
NIST Interagency Report
NIST IR 8490

Physical Component Libraries for
SysPhS Modeling and Simulation

in Manufacturing

Charles A. Manion
Conrad Bock

Raphael Barbau

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8490

https://doi.org/10.6028/NIST.IR.8490
https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.IR.8490

NIST Interagency Report
NIST IR 8490

Physical Component Libraries for
SysPhS Modeling and Simulation

in Manufacturing

Charles A. Manion
Conrad Bock

Smart Connected Systems Division
Communications Technology Laboratory

Raphael Barbau
Associate, Smart Connected Systems Division

Communications Technology Laboratory
University of Maryland

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8490

October 2023

U.S. Department of Commerce
Gina M. Raimondo, Secretary

National Institute of Standards and Technology
Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology

https://doi.org/10.6028/NIST.IR.8490

Certain commercial entities, equipment, or materials may be identifed in this document in order to describe
an experimental procedure or concept adequately. Such identifcation is not intended to imply
recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to
imply that the entities, materials, or equipment are necessarily the best available for the purpose.

NIST Technical Series Policies
Copyright, Fair Use, and Licensing Statements
NIST Technical Series Publication Identifer Syntax

Publication History
Approved by the NIST Editorial Review Board on 2023-09-18

How to cite this NIST Technical Series Publication:
Charles A. Manion, Conrad Bock, Raphael Barbau (2023) Physical Component Libraries for SysPhS
Modeling and Simulation in Manufacturing. (National Institute of Standards and Technology, Gaithersburg,
MD), NIST IR 8490. https://doi.org/10.6028/NIST.IR.8490

NIST Author ORCID iDs
Charles A. Manion: 0009-0008-5273-1995
Conrad Bock: 0009-0009-3172-120X
Raphael Barbau: 0000-0002-0331-2929

https://doi.org/10.6028/NIST.IR.8490

NIST IR 8490
October 2023

Abstract

Computer-interpretable representations of system structure and behavior are at the center
of developing today’s complex systems. Systems engineers create and review these rep-
resentations using graphical languages and information models that capture requirements,
designs, and tests (such as the Systems Modeling Language, SysML®). The SysML Ex-
tension for Physical Interaction and Signal Flow Simulation (SysPhS) is a standard for aug-
menting SysML models with one-dimensional (lumped parameter) simulation information
and translating them to widely-used simulation platforms for testing, without respecifying
the system on those platforms. It includes standard reusable models of system compo-
nents (libraries) corresponding and translated to those in common between the platforms.
This report presents additional physical interaction component libraries, covering areas not
currently standardized. It applies the libraries to some manufacturing examples, translates
them to the simulation platforms, and verifes that they give the same results across plat-
forms.

Key words

SysML; analysis integration; 1D simulation; lumped parameter.

i

NIST IR 8490
October 2023

1. Introduction

Systems engineers (SEs) help coordinate the work of multiple other engineering disci-
plines (mechanical, material, electrical, software, and so on), requiring information to fow
between SEs and those in other disciplines, particularly between the engineering tools they
use. SEs often specify overall system requirements, structure, behavior, and tests in the
Systems Modeling Language (SysML®) [1]. Each discipline has its own languages and
tools for the aspects of a system concerning them, often signifcantly overlapping systems
models and other discipline models. This leads to inconsistencies between systems and dis-
cipline models, as well as between models from different disciplines, usually discovered
later as engineers interact, requiring signifcant additional time to resolve and rework.

One approach to addressing these problems is extend SysML with the additional infor-
mation needed for each discipline and defne translations between the extended systems
models and discipline models. This enables SEs and discipline engineers to build on a sin-
gle system model for information used by all the other engineers, ensuring their results can
be reliably used by others. In particular, the results of model analysis, such as simulation
and optimization, can be effciently communicated to other engineers, checked against re-
quirements and tests, potentially leading to changes in overall system model for everyone.

Many engineering disciplines build simulation models consisting of interconnected compo-
nents (structure), with behavior specifed by ordinary and algebraic differential equations
(derivatives of functions of one variable, typically time). This kind of simulation is appli-
cable to a wide range of physical interactions between components (such as mechanical,
electrical, and so on) as well as communication of numeric signals [2][3][4]. This re-
port refers to these kind of simulation models as physical interaction and signal fow (also
known as lumped parameter, one-dimensional, or network models).

The SysML Extension for Physical Interaction and Signal Flow Simulation (SysPhS) [5]
extends SysML to cover the information needed for this kind of simulation and gives trans-
lations to widely-used tools [6][4][2]. System structure, behavior, and simulation infor-
mation can be specifed once in SysML/SysPhS, then translated to simulation platforms,
rather than manually recoded for each one. This enables the results of simulations to be
compared against requirements and tests in SysML models to predict how well a system
design will perform when built and operated. It also enables discipline engineers to use
different simulation languages and tools.

SysPhS includes standard models of system components (libraries) corresponding to the
elements of existing simulation platforms libraries that are largely similar between tools
and languages. Models using these SysPhS libraries are translated to use the correspond-
ing elements in platform libraries. This has the advantage of producing smaller simulation
fles, due to reuse of platform libraries, but severely limits application of the standard be-
cause most platform libraries differ between tools and languages, even when they cover
useful areas of physical interaction. This report presents additional physical interaction

1

NIST IR 8490
October 2023

component libraries in some areas where existing simulation libraries differ too much to
be reused in translating SysPhS models: rotational and translational mechanics, as well
as heat transfer. They are defned in standard SysPhS/SysML and translated to simulation
tools and languages using an open implementation of SysPhS [7][8]. This report applies
the additional libraries to manufacturing examples, translates them to two widely used sim-
ulation platforms, and verifes that they give the same results. Section 2.1 reviews physical
interaction and signal fow modeling (also known as lumped parameter, one-dimensional,
or network models) independently of any particular simulation language or tool, as well
how they are modeled in SysML and SysPhS in particular. Section 3 describes a model
library for real signal fow developed for the paper. Section 4 presents libraries for transla-
tional mechanics, rotational mechanics, and entropy (heat) transfer, not included in SysPhS
currently. Section 5 applies the libraries to manufacturing examples, translates them to two
widely used simulation platforms, and presents the results. Section 6 shows the results are
the same on the two platforms. Section 7 summarizes the paper and outlines future work.

2. Physical Interaction and Signal Flow Modeling with SysPhS

Section 2.1 reviews the two ways system components interact in one-dimensional (lumped
parameter) modeling (physical interaction and signal fow), independently of any particular
language or simulation tool. Section 2.2 outlines the capabilities of SysML needed in
SysPhS, while Section 2.3 covers SysPhS itself.

2.1. Physical Interaction and Signal Flow Modeling

Physical interaction and signal fow modeling distinguishes system component interactions
based on whether the things being exchanged are physical or informational (numeric and
boolean only) [9]. Physical interaction is suited for specifying systems with physical behav-
ior, while signal fow is often applied to control and signal-processing systems. In practice,
physical interaction and signal fow are typically combined in the same models. For exam-
ple, many systems have physical components directed by control systems via sensors and
actuators.

Physical and informational things differ in that physical things cannot be:

• “copied” like information can (physical things are conserved, information is not).

• moved without affecting the mover (“bidirectional” effects, with effects determined
during system operation or simulation), while sending of information does not affect
the sender (“unidirectional” effects, from outputs to inputs, as specifed in models,
and not changed during system operation or simulation).

• carry energy, while information does not.

Physical interaction and signal fow modeling requires components to interact through their
ports, where physical or information things move into or out of components, along links

2

NIST IR 8490
October 2023

between ports. The specifcs of physical interaction and signal fow modeling are covered
in Sections 2.1.1 and 2.1.2, respectively, while Section 2.1.3 briefy describes a common
misapplication of them.

2.1.1. Physical Interaction

Physical interaction models reduce physical things to one of their physical characteristics,
which are treated as moving along with those things, as well being conserved or converted
to others with them. For example, electrons or positrons can be treated as their electric
charge, or as their momentum, or in large ensembles (many linear momenta aggregated
statistically) as their entropy. These characteristics are conserved as they move between
system components, and are also conserved within components unless they are converted
to others.

Conserved physical characteristics (carried by physical things) move into or out of each
component at their ports, as described by two numeric variables at each port:

• Flow rate: The amount of substance (as a conserved characteristic) per time moving
through a port, such as current (electric charge per time), force and torque (linear and
angular momentum per time), and entropy fow rate (entropy per time).

• Potential to fow: An impetus for substances to move between ports on the same
component, such as voltage for electric charge, linear and angular velocity for mo-
mentum, and temperature for entropy.

Flow (non-zero fow rates) can only happen when potentials on the same component:

• differ between its ports and the component’s resistance to fow is not infnite.

• are the same between its ports and the component’s resistance to fow is zero.

Flow rate is proportional to potential difference between ports on the same component and
inversely proportional to resistance of that component, though fow can happen between
ports of the same potential when the component does not resist it.1 Flow rate and potential
variables for each conserved substance multiply to power (energy per time), giving a fow
rate for energy moving through a port. Links between ports act as if they have no effect
on the substances “moving” across them, including no resistance or transformation. This
is refected in the following mathematical relationships between physical variables (of the
same name) on each port:

• The sum of fow rate variables on linked ports is zero (conservation of the fowing
characteristic).

1The name of this “constitutive” relationship differs by domains, such as Ohm’s law for electricity,
Poiseuille’s law for laminar fow in long pipes with constant cylindrical cross sections, and Fourier’s law for
heat conduction. These laws relate potential differences across a component with fow rates through them
and their resistance to fow due to material characteristics [10].

3

NIST IR 8490
October 2023

• Potential variables on the ends of each link are equal (no resistance to fow).

Links cannot affect things fowing across them like physical connections can, these effects
must be modeled as additional components.

2.1.2. Signal Flow

Signal fow models limit information to numbers (real or integer) or boolean values (true
or false). Because these are not physical things:

• Only one variable per signal is needed at a port, giving a numeric or boolean value
for the signal. It is not a fow rate or a potential to fow.

• Signal variables are either output or input at a port, with links only between output
and input (fow is unidirectional).

Links between ports require signal variables (of the same name) on each port to have the
same value. Multiple signal output variables cannot be linked to the same input, to prevent
signal values from conficting.2

2.1.3. Signal Flow of Physical Quantities?

The examples in this paper use physical interaction for modeling physical phenomena,
rather than signal fow.3 Signal fow modelers might be tempted to defne (unidirectional)
variables representing physical quantities, such as torque and angular velocity, but this re-
sults in much more complex models than physical (bidirectional) variables would. Consider
an electrical resistor governed by equation V = I ∗ R. We could model this as a signal fow
block that takes current as input and provides voltage across the resistor as output. This
only works when the current through the resistor is known, which is not the case when the
resistor is connected to a voltage source or in parallel with other resistors (constant voltage
drop across all resistors). These applications require another signal fow block that takes
voltage as input and provides current as output. Determining which block to use might
not be straightforward in more complicated systems and also might change during a single
simulation run, as when switching dynamically between series and parallel connections.

Physical interaction models resolve these problems by maintaining two bidirectional vari-
ables on each connection, with the choice of independent variable left to the simulator,
including cases where variable dependence changes during a single simulation run. Mod-
els formulated this way are more versatile and easier to compose. Signal fow of physical
quantities is more suited to modeling components that control physical ones, see Section 3.

2Physical potential variables are not limited this way, even though they must have the same values like signal
variables do, because bidirectional physical effects enable conficting potentials to “even out”.

3An example of applying signal fow modeling to a physical interaction system is in Annex 1.5 of [5].

4

NIST IR 8490
October 2023

2.2. SysML

System structure in SysML describes the kinds of components a system is made of (whole-
part relationships), and how they are interconnected (part-part relationships). Systems and
components are both modeled as blocks, enabling components to be entire systems them-
selves, and systems to be components of other systems. Each block represents potentially
many systems or components built or simulated in the way the block specifes (instances
of the block). Blocks are notated by rectangles, as shown in Figure 1. They can form
taxonomies via generalization, relating specialized blocks to more general ones, appearing
as closed head arrows pointing to more general blocks. Instances of specialized blocks are
instances of more general ones, which means specifcations in more general blocks apply
to all its instances, including those of more specialized blocks in a taxonomy. In Figure 1,
the generalizations indicate that all instances of SportsCar and 4WDCar are also instances
of Car. Blocks appear in block defnition diagrams (BDDs), indicated on the top right of
the diagram frame.

«block»

4WDCar

«block»

SportsCar

bdd Vehicles

«block»
Car
values

weight : Real

ports

gasIntake : FuelInlet

«interfaceBlock»
FuelInlet

flow properties

in fuelIn : Fuel

Fig. 1. SysML block defnition diagram

Blocks can include properties that each instance can give values for. SysML distinguishes
several kinds of properties, one kind being those with data values, such as numbers, booleans,
or strings. These are notated in block compartments labelled values, as shown for the
weight property in Car in Figure 1, which gives the weight of each car separately, includ-
ing sports cars and four wheel drive cars. Property values are instances of the type of the
property, shown the the right of the colon, such as Real for weight (real numbers).

Ports are properties for specifying some of the interactions of an entire block. These appear
in labelled block compartments, as shown for the gasPort in Car in Figure 1. Ports are
often typed by interface blocks, which are blocks that only mediate between the inside
and outside of other blocks, rather than introducing their own behaviors as components
do. They often defne fow properties to specify the kinds of things moving across the
boundary of a component, as well the possible directions of fow. The gasPort in Figure 1
is typed by the FuelInlet interface block, which defnes the fuelIn fow property, typed by

5

NIST IR 8490
October 2023

Fuel to specify the kind of thing fowing through it, with direction restricted to being into
components that have this kind of port. Other directions are out and inout (unrestricted).

Blocks can also include connectors between properties (part-part relationships) to specify
links between values of properties of the same object (whole-part relationships). Connec-
tors typically link ports and appear in internal block diagrams (IBDs). For example, Figure
2 defnes a connector in a GasStation block that links ports of its customer and pump prop-
erties. Properties in IBDs are notated as rectangles, larger ones for components and smaller
ones for ports. Small arrows in port rectangles indicate the directions of their fow proper-
ties. Connectors between ports that defne fow properties can show a small flled triangle
labelled with the types of the fow properties, Fuel in this example.

ibd [Block] GasStation

customer :

Car

pump :

FuelPump��

nozzle
gas
intake

Fuel

Fig. 2. SysML internal block diagram

Blocks can defne equations relating values of datatype properties, usually defned in sepa-
rate constraint blocks. The equation variables are presented as properties called constraint
parameters, with the equation written in a textual language referring to these parameters
by name. Constraint blocks are used in potentially many other blocks by being the type of
constraint properties on those blocks. Values of constraint parameters are equated to block
property values by linking them with binding connectors in parametric diagrams.

SysML enables extension of its syntax to be defned in models, via stereotypes, which are
similar to blocks, but with property values directly on blocks they are applied to, rather
than on instances of those blocks. For example, a stereotype might have a property iden-
tifying the engineers who authored each block, giving names on each block the stereotype
is applied to, rather than instances of those blocks during system operation or simulation.
Stereotypes and their properties can appear on any diagram showing the elements they are
applied to, notated between guillemets («»).4

2.3. SysPhS

SysPhS extends SysML to cover information needed for physical interaction and signal
fow simulation. It includes:

• An extension of SysML for adding information specifc to this kind of simulation.

4This extension capability is provided by the Unifed Modeling Language® (UML®) [11], which SysML
extends. For example, SysML «block» and «fowProperty» are stereotypes of UML Class and Property,
respectively.

6

NIST IR 8490
October 2023

• A human-usable textual syntax for mathematical expressions. This includes syntax
for derivatives, which are always with respect to time only.

• Platform-independent libraries of simulation elements that can be reused in system
models.

• Translation patterns between SysML as extended above and two widely-used simu-
lation languages and tools for physical interaction and signal fow simulation (Mod-
elica and Mathworks Simulink®/Simscape™).

Sections 2.3.1 and 2.3.2 describe the language extension and model libraries, respectively.

2.3.1. Stereotypes

SysPhS enables SysML properties to become simulation constants or variables by applying
the PhSConstant or PhSVariable stereotype, respectively, shown in Figure 3 (see Section
2.2 about SysML language extension). Values of constant properties do not change during
each simulation run, though they might between simulation runs. They must be properties
of components, not ports, because they do not characterize fows between components. The
stereotype for variable properties adds this information:

• isContinuous: A boolean telling whether property values change continuously during
simulation (true) or discretely (false), defaulting to true. It can only be true for real-
valued properties.

• isConserved: A boolean telling whether the property gives a fow rate (true) or a
potential to fow (false) during simulation, defaulting to false. It can only be true
when isContinuous is true and the extended property is typed by a fow rate for a
conserved quantity kind from the SysPhS physical interaction library, see below.

• changeCycle: A non-negative real number for the time interval at which discrete
properties change values, defaulting to 0. It can only be positive when isContinuous
is false.

«stereotype»

PhSConstant

«metaclass»

UML::Property

«stereotype»

PhSVariable

isContinuous : Boolean = true
isConserved : Boolean = false
changeCycle : Real = 0

Fig. 3. SysPhS stereotypes

7

NIST IR 8490
October 2023

Properties with PhSVariable applied are either on types of

• Ports, for interaction with other components (port variables).5 They appear on blocks
characterizing fow of physical substances through ports, see below.

• Components, for specifying behavior (component variables). They appear as proper-
ties internal to component blocks, related by equations to other component properties
and port variables on the same component. They are not conserved, because they do
not characterize fows, even if they would be considered fow rates when used on
ports.

Another property stereotype is PhSConstant which is for defning values which do not
change during a simulation. For example, the spring constant of a spring may be

2.3.2. Model libraries

SysPhS provides standard models of commonly needed elements for physical interaction
and signal fow modeling, divided by whether they are for ports or components (see Section
2.2 about these). It has two port libraries, for physical interaction and signal fow.6 The
component libraries are mostly for processing real numbers and booleans, plus one for
electrical components. This section describes both port libraries and explains how the
component libraries are translated to different platforms, as needed for this paper.

Figure 4 shows the SysPhS library for physical interaction ports. These ports are typed by
the interface blocks along the bottom row of the fgure, which have bidirectional (inout)
fow properties typed by the blocks just above them, the ones with names starting "Flow-
ing". These introduce properties for fow rates and potentials of physical characteristics
as they fow through ports, such as force and velocity for linear momentum, indicated as
PhSVariables with isConserved=true or false, respectively. The "fowing" blocks specialize
those in the third row, for physical characteristics in general, such as linear momentum and
charge, which might be fowing or not. All these physical characteristics are conserved
when fowing across links between ports (see Section 2.1.1), as indicted by specializing
ConservedQuantityKind, which specializes SysML’s QuantityKind, the kinds of physical
things (conserved or not) that are measured by units, such as length and force [12].7

5Connectors in Modelica, connection ports in Simscape
6The SysPhS specifcation refers to these as component interaction libraries, but this paper refers to them as
port libraries to avoid confusion with physical interaction.

7The same units can measure different quantity kinds, such as newton-meters measuring work and torque.
Quantity kinds provide a unit-independent way to identify physical characteristics being measured.

8

NIST IR 8490
October 2023

«interfaceBlock»

LMomFlowElement

phs variables

{isConserved} f : Force
lV : Velocity

«block»

FlowingLMom

physical interactions

inout lMomF: FlowingLMom

«interfaceBlock»

AMomFlowElement

phs variables

{isConserved} trq : Torque
aV : AngularVelocity

«block»

FlowingAMom

physical interactions

inout aMomF: FlowingAMom

«block»

LinearMomentum
«block»

AngularMomentum

«interfaceBlock»

ChargeFlowElement

phs variables

{isConserved} i : Current
v : Voltage

«block»

FlowingCharge

physical interactions

inout cF: FlowingCharge

«block»

Charge

«interfaceBlock»

VolumeFlowElement

phs variables

{isConserved} q : VolumeFlowRate
p : Pressure

«block»

FlowingVolume

physical interactions

inout vF: FlowingVolume

«block»

Volume

«interfaceBlock»

EntropyFlowElement

phs variables

{isConserved} sFR : EntropyFlowRate
t : Temperature

«block»

FlowingEntropy

physical interactions

inout sF: FlowingEntropy

«block»

Entropy

«block»

ConservedQuantityKind

«block»

SysML::QuantityKind

Fig. 4. SysPhS standard library for physical interaction

Figure 5 shows the SysPhS library for signal fow ports. It provides port types for each
kind of signal (boolean, real, and integer) in each direction (in and out).

«interfaceBlock»

RealSignalElement

signal flows

rSig : Real

«interfaceBlock»

RealSignalInElement

signal flows

in rSig : Real {redefines rSig}

«interfaceBlock»

RealSignalOutElement

signal flows

out rSig : Real {redefines rSig}

«interfaceBlock»

IntegerSignalInElement

signal flows

in iSig : Integer {redefines iSig}

«interfaceBlock»

IntegerSignalOutElement

signal flows

out iSig : Integer {redefines iSig}

«interfaceBlock»

IntegerSignalElement

signal flows

iSig : Integer

«interfaceBlock»

BooleanSignalInElement

signal flows

in bSig : Boolean {redefines bSig}

«interfaceBlock»

BooleanSignalOutElement

signal flows

out bSig : Boolean {redefines bSig}

«interfaceBlock»

BooleanSignalElement

signal flows

bSig : Boolean

Fig. 5. SysPhS standard library for signal fow

9

NIST IR 8490
October 2023

SysPhS also provides libraries of predefned components corresponding to those in com-
mon between the two simulation platforms it gives translations for (Modelica and Simulink/
Simscape). These SysPhS components leave it to the platforms to defne their behavior,
rather than restating it in SysPhS. The libraries are mostly for processing real numbers and
booleans, plus one for electrical components. All of them identify corresponding Model-
ica elements, with the real number and boolean components identifying ones in Simulink,
and the electrical components identifying corresponding Simscape elements. This paper
only needs real number components, but does not use the ones from SysPhS, see Section 3.
SysPhS may be translated to different platforms by a translator[7]. This translator takes in
a SysPhS xmi and the user selects the model to be translated. Then either a modelica .mo
fle or simscape .slx and simscape libraries are output.

