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Abstract. We study the forces and optical pumping within grating magneto-optical

traps (MOTs) operating on transitions with non-trivial level structure. In contrast

to the standard six-beam MOT configuration, rate equation modelling predicts that

the asymmetric laser geometry of a grating MOT will produce spin-polarized atomic

samples. Furthermore, the Landé g-factors and total angular momenta of the trapping

transition strongly influence both the confinement and equilibrium position of the

trap. Using the intuition gained from the rate equation model, we realize a grating

MOT of fermionic 87Sr and observe that it forms closer to the center of the trap’s

quadrupole magnetic field than its bosonic counterpart. We also explore the application

of grating MOTs to molecule laser cooling, where the rate equations suggest that dual-

frequency operation is necessary, but not sufficient, for stable confinement for type-II

level structures. To test our molecule laser cooling models, we create grating MOTs

using the D1 line of 7Li and see that only two of the four possible six-beam polarization

configurations operate in the grating geometry. Our results will aid the development of

portable atom and molecule traps for time keeping, inertial navigation, and precision

measurement.
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1. Introduction

Magneto-optical traps (MOTs) are the modern workhorse of atomic physics, allowing

for the creation of ultra-cold samples of atoms for high-precision spectroscopy [1, 2],

time keeping [3, 4], inertial sensing [5, 6], quantum simulation [7, 8], and quantum

computation [9, 10], among others. The typical MOT configuration uses three

orthogonal pairs of red-detuned counter-propagating laser beams in combination with

a spherical quadrupole magnetic field to provide both slowing, through the Doppler

effect, and spatial confinement, through the Zeeman effect [11]. This six-beam MOT

configuration is generally realized in a laboratory, where up to 2 m3 of space is

used simply for the optics needed align the laser beams and form the MOT. In the

last two decades, efforts to miniaturize MOTs have led to many different types of

MOT geometries that attempt to simplify the optical setup [12, 13], including mirror

MOTs [14], pyramidal MOTs [15], tetrahedral MOTs [16, 17], and photonic-integrated-

circuit MOTs [18, 19], and others.

One such configuration is the grating MOT (gMOT) [20, 21], shown in figure 1(a).

The gMOT uses a single, incident laser beam in combination with a set of diffraction

gratings to produce at least three more beams necessary to form a tetrahedral-like or

pyramidal-like MOT. Tetrahedral gMOTs have the minimum number of beams needed

to produce confinement in all three spatial directions [17]. The beam geometry is similar

to that of early tetrahedral MOTs [16, 22], which have four beams whose k̂ vectors

intersect at approximately 109.5◦, instead of the usual right angles for a six-beam MOT.

The greatly simplified setup of gMOTs may prove vital toward MOT

miniaturization efforts, as one can imagine simplified chip-scale MOTs with a large

grating coupler and custom diffraction grating to produce all necessary laser beams [23,

24]. Grating MOTs are already being incorporated into quantum devices such as

microwave clocks [25], atom interferometers [26], and vacuum sensors [27]. Another

advantage of having non-right angle intersections is that one of the MOT beams can

also be used as a slowing beam to increase the capture velocity of atoms from an oven

or other similar directional source. This advantage was used to realize the first Li and

metastable Ne MOTs in the early 1990s [22, 16]. Indeed, this advantage was also realized

for the first Li and Sr gMOTs, which used an integrated Zeeman slower stage to increase

the MOT loading rate [28, 29].

The simplicity of gMOTs comes at a cost: gMOTs sacrifice the high degree of

symmetry inherent to the standard six-beam MOT [11]. The lack of inversion symmetry

in both position and velocity space has several consequences. Consider the geometry

of the gMOT pictured in figure 1(a). The magnetic field is the standard spherical

quadrupole field B(r) = B′zẑ−(B′/2)(xx̂+yŷ), where B′ is axial magnetic field gradient.

The incident beam is axial with normalized wavevector k̂l=0 = ẑ, normalized intensity

sl=0 = Il=0/Isat (where Isat is the minimum saturation intensity of the atomic transition),

and ε̂l=0 = ε̂+ right-handed circular polarization. The diffraction gratings produce Nb

diffracted beams, labeled l = 1 · · ·Nb, that are evenly distributed azimuthally with
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Figure 1. Grating magneto-optical trap (gMOT) geometry and forces for a

F = 0→ F ′ = 1 transition. (a) Geometry of a typical gMOT with Nb = 3. The input

beam wavevector k0 is directed along +z, diffracted beams reflect with diffraction

angle θd measured relative to the −z axis. The input polarization is circular polarized

ε+, which drives σ+ transitions when the quantization axis is along +z. (b) When

projected onto the +z axis, the diffracted beams drive different amounts of σ± and π

transitions, depending on the diffraction angle θd. (c) The resulting force fz along z

for x = y = 0 and v = 0, assuming incident intensity s0 = 1, θd = π/4, diffraction

efficiency η = 0.33, ∆/Γ = −3/2, and excited state Landé g-factor gF ′ = 1 (see

Sec. 2). The black curve is the total force, the orange curve is the force from the input

beam, and the blue curves are the forces that result from the projected polarization

components: σ+ (solid), π (dashed), and σ− (dashed-dot). The black dot on the total

force curve shows the axial equilibrium position of the MOT zeq where fz(zeq) = 0.

