negligibly changes its velocity.

84

https://www.omg.org/spec/SysML/1.6
https://www.mathworks.com/help/releases/R2016a/simulink/
https://www.mathworks.com/help/releases/R2016a/simulink/
https://www.openmodelica.org/doc/OpenModelicaUsersGuide/latest/
https://www.mathworks.com/help/releases/R2016a/physmod/simscape/
https://www.mathworks.com/help/releases/R2016a/physmod/simscape/
https://www.omg.org/spec/SysPhS

NIST IR 8490
October 2023

[6] Modelica Association (2021) Modelica, A Unified Object Oriented Language
for Systems Modeling, Language Specification, Version 3.5. Available at https:
/Ispecification.modelica.org/maint/3.5/MLS.pdf.

[7] Barbau R, Bock C, Dadfarnia M (2021) Translator from Extended SysML to Physical
Interaction and Signal Flow Simulation Platforms, Version 1.1. Journal of Research
of the National Institute of Standards and Technology 126. https://doi.org/10.6028/
Jres.126.027

[8] Bock C, Barbau R, Matei I, Dadfarnia M (2018) Extension of the systems modeling
language for physical interaction and signal flow simulation. Systems Engineering
20(5):395-431. https://doi.org/10.1002/sys.21380

[9] Dadfarnia M, Bock C, Barbau R, et al. (2016) An improved method of
physical interaction and signal flow modeling for systems engineering.
Conference on Systems Engineering Research (CSER 2016). Available at
https://www.nist.gov/publications/improved-method-physical-interaction-and-
signal-flow-modeling-systems-engineering.

[10] Raven F (1995) Automatic Control Engineering (McGraw-Hill, New York, New
York), 5th Ed.

[11] Object Management Group (2017) OMG Unified Modeling Language Specification,
version 2.5.1. Available at https://www.omg.org/spec/UML/2.5.1/.

[12] International Organization for Standardization (2022) ISO 80000-1:2022 Quantities
and units — Part 1: General. Available at https://www.iso.org/standard/76921.html.

[13] Modelica Associates and Contributors (2023) Modelica.mechanics.translational.
Available at https://build.openmodelica.org/Documentation/Modelica.Mechanics.
Translational.html.

[14] Karnopp DC, Margolis DL, Rosenberg RC (2006) System dynamics-modeling and
simulation of mechatronic systems, john willey & sons. Inc, Hoboken, New Jersey .

[15] Modelica Associates and Contributors (2022) Modelica.mechanics.rotational.
Available at https://build.openmodelica.org/Documentation/Modelica.Mechanics.
Rotational.html.

[16] Modelica Associates and Contributors (2023) Modelica.Mechanics.Translational.
Available at https://build.openmodelica.org/Documentation/Modelica. Thermal.
HeatTransfer.html.

[17] Thoma JU (1975) Entropy and mass flow for energy conversion. Journal of the
Franklin Institute 299(2):89-96.

[18] Pratt GA, Williamson MM (1995) Series elastic actuators. Proceedings 1995
IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot
Interaction and Cooperative Robots (IEEE), Vol. 1, pp 399-406.

[19] Paine N, Oh S, Sentis L (2013) Design and control considerations for high-
performance series elastic actuators. IEEE/ASME Transactions on Mechatronics
19(3):1080-1091.

[20] Modelica Associates and Contributors (2023) Modelica.mechanics.translational.
Available at https://build.openmodelica.org/Documentation/Modelica. Thermal.

85

https://specification.modelica.org/maint/3.5/MLS.pdf
https://specification.modelica.org/maint/3.5/MLS.pdf
https://doi.org/10.6028/jres.126.027
https://doi.org/10.6028/jres.126.027
https://doi.org/10.1002/sys.21380
https://www.omg.org/spec/UML/2.5.1/
https://www.iso.org/standard/76921.html
https://build.openmodelica.org/Documentation/Modelica.Mechanics.Translational.html
https://build.openmodelica.org/Documentation/Modelica.Mechanics.Translational.html
https://build.openmodelica.org/Documentation/Modelica.Mechanics.Rotational.html
https://build.openmodelica.org/Documentation/Modelica.Mechanics.Rotational.html
https://build.openmodelica.org/Documentation/Modelica.Thermal.HeatTransfer.html
https://build.openmodelica.org/Documentation/Modelica.Thermal.HeatTransfer.html
https://build.openmodelica.org/Documentation/Modelica.Thermal.FluidHeatFlow.html
https://build.openmodelica.org/Documentation/Modelica.Thermal.FluidHeatFlow.html
https://www.nist.gov/publications/improved-method-physical-interaction-and

NIST IR 8490
October 2023

FluidHeatFlow.html.

[21] Raibert MH, Craig JJ (1981) Hybrid position/force control of manipulators. Journal
of Dynamic Systems, Measurement, and Control .

[22] Manion C, Bock C, Barbau R (2023) SysPhS Models for Physical Interaction Sim-

ulation in Manufacturing. Available at https://github.com/usnistgov/saismo/releases/
tag/sysphslibs.

86

https://build.openmodelica.org/Documentation/Modelica.Thermal.FluidHeatFlow.html
https://build.openmodelica.org/Documentation/Modelica.Thermal.FluidHeatFlow.html
https://build.openmodelica.org/Documentation/Modelica.Thermal.FluidHeatFlow.html
https://github.com/usnistgov/saismo/releases/tag/sysphslibs
https://github.com/usnistgov/saismo/releases/tag/sysphslibs

	1 Introduction
	2 Physical Interaction and Signal Flow Modeling with SysPhS
	2.1 Physical Interaction and Signal Flow Modeling
	2.1.1 Physical Interaction
	2.1.2 Signal Flow
	2.1.3 Signal Flow of Physical Quantities?

	2.2 SysML
	2.3 SysPhS
	2.3.1 Stereotypes
	2.3.2 Model libraries

	3 Real Signal Component Library
	4 Physical Interaction Libraries
	4.1 Translational Mechanics Library
	4.2 Rotational Mechanics Library
	4.3 Entropy (Heat) Transfer Library

	5 Manufacturing Examples
	5.1 Weight Compensating Robot
	5.1.1 Pendulum
	5.1.2 Series Elastic Actuator
	5.1.3 Gravity Compensation
	5.1.4 Operator
	5.1.5 Simulation

	5.2 Fused Deposition Modeling 3D Printer
	5.2.1 Cartesian Robot
	5.2.2 Extruder
	5.2.3 Controller
	5.2.4 Heated Bed
	5.2.5 Simulation
	5.2.5.1 Cartesian robot
	5.2.5.2 Heated bed

	5.3 Polishing Machine
	5.3.1 Machine
	5.3.2 Controller
	5.3.3 Simulation

	6 Evaluating Interoperability
	7 Summary and Future Work
	References