3. Real Signal Component Library

The examples in this paper require some real number processing. SysPhS provides most
of the real signal blocks needed, but they correspond to Simulink elements (see Section
2.3.2), which are not easily used with Simscape, one of the platforms for simulating SysPhS
physical interaction (see Section 2.1.3). This section redefnes a few of these real signal
blocks and adds one specifcally for control, as shown in Figure 6. Most blocks include
constraint properties referencing constraint blocks defned in Figure 7 (see Section 2.2
about constraint modeling in SysML). All are described with their parametric diagrams in
the rest of the section.

10

NIST IR 8490
October 2023

Control ComponentsSysPhS Real Signal[Package] bdd][

setPoint : RealSignalInElement
outSig : RealSignalOutElement
curValue : RealSignalInElement

ports

deriv2Signal : Time = 1.0 s {unit = second}
i : Real{changeCycle = 0.0, isConserved = false, isContinuous}
e : Real{changeCycle = 0.0, isConserved = false, isContinuous}
kd : Time{unit = second}
ki : Real
kp : Real

values

pIDCC : PIDControlConstraint
constraints

PIDControl
«block»

i : RealSignalOutElement
ports

centerAmplitude : Real
amplitude : Real
frequency : Frequency{unit = hertz}

values

sRSC : SineRealSignalConstraint
constraints

SineRealSignal
«block»

outSig : RealSignalOutElement
inSig : RealSignalInElement

ports

gain : Real
values

gc : GainConstraint
constraints

Gain
«block»

const : RealSignalOutElement
ports

cnsnt : Real
values

ConstantRealSignal
«block»

Fig. 6. Real signal component library

SysPhS Real Signal [Control Constraints][Package] bdd

rsig : Real
f : Frequency{unit = hertz}
d : Real
amp : Real

parameters

{rsig=amp*sin(f*2*2*asin(1.0)*time)+d}
constraints

SineRealSignalConstraint

«constraint»

set : Real
out : Real
kp : Real
ki : Real
kd : Real
i : Real
e : Real
cur : Real
cf : Time{unit = second}

parameters

{out=kp*e+ki*i+kd*der(e)}
{der(i)*cf=e}
{e=set-cur}

constraints

PIDControlConstraint

«constraint»

out : Real
k : Real
ins : Real

parameters

{out=ins*k}
constraints

GainConstraint

«constraint»

Fig. 7. Real signal component library constraints

11

NIST IR 8490
October 2023

ConstantRealSignal outputs a real signal that is constant over time, defned by the PhSCon-
stant cnsnt, as shown in Figure 8.

[ConstantRealSignal]ConstantRealSignal[Block] par

const : RealSignalOutElement

rSig : Real
cnsnt : Real

«PhSConstant» «equal»

Fig. 8. Constant parametric diagram

Gain takes in a real signal and outputs a real signal multiplying it by the constant value of
gain, as shown in Figure 9.

[Block] GainGainpar][

outSig : RealSignalOutElement

rSig : Real

inSig : RealSignalInElement

rSig : Real
{out=ins*k}

gc : GainConstraint
«constraint»

gain : Real
«PhSConstant»

k outins
«equal» «equal»

«equal»

Fig. 9. Gain parametric diagram

SineRealSignal, shown in Figure 10, outputs a real signal that forms a sine wave over time.
The PhSConstants frequency, amplitude, and offset characterize the wave, with frequency
in units of Hz, oscillating around the value of offset.

[SineRealSignal]SineRealSignal[Block] par

i : RealSignalOutElement

rSig : Real

{rsig=amp*sin(f*2*2*asin(1.0)*time)+d}
sRSC : SineRealSignalConstraint

«constraint»

frequency : Frequency
«PhSConstant»

amplitude : Real
«PhSConstant»

offset : Real
«PhSConstant»

rsig
f amp d

«equal»

«equal» «equal» «equal»

Fig. 10. SineRealSignal parametric diagram

12

NIST IR 8490
October 2023

PIDControl, shown in 11, models Proportional Integral Derivative (PID) controllers. The
input setPoint gives the desired value of the plant output as a realSignal, curValue is the
present value of the plant output, and outSig is the output control value to be provided to
the plant. The proportional coeffcient is kp, the integral coeffcient is ki, and the derivative
coeffcient is kd.

[PIDControl]PIDControl[Block] par

curValue : RealSignalInElement

rSig : Real

setPoint : RealSignalInElement

rSig : Real

outSig : RealSignalOutElement

rSig : Real

{e=set-cur,
der(i)*cf=e,
out=kp*e+ki*i+kd*der(e)}

pIDCC : PIDControlConstraint

«constraint»

deriv2Signal : Time

«PhSConstant»

kp : Real

«PhSConstant»

ki : Real

«PhSConstant»

kd : Time

«PhSConstant»

i : Real

«PhSVariable»

e : Real

«PhSVariable»

«equal»

cf

i

out

cur

kdkikp

set

e

«equal»

«equal»

«equal»

«equal»

«equal»

«equal» «equal»«equal»

Fig. 11. PIDControl parametric diagram

The control signals in these libraries are real signals that do not have units, to avoid defn-
ing new interface blocks that add units to the real signal blocks in SysPhS. For example,
PIDControl, which is widely applicable as it is, would need many specialized interface
blocks with various units. Simscape, a platform SysPhS gives translations for, requires
the two sides of each equations have the same units. However, many elements, such as
sensors and source elements, have equations that relate physical quantities that have units
to unitless real signals. The library introduces conversion factors with units that balance
units on each of an equation by multiplying a real signal to add units or dividing a physical
quantity to remove units. For example, a velocity sensor that outputs a unitless real signal
needs to have an equation where both sides do not have units. The sensed velocity must
be multiplied with a factor with inverse units of velocity to remove its units. Equations in
these libraries that convert between unitless quantities and those with units are written to
not require implementing new units. For example, the equation for converting a quantity
with units into a real signal is typically signal = q/cf, where q is the quantity to be converted
and cf is the conversion factor in the same units as quantity. This avoids introducing units
that are inverse of those of quantity.

13

NIST IR 8490
October 2023

4. Physical Interaction Libraries

This section presents physical interaction component libraries for areas not covered by
SysPhS currently (see Section 1). They are defned with the standard SysPhS extensions
and physical interaction library (see Figures 3 and 4 in Section 2.3), enabling them to trans-
lated in a standard way to simulation tools and languages. The libraries are for translational
mechanics, rotational mechanics, and entropy (heat) transfer, in Sections 4.1, 4.2, and 4.3,
respectively.

4.1. Translational Mechanics Library

The translational mechanics library enables SysPhS modeling of mechanical components
moving in one dimension, including point masses affected by springs, dampers, and in-
ertia, but not changing orientation (angle). It also supports linear motion along multiple
independent axes, for pseudo-2D and 3D modeling.

Figure 12 shows an example translational system to illustrate the library. It is a mass-
spring-damper attached to a fxed wall, with a sinusoidally varying force applied to the
mass. A sinusoidal force f is applied to m1, giving and taking linear momentum from it,
which passes through k1 and d1 to and from the fxed wall. The sinusoidal force and fxed
wall make this an open system, but the change in system momentum equals the net impulse
applied to the system (force integrated over time, which is linear momentum). The mass
develops some oscillation, but its exact behavior is dependent on the values of parameters
and starting conditions chosen.

m1

k1

d1

f

Fig. 12. An example translational system

The system in Figure 12 is modeled with SysPhS in Figure 13, an IBD connecting com-
ponents defned by the translational mechanics library BDD in Figure 14 (see Section 2.2
about these kind of diagrams). Figure 13 refers to blocks in library by their names, appear-
ing to the right of the colon at the top of each larger rectangle. The role each block plays in
the system appears to the left of the colon in each, following the labels in Figure 12. The
force f applied to m1 varies as a sine wave, controlled by a component via a signal port,
notated by a small rectangle with an unidirectional arrow inside (see Section 3 about signal
components).

14

NIST IR 8490
October 2023

MassSpringDamperMassSpringDamper[Block] ibd][

d = 1.0 N·s/m
initialValues

d1 : TranslLinearDamper

k = 1.0 N/m
disp = 0.0 m

initialValues

k1 : TransLinearSpring

signal2Force = 1.0 N
initialValues

f : TransForceSource

offset = 0.0
frequency = 1.0 1/s
amplitude = 1.0

initialValues

sine : SineRealSignal

tV = 0.0 m/s
mass = 1.0 kg

initialValues

m1 : TransInertia

fixed : TransFixed

ba

ba

a

i

i

b
a

a

Real

LinearMomentum

LinearMomentum

LinearMomentum

LinearMomentum

LinearMomentum

Fig. 13. Figure 12 modeled in SysPhS with initial conditions and sources

Figure 13 connects translational components at their physical interaction ports, notated by
small rectangles with bidirectional arrows inside. Flows of (linear) momentum through
these ports are described by their force and (linear) velocity, which are momentum’s rate
of fow and potential to fow, respectively (conserved and non-conserved variables, respec-
tively).8 SysPhS uses force and velocity to enable fows between components to be taken
as energy fows, with rate of energy fow (power) being the product of the variables. Force is
the rate of fow of momentum, following the physical defnition that it is the rate of change
of momentum. Velocity is the potential to fow of momentum, since two objects moving
at the same velocity cannot exchange momentum (see Section 2.1.1 about potentials). Ve-
locity, acceleration and force have a direction, indicated by the sign of their variables. This
library assumes the sign of acceleration and the force causing it are the same.

Figure 14 defnes the translational mechanics library introduced by this paper and used in
Figure 13. All the components have physical interaction ports for linear momentum and
some have real signal ports (see Section 2.3.2). The library includes TwoFlangeTransCom-
ponent, which has two momentum ports and a variable forceThru for the force it exerts or
exerted on it (rate of momentum fow through the component), as defned in its special-
izations. One of these is CompliantTransComponent, where the ports can move relative to
each other along the same line, such as springs and dampers. It has two variables, relV
for the relative velocity between the ports, and disp, for the relative displacement between
them.

8Some translational mechanics modeling software use absolute position and force as port variables, such as
the Modelica Standard Library for Translational Mechanics [13].

15

NIST IR 8490
October 2023

SysPhS Translational Mechanics Translational Mech Components[Package]bdd][

zVel : Velocity
yVel : Velocity
xVel : Velocity
zPosition : Length
yPosition : Length
xPosition : Length
zAccel : Acceleration
yAccel : Acceleration
xAccel : Acceleration
mass : Mass

values

bZ : LMomFlowElement
bY : LMomFlowElement
bX : LMomFlowElement
aZ : LMomFlowElement
aY : LMomFlowElement
aX : LMomFlowElement

ports

t3DIC : Trans3DInertiaConstraint
constraints

Trans3DInertia
«block»

i : RealSignalInElement
a : LMomFlowElement

ports

signal2Velocity : Velocity{unit = metrePerSecond}
values

tVSC : TransVelSourceConstraint
constraints

TransVelSource
«block»

bY : LMomFlowElement
bX : LMomFlowElement
aY : LMomFlowElement
aX : LMomFlowElement

ports

yVel : Velocity
yAccel : Acceleration
xAccel : Acceleration
xVel : Velocity
yPosition : Length
xPosition : Length
mass : Mass

values

t2DIC : Trans2DInertiaConstraint
constraints

Trans2DInertia
«block»

i : RealSignalOutElement
a : LMomFlowElement

ports

velocity2Signal : Velocity = 1.0 m/s
values

lVSC : TransVelocitySensorConstraint
constraints

TransVelocitySensor
«block»

i : RealSignalOutElement
a : LMomFlowElement

ports

position2Signal : Length = 1.0 m
linearPosition : Length

values

lPSC : TransPositionSensorConstraint
constraints

TransPositionSensor
«block»

values
d : TransDamping

constraints
tLDC : TransLinearDamperConstraint

TransLinearDamper
«block»

i : RealSignalInElement
a : LMomFlowElement

ports

signal2Force : Force
values

tFSC : TransForceSourceConstraint
constraints

TransForceSource
«block»

k : TransStiffness
values

tLSC : TransLinearSpringConstraint
constraints

TransLinearSpring
«block»

b : LMomFlowElement
a : LMomFlowElement

ports

forceThru : Force
values

TwoFlangeTransComponent
«block»

disp : Length
relV : Velocity

values

CompliantTransComponent
«block»

disp : Length
tA : Acceleration
tV : Velocity
mass : Mass

values

tIC : TransInertiaConstraint
constraints

TransInertia
«block»

a : LMomFlowElement
ports

tfc : TransFixedConstraint
constraints

TransFixed
«block»

Fig. 14. Translational mechanics library

Figure 15 defnes the constraint blocks referenced by constraint properties in Figure 14,
appearing in a compartment of each translational library block (see Section 2.2 about con-
straint modeling in SysML). BinaryCompliantTransConstraint defnes constraints for all
components with two ports that might have different velocities, corresponding to system
components with two ends that might move with respect to each other, such as springs
and dampers. Forces on these components sum to zero, as specifed by fa + fb = 0, while

16

NIST IR 8490
October 2023

relV=Vb-Va defnes the relative velocity between ports a and b.9 The derivative of dis-
placement is relative velocity, expressed as der(disp)=relV, which means displacement is
an integral of relative velocity. Initial displacement must be defned if it is not supplied by
additional equations.

SysPhS Translational Mechanics Translational Mech Constraints[Package]bdd][

z : Length{unit = metre}
y : Length{unit = metre}
x : Length{unit = metre}
tVz : Velocity{unit = metrePerSecond}
tVy : Velocity{unit = metrePerSecond}
tVx : Velocity{unit = metrePerSecond}
tFbz : Force{unit = newton}
tFby : Force{unit = newton}
tFbx : Force{unit = newton}
tFaz : Force{unit = newton}
tFay : Force{unit = newton}
tFax : Force{unit = newton}
tAz : Acceleration{unit = metrePerSecondSquared}
tAy : Acceleration{unit = metrePerSecondSquared}
tAx : Acceleration{unit = metrePerSecondSquared}
m : Mass{unit = kilogram}

parameters

{tVz=der(z)}
{tVy=der(y)}
{tVx=der(x)}
{tAz=der(tVz)}
{tAy=der(tVy)}
{tAx=der(tVx)}
{tFaz+tFbz=m*tAz}
{tFay+tFby=m*tAy}
{tFax+tFbx=m*tAx}

constraints

Trans3DInertiaConstraint
«constraint»

y : Length{unit = metre}
x : Length{unit = metre}
tVy : Velocity{unit = metrePerSecond}
tVx : Velocity{unit = metrePerSecond}
tFby : Force{unit = newton}
tFbx : Force{unit = newton}
tFay : Force{unit = newton}
tFax : Force{unit = newton}
tAy : Acceleration{unit = metrePerSecondSquared}
tAx : Acceleration{unit = metrePerSecondSquared}
m : Mass{unit = kilogram}

parameters

{tVy=der(y)}
{tVx=der(x)}
{tAy=der(tVy)}
{tAx=der(tVx)}
{tFay+tFby=m*tAy}
{tFax+tFbx=m*tAx}

constraints

Trans2DInertiaConstraint
«constraint»

x : Length{unit = metre}
tVb : Velocity{unit = metrePerSecond}
tVa : Velocity{unit = metrePerSecond}
tV : Velocity{unit = metrePerSecond}
tA : Acceleration{unit = metrePerSecondSquared}
m : Mass{unit = kilogram}
forceThru : Force{unit = newton}
fb : Force{unit = newton}
fa : Force{unit = newton}

parameters

{tV=der(x)}
{forceThru=fa+fb}
{tV=tVa}
{tVa=tVb}
{tA=der(tV)}
{forceThru=m*tA}

constraints

TransInertiaConstraint
«constraint»

tVb : Velocity{unit = metrePerSecond}
tVa : Velocity{unit = metrePerSecond}
relV : Velocity{unit = metrePerSecond}
forceThru : Force{unit = newton}
fb : Force{unit = newton}
fa : Force{unit = newton}
disp : Length{unit = metre}

parameters

{fa=-forceThru}
{relV=tVb-tVa}
{der(disp)=relV}
{fa+fb=0}

constraints

BinaryCompliantTransConstraint
«constraint»

vel : Velocity{unit = metrePerSecond}
sig : Real
cf : Velocity{unit = metrePerSecond}

parameters

{vel=sig*cf}
constraints

TransVelSourceConstraint
«constraint»

x : Length{unit = metre}
tV : Velocity{unit = metrePerSecond}
sig : Real
f : Force{unit = newton}
cf : Length{unit = metre}

parameters

{sig=x/cf}
{f=0}
{tV=der(x)}

constraints

TransPositionSensorConstraint
«constraint»

tV : Velocity{unit = metrePerSecond}
sig : Real
f : Force{unit = newton}
cf : Velocity{unit = metrePerSecond}

parameters

{f=0}
{sig=tV/cf}

constraints

TransVelocitySensorConstraint
«constraint»

parameters
tV : Velocity{unit = metrePerSecond}

constraints
{tV=0}

TransFixedConstraint
«constraint»

b : Real
parameters

{forceThru=b*relV}
constraints

TransLinearDamperConstraint
«constraint»

k : Real
parameters

{forceThru=k*disp}
constraints

TransLinearSpringConstraint
«constraint»

parameters

sig : Real
forceOut : Force{unit = newton}
cf : Force{unit = newton}

constraints
{forceOut=-sig*cf}

TransForceSourceConstraint
«constraint»

Fig. 15. Constraints for the translational mechanics library

9BinaryCompliantTransConstraint is analogous to BinaryElectricalComponentConstraint in the electrical ex-
ample in SysPhs Annex A1.2 [5]. The two equations above in BinaryCompliantTransConstraint are analo-
gous to current at the ports summing to zero and voltage drop across the ports, respectively.

17

NIST IR 8490
October 2023

The rest of this section covers the other components in Figure 14 and parametric diagrams
that bind their properties to constraint parameters in Figure 15 (see 2.2 about these kind of
diagrams).

The TransLinearSpring block in Figure 14 models a component in which force exerted at
its ports is linearly proportional to the displacement between them (Hooke’s Law), without
any losses or inertia. This is expressed in TransLinearSpringConstraint in Figure 15, a kind
of BinaryCompliantTransConstraint. Figure 16 shows a parametric diagram for TransLin-
earSpring that binds its properties to parameters from TransLinearSpringConstraint. Prop-
erties on the momentum ports bind to parameters on the constraint. TransLinearSpring has
a parameter k for stiffness in units of N/m. The spring k1 in Figure 12 is modeled with
TrsntlLinearSpring in Figure 13.

TransLinearSpringTransLinearSpring[Block] par][

b : LMomFlowElement

lMomF.f : Force

lMomF.lV : Velocity

a : LMomFlowElement

lMomF.f : Force

lMomF.lV : Velocity

{forceThru=k*disp}

tLSC : TransLinearSpringConstraint

«constraint»

k : TransStiffness

«PhSConstant»

forceThru : Force

«PhSVariable»

disp : Length

«PhSVariable»

relV : Velocity

«PhSVariable»

k

^forceThru

^relV

^disp

^tVb^tVa

^fb^fa
«equal»

«equal»«equal»

«equal»

«equal»

«equal» «equal»

«equal»

Fig. 16. TransLinearSpring parametric diagram

TransLinearDamper in Figure 14 models a component in which the force between the two
ports is linearly proportional to the difference in velocity between its ports, as expressed
in TransLinearDamperConstraint in Figure 15, a kind of BinaryCompliantTransConstraint.
Figure 17 shows the parametric diagram that binds its properties to constraint parameters
in TransinearDamperConstraint. It is applicable to dampers with a linear response, such
as viscous friction between two objects or elastic deformation with heat loss. TransLinear-
Damper has a parameter k specifying the damping coeffcient in N*s/m. The damper k1 in
Figure 12 is modeled with a TransLinearDamper.

18

NIST IR 8490
October 2023

TransLinearDamperTransLinearDamper[Block] par][

b : LMomFlowElement

lMomF.lV : Velocity

lMomF.f : Force

a : LMomFlowElement

lMomF.f : Force

lMomF.lV : Velocity

{forceThru=b*relV}

tLDC : TransLinearDamperConstraint

«constraint»

forceThru : Force

«PhSVariable»

d : TransDamping

«PhSConstant»

disp : Length

«PhSVariable»

relV : Velocity

«PhSVariable»

«equal»

b
^forceThru^relV

^disp

^tVb^tVa

^fb^fa

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

Fig. 17. TransLinearDamper parametric diagram

TransInertia in Figure 14 models a component where its acceleration is proportional to
an applied force (a point mass), as expressed in TransIntertiaConstraint in Figure 15 by
the equation F = ma. Figure 18 shows the parametric diagram that binds its properties
to constraint parameters in TransIntertiaConstraint. It has two ports that have the same
variable values, to resemble typical systems where other components are attached to either
’side’ of the inertial object, as if the ports were moving at the same velocity (rigidly fxed
to each other), though it is not necessary to connect to both ports.

TransInertiaTransInertia[Block] par][

b : LMomFlowElement

lMomF.f : Force

lMomF.lV : Velocity

a : LMomFlowElement

lMomF.f : Force

lMomF.lV : Velocity

{forceThru=m*tA,
tA=der(tV),

tVa=tVb,
tV=tVa,

forceThru=fa+fb,
tV=der(x)}

tIC : TransInertiaConstraint
«constraint»

forceThru : Force
«PhSVariable»

tA : Acceleration
«PhSVariable»

mass : Mass
«PhSConstant»

disp : Length
«PhSVariable»

tV : Velocity
«PhSVariable»

forceThru

mtA
tV

x

tVbtVa

fbfa
«equal»

«equal» «equal»

«equal»

«equal»

«equal» «equal»

«equal» «equal»

Fig. 18. Translational inertia parametric diagram

The sign convention in this library is such that a a positive force will create a positive

19

NIST IR 8490
October 2023

acceleration on a mass. Regardless of which side a positive force is applied on, a positive
acceleration will result.

Trans2DInertia and Trans3DInertia in Figure 14 model components that can translate along
two and three perpendicular axes, but not rotate, enabling pseudo-2D and 3D simulation,
as in Sections 5.2 and 5.3. They have two ports for each degree of freedom.10 This is
simpler and less error-prone than modeling the same mass repeatedly for the dynamics of
each axis separately, which would need to be kept consistent. The parametric diagrams for
Trans2DInertia and Trans3DInertia are shown in Figure 19 and Figure 20, respectively.