Note that fz is plotted in units of ~kΓ and z is plotted in units of ~Γ/µBB
′ (see Sec. 2).

k̂l · (−ẑ) = cos θd, sl = ηIl=0 sec θd/Isat, and the opposite ε̂l = ε̂− left-handed circular

polarization compared to the incoming beam in the perfectly reflected case. Here, θd
is the first-order diffraction angle and η is the first-order diffraction efficiency. Unless

otherwise noted, we will assume all laser beams have uniform intensity with infinite

transverse size and that the optical molasses within the gMOT is intensity balanced

(i.e. η = 1/Nb [20]). All beams have the same detuning ∆l = ∆ from the atomic

resonance at B = 0.

At first glance, it appears that the diffracted beams have the incorrect polarization

to produce confinement [11]. However, when their polarization is projected onto the

magnetic field along ẑ, they contain light capable of driving σ± and π transitions [see

Fig 1(b)] [30]. The dominant transition for angles θd . π/3 is indeed the “incorrect”

σ+ transition, followed by π and the “correct” σ−. At θd = π/4, approximately

{73 %, 25 %, 2 %} of the intensity of the diffracted beams is projected into the

{σ+, π, σ−} polarization with respect to the +z axis. The resulting forces (derived

as in Sec. 2) are shown in figure 1(c) for the prototypical F = 0 → F ′ = 1 atom,

where F (F ′) is the ground (excited) state total angular momentum quantum number.
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Experimentally, F = 0 → F ′ = 1 transition MOTs are realized with alkaline-earth

bosons, which have no electronic angular momentum in their ground state and have

no nuclear spin. The “incorrect” σ+ polarization component of the diffracted beams,

being resonant at the same spatial location as the input beam, reduces the spatial force

exerted by the input beam. For every photon in the input beam, there are (1+cos θd)/2

photons with the same σ+ polarization that apply a momentum kick along ẑ of ~k cos θd
for η = 1/Nb. Thus, the ratio of the magnitude of the force from the diffracted beams

to the force from the input beam is (1 + cos θd) cos θd/2 = 3/4 for θd = π/4, and the net

force when the σ+ polarization is resonant is positive. The π component of the diffracted

beams produces a constant offset force such that the axial equilibrium position of the

MOT zeq is displaced from the quadrupole field zero at z = 0 (see figure 1(c)).

Because of the lack of symmetry, the exact details of the MOT performance – such

as axial trapping frequency, axial equilibrium position, radial trapping frequency, etc. –

are dependent on the relative intensities of input and diffracted beams, including their

spatial profiles [31, 32]. Grating MOTs operating on dipole-forbidden transitions must

also contend with gravitational shifts to the axial equilibrium position [32]. Moreover,

changing the polarization of the diffracted beams can also have a large effect. For

example, changing the diffracted polarization such that it includes more π component,

can increase the axial restoring force at the expense of radial trapping [33]. Thus,

gMOTs operate on a careful balance of intensity and control of diffraction angle and

diffracted polarization.

Most previous theoretical studies of gMOTs have focused on the prototypical

F = 0 → F ′ = 1 atom [28, 31, 33, 34, 32]. Investigations that considered F > 0

concentrated on sub-Doppler cooling and did not include the magnetic field gradient of

a MOT [30, 35]. Given that practical devices based on atomic and molecular physics

will inevitably use different species depending on the application, a relevant question

arises: are there any atomic or even molecular species that can be trapped in a six-beam

MOT, but not in a gMOT? In this article, we theoretically investigate the limitations

of gMOTs for real atoms and molecules. We investigate these questions in the context

of a rate equation model, described in Sec. 2.

We first consider type-I F → F ′ = F + 1 transitions in Sec. 3. In Sec. 3.1, we

show that for F 6= 0, gMOTs exhibit position-independent spin polarization due to the

“incorrect” polarization of the diffracted beams. The gMOT spin polarization causes a

displacement of the axial equilibrium position of the gMOT from the quadrupole field

zero that depends of F . Moreover, as F increases, we find that type-I gMOTs are only

stable for certain combinations of ground state gF and excited state gF ′ Landé g-factors.

When applied to alkaline-earth elements in Sec. 3.2, the rate equation model predicts

that fermionic alkaline-earth gMOTs form at a different axial equilibrium position than

bosonic alkaline-earth gMOTs. Using the intuition provided by the model, we realize a

fermionic strontium gMOT in the apparatus of Ref. [29] and confirm the rate equation

prediction of an F -dependent axial equilibrium position. In Sec. 3.3, we examine high F

alkali and alkaline-earth gMOTs that the analysis of Sec. 3.1 indicates will be unstable.
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We see that for both alkalis and alkaline-earths the rate equation models suggest that

trapping large F isotopes using transitions with resolved hyperfine structure is possible,

but becomes increasingly challenging for large F .