Trans2DInertiaTrans2DInertia[Block] par][

bX : LMomFlowElement

lMomF.lV : Velocity

lMomF.f : Force

bY : LMomFlowElement

lMomF.lV : Velocity

lMomF.f : Force

aX : LMomFlowElement

lMomF.lV : Velocity

lMomF.f : Force

aY : LMomFlowElement

lMomF.lV : Velocity

lMomF.f : Force

{tFax+tFbx=m*tAx,
tFay+tFby=m*tAy,

tAx=der(tVx),
tAy=der(tVy),

tVx=der(x),
tVy=der(y)}

t2DIC : Trans2DInertiaConstraint
«constraint»

yAccel : Acceleration
«PhSVariable»

xAccel : Acceleration
«PhSVariable»

yPosition : Length
«PhSVariable»

xPosition : Length
«PhSVariable»

yVel : Velocity
«PhSVariable»xVel : Velocity

«PhSVariable»

mass : Mass

«equal»
m

tVy
tVx

yx

tAytAx

tFby

tFbx

tFay

tFax

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»«equal»

Fig. 19. Translational 2D inertia parametric diagram

10TransInertia with only two ports is 1D.

20

NIST IR 8490
October 2023

Trans3DInertiaTrans3DInertia[Block] par][

bZ : LMomFlowElement

lMomF.lV : Velocity

lMomF.f : Force

bY : LMomFlowElement

lMomF.lV : Velocity

lMomF.f : Force

bX : LMomFlowElement

lMomF.lV : Velocity

lMomF.f : Force

aZ : LMomFlowElement

lMomF.lV : Velocity

lMomF.f : Force

aY : LMomFlowElement

lMomF.lV : Velocity

lMomF.f : Force

aX : LMomFlowElement

lMomF.lV : Velocity

lMomF.f : Force {tFax+tFbx=m*tAx,
tFay+tFby=m*tAy,
tFaz+tFbz=m*tAz,

tAx=der(tVx),
tAy=der(tVy),
tAz=der(tVz),

tVx=der(x),
tVy=der(y),
tVz=der(z)}

constraint1 : Trans3DInertiaConstraint
«constraint»

zAccel : Acceleration
«PhSVariable»

yAccel : Acceleration
«PhSVariable»

xAccel : Acceleration
«PhSVariable»

zPosition : Length
«PhSVariable»

yPosition : Length
«PhSVariable»

xPosition : Length
«PhSVariable»

mass : Mass
«PhSConstant»

zVel : Velocity
«PhSVariable»

yVel : Velocity
«PhSVariable»

xVel : Velocity
«PhSVariable»

m

z

yx tVz
tVy

tVx

tAztAytAx

tFbztFaz

tFbytFay

tFbx
tFax

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»«equal»

«equal»

«equal»

«equal»

«equal»

«equal»«equal»
«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»
«equal»«equal»

Fig. 20. Translational 3D inertia parametric diagram

TransVelocitySensor and TransPositionSensor in Figure 14 are components that have a
linear momentum port and a signal output port that produces a real number proportional
to the linear velocity or position derived from the momentum port variables, respectively.
Neither affects the momentum of components connected to the momentum port, as ensured
by the rate of fow through the port (force) always being zero, as shown by their parametric
diagrams in Figures 21 and 22. TransVelocitySensor has a parameter ’velocity2Signal’ for
the inverse conversion factor between output signal and velocity measured on the port given
in units of m/s. TransPositionSensor integrates the velocity of the momentum port over time
and starting at TransPosition, the initial position. The parameter ’position2Signal’ gives the
inverse conversion factor between position and realSignal given in units of m.

TransVelocitySensorTransVelocitySensor[Block] par][

i : RealSignalOutElement

rSig : Real

a : LMomFlowElement

lMomF.lV : Velocity

lMomF.f : Force

{sig=tV/cf,
f=0}

lVSC : TransVelocitySensorConstraint

«constraint»

velocity2Signal : Velocity

«PhSConstant»

cf

f

tV

sig

«equal»
«equal»

«equal»

«equal»

Fig. 21. TransVelocitySensor parametric diagram

21

NIST IR 8490
October 2023

TransPositionSensorTransPositionSensor[Block] par][

i : RealSignalOutElement

rSig : Real

a : LMomFlowElement

lMomF.f : Force

lMomF.lV : Velocity

{tV=der(x),
f=0,

sig=x/cf}

lPSC : TransPositionSensorConstraint

«constraint»

position2Signal : Length

«PhSConstant»

linearPosition : Length

«PhSVariable»

«equal»

«equal»

sig

cf

f

x
tV

«equal»

«equal» «equal»

Fig. 22. TransPositionSensor parametric diagram

TransForceSource and TransVelSource in Figure 14 are components that accept a real sig-
nal and apply a force or velocity to other components via a momentum port, respectively.
Figures 23 and 24 show the parametric diagrams for these components. TransForceSource
has a parameter signal2Force for the conversion factor between signal and force in units of
N. The force f in Figure 12 is modeled with a TransForceSource connected to a sinusoidal
realSignal in Figure 13. TransVelSource applies a velocity is relative to a fxed frame. The
parameter ’signal2Velocity’ gives the conversion factor between velocity and realSignal in
units of m/s.

TransForceSourceTransForceSource[Block] par][

i : RealSignalInElement

rSig : Real

a : LMomFlowElement

lMomF.f : Force

lMomF.lV : Velocity

{forceOut=-sig*cf}

tFSC : TransForceSourceConstraint

«constraint»

signal2Force : Force

«PhSConstant»

cf
sig

forceOut
«equal»«equal»

«equal»

Fig. 23. Parametric diagram for force source

22

NIST IR 8490
October 2023

TransVelSourceTransVelSource[Block] par][

a : LMomFlowElement

lMomF.lV : Velocity

lMomF.f : Forcei : RealSignalInElement

rSig : Real

{vel=sig*cf}

tVSC : TransVelSourceConstraint

«constraint»

signal2Velocity : Velocity

«PhSConstant»

cf
sig vel

«equal»

«equal»

Fig. 24. Parametric diagram for velocity source

TransFixed in Figure 14 has only a momentum port, with a velocity required to be zero, as
shown in Figure 25. The fxed boundary condition in Figure 12 is modeled by TransFixed
in Figure 13.

TransFixedTransFixed[Block] par][

a : LMomFlowElement

lMomF.lV : Velocity

lMomF.f : Force

{tV=0}
tfc : TransFixedConstraint

«constraint»

tV«equal»

Fig. 25. Parametric diagram for fxed boundary condition

4.2. Rotational Mechanics Library

The rotational mechanics library enables SysPhS modeling of mechanical components
changing orientation (angle) in one dimension, such as rotary springs, dampers, inertia,
as well as gear trains, but not changing position. Position and orientation of rotational
axes, and multi-axis rotational effects, such as gyroscopic precession, are not considered.

Figure 26 shows an example rotational system, based on one from [14], Figure 4.16. It
consists of fywheels with signifcant inertia (i1,i2,i3) connected by long shafts (k1,k2) act-
ing as torsional springs, gears (G1,G2) with non-negligible inertia (i4,i5), a torsion spring
(k3), a rotary damper (d3) and an angle sensor.

23

NIST IR 8490
October 2023

𝜏
i1

i3

i5

i4

i2k1 k2

k3
g1

g2 d1

θ

Fig. 26. An example rotational system

The system in Figure 26 is modeled with SysPhS in Figure 27, an IBD connecting compo-
nents defned by the rotational mechanics library BDD in Figure 28 (see Section 2.2 about
these kind of diagrams). Figure 27 refers to blocks in library by their names, appearing
to the right of the colon at the top of each larger rectangle. The role each block plays
in the system appears to the left of the colon in each, following the labels in Figure 27.
The applied torque τ to i1 varies as a sine wave, controlled by a component by a signal
(unidirectional) port (see Section 3 about signal components).

basicRotarySystembasicRotarySystem[Block]ibd][

gearRatio = -2.0
initialValues

gearPair : IdealFixedGearbox

signal2Torque = 1.0 N·m
initialValues

tau : FixedTorqueSource

d = 1.0 N·m·s/rad
aVRel = 0.0 rad/s

initialValues

d1 : RotLinearDamper

relPhi = 0.0
k = 1.0 N·m/rad
aVRel = 0.0 rad/s

initialValues

k3 : RotLinearSpring

relPhi = 0.0
k = 1.0 N·m/rad

initialValues

k2 : RotLinearSpring

relPhi = 0.0
k = 1.0 N·m/rad

initialValues

k1 : RotLinearSpring

offset = 0.0
frequency = 1.0 1/s
amplitude = 1.0

initialValues

sine : SineRealSignal

angle2Signal = 1.0
angle = 0.0

initialValues

ang : AngleSensor

rI = 2.0 kg·m²
initialValues

i5 : RotInertia

rI = 1.0 kg·m²
initialValues

i4 : RotInertia

rI = 1.0 kg·m²
aV = 0.0 rad/s
initialValues

i3 : RotInertia

rI = 1.0 kg·m²
initialValues

i2 : RotInertia

rI = 2.0 kg·m²
aV = 0.0 rad/s
initialValues

i1 : RotInertia

rotB

rotA

c a

baba

baba

i

i
aba

ba

ba

bab
a

Fig. 27. Figure 26 modeled in SysPhS with initial conditions and sources

Figure 27 connects rotary components at their physical interaction ports, notated by small
rectangles with bidirectional arrows inside. Flows of angular momentum through these
ports are described by torque and angular velocity, which are angular momentum’s rate of
fow and potential to fow, respectively (conserved and non-conserved variables, respec-
tively).11 Angular velocity is the potential to fow of angular momentum, since two objects

11Some rotational mechanics modeling software use absolute angle and angular velocity as port variables,

24

NIST IR 8490
October 2023

rotating at the same velocity cannot exchange angular momentum. Angular velocity, ac-
celeration and torque have a direction, indicated by the sign of their variables. This library
assumes the sign of angular acceleration and the torque causing it are the same. Torque is
the rate of change of angular momentum, allowing allow one to consider angular momen-
tum fow separately from rotational inertia.

Torques on ports of the same rotational inertia element can differ when some of the an-
gular momentum is stored in the element or released from it. Figure 28 defnes the ro-
tational mechanics library introduced by this paper and used in Figure 27. It includes
TwoFlangeRotComponent, which includes components with two angular momentum ports.
CompliantRotComponent is a TwoFlangeRotComponent where the ports rotate relative to
each other, such as rotational springs and dampers. It has two component variables, aVRel
for the relative angular velocity between the ports and torqueThru for the rate at which
angular momentum is fowing through the component. This component does not include
a variable for relative displacement between the two ports, because it may be desirable to
have rotary components which do not integrate displacement (relPhi).

such as the Modelica Standard Library for Rotational Mechanics [15]. SysPhS uses torque and angular
velocity to enable fows between components to the taken as energy fows, with rate of energy fow (power)
being the product of the variables.

25

NIST IR 8490
October 2023

SysPhS Rotational Mechanics Rotational Mech Components[Package]bdd][

disp : RealSignalOutElement
ports

displacement2Signal : Angle = 1.0
values

rLSWDSC : RotLinearSpringWithDisplacementSensorConstraint [0..*]{redefines rLSC}
constraints

RotLinearSpringWithDisplacementSensor
«block»

aVCommand : RealSignalInElement
a : AMomFlowElement

ports

signal2AngVel : AngularVelocity = 1.0 rad/s
values

fCaVSc : FixedaVSourceConstraint
constraints

FixedaVSource
«block»

i : RealSignalOutElement
a : AMomFlowElement

ports

angVel2Signal : AngularVelocity = 1.0 rad/s
values

aVSC : AngularVelocitySensorConstraint
constraints

AngularVelocitySensor
«block»

phi : Angle
angularAcceleration : AngularAcceleration
rI : RotationalInertia
torqueThru : Torque
aV : AngularVelocity

values

fIc : RotationalInertiaConstraint{readOnly}
constraints

RotInertia
«block»

c : RealSignalInElement
a : AMomFlowElement

ports

signal2Torque : Torque = 1.0 N·m
values

fCTSc : FixedTorqueSourceConstraint
constraints

FixedTorqueSource
«block»

rotB : AMomFlowElement
rotA : AMomFlowElement

ports

gearRatio : Real
values

iGc : IdealFixedGearboxConstraint
constraints

IdealFixedGearbox
«block»

relPhi : Angle
d : RotationalDampingCoeff

values

rLDc : RotLinearDamperConstraint
constraints

RotLinearDamper
«block»

relPhi : Angle
k : RotationalStiffness

values

rLSC : RotLinearSpringConstraint
constraints

RotLinearSpring
«block»

flow properties
inout aMomF : FlowingAMom [1]

AMomFlowElement
«interfaceBlock»

b : AMomFlowElement
a : AMomFlowElement

ports

TwoFlangeRotComponent
«block»

i : RealSignalOutElement
a : AMomFlowElement

ports

angle2Signal : Angle = 1.0
angle : Angle

values

aSC : AngleSensorConstraint
constraints

AngleSensor
«block»

torqueThru : Torque
aVRel : AngularVelocity

values

CompliantRotComponent
«block»

b : LMomFlowElement
a : AMomFlowElement

ports

ratio : RadianPerMetre
values

r2tc : IdealR2TConstraint
constraints

IdealGearR2T
«block»

aV : AMomFlowElement
ports

fC : FixedConstraint
constraints

Fixed
«block»

Fig. 28. Rotational mechanics library

Figure 29 defnes the constraint blocks referenced by constraint properties in Figure 28, ap-
pearing in compartments of each rotational library block (see Section 2.2 about constraint
modeling in SysML). BinaryCompliantRotConstraint defnes constraints for all compo-
nents with two ports that might have different angular velocities, corresponding to system
components with two ends that might rotate with respect to each other, such as rotational
springs and dampers. Torques on these components sum to zero, as specifed by ta + tb
= 0, while aVRel=aVb-aVa defnes the relative angular velocity between ports a and b.12

The derivative of relative angle is relative angular velocity, expressed as der(relPhi)=aVRel,
which means relative angle is an integral of relative angular velocity. Integration requires
an initial value, defned with a PhSVariable or by additional equations.
12Footnote 9 in Section 4.1 about applies to BinaryCompliantRotConstraint also, except for angular momen-

tum instead of linear.

26

NIST IR 8490
October 2023

SysPhS Rotational Mechanics Rotational Mech Constraints[Package]bdd][

sig : Real
cf : Angle

parameters

{sig=relPhi/cf}
constraints

RotLinearSpringWithDisplacementSensorConstraint
«constraint»

torq : Torque{unit = newtonMetre}
tb : Torque{unit = newtonMetre}
ta : Torque{unit = newtonMetre}
rI : Real
phi : Angle
aVb : AngularVelocity{unit = radianPerSecond}
aVa : AngularVelocity{unit = radianPerSecond}
aV : AngularVelocity{unit = radianPerSecond}
aA : AngularAcceleration{unit = radianPerSecondSquared}

parameters

{aV=der(phi)}
{aA=der(aV)}
{aV=aVa}
{aVa=aVb}
{torq=ta+tb}
{torq=rI*aA}

constraints

RotationalInertiaConstraint
«constraint»

torq : Torque{unit = newtonMetre}
tb : Torque{unit = newtonMetre}
ta : Torque{unit = newtonMetre}
relPhi : Angle
aVRel : AngularVelocity{unit = radianPerSecond}
aVb : AngularVelocity{unit = radianPerSecond}
aVa : AngularVelocity{unit = radianPerSecond}

parameters

{aVRel=aVb-aVa}
{ta=-torq}
{der(relPhi)=aVRel}
{ta+tb=0}

constraints

BinaryCompliantRotConstraint
«constraint»

tVb : Velocity{unit = metrePerSecond}
ta : Torque{unit = newtonMetre}
ratio : RadianPerMetre{unit = radianPerMetre}
fb : Force{unit = newton}
aVa : AngularVelocity{unit = radianPerSecond}

parameters

{aVa=ratio*tVb}
{0=ratio*ta+fb}

constraints

IdealR2TConstraint
«constraint»

tb : Torque{unit = newtonMetre}
ta : Torque{unit = newtonMetre}
gr : Real
aVb : AngularVelocity{unit = radianPerSecond}
aVa : AngularVelocity{unit = radianPerSecond}

parameters

{aVb*gr=aVa}
{0=gr*ta+tb}

constraints

IdealFixedGearboxConstraint
«constraint»

torq : Torque{unit = newtonMetre}
sig : Real
cf : AngularVelocity{unit = radianPerSecond}
aV : AngularVelocity{unit = radianPerSecond}

parameters

{torq=0}
{sig=aV/cf}

constraints

AngularVelocitySensorConstraint
«constraint»

torq : Torque{unit = newtonMetre}
sig : Real
phi : Angle
cf : Angle
aV : AngularVelocity{unit = radianPerSecond}

parameters

{torq=0}
{sig=phi/cf}
{aV=der(phi)}

constraints

AngleSensorConstraint
«constraint»

sig : Real
cf : AngularVelocity{unit = radianPerSecond}
aV : AngularVelocity{unit = radianPerSecond}

parameters

{aV=cf*sig}
constraints

FixedaVSourceConstraint
«constraint»

aV : AngularVelocity{unit = radianPerSecond}
parameters

{aV=0}
constraints

FixedConstraint
«constraint»

parameters

torq : Torque{unit = newtonMetre}
sig : Real
cf : Torque{unit = newtonMetre}

constraints
{torq=-cf*sig}

FixedTorqueSourceConstraint
«constraint»

d : Real
parameters

{torq=d*aVRel}
constraints

RotLinearDamperConstraint
«constraint»

k : Real
parameters

{torq=k*relPhi}
constraints

RotLinearSpringConstraint
«constraint»

Fig. 29. Constraints for rotational mechanics library

The rest of this section covers the components in Figure 28 and parametric diagrams that
bind their properties to constraint parameters in Figure 29 (see 2.2 about these kind of
diagrams).

The block RotLinearSpring in Figure 28 models a torsional spring in which torque is lin-
early proportional to angle between its ports, without any losses or inertia, as expressed
in RotLinearSpringConstraint, a specialization of BinaryCompliantRotConstraint in Fig-
ure 29. Figure 30 shows the parametric diagram for RotLinearSpring. That is this spring
implements the rotary version of Hooke’s law. RotLinearSpring has a parameter k for ro-
tational stiffness which is in units of N*m/rad. The RotLinearSpringConstraint is derived
from BinaryCompliantRotConstraint, so angle is calculated by integrating relative angular
velocity between the two ports. In Figure 26, the long shafts k1, k2, and torsional spring k3
are modeled using RotLinearSpring blocks in Figure 27.

27

NIST IR 8490
October 2023

RotLinearSpringRotLinearSpring[Block]par][

b : AMomFlowElement

aMomF.trq : Torque

aMomF.aV : AngularVelocity

a : AMomFlowElement

aMomF.trq : Torque

aMomF.aV : AngularVelocity

{torq=k*relPhi}
rLSC : RotLinearSpringConstraint

«constraint»

aVRel : AngularVelocity
«PhSVariable»

k : RotationalStiffness
«PhSConstant»

torqueThru : Torque
«PhSVariable»

relPhi : Angle
«PhSVariable»

«equal»«equal»

«equal»

k

t̂orq^relPhi

^aVRel

^aVb^aVa

t̂bt̂a

«equal»

«equal»

«equal»

«equal»

«equal»

Fig. 30. Rotary linear spring parametric diagram

RotLinearDamper in Figure 28 defnes a component where torque is linearly proportional
to the angular velocity difference between the two ports, as expressed in RotLinearDamper-
Constraint in Figure 15. Figure 31 shows a parametric diagram for RotLinearDamper that
binds its properties to parameters from TransLinearSpringConstraint. Figure 31 shows the
parametric diagram for RotLinearDamper. Rotational damping coeffcient is defned in
units of N* m*s/rad. This component exhibits no inertia and torque is linearly proportional
to velocity difference. This component is used to model rotary damper k1 in Figure 26.
This may also be used to model linear/viscous friction between components or be used
to add a simple model of mechanical loss. Although care should be taken when using this
component to model friction as viscous friction and coulomb friction result in very different
behavior.

RotLinearDamperRotLinearDamper[Block]par][

b : AMomFlowElement

aMomF.trq : Torque

aMomF.aV : AngularVelocity

a : AMomFlowElement

aMomF.trq : Torque

aMomF.aV : AngularVelocity

{torq=d*aVRel}
rLDc : RotLinearDamperConstraint

«constraint»

d : RotationalDampingCoeff
«PhSConstant»

aVRel : AngularVelocity
«PhSVariable»

torqueThru : Torque
«PhSVariable»

relPhi : Angle
«PhSVariable»

«equal»

«equal»

d

t̂orq^relPhi

^aVRel

^aVb^aVa

t̂bt̂a

«equal»

«equal»

«equal»«equal»

«equal»

«equal»

Fig. 31. Rotary damper parametric diagram

28

NIST IR 8490
October 2023

One component in Figure 28 that does not use a constraint generalized from BinaryCompli-
antConstraint is RotInertia, where the rate of change of angular velocity of a rotational in-
ertia is proportional to applied torque (the rotational equivalent of F = ma), as expressed in
RotInertiaConstraint in Figure 15. Figure 32 shows the parametric diagram for RotInertia
that binds its properties to parameters from RotInertiaConstraint.RotInertia has two ports
that have the same variable values, to resemble typical systems where other components
are attached to either ’side’ of the inertial object, as if the ports were rotating at the same
angular velocity (rigidly fxed to each other), though it is not necessary to connect to both
ports. This means Switching the connections on each ’side’ of RotInertia does not change
the direction of rotation. The whole inertial element has the same angular velocity, which
is given with respect to a global frame. RotInertia also has an angle which is given relative
to a user specifed start angle.

RotInertiaRotInertia[Block] par][

b : AMomFlowElement

aMomF.trq : Torque

aMomF.aV : AngularVelocity

a : AMomFlowElement

aMomF.trq : Torque

aMomF.aV : AngularVelocity

fIc : RotationalInertiaConstraint

{torq=rI*aA,
torq=ta+tb,
aVa=aVb,
aV=aVa,
aA=der(aV),
aV=der(phi)}

«constraint»

angularAcceleration : AngularAcceleration

«PhSVariable»

aV : AngularVelocity

«PhSVariable»

torqueThru : Torque

«PhSVariable»

rI : RotationalInertia

«PhSConstant»

phi : Angle

«PhSVariable»

phiaA

torq

aVbaVa

aV

tbta

rI

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»«equal»

Fig. 32. Rotational inertia parametric diagram

RotInertia is applied in Figure 26, where it is used to model fywheels i1,i2, and the inertia
of gearwheels i4 and i5. Inertia i3 connects with a damper on the left side and a rotation
sensor on the left side. It would be equivalent to connect the rotation sensor to the left port,
however, by connecting to the right port, we can better capture that the rotation sensor is
on the right of the component. RotInertia has a parameter I which defnes rotational inertia
in units of kg*m2.

The library in Figure 28 provides two elements for transforming angular momentum, Ideal-
FixedGearBox and IdealGearR2T. IdealFixedGearbox(parametric diagram shown in Figure
33) models a ideal rotary transformer that permits transformation of rotation with unlimited
rotation angle. It assumes no damping, backlash, elasticity, and that the gearbox itself may
not rotate. IdealFixedGearbox has two ports, rotA and rotB and PhSConstant gearRatio is
the ratio of the angular velocity of rotA to rotB. When it is used to model a pair of external

29

NIST IR 8490
October 2023

gears,13 as with G1 and G2 in Figure 26, gearRatio should be a negative number to ensure
the gears will rotate in opposite directions. This component will not necessarily convserve
angular momentum because it is implicity fxed. Some angular momentum fows to or
from the rotational ground. Some elasticity, damping, and inertia can be approximated by
connecting the elements for those effects. Figure 27 does this for the inertia of each gear,
modeled with RotInertia blocks connected on either side of the IdealFixedGearbox.

idealFixedGearboxidealFixedGearbox[Block] par][

rotB : AMomFlowElement

aMomF.trq : Torque

aMomF.aV : AngularVelocity

rotA : AMomFlowElement

aMomF.trq : Torque

aMomF.aV : AngularVelocity

{0=gr*ta+tb,
aVb*gr=aVa}

IGc : IdealFixedGearboxConstraint

«constraint»

gearRatio : Real

«PhSConstant»

aVbaVa

tbta

gr

«equal»

«equal»

«equal»

«equal»

«equal»

Fig. 33. Ideal fxed gearbox parametric diagram

IdealGearR2T(parametric diagram shown in Figure 33) enables transforming angular mo-
mentum to translational momentum without losses, elasticity, backlash in a manner similar
to how a gear rack converts rotary motion to linear motion and vice versa. IdealGearR2T
has a parameter ratio which defnes the ratio of between angular velocity to linear velocity
in units of rad/m. This component can be used to represent an ideal gear rack or a belt/screw
drive in which elasticity and losses are ignored.

13Gears with teeth on the outside

30

NIST IR 8490
October 2023

IdealGearR2TIdealGearR2T[Block]par][

b : LMomFlowElement

lMomF.lV : Velocity

lMomF.f : Force

a : AMomFlowElement

aMomF.trq : Torque

aMomF.aV : AngularVelocity

{0=ratio*ta+fb,
aVa=ratio*tVb}

r2tc : IdealR2TConstraint
«constraint»

ratio : RadianPerMetre
«PhSConstant»

fb

ta tVb

aVa

ratio

«equal»

«equal»

«equal»

«equal»

«equal»

Fig. 34. Ideal rotary to translational converter

Figure 27 models gears G1 and G2 as a single IdealFixedGearbox with a gear ratio of -
2, which is negative to capture that the gear pair reverses rotation direction between the
shafts connected to it. If one were to reverse the way rotA and rotB were connected in
the diagram, in order for the model to be equivalent the gear ratio would need to be -1/2
because gear ratio is defned as rotA angular velocity to rotB angular velocity.

The library in Figure 28 has source and sensing elements for providing or sensing quanti-
ties derived from ports. This library has two source elements for providing either angular
velocity or torque. Both source elements take in a real signal and output the corresponding
controlled variable on an angular momentum port.

FixedTorqueSource(parametric diagram shown in Figure 35) is a block which connects to
an angular momentum port and applies a torque proportional to an input real signal. It is
considered fxed as it is implicitly fxed to the ground. As opposed to being free foating
and applying a torque between two components it applies a torque between a fxed ground
and anything attached to its port. Fixed torque source has a parameter signal2Torque which
specifes the conversion factor between the unitless real signal and torque output which
is in units of Nm. A FixedTorqueSource is added to the system shown in Figure 26 and
Figure 27 to model the torque boundary condition. FixedTorqueSource is connected to a
block which outputs a sine wave real signal and to the left port of i1.

31

NIST IR 8490
October 2023

FixedTorqueSourceFixedTorqueSource[Block] par][

a : AMomFlowElement

aMomF.trq : Torque

aMomF.aV : AngularVelocity

c : RealSignalInElement

rSig : Real

{torq=-cf*sig}

FCTSc : FixedTorqueSourceConstraint

«constraint»

signal2Torque : Torque

«PhSConstant»

«equal»

cfsig torq
«equal»

«equal»

Fig. 35. Fixed torque source parametric diagram

FixedaVSource provides angular velocity at a port which is proportional to an input real
signal. It is fxed in the same manner as FixedTorqueSource is fxed. It applies an angular
velocity with respect to a non rotating frame. As shown in Figure 36 FixedaVSource,
defned in Figure 36, has a parameter signal2AngVelocity which is a conversion factor
between unitless signal and angular velocity, it is given in units of rad/s.

FixedaVSourceFixedaVSource[Block] par][

aVCommand : RealSignalInElement

rSig : Real

a : AMomFlowElement

aMomF.trq : Torque

aMomF.aV : AngularVelocity

{aV=cf*sig}

FCaVSc : FixedaVSourceConstraint

«constraint»

signal2AngVel : AngularVelocity

«PhSConstant»

«equal»
«equal»cfsig aV

«equal»

Fig. 36. Fixed angular velocity source parametric diagram

In contrast to source elements there are also sensing elements. Sensing elements connect
to a port and output a real signal proportional to a quantity sensed on that port. The library
in Figure 28 includes two sensing elements AngularVelocitySensor and AngleSensor.

32

NIST IR 8490
October 2023

AngularVelocitySensorAngularVelocitySensor[Block] par][

a : AMomFlowElement

aMomF.trq : Torque

aMomF.aV : AngularVelocity
i : RealSignalOutElement

rSig : Real

{sig=aV/cf,
torq=0}

aVSC : AngularVelocitySensorConstraint

«constraint»

angVel2Signal : AngularVelocity

«PhSConstant»

torq cf

aV
sig «equal»

«equal»

«equal»

«equal»

Fig. 37. Angular velocity sensor parametric diagram

AngularVelocitySensor(parametric diagram shown in Figure 37) outputs a real signal pro-
portional to the angular velocity on the attached angular momentum port. The parameter
angVel2Signal gives the inverse of the conversion factor between angular velocity and sig-
nal and is given in units of rad/s.

AngleSensor, defned in Figure 38, outputs a real signal proportional to angle. It must
be noted that the angle sensor works by integrating velocity and requires that an initial
angle be specifed. This sensor has a parameter angle2Signal which specifes the inverse
of the conversion factor between angle and signal, and is given in units of rads. There is
also a generalization of rotational linear spring, RotLinearSpringWithDisplacementSensor
which outputs a real signal proportional to the displacement of the spring. RotLinear-
SpringWithDisplacementSensor has a parameter displacement2Signal which specifes the
inverse conversion factor between realSignal and displacement. This is given in units of
rads.

AngleSensorAngleSensor[Block] par][

a : AMomFlowElement

aMomF.trq : Torque

aMomF.aV : AngularVelocity
i : RealSignalOutElement

rSig : Real

{aV=der(phi),
sig=phi/cf,
torq=0}

aSC : AngleSensorConstraint

«constraint»

angle2Signal : Angle

«PhSConstant»

angle : Angle

«PhSVariable»

torq

sig

cf phi

aV «equal»

«equal»

«equal»

«equal» «equal»

Fig. 38. Angle sensor parametric diagram

33

NIST IR 8490
October 2023

4.3. Entropy (Heat) Transfer Library

The entropy (heat) fow library enables SysPhS modeling of one dimensional movement
of entropy (heat). It includes 1D models of all basic heat transfer processes including
conduction, radiation, and convection.

Figure 39 shows an example thermal system. It is the heated bed of a Fused Deposition
Modeling (FDM) 3D printer, see Section 5.2.4. Heat fows from a heater on the bottom to
an insulating layer above it (glass), which stores some heat and sends the rest through its
top surface to air of constant temperature. The heater and surface are treated as having uni-
form temperatures Theater and Tsur f , respectively, with the surface temperature measured
by a sensor on the surface of the bed. The air is assumed to be a large thermal reservoir
with constant temperature Tair. The heated bed insulation and heater are assumed to have
some heat capacity, but with negligible heat loss through the sides and bottom of the bed.
While the uniform temperature assumption for the heater and insulation is not necessarily
realistic, it offers a simple approximation useful for estimating the warm up time and a
rough simulation of whether the controller will keep the surface temperature within accept-
able bounds. The effects of changes in bed temperature due to addition of hot flament have
been excluded. Simulation of this system is covered in Section 5.2.

Tair

Tsurfbed insulation

convection

heater

Temperature Sensor

Tair

Theater

Fig. 39. An example thermal system

The system in Figure 39 is modeled with SysPhS in Figure 40, an IBD connecting compo-
nents defned by the thermal library BDD in Figure 41 (see Section 2.2 about these kind of
diagrams). Figure 40 refers to blocks in library by their names, appearing to the right of the
colon at the top of each larger rectangle. The role each block plays in the system appears
to the left of the colon in each, following the labels in Figure 40.

34

NIST IR 8490
October 2023

HeatedBedHeatedBed[Block] ibd][

glassPlate : BedPart

Temp = 293.0 K
heatCapacity = 385.0 J/K

initialValues

bedHeatCapacity : ThermalCapacitor

conductance = 91.6 W/K
initialValues

bedInsulation : ThermalConductor

cnsnt = 0.55
defaultValue

convectionCoefficientBed : ConstantRealSignal

signal2Temperature = 1.0 K
defaultValue

tempSensor : TemperatureSensor

defaultValue

kd = 0.1 s
ki = 0.01
kp = 7.0

tempControl : PIDControl

defaultValue

signal2EntropyRate = 1.0 W/K

convect : Convection

signal2Power = 1.0 W
defaultValue

bedHeater : Heater

air

setTemp

a

ba

b

a
const

i a

outSig

curValue

setPoint

Gc

fluidsolid

a
i

Fig. 40. Figure 39 modeled in SysPhS with initial conditions and ports for control signals and
coupling to environment

Figure 40 connects thermal components at their physical interaction ports, notated by small
rectangles with bidirectional arrows inside. Flows of entropy through these ports are de-
scribed by entropy fow rate and temperature, which are entropy’s rate of fow and potential
to fow, respectively (conserved and non-conserved variables, respectively).14 Temperature
is the potential to fow of entropy, since two objects at the same temperature cannot ex-
change entropy.15

The heated bed includes a 214 x 214 mm glass pane that is 4 mm thick. The thermal
conductivity of glass is about 0.8 W/(m*K) and thermal conductance along a rectangular
section is g = k ∗ A/L, where g is the thermal conductance, k is the thermal conductivity of
the material the section is made from, L is the thickness, and A is the area of the section,
resulting in G= 0.8W/(m ∗ K) ∗ (0.214m)2/0.004m = 91.592W/k, the conductance of the
ThermalConductor block bed insulation. It is assumed the heat capacity of the heated
bed is largely due to the heat capacity of the glass. The specifc heat of glass is taken as
0.84 J/(g*K) and the density of glass is 2500 kg/m3, giving a thermal capacity of 385 J/K.
Assuming a constant convection coeffcient of 12, which is reasonable for a horizontal plate
in free convection, the convection conductance is 0.55 W/K.

Entropy fow ports use the variables of entropy fow rate and temperature, which multiply
to power. Entropy fow can be more general than heat transfer. This convention has been
shown to be useful in the analysis of systems including heat engines and heat pumps [17].
One should keep in mind that while entropy is the analog of electric charge and momentum,
it is often not conserved in heat transfer. All heat transfer elements in this library do not
conserve entropy. So the entropy fow rate out of each element will exceed the entropy fow
rate into each element for any fnite temperature difference. In heat conduction with a fnite
temperature difference entropy is produced. So in the elements which model this, Thermal
Conductor, ConductiveBar, Convection, and Radiation, with any temperature difference,

14Heat transfer is typically modeled with power (energy rate) and temperature, such as the Modelica Standard
Library for Heat Transfer [16]. SysPhS uses entropy rate and temperature to enable fows between compo-
nents to the taken as energy fows, with rate of energy fow (power) being the product of the variables.

15This assumes no mass fow, which this library does not currently address.

35

NIST IR 8490
October 2023

the entropy fow rate out will exceed the entropy fow rate in because these elements gener-
ate entropy. Although between ports, entropy fow is always conserved. Non-zero entropy
fow rates can happen when temperature on the same component differs between two ports.

Figure 41 defnes the thermal library introduced by this paper and used in Figure 40. It
includes ThermalTwoPort, which has two entropy ports and is specialized to describe ele-
ments which transfer heat between the ports. Figure 42 defnes the constraint blocks ref-
erenced by constraint properties in the library, appearing in compartments of each thermal
block (see Section 2.2 about constraint modeling in SysML).

36

NIST IR 8490
October 2023

Thermal ComponentsSysPhS Thermal[Package]bdd][

powerAToB : Power
stefanBoltzmannConstant : Stefan-Boltzmann = 5.670374419E-8 W·m⁻²·K⁻⁴
radiationConductance : Area

values

bRC : BodyRadiationConstraint
constraints

BodyRadiation
«block»

solid : EntropyFlowElement
gc : RealSignalInElement
fluid : EntropyFlowElement

ports

signal2EntropyRate : EntropyFlowRate
values

cC : ConvectionConstraint
constraints

Convection
«block»

p1 : EntropyFlowElement
ports

power : Power
values

fTPC : FixedThermalPowerConstraint
constraints

FixedThermalPower
«block»

values
signal2Temperature : Temperature

constraints
tSC : TemperatureSourceConstraint

ports

i : RealSignalInElement
a : EntropyFlowElement

TemperatureSource
«block»

values
signal2Temperature : Temperature

constraints
tSC : TemperatureSensorConstraint

ports

i : RealSignalOutElement
a : EntropyFlowElement

TemperatureSensor
«block»

conductivity : ThermalConductivity
leng : Length
barArea : Area

values

cBC : ConductiveBarConstraint
constraints

ConductiveBar
«block»

conductance : EntropyFlowRate
values

tCC : ThermalConductorConstraint
constraints

ThermalConductor
«block»

a : EntropyFlowElement
ports

t_set : Temperature
values

fTC : FixedTemperatureConstraint
constraints

FixedTemperature
«block»

a : EntropyFlowElement
ports

temp : Temperature
heatCapacity : Heat Capacity

values

tCC : ThermalCapacitorConstraint
constraints

ThermalCapacitor
«block»

i : RealSignalInElement
a : EntropyFlowElement

ports

signal2Power : Power = 1.0 W
values

hC : HeaterConstraint
constraints

Heater
«block»b : EntropyFlowElement

a : EntropyFlowElement
ports

ThermalTwoPort
«block»

Fig. 41. Entropy (heat) transfer library

37

NIST IR 8490
October 2023

Thermal ConstraintsSysPhS Thermal[Package]bdd][

tb : Temperature{unit = kelvin}
ta : Temperature{unit = kelvin}
srb : EntropyFlowRate{unit = wattPerKelvin}
sra : EntropyFlowRate{unit = wattPerKelvin}
sigma : Stefan-Boltzmann {unit = WattPerMetreSquaredKelvinFourthPower}
powab : Power{unit = Watt}
gr : Real

parameters

{sra=powab/ta}
{srb=-powab/tb}
{powab=gr*sigma*(ta^4-tb^4)}

constraints

BodyRadiationConstraint
«constraint»

tb : Temperature{unit = kelvin}
ta : Temperature{unit = kelvin}
srb : EntropyFlowRate{unit = wattPerKelvin}
sra : EntropyFlowRate{unit = wattPerKelvin}
leng : Length{unit = metre}
k : Real
area : Real

parameters

{sra=((k*(area/leng))*(ta-tb))/ta}
{-srb=sra+k*(area/leng)*((ta-tb)^2/(ta*tb))}

constraints

ConductiveBarConstraint
«constraint»

t : Temperature{unit = kelvin}
signal : Real
sFRate : EntropyFlowRate{unit = wattPerKelvin}
cf : Temperature{unit = kelvin}

parameters

{sFRate=0}
{t=signal*cf}

constraints

TemperatureSensorConstraint
«constraint»

{t_out*s_out=-pow}
constraints

t_out : Temperature{unit = kelvin}
s_out : EntropyFlowRate{unit = wattPerKelvin}
pow : Real

parameters

FixedThermalPowerConstraint
«constraint»

tm : Temperature{unit = kelvin}
tin : Temperature{unit = kelvin}
sr : EntropyFlowRate{unit = wattPerKelvin}
c : Real

parameters

{tin=tm}
{tm*sr=c*der(tm)}

constraints

ThermalCapacitorConstraint
«constraint»

ts : Temperature{unit = kelvin}
tf : Temperature{unit = kelvin}
srs : EntropyFlowRate{unit = wattPerKelvin}
srf : EntropyFlowRate{unit = wattPerKelvin}
gcSig : Real
cf : EntropyFlowRate{unit = wattPerKelvin}

parameters

{srs=(gcSig*cf*(ts-tf))/ts}
{-srf=srs+gcSig*cf*((ts-tf)^2/(ts*tf))}

constraints

ConvectionConstraint
«constraint»

tb : Temperature{unit = kelvin}
ta : Temperature{unit = kelvin}
srb : EntropyFlowRate{unit = wattPerKelvin}
sra : EntropyFlowRate{unit = wattPerKelvin}
g : Real

parameters

{sra=(g*(ta-tb))/ta}
{-srb=sra+g*((ta-tb)^2/(ta*tb))}

constraints

ThermalConductorConstraint
«constraint»

t : Temperature{unit = kelvin}
sfr : EntropyFlowRate{unit = wattPerKelvin}
pow : Real
cf : Real

parameters

{if (pow*cf)>0 then
-pow*cf=sfr*t;
else
0=sfr*t;
end if}

constraints

HeaterConstraint
«constraint»

t : Temperature{unit = kelvin}
signal : Real
cf : Temperature{unit = kelvin}

parameters

{t=cf*signal}
constraints

TemperatureSourceConstraint
«constraint»

constraints
{ta=tset}

parameters

tset : Temperature{unit = kelvin}
ta : Temperature{unit = kelvin}

FixedTemperatureConstraint
«constraint»

Fig. 42. Constraints for the thermal library

The rest of this section covers the components in Figure 41 and parametric diagrams that
bind their properties to constraint parameters in Figure 42 (see 2.2 about these kind of
diagrams).

The ThermalCapacitor block in Figure 41 models an component that can store heat, as
expressed in ThermalCapacitorConstraint in Figure 42. Figure 43 shows the parametric
diagram for ThermalCapacitor that binds its properties to parameters from ThermalCapac-
itorConstraint. The component has a variable for its temperature, assumed to be the same

38

NIST IR 8490
October 2023

throughout, and a parameter for heat capacity in units of J/K16. Heat capacity of an object
is the specifc heat of its material times its mass. The heat capacity of the bed in Figure 40,
bedHeatCapacity, is modeled with a ThermalCapacitor.

ThermalCapacitorThermalCapacitor[Block] par][

a : EntropyFlowElement

sF.sFR : EntropyFlowRate

sF.t : Temperature

{tm*sr=c*der(tm),
tin=tm}

tCC : ThermalCapacitorConstraint

«constraint»

heatCapacity : Heat Capacity

«PhSConstant»

temp : Temperature

«PhSVariable»

tin
c tm

sr

«equal»

«equal»

«equal» «equal»

Fig. 43. Thermal capacitor

ThermalConductor in Figure 41 models a component that conducts heat without storing
or generating any, as expressed in ThermalConductorConstraint in Figure 42. Figure 44
shows the parametric diagram for thermalConductor that binds its properties to parame-
ters from ThermalConductorConstraint. ThermalConductor is based on the description of
thermal conductors given in [14] and [17], but reformulated in SysPhS rather than bond
graphs. ThermalConductor has a parameter conductivity for the thermal conductance of
the connection given in W/K, a measure of entropy fow rate. Calculating the thermal con-
ductance depends on the properties of the connection. For heat conduction along the length
of an object with constant area, thermal conductance may be calculated as G = k ∗ A/L.
Where k is the thermal conductivity of the material in W/(m*K), A is area of the cross
section in m2 and L is the length of the section. The block ConductiveBar acts the same
as ThermalConductor, except it allows one to specify the thermal conductivity, area, and
length rather than a thermal conductance. Heat transfer through the heated bed insulation
in Figure 40, bedInsulation, the thermal resistance of the heated bed insulation, is modeled
with ThermalConductor. It should be noted that bedInsulation and bedHeatCapacity are
single physical object which is modeled with the block glassPlate.

16This is the same units as entropy, but heat capacity is a different physical phenomena than entropy. Change
δ Q ∆Qin entropy for a reversible process is kS = whereas heat capacity is defned as C = T ∆T

39

NIST IR 8490
October 2023

ThermalConductorThermalConductor[Block] par][

b : EntropyFlowElement

sF.sFR : EntropyFlowRate

sF.t : Temperature

a : EntropyFlowElement

sF.sFR : EntropyFlowRate

sF.t : Temperature

{-srb=sra+g*((ta-tb)^2/(ta*tb)),
sra=(g*(ta-tb))/ta}

tCC : ThermalConductorConstraint

«constraint»

conductance : EntropyFlowRate

«PhSConstant»

g tbta

srbsra

«equal»

«equal»

«equal»

«equal»

«equal»

Fig. 44. Thermal conductor parametric diagram

Convection in Figure 41 is for modeling heat transfer between a solid and a fuid. Figure
45 shows its parametric diagram that binds its properties to parameters from Convection-
Constraint. This is modeled as if the convection medium were a thermal conductor that has
a conductance controllable by a realSignal, to approximate convection from a solid object
by changing the conductivity according to some chosen function of fuid fow. This con-
ductivity is in W/K and may be calculated as h ∗ A for simple geometry and heat transfer
scenarios, where A is the area in contact with the fuid and h is the convection coeffcient,
which depends on the fuid, fow properties, geometry, and scenario in question. Heat
transfer from the surface of the heated bed to the air, bedConvection in Figure 40, Section
4.3, is modeled with Convection. Its convection conductivity is determined by the constant
real signal convectionCoeffcientBed input. The surface area of the bed is constant, and the
free convection (in which fuid motion is not driven by any external source such as a fan or
pump) on the bed is assumed to be constant so the convective conductivity is constant. This
block is analogous to the convection element in the Heat Transfer library of the Modelica
Standard libraries [16]. The convection model does not include thermal fuid effects and or
address temperature change of a fuid as it moves through a pipe.

40

NIST IR 8490
October 2023

ConvectionConvection[Block] par][

solid : EntropyFlowElement

sF.sFR : EntropyFlowRate

sF.t : Temperature

fluid : EntropyFlowElement

sF.sFR : EntropyFlowRate

sF.t : Temperature

gc : RealSignalInElement

rSig : Real

{-srf=srs+gcSig*cf*((ts-tf)^2/(ts*tf)),
srs=(gcSig*cf*(ts-tf))/ts}

cC : ConvectionConstraint

«constraint»

signal2EntropyRate : EntropyFlowRate

«PhSConstant»

«equal»

«equal»

cf gcSig

tfts

srfsrs

«equal»«equal»

«equal»

«equal»

Fig. 45. Convection parametric diagram

BodyRadiation in Figure 41 is for modeling heat transfer via radiation between the surfaces
of two bodies due to radiation. Figure 46 shows the parametric diagram for BodyRadiation
that binds its properties to parameters from BodyRadiationConstraint. This has a parameter
radiationConductance which specifes the radiation conductance in units of m2. The value
of radiation conductance depends on the emissivities, area, and geometry of the bodies in
which radiation transfer occurs. BodyRadiation has a PhSConstant stefanBoltzmannCon-
stant with an initial value of 5.670374419E-8 W·m−2·K−4, which should not be changed
in the library or its specializations.

BodyRadiationBodyRadiation[Block] par][

a : EntropyFlowElement

sF.sFR : EntropyFlowRate

sF.t : Temperature

b : EntropyFlowElement

sF.sFR : EntropyFlowRate

sF.t : Temperature

{powab=gr*sigma*(ta^4-tb^4),
srb=-powab/tb,
sra=powab/ta}

bRC : BodyRadiationConstraint

«constraint»

stefanBoltzmannConstant : Stefan-Boltzmann

«PhSConstant»

radiationConductance : Area

«PhSConstant»

powerAToB : Power

«PhSVariable»

powabsigma gr

tbta

srbsra

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

Fig. 46. Body radiation parametric diagram

The only thermal sensing element in the library is a temperature sensor, since entropy fow
sensors do not appear to exist. It outputs a real signal proportional to the temperature on

41

NIST IR 8490
October 2023

its entropy port. The PhSConstant signal2Temperature (shown in Figure 47) gives the con-
version factor between the real number output and the temperature measured. As sources,
a fxed temperature source, a controllable temperature source, a fxed thermal power, and
a model of a heater are used. There is no entropy fow source even though entropy fow
is a power conjugate variable because it is not clear what an entropy fow source would
correspond to in the physical world .

TemperatureSensorTemperatureSensor[Block] par][

a : EntropyFlowElement

sF.sFR : EntropyFlowRate

sF.t : Temperature

i : RealSignalOutElement

rSig : Real

{t=signal*cf,
sFRate=0}

tSC : TemperatureSensorConstraint

«constraint»

signal2Temperature : Temperature

«PhSConstant»

cf

sFRate signal

t

«equal»«equal»

«equal»

«equal»

Fig. 47. Temperature sensor parametric diagram

Heater in Figure 41 is a heat source controlled by a real signal. Figure 48 shows the para-
metric diagram for Heater, which binds its properties to parameters from HeaterConstraint.
It takes in a real signal and outputs a heat fux out of this part, expressed as a negative fow
rate, proportional to the real signal, as shown in heaterConstraint. If the real signal is less
than zero, no power is output, preventing the heater from extracting heat from the system
rather than providing it. The heater in Figure 39, bedHeater, is modeled in Figure 40 with
Heater.

[Block] HeaterHeaterpar][

a : EntropyFlowElement

sF.sFR : EntropyFlowRate

sF.t : Temperature

i : RealSignalInElement

rSig : Real

{if (pow*cf)>0 then
-pow*cf=sfr*t;
else
0=sfr*t;
end if}

hC : HeaterConstraint
«constraint»

signal2Power : Power
«PhSConstant»

cf t

sfr
pow

«equal» «equal»

«equal»

«equal»

Fig. 48. Heater parametric diagram

42

NIST IR 8490
October 2023

FixedThermalPower in Figure 41 models thermal power boundary conditions that do not
change with time, specifed by the PhSConstant power in Figure 49, a parametric diagram
that binds its properties to parameters from FixedThermalConstraint. The constant can
be positive, for entropy (heat) fow out of the component, or negative, for fow into the
component.

FixedThermalPowerFixedThermalPower[Block] par][

p1 : EntropyFlowElement

sF.sFR : EntropyFlowRate

sF.t : Temperature

{t_out*s_out=-pow}

fTPC : FixedThermalPowerConstraint

«constraint»

power : Power

«PhSConstant»

pow

s_out

t_out«equal»

«equal»

«equal»

Fig. 49. Fixed thermal power parametric diagram

The library in Figure 41 has two components that approximate a boundary condition where
change in temperature due to heat addition or subtraction is negligible. FixedTemperature
provides a constant temperature boundary condition, while TemperatureSource provides
one that is proportional to an input real signal, as shown in Figures 51 and 50, respec-
tively.The conversion factor between the input real signal and temperature output on tem-
perature source is defned by the PhSConstant signal2Temperature. TemperatureSource is
useful for modeling cases such as environmental temperature variation due to a day night
cycle. The real signal could be constant, but FixedTemperature does this without requiring
an input, only the PhSConstant t_set to specify the temperature.

TemperatureSourceTemperatureSource[Block] par][

a : EntropyFlowElement

sF.sFR : EntropyFlowRate

sF.t : Temperature

i : RealSignalInElement

rSig : Real

{t=cf*signal}

tSC : TemperatureSourceConstraint

«constraint»

signal2Temperature : Temperature

«PhSConstant»

cfsignal t«equal»

«equal»

«equal»

Fig. 50. Parametric diagram for temperature source

43

NIST IR 8490
October 2023

FixedTemperatureFixedTemperature[Block] par][

a : EntropyFlowElement

sF.sFR : EntropyFlowRate

sF.t : Temperature

{ta=tset}

fTC : FixedTemperatureConstraint

«constraint»

t_set : Temperature

«PhSConstant»

tatset«equal»

«equal»

Fig. 51. Parametric diagram for fxed temperature

5. Manufacturing Examples

This section applies the model libraries in Section 4 to example manufacturing systems,
translates them to simulation platforms on an open implementation of SysPhS [7][8], and
presents simulation results. They are a collaborative robot, 3D printer, and polishing ma-
chine, in Sections 5.1, 5.2, 5.3, respectively. The collaborative robot model uses the rota-
tional library, the 3D printer applies the translational and thermal libraries, and the polish-
ing machine example uses the translational and rotational libraries. See Section 6 for more
information about the simulation tools used in this section.

5.1. Weight Compensating Robot

Collaborative robots, or robots which work with people, are becoming more common in
manufacturing. One task they perform is helping people handle heavy objects, such as
positioning a large tool during manufacturing or guiding an object through a complex path
during assembly, by compensating for its weight. Operators move or rotate an object while
a robot holds it up, assisting over a more complicated path than is possible with passive
devices, such as constant force springs or combinations of linkages and springs. Operators
can adjust the compensating force or remove it completely if an object is no longer held.
Modeling and simulation help determine whether designs for these robots will provide
the necessary control response, minimizing forces on the operator and ensuring safe robot
behavior.

The example of weight compensation in this section is a robot arm with a single fxed
rotary joint, with the object to be moved attached on the end, as illustrated in Figure 52.
This system may be modeled as a pendulum. The robot senses the arm’s angle and applies
a counter-torque τ to the arm, counter-acting the weight of the object mg, but still allowing
the operator to move it up and down, as if it were weightless.

44

NIST IR 8490
October 2023

m

r

mg
 𝛕

Fig. 52. Weight compensating robot example

The system in Figure 52 is modeled with SysPhS in Figure 53, an IBD connecting com-
ponents defned in this section. The robot includes an actuator for the arm (sea0) pdfcom-
mentComment: why the difference in numbering notation for sea0 and pend1? Reply: Will
fx before publication., directed to compensate for weight by a controller (gravityCompen-
sationController) depending on the current angle of the arm/pendulum (pend1) as measured
by a sensor attached to it. The operator connects to the robot to move the arm around.

Gravity Compensation Test Low ResGravity Compensation Test[Block] ibd][

robot : LiftRobot

torque2Signal = 1.0 N·m
gain = 1.0

initialValues

gravityCompensationController : GravityCompensationController

angularVelocity = 0.0 rad/s
angularAcceleration = 0.0 rad/s²
angle2Signal = 1.0
angle = 1.570796

initialValues

pend1 : PendulumWithAngleSensor

s1 = s1
motorController = seacont0
motor = smotor0
g1 = g1

initialValues

sea0 : SimpleSEA

verticalAcceleration : Acceleration = 9.807 m/s²
«PhSConstant»

sOperator = so
os = os1
oam = oam1
dOperator = opDamp

initialValues

testOperator : TestOperator

angleIntorqueSignal

Real

angleOut

a

SEAFlange

torqueCmd

AngularMomentum

Real

p1 p1

AngularMomentum

Fig. 53. Figure 52 modeled in SysPhS

5.1.1. Pendulum

Pendulum in Figure 54 models a point mass subject to a continuous vertical acceleration
and attached at some distance from a rotational center, without any damping forces. It can
be coupled to other components using its angular momentum fow port. It has a parameter
cmgDist, giving the distance of the point mass from the center of rotation in units of m, and
a parameter mass for the point mass.

45

NIST IR 8490
October 2023

PendulumDefinition[Package]bdd Misc][

a : AMomFlowElement
ports

mass : Mass{changeCycle = 0.0, isConserved = false, isContinuous}
cmgDist : Length{changeCycle = 0.0, isConserved = false, isContinuous}
angle : Angle{changeCycle = 0.0, isConserved = false, isContinuous}
angularAcceleration : AngularAcceleration{changeCycle = 0.0, isConserved = false, isContinuous}
angularVelocity : AngularVelocity{changeCycle = 0.0, isConserved = false, isContinuous}
verticalAcceleration : Acceleration{changeCycle = 0.0, isConserved = false, isContinuous}

values

Pc : PendulumConstraint
constraints

Pendulum
«block»

angleOut : RealSignalOutElement
ports

angle2Signal : Angle = 1.0
values

constraint1 : PendulumWithAngleSensorConstraint [0..*]{redefines Pc}
constraints

PendulumWithAngleSensor
«block»

Fig. 54. Pendulum and PendulumWithAngleSensor

Figure 55 shows the pendulum’s parametric diagram. The rotational inertia of a point mass
pendulum is calculated by mass ∗ cmgDist2. The angle of the pendulum is taken to be zero
when it is at rest.

PendulumPendulum[Block]par][

a : AMomFlowElement

aMomF.aV : AngularVelocity

aMomF.trq : Torque

{torq+ay*m*sin(aPhi)*r=m*r^2*der(aV),
der(aPhi)=aV,
aVp=aV,
der(aV)=aA}

Pc : PendulumConstraint
«constraint»

angularAcceleration : AngularAcceleration
«PhSVariable»

verticalAcceleration : Acceleration
«PhSVariable»

angularVelocity : AngularVelocity
«PhSVariable»

cmgDist : Length
«PhSVariable»

mass : Mass
«PhSVariable»

angle : Angle
«PhSVariable»

«equal»

aAaVp

torq

ay

aV m

aPhi

r «equal»

«equal»

«equal»

«equal»

«equal»

«equal»
«equal»

Fig. 55. Pendulum parametric diagram

46

NIST IR 8490
October 2023

The PendulumWithAngleSensor used in Figure 53 is defned in Figure 54 as a specializa-
tion of a Pendulum block which has a sensor built into it to measure angle. PendulumWith-
AngleSensor, parametric diagram shown in Figure 56, outputs this angle on a real signal
port.

PendulumWithAngleSensorPendulumWithAngleSensor[Block]par][

angleOut : RealSignalOutElement

{direction = out}

rSig : Real

a : AMomFlowElement

aMomF.aV : AngularVelocity

aMomF.trq : Torque

{signal=aPhi/cf}
constraint1 : PendulumWithAngleSensorConstraint [0..*]

«constraint»

angularAcceleration : AngularAcceleration
«PhSVariable»

verticalAcceleration : Acceleration
«PhSVariable»

angularVelocity : AngularVelocity
«PhSVariable»

angle2Signal : Angle
«PhSConstant»

cmgDist : Length
«PhSVariable»

mass : Mass
«PhSVariable»

angle : Angle
«PhSVariable»

^aA

^aVp

t̂orq

^ay

^aV

^m

^aPhi

^r

signal

cf

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

Fig. 56. PendulumWithAngleSensor parametric diagram

47

NIST IR 8490
October 2023

5.1.2. Series Elastic Actuator

The actuator sea0 in Figure 53 is a series elastic actuator, a type of actuator where a spring
is placed between the speed reduction transmission and the load being driven, as shown in
Figure 57 [18]. By measuring displacement of the spring the force or torque the actuator
applies can be measured and adjusted rapidly by changing the position or angle of the
transmission. The spring also decouples the inertia of the motor and transmission from
the load, decreasing the chance of injury should a robot using these actuators collide with
a person. In addition, the spring also helps protect the high reduction transmission from
impacts that might damage it.

motor

transmission

rotational spring

output

displacement sensor

Fig. 57. Series elastic actuator

The actuator in Figure 57 is modeled with SysPhS in Figure 58, an IBD connecting com-
ponents defned in Section 4.2 and this one. It includes an electric motor, gearbox, and
rotational spring with a displacement sensor connected in series. The series elastic actuator
takes in a desired output torque value, measures displacement of the spring to estimate cur-
rent torque, and a controller sends a signal to the motor, attempting to achieve the desired
torque value.

SimpleSEA1SimpleSEA[Block]ibd][

k = 38.0 N·m/rad
displacement2Signal = 1.0

initialValues

s1 : RotLinearSpringWithDisplacementSensor

stiffness2Signal = 1.0 N·m {unit = newtonMetre}
kTotal = 66.0
kp = 1.0
ki = 1.0
kd = 0.0022 s
integratorValue = 0.0
deriv2Signal = 1.0 s {unit = second}

initialValues

motorController : SimpleSEAController

gearRatio = 66.0
initialValues

g1 : IdealFixedGearbox
motor : SimpleMotor

SEAFlange

torqueCmd

disp
b

a

demandTorque

springDisp

torqueSig

rotB
rotA

p1

p

AngularMomentum

AngularMomentum

Real

AngularMomentum

Real

Real

Fig. 58. Figure 57 modeled in SysPhS

48

NIST IR 8490
October 2023

Figure 59 shows a parametric diagram for the series elastic actuator controller modeled in
Figure 58. It implements proportional–integral–derivative (PID) control of applied torque,
comparing the desired and current torques, estimated from the current displacement of the
spring, to calculate the signal that should be sent to the motor. The PID controller output is
multiplied by a value proportional to the gear ratio, which is output to the motor. 17

SimpleSEAControllerSimpleSEAController[Block]par][

demandTorque : RealSignalInElement

rSig : Real

torqueSig : RealSignalOutElement

rSig : Real

springDisp : RealSignalInElement

rSig : Real

{e=tauDes-kSpring*x/stiffToSig,
der(i)*cf=e,
torq=-kgain*(kp*e+ki*i+kd*der(e))}

sSCC : SimpleSEAControllerConstraint
«constraint»

controllerEstimatedStiffness : RotationalStiffness
«PhSVariable»

stiffness2Signal : Torque
«PhSConstant»

integratorValue : Real
«PhSVariable»

deriv2Signal : Time
«PhSConstant»

kTotal : Real
«PhSConstant»

kp : Real
«PhSConstant»

ki : Real
«PhSConstant»

kd : Time
«PhSConstant»

error : Real
«PhSVariable»

«equal»

stiffToSig

cf

kikgain

torq

kd

i

x

kp

tauDes

e

kSpring «equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal» «equal» «equal»

Fig. 59. Parametric diagram for SimpleSEAController in Figure 58

The electric motor in Figure 58 is modeled as a controllable torque source connected to a
rotational inertia connected to an output with a rotational damper connected to ground, as
shown in Figure 60. The rotational damper models the motor’s internal friction, enabling
it to reach a constant speed rather then accelerating forever when a constant input signal is
applied.

SimpleMotorSimpleMotor[Block]ibd][

signal2Torque = 1.0 N·m
defaultValue

motorTorque : FixedTorqueSource

relPhi = 1.0
d = 0.1 N·m·s/rad

defaultValue

motorFric : RotLinearDamper

aV = 0.0 rad/s
rI = 3.0E-4 kg·m²

defaultValue

motorInertia : RotInertia

motorFixed : Fixed

p1
p

c
a

b

a

b
a

aV

AngularMomentum

AngularMomentum

Real

Fig. 60. SimpleMotor used in Figure 58

17In practice, more complicated controllers are often employed to control series elastic actuators [19].

49

NIST IR 8490
October 2023

5.1.3. Gravity Compensation

In this model the series elastic actuator is used as a means to control torque. In order
to compensate for the weight at the end of the arm we need to apply torque τ given by
Equation 1:

τ = m ∗ g∗ r ∗ sinθ (1)

where m is the point mass at the end of the arm, g is acceleration due to gravity, r is distance
the point mass is from the center of rotation, and θ is angle of the arm.

The block GravityCompensationController implements this equation, taking in the current
angle and calculating the torque to be applied, as shown in Figure 61. The torque to be
applied is multiplied by a PhSConstant gain, enabling one to apply more or less torque
than necessary to balance the arm, such as applying slightly more torque to compensate for
friction in the actuator.

GravityCompensationControllerGravityCompensationController[Block]par][

torqueSignal : RealSignalOutElement

rSig : Real

angleIn : RealSignalInElement

rSig : Real

{torqCmd=kgain*(m*g*r*sin(phi))/cf}
gccc : GravityCompensationControllerConstraint

«constraint»

torque2Signal : Torque
«PhSConstant»

gest : Acceleration
«PhSVariable»

lengthEst : Length
«PhSVariable»

massEst : Mass
«PhSVariable»

gain : Real
«PhSConstant»

«equal»

cf

torqCmdphi

gr m
kgain

«equal»

«equal»
«equal»

«equal»«equal»«equal»

Fig. 61. Gravity compensation controller

The PhSVariables lengthEst, massEst, and gest in Figure 61 are the values for the arm’s
center of gravity, mass, and acceleration due to gravity. In this example, these have the same
values as the arm, specifed with binding connectors to PhsConstants in the test model, as
shown in Figure 62, enabling the same PhSConstant values to be shared between multiple
parts and changed easily. For example, the arm and controller vertical accelerations are
required to have the same values as verticalAcceleration, the vertical acceleration of the
operating environment of the arm. The PhSConstant pendulumLength in this environment
specifes the distance to the center of gravity of the arm and pendulumMass gives the mass
of the arm and payload.

50

NIST IR 8490
October 2023

Gravity Compensation Property BindingsGravity Compensation Test[Block] ibd][

robot : LiftRobot

pend1 : PendulumWithAngleSensor

verticalAcceleration : Acceleration
«PhSVariable»

cmgDist : Length
«PhSVariable»

mass : Mass
«PhSVariable»

gravityCompensationController : GravityCompensationController

gest : Acceleration
«PhSVariable»

lengthEst : Length
«PhSVariable»

massEst : Mass
«PhSVariable»

verticalAcceleration : Acceleration
«PhSConstant»

armLength : Length
«PhSConstant»

armMass : Mass
«PhSConstant»

«equal»

«equal»

«equal»

«equal» «equal»
«equal»

Fig. 62. Test conditions specifed with binding connectors

5.1.4. Operator

The operator is modeled as an angular velocity source connected to the arm with a spring-
damper system modeling the compliance between the operator and the robot, as shown in
Figure 63. The connection between the operator and the robot will not be completely rigid,
so some compliance is necessary. During the simulation the operator remains motionless
for a set time period before moving at a constant set velocity.

TestOperatorTestOperator[Block] ibd][

defaultValue

k = 2.0 N·m/rad
relPhi = 0.0

sOperator : RotLinearSpring

defaultValue

relPhi = 0.0
d = 0.2 N·m·s/rad

dOperator : RotLinearDamper

speed1 = 0.5
changeTime = 5.0 s

defaultValue

oam : OperatorActionModel

os : FixedaVSourcep1

ba

ba
action

aVCommand

a

AngularMomentum

AngularMomentum
AngularMomentum

Real

Fig. 63. Diagram of operator model

The block OperatorActionModel, shown in Figure 64, is used to model the operator remain-
ing motionless until a set time and then proceeding at a constant speed. The block outputs
a zero real signal on port ’action’ until a time defned by the PhSConstant ’changeTime,’
after which a real signal defned by the PhSConstant ’speed1’ is output.

51

NIST IR 8490
October 2023

OperatorActionModelOperatorActionModel[Block] par][

action : RealSignalOutElement

{direction = out}

rSig : Real

{if time<chg then
speedOut=0;
else
speedOut=speed1;
end if}

OAMc : OperatorActionModelConstraint
«constraint»

changeTime : Time
«PhSConstant»

speed1 : Real
«PhSConstant»

chgspeed1

speedOut
«equal»

«equal»«equal»

Fig. 64. Parametric diagram of operation action model

Figure 65 adds detail to Figure 53, showing the total system model for Figure 52, including
operating environment. In this example, the torque on the operator determines whether the
collaborative robot is operating safely and correctly by whether it is within safe bounds.
This example does not defne safe bounds, however, it is desirable that the force on the
operator be as low as possible during operation, since the intended function of this device
is to reduce torque on the operator so they can more easily move the load around.

52

NIST IR 8490
October 2023

G
ra

vi
ty

 C
om

pe
ns

at
io

n
Te

st
G

ra
vi

ty
 C

om
pe

ns
at

io
n

Te
st

[B
lo

ck
]

ib
d

]

[

ro
b

o
t

:
L

if
tR

o
b

o
t

se
a0

 :
 S

im
p

le
S

E
A

m
o

to
r

:
S

im
p

le
M

o
to

r

si
gn

al
2T

or
qu

e
=

 1
.0

 N
·m

in
iti
al
V
al
ue
s

m
o

to
rT

o
rq

u
e

:
F

ix
ed

To
rq

u
eS

o
u

rc
e

re
lP

hi
 =

 1
.0

d
=

 0
.1

 N
·m

·s
/r

ad
in
iti
al
V
al
ue
s

m
o

to
rF

ri
c

:
R

o
tL

in
ea

rD
am

p
er

I =
 3

.0
E

-4
 k

g·
m

²
aV

 =
 0

.0
 r

ad
/s

in
iti
al
V
al
ue
s

m
o

to
rI

n
er

ti
a

:
R

o
tI

n
er

ti
a

m
o

to
rF

ix
ed

 :
 F

ix
ed

k
=

 3
8.

0
N

·m
/r

ad
di

sp
la

ce
m

en
t2

S
ig

na
l =

 1
.0

in
iti
al
V
al
ue
s

s1
 :

 R
o

tL
in

ea
rS

p
ri

n
g

W
it

h
D

is
p

la
ce

m
en

tS
en

so
r

st
iff

ne
ss

2S
ig

na
l =

 1
.0

 N
·m

 {
un

it
=

 n
ew

to
nM

et
re

}
kT

ot
al

 =
 6

6.
0

kp
 =

 1
.0

ki
 =

 1
.0

kd
 =

 0
.0

02
2

s
in

te
gr

at
or

V
al

ue
 =

 0
.0

de
riv

2S
ig

na
l =

 1
.0

 s
 {

un
it

=
 s

ec
on

d}
in
iti
al
V
al
ue
s

m
o

to
rC

o
n

tr
o

lle
r

:
S

im
p

le
S

E
A

C
o

n
tr

o
lle

r

ge
ar

R
at

io
 =

 6
6.

0
in
iti
al
V
al
ue
s

g
1

:
id

ea
lF

ix
ed

G
ea

rb
o

x

in
iti
al
V
al
ue
s

to
rq

ue
2S

ig
na

l =
 1

.0
 N

·m
ga

in
 =

 1
.0

g
ra

vi
ty

C
o

m
p

en
sa

ti
o

n
C

o
n

tr
o

lle
r

:
G

ra
vi

ty
C

o
m

p
en

sa
ti

o
n

C
o

n
tr

o
lle

r

an
gu

la
rV

el
oc

ity
 =

 0
.0

 r
ad

/s
an

gu
la

rA
cc

el
er

at
io

n
=

 0
.0

 r
ad

/s
²

an
gl

e2
S

ig
na

l =
 1

.0
an

gl
e

=
 1

.5
70

79
6
in
iti
al
V
al
ue
s

p
en

d
1

:
P

en
d

u
lu

m
W

it
h

A
n

g
le

S
en

so
r

te
st

O
p

er
at

o
r

:
Te

st
O

p
er

at
o

r

si
gn

al
2A

ng
V

el
 =

 1
.0

 r
ad

/s
 {

un
it

=
 r

ad
ia

nP
er

S
ec

on
d}

in
iti
al
V
al
ue
s

o
s

:
F

ix
ed

aV
S

o
u

rc
e

in
iti
al
V
al
ue
s

re
lP

hi
 =

 0
.0

d
=

 0
.2

 N
·m

·s
/r

ad

d
O

p
er

at
o

r
:

R
o

tL
in

ea
rD

am
p

er

re
lP

hi
 =

 0
.0

k
=

 2
.0

 N
·m

/r
ad

in
iti
al
V
al
ue
s

sO
p

er
at

o
r

:
R

o
tL

in
ea

rS
p

ri
n

g

sp
ee

d1
 =

 0
.5

ch
an

ge
T

im
e

=
 5

.0
 s

in
iti
al
V
al
ue
s

o
am

 :
 O

p
er

at
o

rA
ct

io
n

M
o

d
el

ve
rt

ic
al

A
cc

el
er

at
io

n
: A

cc
el

er
at

io
n

=
 9

.8
07

 m
/s

²
«P

hS
C

on
st

an
t»

c

a

b

ab
a

aV
A

ng
ul

ar
M

om
en

tu
m

A
ng

ul
ar

M
om

en
tu

m

p1

p

b

a
di

sp

de
m

an
dT

or
qu

e

sp
rin

gD
is

p

to
rq

ue
S

ig

ro
tO

ut

ro
tA

R
ea

l

R
ea

l

A
ng

ul
ar

M
om

en
tu

m

A
ng

ul
ar

M
om

en
tu

m

R
ea

l

S
E

A
F

la
ng

e

to
rq

ue
C

m
d

an
gl

eI
n

to
rq

ue
S

ig
na

l

a

an
gl

eO
ut

R
ea

l

A
ng

ul
ar

M
om

en
tu

m

A
ng

ul
ar

M
om

en
tu

m

R
ea

l

p1

aV
C

om
m

an
d

a
b

a

b
a

ac
tio

n

A
ng

ul
ar

M
om

en
tu

m

R
ea

l

p1
A

ng
ul

ar
M

om
en

tu
m

A
ng

ul
ar

M
om

en
tu

m

Fig. 65. Gravity compensation test internal block diagram

53

NIST IR 8490
October 2023

5.1.5. Simulation

The system was translated to modelica and simulated for 31 seconds with 0.001 second
time steps in OpenModelica. The operator was set to move at 5 seconds to allow very slow
movement of the arm to be detected. The rest of the time of the simulation allows the arm
to complete a rotation after the operator starts moving. The arm starts out horizontal at
π/2 rads, where the SEA applies a torque that keeps it in place. The SEA experiences a
small initial start up transient as it accepts the arm load, because its spring starts out at zero
displacement, as shown in a plot of the SEA internal motor torque in Figure 66. Internal
torque being the torque produced by the torque source inside the motor.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time(s)

0.02

0.01

0.00

0.01

0.02

0.03

0.04

0.05

To
rq

ue
(N

m
)

Motor Internal Torque

Fig. 66. Motor torque in series elastic actuator

The arm experiences negligible change in angle until the operator starts moving at 5 sec-
onds and the arm follows. Figure 67 shows the arm’s movement (fat line, then increasing
linearly). The arm stays at π/2 radians until the operator starts moving at 5 seconds at
rad/s. Movement while collaborating with the operator is smooth even as the arm com-
pletes multiple rotations.

54

NIST IR 8490
October 2023

0 5 10 15 20 25 30
Time(s)

2

4

6

8

10

12

14

An
gl

e(
ra

d)

Angle of Arm

Fig. 67. Angle of the arm

The operator experiences a torque that peaks when the arm starts moving, as shown in
Figure 68. This maximum torque is fairly low at 0.12 Nm.

0 5 10 15 20 25 30
Time(s)

0.12

0.10

0.08

0.06

0.04

0.02

0.00

To
rq

ue
(N

m
)

Torque on Operator

Fig. 68. Torque experienced by operator

Figure 69 shows the torque applied by the SEA (curved line) is much more than the torque
the operator experiences (fat line) as it compensates for the weight.

55

NIST IR 8490
October 2023

0 5 10 15 20 25 30
Time(s)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

To
rq

ue
(N

m
)

Torque Comparison
Torque on Operator
Torque on Actuator

Fig. 69. Torque on operator compared to torque applied to the arm

In systems modelling is it useful to test different confgurations of the system. One way
to do this is by making generalizations of the model with different parameters and ini-
tial conditions. By generalizing the model, the same model structure may be used and
only certain parameters and initial conditions may be changed. Figure 70 shows how this
model is generalized to two different testing scenarios, one in which the payload mass
has been increased(TestCaseHeavierPayload) and another in which the gravity has been
decreased(TestCaseMoon).

Weight Compensating Robot Example Weight Compensating Robot Tests[Package]bdd][

verticalAcceleration : Acceleration = 1.62 m/s² {redefines verticalAcceleration,unit = metrePerSecondSquared}
values

TestCaseMoon
«block»

armMass : Mass = 1.0 kg {unit = kilogram}
armLength : Length = 0.2 m {unit = metre}
verticalAcceleration : Acceleration = 9.807 m/s² {unit = metrePerSecondSquared}

values

Gravity Compensation Test
«block»

armMass : Mass = 5.0 kg {redefines armMass,unit = kilogram}
values

TestCaseHeavierPayload
«block»

Fig. 70. Diferent test cases by generalizing the original model

In TestCaseHeavierPayload, the payload on the arm has been increased from 1 kg to 10
kg. In TestCaseMoon, gravitational acceleration has been decreased from 9.807 m/s2 to
1.62 m/s2. Figure 71 shows a comparison a comparison of these test cases and the original
model. Operating the system in an environment with less gravity(orange), appears to have
less of an effect on the system than increasing the payload(grey) compared to the original

56

NIST IR 8490
October 2023

case(blue). The lower gravity test case and original case appear to have nearly the same
trajectory. This may imply that the system will need to be redesigned if it is to handle more
payload.

0 5 10 15 20 25 30
Time(s)

0.4

0.3

0.2

0.1

0.0

0.1

0.2

To
rq

ue
(N

m
)

Operator Torque Comparison
Base
Heavier Payload
Lower Gravity

Fig. 71. Comparison of torque on operator with diferent parameter changes

these simulation results show that the system works roughly as intended. The robot arm
can hold an object at a set position and allow the operator to move the object with much
less torque than is needed to support the object. Various cases were tested and it was found
that the system is sensitive to changes in payload mass. Whether this requires redesign is
beyond the scope of this publication. These examples are intended to demonstrate the use
of the libraries in the context of manufacturing systems and do not model real systems.

5.2. Fused Deposition Modeling 3D Printer

Most 3D printers use fused deposition modeling (FDM), a process that melts a plastic
flament in an extruder and deposits it on a surface, layer by layer, to make 3D shapes. The
printer must move the extruder back and forth rapidly as it traces out the part, requiring
simulation to determine whether it can carry out such maneuvers. Figure 72 illustrates the
mechanics of the 3D printer modeled in this example (the controller and thermal aspects
are not shown). Three perpendicular motor drive axes move a tool that extrudes plastic to
produce a part.

57

NIST IR 8490
October 2023

X Axis

X Axis moving mass

Z Axis moving mass

Y Axis

Y

X

Z

Extruder

Z Axis

Y Axis moving mass

Motor

Fig. 72. FDM example (cartesian robot and extruder)

This system is modeled in two parts, one for printer mechanics and another for thermal as-
pects of the heated bed. The printer model includes a cartesian robot that moves an extruder
to trace out a cylinder. Requirements on a 3D printer might include that it produce parts
varying in dimension only within a specifc range (tolerances), printing speed is higher than
some value, and peak power usage is below some value. The printer model enables testing
whether a design with given parameters will meet these requirements. The main output is
the trajectory of the extruder as it is moved to produce a part, a cylinder in this example.
The example trajectory traces frst in the X and Y axes, then up in the Z direction, repeat-
edly. The model does not account for motion limits, motor saturation, and the extruder
does not model viscoelasticity of the plastic.

The heated bed model is described in Section 4.3, with thermal effects modeled in Figure 83
in Section 5.2.4. This determines how long it takes to warm up the bed to a set temperature
and whether any unsafe temperatures occur in doing this. Thermal effects are not extended
to printer mechanics, because thermal transients occur over a much longer time scale than
mechanical dynamics (minutes vs. seconds). The mechanics model also does not include
collision with the part which has already been printed.

Figure 73 shows the internal block diagram of this system. The control is applied to a
cartesian robot that moves an extruder around. The controller sends signals to the cartesian
robot and extruder and receives position signals from each axis of the cartesian robot. The
extruder is coupled to the cartesian robot and the extruder nozzle is coupled to a zero pres-
sure boundary condition18. In this model, the interaction of the extruder with the printed

18The zero pressure boundary condition is implemented as a trivial block CnstPressureSource that has a single
VolumeFlow port with pressure set to a specifed value, in this case zero.

58

NIST IR 8490
October 2023

part are not modeled.

FDM-machineSimplifiedFDM-machine[Block] ibd][

zeropressure : CnstPressureSource

cartesianRobot : CartesianRobotaFDMController1 : FDMController
aFDMExtruder0 : FDMExtruder

p1

zConnect

yConnect

xConnect

zPos

zTorq

yPos

yTorq

xPos

xTorq

extruderRate

zPosSense

yPosSense

xPosSense

zPosCmd

yPosCmd

xPosCmd

nozzleextRate

aZ

aY

aX

Real

LinearMomentum

LinearMomentum

LinearMomentum

Real

Real

Real

Real

Real

Real

Volume

Fig. 73. Total system structure of FDM machine

5.2.1. Cartesian Robot

A key part of the printer is a cartesian robot, consisting of linear actuators arranged to
move the extruder along three perpendicular axes. Figure 74 shows detail of an axis actu-
ator. They includes a motor that drives conversion of rotation to translation via a rotating
screw going through a moving mass guided by rails and other components which do not
move along the axis which are expected to have signifcant mass. The rotary to translation
conversion is taken as ideal even though screws are not typically very effcient, like belts
or gear racks are.

moving massmotor

rail mass

axis damping

axis stiffness

rotation to translation converter

Fig. 74. Components of a single axis actuator

The axis actuator in Figure 74 is modeled by the block AxisLinearMotion, as shown in
Figure 75. The motor from Figure 60 in Section 5.1.2 is coupled to an ideal rotary to trans-
lational converter (see Figure 34 in Section 4.2), which connects to a spring and damper,

59

NIST IR 8490
October 2023

then to port p1, for connection to the mass being moved. Masses of the actuator parts are
modeled separately, to enable AxisLinearMotion to be reused on all axes, see Figure 76.

AxisLinearMotionAxisLinearMotion[Block] ibd][

position2Signal = 1.0 m {unit = metre}
initialValues

axisPosSensor : TransPositionSensor

velocity2Signal = 1.0 m/s
initialValues

axisVelSensor : TransVelocitySensor

k = 100.0 N/m
disp = 0.0 m

initialValues

axisStiffness : TransLinearSpring

disp = 0.0 m
d = 1.0 N·s/m

initialValues

axisDamping : TransLinearDamper

ratio = 50.0 rad/m
initialValues

axisBallScrew : IdealGearR2T
axisMotor : SimpleMotor

p1

velOut posOut

torqueIn

a

i

a

i

ba

ba

bap1 p

LinearMomentum

LinearMomentum
Real LinearMomentum

AngularMomentum

RealReal

Fig. 75. Figure 74 modeled in SysPhS

One factor contributing to speed, accuracy, and cost of the 3D printer is the stiffness of
components between the point at which material is extruded and the surface on which it
is extruded. Stiffer designs deform less, and conversely may produce more accurate parts
or operate faster, but cost more. It is assumed here that the most signifcant deformation
is in the linear actuators. This is modeled by including a spring in AxisLinearMotion for
the stiffness of an axis (axisStiffness) in between the translation-to-rotation converter and
port p1. The stiffness could correspond to that of the screw (as shown in Figure 74), or all
components of the machine movement axis, or some combination of them. Some damping
is also included between port p1 and the translation to rotation converter, which is present in
real systems and prevents oscillation of the spring from growing forever during simulation.
AxisLinearMotion includes a velocity sensor and position sensor that output the velocity
and position of the spring as real signals, on the velOut and posOut ports, respectively.19

The motor accepts a control signal for desired motor torque from the port torqueIn. The
TransPositionSensor (axisPosSensor) integrates velocity on the port it is attached to, so
the initial position of the sensor on the axis should be specifed as an initial value of the
sensor’s linearPosition.20

Each of the axis actuators is mounted on another actuator in series to move a tool, such as
an extruder, through 3 dimensional space. The tool is moved along the X axis by the X axis
actuator, which is moved along the Y axis by the Y axis actuator, which is moved along the
Z axis by the Z axis actuator. The actuators are expected to have signifcant mass and each

19Both sensors could correspond to a single absolute linear encoder, for example as found in milling ma-
chines.

20This hypothetical printer uses linear servo motors, rather open loop stepper motors as in most 3D printers,
for simplicity. These have sensors and continuous motors, and are found in some 2D printers and in motion
control systems.

60

NIST IR 8490
October 2023

must take into account the total inertia being moved on its axis, including other actuators
and the tool. For example, the Z axis actuator moves the Y and X axis actuators, as well as
the tool, all contributing to inertia on the Z degree of freedom. This is modeled in Figure
76 with each axis (cXAxis, cYAxis, and cZAxis) combining an AxisLinearMotion (xAxis,
yAxis, and zAxis) with corresponding inertial elements.21 The inertial chain begins with
the tool connected to the robot via momentum ports (xConnect, yConnect, and zConnect).
The X actuator (cXAxis) moves the tool by its connections to these ports, and is moved via
its own ports by the Y actuator (aY, aZ), which in turn has ports for being moved by the Z
actuator (aZ).

The inertia of each of the axes is modeled in Figure 76 by Trans3DInertia blocks (see
Section 4.1), distinguished by whether they represent the part of the actuator that moves
with respect to it (moving mass in Figure 74) or the parts that do not (rail mass in Figure
74). The X and Y actuators have both of these, moving (xMoveMass and yMoveMass,
respectively) and not (xRailMass and yRailMass, respectively). The Z axis actuator only
models its moving mass (zMoveMass), because its rail is assumed to be rigidly fxed to the
ground, not affecting dynamics. All three degrees of freedom of xMoveMass connect to
the tool via ports (bX, bY, bZ) while xMoveMass is moved along the X degree of freedom
by the xAxis actuator and the Y and Z degrees of freedom by the moving part of the Y axis
yMoveMas. The Y and Z freedoms of yMoveMass connect to the corresponding ports of
the X actuator (aY and aZ via bY and bZ), because the Y actuator is directly connected to
the X, moving it only in Y and Z. The Z degree of freedom of zMoveMass connects to the
corresponding port of the Y actuator (aZ via bZ), moving it only in Z.

21The inertias could be modeled in AxisLinearMotion to refect the mechanical structure of the actuator, see
Section 7.

61

NIST IR 8490
October 2023

CartesianRobotCartesianRobot[Block] ibd][

cYAxis : CartesianYAxis

zVel = 0.0 m/s
zPosition = 0.0 m
yVel = 0.0 m/s
yPosition = 0.0 m
xVel = 0.0 m/s
xPosition = 0.0 m
mass = 0.1 kg

initialValues

yMoveMass : Trans3DInertia

axisVelSensor = axisvelsense6
axisStiffness = axisStiff1
axisPosSensor = xaxisposF2
axisMotor = smotor0
axisDamping = fdmAxisDamp1
axisBallScrew = axisBeltX

initialValues

yAxis : AxisLinearMotion

zVel = 0.0 m/s
zPosition = 0.0 m
yVel = 0.0 m/s
yPosition = 0.0 m
xVel = 0.0 m/s
xPosition = 0.0 m
mass = 0.1 kg

initialValues

yRailMass : Trans3DInertia

cXAxis : CartesianXAxis

zVel = 0.0 m/s
zPosition = 0.0 m
yVel = 0.0 m/s
yPosition = 0.0 m
xVel = 0.0 m/s
xPosition = 0.0 m
mass = 0.1 kg

initialValues

xMoveMass : Trans3DInertia

axisVelSensor = axisvelsense
axisStiffness = axisStiff1
axisPosSensor = xaxisposF4
axisMotor = smotor0
axisDamping = fdmAxisDamp
axisBallScrew = axisBeltX

initialValues

xAxis : AxisLinearMotion

zVel = 0.0 m/s
zPosition = 0.0 m
yVel = 0.0 m/s
yPosition = 0.0 m
xVel = 0.0 m/s
xPosition = 0.0 m
mass = 0.1 kg

initialValues

xRailMass : Trans3DInertia

cZAxis : CartesianZAxis

zVel = 0.0 m/s
zPosition = 0.0 m
yPosition = 0.0 m
xPosition = 0.0 m
mass = 0.1 kg

initialValues

zMoveMass : Trans3DInertia

axisVelSensor = axisvelsense7
axisStiffness = axisStiff2
axisPosSensor = xaxisposF3
axisMotor = smotor6
axisDamping = fdmAxisDamp2
axisBallScrew = axisBeltX

initialValues

zAxis : AxisLinearMotion

fixedy0 : TransFixed

fixedx0 : TransFixed

zConnect

yConnect

xConnect

zVel

zPos

zTorq

yVel

yPos

yTorq xVel

xPosxTorq

bZ

bY

bX

aZ

aY

aX

p1

velOut

posOuttorqueIn

bZ

bY

bX

aZ

aY

aX

Real

LinearMomentum

LinearMomentum

bY

bZaZ

velOut

posOuttorqIn

bZ

bY

bX

aZ

aY

aX

p1

velOut

posOuttorqueIn

bZ

bY

bX

aZaYaX

Real

Real

LinearMomentum

LinearMomentum

Real

bZ

bY

bX

aZaY

velOut

posOuttorqIn

bZ

bY

bX

aZ

aY

aX

p1

velOut

posOut

torqueIn

a

a

LinearMomentum

LinearMomentum

velOut

bZ

posOut

torqIn

Real

LinearMomentum

LinearMomentum

Real

Real

LinearMomentum

Real

Real

Real

Real

Real

LinearMomentum

LinearMomentum

LinearMomentum

Real

Real

Real

Real

Fig. 76. Cartesian robot

The momentum port of each AxisLinearMotion (p1) connects to the port of its moving mass
that corresponds to the axis (aX, aY, aZ in cXAxis, xYAxis, and cZAxis, respectively). The
remaining ports of the moving mass are connected to the corresponding ones on the rail
mass, but only for the axes the rail mass moves on. For the X axis, the rail mass only moves
along Y and Z, modeled by connecting those ports (bY and bZ) to the corresponding ones

62

NIST IR 8490
October 2023

on the the moving mass (aY and aZ). The X degree of freedom (bX) is not connected to
anything, because X rail mass does not move along the X axis. For the Y axis, the rail mass
only moves along Z, modeled by connecting that port (bZ) to the corresponding one on the
the moving mass (aZ). The X and Y degrees of freedom (bX and bY) do not connect to
anything, because they do not move along those axes. The Z axis has no rail mass because
it is rigidly fxed to ground, modeled by connecting TranstlFixed (see Section 4.1) to the
moving mass for the X and Y degrees of freedom (aX and aY).

The same rail mass degrees of freedom that connect to the moving mass in each axis also
connect to another axis that moves it via ports for that purpose (aY and aZ for the X axis,
just aZ for the Y axis), which are connected to the other axis on ports for the things it
moves (bY and bZ for the Y axis, just bZ for the Z axis). This enables the inertia of the X
axis to be propagated to the Y axis, and the inertia of the Y axis to the Z, an example of
multiple components contributing inertia on each axis. The inertial chain begins with tool’s
contribution to inertia (see Section 5.2.2) along all axes, as shown by its connections to the
cartesian robot in Figure 73, with the X portion affecting the X actuator, the Y portion
propagated to the Y actuator along with moving an rail masses of the X actuator, because
all these elements move along the Y axis, and the Z portion propagated to the Z actuator
along with the moving and rail masses of the X and Y actuators, because all these elements
move along the Z axis.

5.2.2. Extruder

FDM printers use an extruder to melt plastic flament and deposit it on the part being
made. The extruder model in Figure 77 includes a Trans3DInertia block (see Section 4.1) to
represent its mass and another block for fuid fow from the extruder, contains a simplifed
model of fuid fow, defned in Figure 78, that covers some fuid effects, but ignores thermal
ones. It is for the kind of extruder where a motor, typically with a high gear reduction, turns
a screw or gear that pushes the flament through a hot nozzle to melt it. The motor with a
high reduction gear is modeled as an angular velocity source (extDrive). It is coupled to an
ideal rotary to translation converter (see Figure 34 in Section 4.2) that drives two hydraulic
components modeling how a solid flament interacts with the molten plastic in the extruder,
see next. The output of the extruder is coupled to a zero pressure boundary condition, see
Figure 73.

63

NIST IR 8490
October 2023

FDMExtruderIBDFDMExtruder[Block]ibd][

sFDMExtruderFlow0 : FDMExtruderSimpleFlow

zVel = 0.0 m/s
zPosition = 0.0 m
yVel = 0.0 m/s
yPosition = 0.0 m
xVel = 0.0 m/s
xPosition = 0.05 m
mass = 0.05 kg

initialValues

extruderMass : Trans3DInertia

nozzle

extRate

aZ

aY

aX

p1

extrudeRate

aZ

aY

aX

LinearMomentum

LinearMomentum

LinearMomentum

Real

Volume

Fig. 77. Extruder internal block diagram

FDMExtruderSimpleFlowFDMExtruderSimpleFlow[Block] ibd][

signal2AngVel = 1.0 rad/s {unit = radianPerSecond}
initialValues

extDrive : FixedaVSource

pistonArea = 2.27E-6 m²
initialValues

fluidArea : IdealTrans2Fluid

vflowLaminar = 5.0E-8 m³/s
dpLaminar = 8.8E7 Pa

initialValues

extruderTube : SimplePipe

ratio = 1.0 rad/m
initialValues

screw : IdealGearR2T

p1

extrudeRate

aVCommand

a

pres

trans

b

a

b

a

Real

LinearMomentum

FlowingVolume

Volume

AngularMomentum

Fig. 78. Extruder fow model

Figure 79 defnes the translation to volume fow converter used in Figure 78 (IdealTrans2Fluid).
It models a device that converts translational movement to a volume fow through an area,
such as a piston, except it enables unlimited translational displacement. The element is
ideal without elasticity, friction loss, or fuid loss.

64

NIST IR 8490
October 2023

IdealTrans2FluidIdealTrans2Fluid[Block]par][

pres : VolumeFlowElement

vF.q : VolumeFlowRate

vF.p : Pressure

trans : LMomFlowElement

lMomF.lV : Velocity

lMomF.f : Force

{f=p*area,
vf=-area*v}

iT2FC : IdealTrans2FluidConstraint
«constraint»

pistonArea : Area
«PhSConstant»

«equal»

«equal» vfarea

p

v

f
«equal»

«equal»

«equal»

Fig. 79. Translational to volume fow converter

Figure 80 models the hydraulic resistance to forcing molten flament through a nozzle
(SimplePipe) used in Figure 78. The difference in pressure across it (between its ports)
is proportional to fow rate multiplied by some resistance factor. This is expressed as the
ratio of pressure difference (dpC) and volume fow rate (VfowC) that results from the pres-
sure difference, as shown in Figure 80.22 The element does not account for non-newtonian
behavior of molten plastic or changes in resistance due to changes in nozzle height.

SimplePipeSimplePipe[Block]par][

b : VolumeFlowElement

vF.q : VolumeFlowRate

vF.p : Pressure

a : VolumeFlowElement

vF.q : VolumeFlowRate

vF.p : Pressure

{vf_a+vf_b=0,
dP=pa-pb,

dP=dpLaminar/vflowLaminar*vf_a}

sPC : SimplePipeConstraint
«constraint»

vflowLaminar : VolumeFlowRate
«PhSConstant»

dpLaminar : Pressure
«PhSConstant»

deltaP : Pressure
«PhSVariable»

vflowLaminar dpLaminardP

pbpa

vf_bvf_a

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»«equal»

Fig. 80. Hydraulic resistance

5.2.3. Controller

The FDM controller directs the axis actuators to move the extruder through a trajectory trac-
ing out a cylindrical part. It starts with a circle in the X and Y dimensions, then moves up in

22This model is based on SimpleFriction in the Modelica Standard Library FluidHeatFlow [20].

65

NIST IR 8490
October 2023

the Z dimension, and repeats indefnitely. The controller consists of two parts, a trajectory
generator that outputs positions over time and a PID position controller for each axis, as
shown in Figure 81. The block CylinderMakerFDM outputs positions on each axis for the
extruder to move through a cylinderical trajectory (xPosTarget,yPosTarget,zPosTarget). It
also turns the extruder on and off (extruderRate), on when tracing a circle and off when
moving up. The position signals are sent to three PID position controllers (see Figure 11 in
Section 3), one for each axis. Each axis PID controller takes in the desired position from
the trajectory generator (setPoint), the present position of the machine axis (curValue) and
outputs a control signal for the corresponding axis (outSig).

FDMControllerFDMController[Block] ibd][

position2Signal = 1.0 m
radius = 0.05 m
feedrate = 0.05 m/s
layerHeight = 0.1 m
extrusionRate = 1.0

defaultValue

cylinderMaker0 : CylinderMakerFDM

initialValues

kp = 1.0
ki = 0.0
kd = 0.0 s
i = 0.0
deriv2Signal = 1.0 s {unit = second}

zAxisPID : PIDControl

initialValues

kp = 30.0
ki = 0.0
kd = 10.0 s
i = 0.0
deriv2Signal = 1.0 s {unit = second}

yAxisPID : PIDControl

initialValues

kp = 25.0
ki = 0.0
kd = 1.0 s
i = 0.0
deriv2Signal = 1.0 s {unit = second}

xAxisPID : PIDControl

extruderRate

zPosSense

yPosSense

xPosSense

zPosCmd

yPosCmd

xPosCmd

extruderRate

zPosTarget

yPosTarget

xPosTarget

outSig

curValue

setPoint

outSig

curValue

setPoint

outSig

curValue

setPoint

Fig. 81. FDM controller

CylinderMakerFDM generates a trajectory that traces out a circle in X and Y, moves a set
distances up in Z, repeatedly. This circle is centered at x=0,y=0 and tracing starts and stops
at x=1,y=1. CylinderMakerFDM has properties that are constant for each simulation run:

• feedrate is the speed at which the extruder is intended to move.

• radius is the radius of the circle to be traced.

• layerHeight is the Z distance the extruder is intended to move up each cycle. In the
FDM process, this can also correspond to the thickness of an extruded layer.

• position2Signal is the inverse conversion factor between signal output and position
calculated.

• extrusionRate is the real signal that is output to the extruder when it is to be turned
on. This may be used for motor rotation rate as in this model or just to indicate that
the extruder is on.

66

NIST IR 8490
October 2023

Figure 82 shows the parametric diagram for the block CylinderMakerFDM. It includes
variables for intermediate calculations:

• circleTime is the time it takes the extruder to trace out a circle.

• cycleTime is the time it takes to complete a cycle, that is tracing a circle and moving
the extruder up.

• layerNumber is number of completed layers.

• cyclePosition is amount of time spent so far towards the completion of a cycle.

CylinderMakerFDM generates positions for a circular trajectory, then for moving up a set
distance in Z repeatedly. The time spent towards completing the current cycle is deter-
mined by b = mod(time,cycleTime). If this is less than the time needed to trace out a
circle, the block uses the parametric equations for a circle to trace a circle. Otherwise, it
outputs a linear increase in Z with time, corresponding to moving the extruder up. It is not
recommended that any of the PhS variables be given initial values, as they are intermediate
variables constrained by the equations. The output might be discontinuous as events are
generated for mod and if statements. This is explained in Section 5.2.5.

CylinderMakerFDMCylinderMakerFDM[Block]par][

extruderRate : RealSignalOutElement

rSig : Real

zPosTarget : RealSignalOutElement

rSig : Real

yPosTarget : RealSignalOutElement

rSig : Real

xPosTarget : RealSignalOutElement

rSig : Real

{circleTime=(2*2*asin(1.0)*r)/feedrate,
if b<=circleTime then

xPos=(r*cos(b*vel/r))/cf;
yPos=(r*sin(b*vel/r))/cf;

zPos=(layerNum*layerH)/cf;
extSig=extRate;

else
xPos=(r*cos(0))/cf;
yPos=(r*sin(0))/cf;

zPos=(vel*(b-circleTime)+layerNum*layerH)/cf;
extSig=0;

end if;,
cycleTime=circleTime+layerH/vel,

if time<>0 then
layerNum=floor(time/cycleTime);

else
layerNum=0;

end if;,
b=mod(time,cycleTime)}

cMFC : CylinderMakerFDMConstraint
«constraint»

position2Signal : Length
«PhSConstant»

layerNumber : Integer
«PhSVariable»

extrusionRate : Real
«PhSConstant»

layerHeight : Length
«PhSConstant»

cyclePosition : Time
«PhSVariable»

feedrate : Velocity
«PhSConstant»

cycleTime : Time
«PhSVariable»

circleTime : Time
«PhSVariable»

radius : Length
«PhSConstant»

cf cycleTime

extRate

layerNum
circleTime

extSig

vel

layerH

b

r

zPos

yPos

xPos

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»
«equal» «equal»«equal»

Fig. 82. CylinderMakerFDM parametric diagram

67

NIST IR 8490
October 2023

5.2.4. Heated Bed

Fused deposition modeling machines often extrude material onto a heated plate, to slow
down cooling of the part being printed. This reduces warping and provides better adhesion
of the flament. It is useful to determine how long it takes for the heated bed to warm
up and whether it will reach dangerous temperatures. This is modeled separately from the
cartesian robot because the dynamics of the heated bed occur over a much longer time scale
and are not coupled to the dynamics of the robot model (effects of the hot flament on bed
temperature are excluded). It is expected that the FDM machine starts up cold, the bed is
raised to operating temperature, and the printing process begins.

Figure 83 shows the application of the HeatedBed block defned in Figure 40 of Section
4.3, and explained in that section. In this test the heated bed starts out at 293 K in a 293 K
environment. The bed needs to reach a temperature of 373 K in order to operate. Figure
83 connects the heated bed to a FixedTemperature block (see Section 4.3) at 293 K and a
constant real signal of 373.

Heated Bed Warm Up timeHeated Bed Warm Up time[Block] ibd][

cnsnt = 373.0
initialValues

absBedTemperature : ConstantRealSignal

T_set = 293.0 K
initialValues

roomTemperature : FixedTemperaturetestHeatedBed : HeatedBedconst aairsetTemp

Fig. 83. Heated bed warm up time model

5.2.5. Simulation

The cartesian robot and heated bed are simulated separately because the robot operates on
a much shorter time scale than the heated bed.

5.2.5.1. Cartesian robot

Simulations of the cartesian robot, controller, and extruder models in Sections 5.2.1 through
5.2.3 predict how closely the extruder will be from its intended position, to check whether
the resulting part will be out of tolerance. Figures 84, 85, and 86 show how the trajectory
of the extruder(actual) lags behind the intended postion(target). They were produced in
OpenModelica using the integration algorithm DASSL, running for 25 seconds with a 0.001
second step size. This was confgured to trace a cylinder with a 5cm radius.

68

NIST IR 8490
October 2023

0 5 10 15 20 25
Time(s)

0.04

0.02

0.00

0.02

0.04

X
Po

sit
io

n(
m

)

X Position of Extruder

Target
Actual

Fig. 84. X position of the extruder compared to intended position

0 5 10 15 20 25
Time(s)

0.04

0.02

0.00

0.02

0.04

Y
Po

sit
io

n(
m

)

Y Position of Extruder
Target
Actual

Fig. 85. Y position of the extruder compared to intended position

69

NIST IR 8490
October 2023

0 5 10 15 20 25
Time(s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Z
Po

sit
io

n(
m

)

Z Position of Extruder
Target
Actual

Fig. 86. Z position of the extruder compared to intended position

In the case of the X position, shown in Figure 84, there is a fairly signifcant deviation
from the intended trajectory. The extruder does not reach the maximum radius in the -X
direction and is too slow to reach the maximum radius in the +X direction. The Y position
is also unable to reach the intended radii and is off from the intended position by a couple
of millimeters. This will result in parts being constructed with incorrect dimensions. The
extruder might collide with the part being built in some cases, because it cannot reach the
intended X position before completing a circle and its Z position lags behind the intended
position. This indicates that the controller should use different parameters or be redesigned
to better trace out the intended trajectory.

5.2.5.2. Heated bed

This model in Section 5.2.4 was simulated for 400 seconds with 0.01 second time steps
on OpenModelica. This is longer time period than the cartesian robot model, because heat
dynamics occur over longer timescales.

70

NIST IR 8490
October 2023

0 50 100 150 200 250 300 350 400
Time(s)

290

300

310

320

330

340

350

360

370

Te
m

pe
ra

tu
re

(k
)

Surface Temperature

Target
Actual

Fig. 87. Temperature of heated bed surface with time

Figure 87 shows how the surface temperature of the heated bed, shown in blue(actual), ap-
proaches the set temperature, shown in red(fat line, target). Convergence takes around 300
seconds. Convergence to the intended temperature indicates the controller is functioning as
intended as there is no overshoot that may be harmful to the heated bed. This convergence
time might be used as an estimate for how long it takes the bed to warm up.

5.3. Polishing Machine

One task manufacturing robots can perform is polishing and deburring complicated parts.
The robot moves an abrasive tool (rotary or belt) over a part while applying a constant nor-
mal force to it. Variations in applied force are undesirable as they might result in nonuni-
form deburring or fnish. Active control is necessary to apply a constant normal force and
keep the robot on the desired trajectory in spite of reactions from the abrasive tool and
workpiece.

Figure 88 illustrates a simplifed polishing machine that moves a rotating polishing wheel
through a predefned trajectory over a circular work piece, maintaining a constant normal
force on it. Circular workpieces are simpler than most manufactured parts, but have some
similarities with more complicated workpieces. The contact between two rigid disks will
be unstable when one disk is held in place and force is applied to the other, the other disk
will diverge from the fxed disk if the force does not point exactly to the center of the
fxed disk. Two force controlled axis actuators move the polishing wheel in X and Y, while
applying force to it. The axes in this examples are series elastic actuators (see Section
5.1.2) connected to rotation to translation converters. The polishing wheel is connected to

71

NIST IR 8490
October 2023

a motor (see Figure 60 in Section 5.1.2) that is given a constant torque signal. The circular
workpiece is fxed in space, while the circular polishing wheel moves along the X and
Y axes around it. Friction between the polishing wheel and workpiece is assumed to be
viscous (linearly dependent on normal force and velocity difference at the contact point).
A force is applied normal to the contacting surfaces based on how much the two circles
interpenetrate and their combined stiffness.

Series elastic actuator

SEA

Spindle Mass
work piece

polishing head

x

y

Fig. 88. Polishing machine

5.3.1. Machine

The polishing machine in Figure 88 consists of two force controlled axes, a spindle, and
a polishing wheel, as model in Figure 89. Each force controlled axis has a series elastic
actuator coupled to a rotary to translational converter. Each axis has a 2D Inertia block
connected to the ForceControlledAxis block output modeling the inertia of the moving part
of the machine axis. The Y axis is moved by the X axis, so it has an additional 2D inertia
block representing the inertia of the part of the Y axis that does not experience motion
in the Y direction. These two axes move the block spindle, which contains a 2D inertia
representing the mass of the tool spindle and a motor. This connects to the polishing wheel
with linear momentum fow elements for X and Y translation of the polishing wheel and an
angular momentum fow element for the rotary degree of freedom of the polishing wheel.

72

NIST IR 8490
October 2023

PolishingMachineFramePolishingMachineFrame[Block] ibd][

xAxis : PMachineXAxis

xAxisAct : ForceCntrldAxis

position2Signal = 1.0 m {unit = metre}
linearPosition = 0.11 m

initialValues

axisPosSense : TransPositionSensor

xVel = 0.0 m/s
mass = 0.025 kg

initialValues

xTraverseMoveMass : Trans2DInertia

fixed2 : TransFixed

yAxis : PMachineYAxis

yAxisAct : ForceCntrldAxis

position2Signal = 1.0 m {unit = metre}
linearPosition = 0.0 m

initialValues

axisPosSense : TransPositionSensor

yVel = 0.0 m/s
xVel = 0.0 m/s
mass = 0.1 kg

initialValues

yTraverseMoveMass : Trans2DInertia

mass = 0.25 kg
initialValues

yTraverseRailMass : Trans2DInertia

fixed : TransFixed

spindle0 : Spindle

spindleMotor : SimpleMotor

mass = 0.03 kg
initialValues

motorMass : Trans2DInertia

pwc0 : PolishingWheel

w

Y

X

spindleSpeed : RealSignalInElement

yAxisTorq

xAxisTorq

yVelSig

xVelSig

yPosSig

xPosSig

axisTorq

posSig

velSig

a
bY

aY

bX

aX

a LinearMomentum

LinearMomentumReal

Real
LinearMomentum

flange

velSig

posSig

axisTorq

axisTorq

posSig

velSig

a

bYaY

bX

aX

bY aY

bX

aXa

LinearMomentum

LinearMomentum

LinearMomentum

Real

LinearMomentum

LinearMomentum

Real

Real

xConnect

yConnect

Xa

posSig

velSig

axisTorq

p1
p

bYaY

bX

aX

motorSig a

YbYa

XbXa

angB

angA

py

px

yx

Real

AngularMomentum

LinearMomentum

LinearMomentum

LinearMomentum

LinearMomentum

LinearMomentum

AngularMomentum

LinearMomentum

LinearMomentum

Real

Real

Real

Real

Real

Real

Real

LinearMomentum

Fig. 89. Polishing machine axes and spindle

Figure 90 shows a force controlled axis model, which has translational position and velocity
sensors connected to translational output. These are used to provide real signals for the
current position and velocity of the axis. The initial position of the translational position
sensor should be set to defne the initial position of the axis. The axes are connected in a
similar manner to the axes in the FDM machine.

ForceCntrldAxisForceCntrldAxis[Block] ibd][

axisPosSense : TransPositionSensor axisVelSense : TransVelocitySensor

axisScrew : IdealGearR2TaxisSEA : SimpleSEA
axisTorq

posSig velSig

a

a

i

a

i

baSEAFlangetorqueCmd

Fig. 90. Force controlled axis IBD

The block PolishingWheel, shown in Figure 91, represents the inertia of the polishing wheel
and the elastic properties of the mechanical connection between the polishing wheel and
motor. The Linear Momentum port x,y and the angular momentum fow port angA, rep-
resent the mechanical connection to the spindle. The ports px,py, and angB respresent the
connection to the contact model/workpiece. The polishing wheel is expected to have mass
and angular inertia that cannot be ignored, so it contains a 2D translational inertia and an-
gular inertia. The connection between the motor and the polishing wheel that is expected
to be somewhat thin may have a stiffness that cannot be approximated as infnite. In addi-
tion, the polishing wheel may be made of a somewhat deformable material. So springs and
dampers are connected between the X and Y linear momentum ports and the translational
inertia representing the polishing head mass to model this possible deformation.

73

NIST IR 8490
October 2023

PolishingWheelPolishingWheel[Block]ibd][

relPhi = 0.0
k = 1.0 N·m/rad

initialValues

wheelStiff : RotLinearSpring

d = 1.0 N·m·s/rad
initialValues

wheelRDamp : RotLinearDamper

k = 100.0 N/m
disp = 0.0 m

initialValues

phYStiff : TransLinearSpring

d = 1.0 N·s/m
initialValues

phYDamp : TransLinearDamper

k = 100.0 N/m
disp = 0.0 m

initialValues

phXStiff : TransLinearSpring

d = 1.0 N·s/m
initialValues

phXDamp : TransLinearDamper

yVel = 0.0 m/s
yPosition = 0.0 m
xVel = 0.0 m/s
xPosition = 0.0 m
mass = 0.2 kg

initialValues

wheelTInert : Trans2DInertia

rI = 0.1 kg·m²
phi = 0.0
aV = 0.0 rad/s

initialValues

wheelRInert : RotInertia

angBangA

py

px

y

x

b
a

ba

ba

ba

b a

b a

bY aY

bXaX

ba

Fig. 91. Polishing wheel IBD

The block CircleCircleContact, parametric diagram shown in Figure 92, is used to describe
the contact forces and torques between the polishing wheel and the workpiece. In this
model we assume both the polishing wheel and the work piece are circular. The polishing
wheel is able to translate in X, Y and rotate, while the workpiece is assumed to be rigidly
fxed. Contact can be determined by checking if the distance between the center of the
two circles is less than the sum of their radii. Contact normal force is presumed to be
proportional to the distance the two circles are interpenetrating. If there is no contact, the
forces and torques on the polishing wheel are zero. Tangential forces are calculated using
the relative velocity of the contact point and viscous friction.

74

NIST IR 8490
October 2023

CircleCircleContactCircleCircleContact[Block] par][

w : AMomFlowElement

aMomF.aV : AngularVelocity

aMomF.trq : Torque

y : LMomFlowElement

lMomF.lV : Velocity

lMomF.f : Force

x : LMomFlowElement

lMomF.lV : Velocity

lMomF.f : Force

{if pd<0 then
Fnx=pd*k*(nx/dist);
Fny=pd*k*(ny/dist);
Ftx=Fnx*b*(ny*w+Vx);
Fty=Fny*b*(-nx*w+Vy);
else
Fnx=0;
Fny=0;
Ftx=0;
Fty=0;
end if,
torq=nx*Ftoty-ny*Ftotx,
dist=sqrt(nx^2+ny^2),
pd=dist-radh-radwp,
Ftotx=Fnx+Ftx,
Ftoty=Fny+Fty,
nx=posX-wpx,
ny=posY-wpy,
Vx=der(posX),
Vy=der(posY)}

cCCC : CircleCircleContactConstraint

«constraint»

radiusPolishingWheel : Length

«PhSConstant»

viscFriction : InverseSpeed

«PhSConstant»

penetrationDepth : Length

«valueType»

stiffness : TransStiffness

«PhSConstant»

radiusWorkPiece : Length

«PhSConstant»

tangentialForceY : Force

«PhSVariable»

tangentialForceX : Force

«PhSVariable»

normalVectorY : Length

«PhSVariable»

normalVectorX : Length

«PhSVariable»

normalForceY : Force

«PhSVariable»

normalForceX : Force

«PhSVariable»

distance : Length

«PhSVariable»

centerY : Length

«PhSConstant»

centerX : Length

«PhSConstant»

posY : Length

«PhSVariable»

posX : Length

«PhSVariable»

dist

torq

b

k

pd

Fty

Ftx

Fny

Fnx

Ftoty

Ftotx

ny

nx

w

Vy

Vx

radwp

radh

wpywpx posYposX

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»
«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»
«equal»

«equal»

«equal»

«equal»

«equal»

Fig. 92. Contact model

5.3.2. Controller

The controller determines the forces that axes should apply to move the polishing head
over a part, while applying a constant normal force to it. Controlling both the force an
end effector applies and its position may be done with a technique known as hybrid po-
sition force control [21]. This works by mixing the force to be applied with a force that
moves the end effector along the trajectory. The controller shown in Figure 93 uses Circu-
larPathGenerator to generate a circular trajectory from time, CircleNormalForceGenerator
to calculate the normal force from the current position of the polishing head, and blocks
that implement hybrid position force control take the intended trajectory and force to de-
termine control force. The controller also outputs a constant signal to the polishing wheel
motor.

75

NIST IR 8490
October 2023

PolishingMachineControllerForCirclePolishingMachineControllerForCircle[Block]ibd][

sig2Length = 1.0 m
normalForce = 0.1

initialValues

normalForceGen : CircleNormalForceGenerator

k = -3.0
d = -1.0

initialValues

yAxisControl : HybridPosForceControl

k = -5.0
d = -1.0

initialValues

xAxisControl : HybridPosForceControl

cnsnt = 0.1
initialValues

wheelSpeedSet : ConstantRealSignal

radius = 0.11 m
position2Signal = 1.0 m {unit = metre}
feedrate = 0.01 m/s

initialValues

circlePath : CircularPathGenerator

spindleSpeed

yforce

xforce

yvel

xvel

ypos

xpos

fY

fX

posY

posX

setForce

velsetPos

force

pos

setForce

velsetPos

force

pos

const

ySig

xSig

Real

Real

Real

Real

Real

RealReal

Real

Real

Real

Fig. 93. Polishing machine controller

Hybrid position force control in this example mixes the normal force applied to a part with
a force that pulls the polishing head along a path around it, as calculated in Figure 94.
SEAHybridPositionForceControl takes in the current position along one axis, the target
position along that axis, velocity along that axis, desired force to be applied along that axis,
and outputs a control force. This is calculated by summing the normal force to be applied
to the part with a force proportional to the deviance from the intended position and a force
proportional to present speed. That is we apply force F = k∗ epos+ Ftarget − d ∗V , where k
is proportionality coeffcient, epos is position error, Ftarget is target force, V is velocity, and
d is damping coeffcient.

76

NIST IR 8490
October 2023

HybridPosForceControlHybridPosForceControl[Block]par][

setForce : RealSignalInElement

rSig : Real

vel : RealSignalInElement

rSig : Real

setPos : RealSignalInElement

rSig : Real

pos : RealSignalInElement

rSig : Real
force : RealSignalOutElement

rSig : Real

{f=k*(setPos-pos)+setF-d*vel}
sHPFCC : SEAHybridPosForceControlConstraint

«constraint»

d : Real
«PhSConstant»

k : Real
«PhSConstant»

«equal»

«equal»

vel d

setPos

pos

setF
k

f «equal»«equal»

«equal»

«equal»«equal»

Fig. 94. Hybrid position force control

CirclularPathGenerator(parametric diagram shown in Figure 95) outputs x and y coordi-
nates as a function of time, to trace out a circle of specifed radius and center position at
a specifed rate. The position at time zero is x=1 and y=0, with respect to the center posi-
tion. The parameters centerX and centerY are the center X and Y coordinates, respectively,
while radius is the radius of the circular path and feedrate the velocity at which the path is
to be traced. The parameter position2Signal specifes the inverse conversion factor between
signal output and position calculated.

CircularPathGeneratorCircularPathGenerator[Block]par][

ySig : RealSignalOutElement

rSig : Real

xSig : RealSignalOutElement

rSig : Real
{xPos=(r*cos(time*vel/r)+cx)/cf,
yPos=(r*sin(time*vel/r)+cy)/cf}

cPGC : CircularPathGeneratorConstraint
«constraint»

position2Signal : Length
«PhSConstant»

feedrate : Velocity
«PhSConstant»

centerY : Length
«PhSConstant»

centerX : Length
«PhSConstant»

radius : Length
«PhSConstant»

cf

cycxvel r

yPos

xPos

«equal»

«equal»

«equal»
«equal»

«equal»

«equal»
«equal»

Fig. 95. Circular path generator

CircleNormalForceGenerator calculates a constant normal force to be applied to the circu-
lar workpiece, which is towards its center, as shown in Figure 96. The normal vector is
determined by the position of the tool (given by two real input signals posX, posY) and

77

NIST IR 8490
October 2023

center of the workpiece (two real internal constants workpieceX and workpieceY). The
constant normalForce specifes the magnitude of the normal force. From these CircleNor-
malForceGenerator outputs the X and Y components of the normal force as real signals fX
and fY.23

CircleNormalForceGeneratorCircleNormalForceGenerator[Block]ibd][

posY : RealSignalInElement

rSig : Real

posX : RealSignalInElement

rSig : Real

fX : RealSignalOutElement

rSig : Real

fY : RealSignalOutElement

rSig : Real

{nx=posX*cf-wpx,
ny=posY*cf-wpy,
dist=sqrt(nx^2+ny^2),
fX=mag*nx/dist,
fY=mag*ny/dist}

cNFGC : CircleNormalForceGeneratorConstraint
«constraint»

normalVectorY : Length
«PhSVariable»

normalVectorX : Length
«PhSVariable»

workpieceY : Length
«PhSConstant»

workpieceX : Length
«PhSConstant»

sig2Length : Length
«PhSConstant»

normalForce : Real
«PhSConstant»

distance : Length
«PhSVariable»

cf

wpywpxdist mag

ny

nx
fY

fX

posY

posX

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»
«equal» «equal»

Fig. 96. Circle normal force calculation

5.3.3. Simulation

The polishing machine was simulated on OpenModelica for 70 seconds with a 0.001 second
step size. The work piece was set to a larger radius than the polishing wheel, with radii 0.1
m and 0.01 m, respectively. The series elastic actuators are the same as the ones in the
weight compensating robot example, see Section 5.1.2. The polishing wheel starts out in
contact with the workpiece at position x=0.11 m and y=0.0 m, but with no applied normal
force, and zero angular and translational velocities. The normal force to be applied was set
to 0.1 N.

Figure 97 shows the magnitudes of the forces on the polishing wheel. The X component
of the normal force applied to the workpiece (blue line with oscillation which starts at the
bottom) oscillates some at the beginning, due to polishing wheel spinning up and force
being applied to the work piece. Both X and Y (orange line which starts in the middle)
components settle to tracing out a negative cosine, negative sine trajectory, as would be
expected for a vector pointing to the center of a circle. Overall the magnitude of the normal
force applied to the work piece (grey line near the top of the fgure), is slightly under 0.1 N
the intended value of the normal force.

23The calculation assumes the position of the tool and workpiece are never the same (posX and posY never
equal workpieceX and workpieceY, respectively).

78

NIST IR 8490
October 2023

0 10 20 30 40 50 60 70
Time(s)

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Fo
rc

e(
N)

Contact Normal Force

X Normal Force
Y Normal Force
Normal Force Magnitude

Fig. 97. Forces applied by the polishing wheel on the workpiece

The downward sloping lines in Figure 98 are the position of the actual X position of pol-
ishing wheel over time (blue) and the position output by the circular trajectory generator
(grey). The polishing wheel is never far off from the intended position. The upward sloping
lines are the intended Y position of the polishing wheel (dark grey) and the actual position
of the polishing wheel (orange), which nearly overlap.

0 10 20 30 40 50 60 70
Time(s)

0.10

0.05

0.00

0.05

0.10

Po
sit

io
n(

m
)

Polishing Wheel Trajectory

Actual X
Actual Y
Target X
Target Y

Fig. 98. Trajectory of polishing wheel and intended position of polishing wheel

79

NIST IR 8490
October 2023

6. Evaluating Interoperability

The standard translations of SysPhS to simulation platforms are expected to provide the
same simulation results on all of them. To evaluate this, the models in Sections 5.1 through
5.3 [22] were translated to Simscape and Modelica by an open implementation of the stan-
dard [7][8],24 then simulated on Simscape 10.4 and OpenModelica v1.18.0 with OMSim-
ulator v2.1.1 [3], respectively. The same constant time step size of 0.001 seconds was used
in all cases. The OpenModelica integration method was DASSL with tolerance 1e-6. The
Simscape solver was local, of type backward Euler. Consistency tolerance was 1e-09. Its
option for "Use fxed cost runtime consistency iterations" was set to true and 3 nonlinear
iterations were used. The difference between OpenModelica and Simscape simulation re-
sults was found to be relatively negligible for the models simulated and for the time period
simulated. Figure 99 shows a comparison between the arm angle with time for Simscape
and OpenModelica. As can be seen in the fgure there is negligible difference as there only
appears to be a single line. Figure 100 shows the X position of the extruder with time for
both OpenModelica and Simscape. In the fgure there is no discernible difference between
the two trajectories.

0 5 10 15 20 25 30
Time(s)

2

4

6

8

10

12

14

An
gl

e(
ra

d)

Angle of Arm
Modelica
Simscape

Fig. 99. Comparison of arm angle for collaborative robot

24The implementation required some minor fxes to work on these models and is included with them [22].
The translator takes in a SysML xmi of the system(which references the libraries), and outputs a modelica
mo fle for translation to modelica and outputs a simscape slx fle for the system, another .slx fle for a
library of components and a folder for build simscape libraries in .ssc.

80

NIST IR 8490
October 2023

0 5 10 15 20 25
Time(s)

0.04

0.02

0.00

0.02

0.04

X
Po

sit
io

n(
m

)

X Position of Extruder

Modelica
Simscape

Fig. 100. Comparison of FDM extruder X position

Figure 101 shows the difference between the two trajectories with time, with Simscape’s
subtracted from OpenModelica. The difference between the two trajectories is in microm-
eters. If a smaller difference between OpenModelica and Simscape Simulations is needed,
the simulation tolerance and/or timestep should be decreased.

0 5 10 15 20 25
Time(s)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Di
ffe

re
nc

e(
m

)

1e 5 Difference of X Position

Fig. 101. Diference between trajectories of extruder in X

81

NIST IR 8490
October 2023

Figure 102 shows a comparison of the the X trajectory of the polishing head in the polishing
machine produced using Open Modelica and Simscape. As can be seen in the diagram,
there appears to only be one trajectory as the difference in trajectories is negligible.

0 10 20 30 40 50 60 70
Time(s)

0.10

0.05

0.00

0.05

0.10

X
Po

sit
io

n(
m

)
X Position of Polishing Head

Modelica
Simscape

Fig. 102. Comparison of polishing wheel x position

Figure 103 shows the difference between the trajectories, with the simscape trajectory sub-
tracted from the OpenModelica trajectory. The difference is in micrometers.

82

NIST IR 8490
October 2023

0 10 20 30 40 50 60 70
Time(s)

0.0006

0.0004

0.0002

0.0000

0.0002

Di
ffe

re
nc

e(
m

)

Difference of X Position

Fig. 103. Diference between trajectories for polishing machine

All models show negligible difference between the two platforms for these examples for
the time period simulated.

7. Summary and Future Work

This work presents several model libraries for physical interaction modeling not currently
included in SysPhs (Section 4), as well as examples of their application to manufacturing
(Section 5). Libraries for signal fow, translational mechanics, rotational mechanics, and
heat fow were applied to model a weight compensating robot, the mechanics and heated
bed of a 3D printer, and a polishing machine. All of these libraries use SysPhs conventions
for conserved substances. These examples are shown to have the same behavior on multiple
platforms.

Some areas of future work on these libraries and examples are:

• Update elements of the translational and rotational library to always conserve trans-
lational or angular momentum. This could improve extensibility of the models and
help users fnd issues in them. For example, a rotating component in a satellite might
cause the satellite to point off target, due to gyroscopic effects, which is more diff-
cult to pinpoint when momentum is not conserved. A second port could be added to
source elements with an equal and opposite force applied. Gearboxes could have a
third port for reaction torque.

• Related to the above, update the examples to avoid modeling translational and rota-
tional fxed boundary conditions inside parts used under those conditions, such as an

83

NIST IR 8490
October 2023

internal component of a device that rigidly holds the device in place. For the device
to remain in place it must have a physical connection to something external to it.25

• Update some of the example models to better refect mechanical structure of the
system being modeled. For example the inertia of axis actuators in the cartesian
robot could be modeled in the same component as the rest of the actuator, instead of
where the actuators are used.

• Add

– Coulomb friction for rotational and translational libraries.

– Lossy rotary transformers for the rotational library.

– Control elements for the real signal library, such as high/low pass flters.

– Detail to the manufacturing examples. The motor model could include a torque-
speed curve. Nonlinear fuid fow could be added to the extruder fow model, to
account for viscoelastic effects.

– Prismatic joints in the translational library. Some aspects of the FDM and pol-
ishing machine could be simplifed with prismatic joints, which enable relative
translation between two components along a direction defned by a vector.

• Reduce the size of the real signal library by defning mappings of SysPhS Component
Behavior Blocks to equivalent components in Simscape.

Acknowledgments

The authors thank Thomas Roth and Marcus Richardson for their helpful comments.

References

[1] Object Management Group (2019) OMG Systems Modeling Language Specifcation,
version 1.6. Available at https://www.omg.org/spec/SysML/1.6.

[2] The MathWorks,Inc (2016) Simulink® Documentation. Available at https://www.
mathworks.com/help/releases/R2016a/simulink/.

[3] Open Source Modelica Consortium (OSMC) (2022) Openmodelica users guide.
Available at https://www.openmodelica.org/doc/OpenModelicaUsersGuide/latest/.

[4] The MathWorks I (2016) Simscape™ Documentation. Available at https://www.
mathworks.com/help/releases/R2016a/physmod/simscape/.

[5] Object Management Group (2021) SysML Extension for Physical Interaction and
Signal Flow Simulation. Available at https://www.omg.org/spec/SysPhS.

25In fact, zero velocity boundary conditions cannot exist, they are only approximations of a connection to an
inertia massive enough such the momentum the system exchanges with it negligibly changes its velocity.

84

https://www.omg.org/spec/SysML/1.6
https://www.mathworks.com/help/releases/R2016a/simulink/
https://www.mathworks.com/help/releases/R2016a/simulink/
https://www.openmodelica.org/doc/OpenModelicaUsersGuide/latest/
https://www.mathworks.com/help/releases/R2016a/physmod/simscape/
https://www.mathworks.com/help/releases/R2016a/physmod/simscape/
https://www.omg.org/spec/SysPhS

NIST IR 8490
October 2023

[6] Modelica Association (2021) Modelica, A Unifed Object Oriented Language
for Systems Modeling, Language Specifcation, Version 3.5. Available at https:
//specifcation.modelica.org/maint/3.5/MLS.pdf.

[7] Barbau R, Bock C, Dadfarnia M (2021) Translator from Extended SysML to Physical
Interaction and Signal Flow Simulation Platforms, Version 1.1. Journal of Research
of the National Institute of Standards and Technology 126. https://doi.org/10.6028/
jres.126.027

[8] Bock C, Barbau R, Matei I, Dadfarnia M (2018) Extension of the systems modeling
language for physical interaction and signal fow simulation. Systems Engineering
20(5):395–431. https://doi.org/10.1002/sys.21380

[9] Dadfarnia M, Bock C, Barbau R, et al. (2016) An improved method of
physical interaction and signal fow modeling for systems engineering.
Conference on Systems Engineering Research (CSER 2016). Available at
https://www.nist.gov/publications/improved-method-physical-interaction-and-
signal-fow-modeling-systems-engineering.

[10] Raven F (1995) Automatic Control Engineering (McGraw-Hill, New York, New
York), 5th Ed.

[11] Object Management Group (2017) OMG Unifed Modeling Language Specifcation,
version 2.5.1. Available at https://www.omg.org/spec/UML/2.5.1/.

[12] International Organization for Standardization (2022) ISO 80000-1:2022 Quantities
and units — Part 1: General. Available at https://www.iso.org/standard/76921.html.

[13] Modelica Associates and Contributors (2023) Modelica.mechanics.translational.
Available at https://build.openmodelica.org/Documentation/Modelica.Mechanics.
Translational.html.

[14] Karnopp DC, Margolis DL, Rosenberg RC (2006) System dynamics-modeling and
simulation of mechatronic systems, john willey & sons. Inc, Hoboken, New Jersey .

[15] Modelica Associates and Contributors (2022) Modelica.mechanics.rotational.
Available at https://build.openmodelica.org/Documentation/Modelica.Mechanics.
Rotational.html.

[16] Modelica Associates and Contributors (2023) Modelica.Mechanics.Translational.
Available at https://build.openmodelica.org/Documentation/Modelica.Thermal.
HeatTransfer.html.

[17] Thoma JU (1975) Entropy and mass fow for energy conversion. Journal of the
Franklin Institute 299(2):89–96.

[18] Pratt GA, Williamson MM (1995) Series elastic actuators. Proceedings 1995
IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot
Interaction and Cooperative Robots (IEEE), Vol. 1, pp 399–406.

[19] Paine N, Oh S, Sentis L (2013) Design and control considerations for high-
performance series elastic actuators. IEEE/ASME Transactions on Mechatronics
19(3):1080–1091.

[20] Modelica Associates and Contributors (2023) Modelica.mechanics.translational.
Available at https://build.openmodelica.org/Documentation/Modelica.Thermal.

85

https://specification.modelica.org/maint/3.5/MLS.pdf
https://specification.modelica.org/maint/3.5/MLS.pdf
https://doi.org/10.6028/jres.126.027
https://doi.org/10.6028/jres.126.027
https://doi.org/10.1002/sys.21380
https://www.omg.org/spec/UML/2.5.1/
https://www.iso.org/standard/76921.html
https://build.openmodelica.org/Documentation/Modelica.Mechanics.Translational.html
https://build.openmodelica.org/Documentation/Modelica.Mechanics.Translational.html
https://build.openmodelica.org/Documentation/Modelica.Mechanics.Rotational.html
https://build.openmodelica.org/Documentation/Modelica.Mechanics.Rotational.html
https://build.openmodelica.org/Documentation/Modelica.Thermal.HeatTransfer.html
https://build.openmodelica.org/Documentation/Modelica.Thermal.HeatTransfer.html
https://build.openmodelica.org/Documentation/Modelica.Thermal.FluidHeatFlow.html
https://build.openmodelica.org/Documentation/Modelica.Thermal.FluidHeatFlow.html
https://www.nist.gov/publications/improved-method-physical-interaction-and

NIST IR 8490
October 2023

FluidHeatFlow.html.
[21] Raibert MH, Craig JJ (1981) Hybrid position/force control of manipulators. Journal

of Dynamic Systems, Measurement, and Control .
[22] Manion C, Bock C, Barbau R (2023) SysPhS Models for Physical Interaction Sim-

ulation in Manufacturing. Available at https://github.com/usnistgov/saismo/releases/
tag/sysphslibs.

86

https://build.openmodelica.org/Documentation/Modelica.Thermal.FluidHeatFlow.html
https://build.openmodelica.org/Documentation/Modelica.Thermal.FluidHeatFlow.html
https://build.openmodelica.org/Documentation/Modelica.Thermal.FluidHeatFlow.html
https://github.com/usnistgov/saismo/releases/tag/sysphslibs
https://github.com/usnistgov/saismo/releases/tag/sysphslibs

	1 Introduction
	2 Physical Interaction and Signal Flow Modeling with SysPhS
	2.1 Physical Interaction and Signal Flow Modeling
	2.1.1 Physical Interaction
	2.1.2 Signal Flow
	2.1.3 Signal Flow of Physical Quantities?

	2.2 SysML
	2.3 SysPhS
	2.3.1 Stereotypes
	2.3.2 Model libraries

	3 Real Signal Component Library
	4 Physical Interaction Libraries
	4.1 Translational Mechanics Library
	4.2 Rotational Mechanics Library
	4.3 Entropy (Heat) Transfer Library

	5 Manufacturing Examples
	5.1 Weight Compensating Robot
	5.1.1 Pendulum
	5.1.2 Series Elastic Actuator
	5.1.3 Gravity Compensation
	5.1.4 Operator
	5.1.5 Simulation

	5.2 Fused Deposition Modeling 3D Printer
	5.2.1 Cartesian Robot
	5.2.2 Extruder
	5.2.3 Controller
	5.2.4 Heated Bed
	5.2.5 Simulation
	5.2.5.1 Cartesian robot
	5.2.5.2 Heated bed

	5.3 Polishing Machine
	5.3.1 Machine
	5.3.2 Controller
	5.3.3 Simulation

	6 Evaluating Interoperability
	7 Summary and Future Work
	References