We then extend our studies to type-II F → F ′ = F and F → F ′ = F − 1

transitions in Sec. 4. In Sec. 4.1, we find that, in contrast to type-I transitions, the spin-

polarization effect is devastating: it causes optical pumping into a dark state, eliminating

any restoring force. Stable gMOT operation can be restored using dual-frequency MOT

operation [36]. However, in Sec. 4.1.1 and Sec. 4.1.2, we show that dual-frequency

gMOTs are only stable for certain combinations of ground and excited state Landé

g-factors, limiting the applicability of gMOTs to molecule laser cooling. Despite rate

equation prediction that type-II gMOTs are unstable, we are able to experimentally

realize type-II gMOTs on the D1 line of 7Li in Sec 4.2. Extending our model to include

the full level structure of the D1 line illuminates the surprising existence of these D1-line

gMOTs. We find that while D1-line gMOTs lack an equilibrium restoring force – and are

therefore not “traps” in the traditional sense – they rapidly recycle atoms through the

overlap volume of the MOT laser beams, yielding trap lifetimes and temperatures similar

to six-beam D1-line MOTs. We summarize all of our results and discuss prospects for

various quantum devices based on gMOTs in Sec. 5.

2. Theoretical Details

In this work, we use the software package pylcp to calculate forces and simulate

dynamics, using the rate equations [37]‡. The rate equations neglect coherence between

states and, therefore, do not include sub-Doppler forces. In pylcp, the states are labeled

by |n, i〉, where n indexes a manifold of nearly degenerate states (e.g. the 2S1/2 hyperfine

manifold of an alkali atom) and i indexes the states within manifold n (e.g. the Zeeman

levels of 2S1/2). The fractional population of state |n, i〉, Nn
i , is given by

Ṅn
i =

∑
m>n,j,l

Rn→m
ij,l (Nm

j −Nn
i ) +

∑
m<n,j,l

Rm→n
ji,l (Nm

j −Nn
i )

+
∑
m>n

Γm→n
ji Nm

j −
∑
m<n

Γn→mNn
i , (1)

where the first two terms accounts for optical pumping induced by a laser beam with

index l, the third term for decays into state |n, i〉, and the fourth term for decays from

state |n, i〉. The manifold index m and state index j denote other states |m, j〉 that are

included in the rate equation model. The manifold indices are ordered by the manifold

energy, so that
∑

m>n (
∑

m<n) sums over all manifolds m with energy larger (smaller)

than manifold n. Every state in manifold m decays to manifold n with an equal rate

Γm→n; the specific decay rate between two states |m, j〉 and |n, i〉 is Γm→n
ji . We note

that Γm→n = 0 and Γm→n
ji = 0 when the energy of manifold n is greater than the energy

‡ The pylcp package documentation is available at https://python-laser-cooling-physics.

readthedocs.io/en/latest/.

https://python-laser-cooling-physics.readthedocs.io/en/latest/
https://python-laser-cooling-physics.readthedocs.io/en/latest/
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of manifold m. The optical pumping rate Rn→m
ij,l due to laser l between states |n, i〉 and

|m, j〉 is given by

Rn→m
ij,l =

[Ωn→m
ij,l ]2/Γm→n

1 + 4[(∆l − (δmj − δni )− kl · v)/Γm→n)]2
, (2)

where δni represents the Zeeman and hyperfine shifts of state |n, i〉. The resonant Rabi

rate is given by

Ωn→m
ij,l =

Γm→n

2
(dnm

ij · ε′l)
√

2sl(r, t), (3)

where dnm
ij is the dipole matrix element between states |n, i〉 and |m, j〉, ε′l is the

polarization of the laser l, and sl is the intensity of laser l measured in terms of the

saturation intensity. The polarization of the light ε′l decomposes into the usual σ± and

π components when projected onto the local quantization axis, typically defined by the

magnetic field. To determine equilibrium forces in steady state, we first construct the

rate equations in terms of a matrix equation with the populations as vectors and then

solve for the equilibrium state using singular vector decomposition. The total force on

the atom due to the laser beams is then given by

f =
∑
l

~kl

2

∑
n,i

∑
m>n,j

Rn→m
ij,l (Nm

j −Nn
i ). (4)

Throughout the paper, we consider the input beam as being circularly polarized.

We denote left/right circular polarization, defined relative to the laser k vector, as ε±.

We always assume a circularly polarized input beam, ε+ unless otherwise noted, but

we consider a more general polarization rotation upon reflection in Sec. 3.2. As our

basis, we use the common perpendicular (s) and parallel (p) components relative to the

plane of reflection. A Poincaré sphere depicts the polarization of the diffracted light,

with s and p linear polarization on the equator and the resulting circular polarization

ε± on the poles. If the reflector were perfect, the reflected polarization would be ε−

(with ε+ input), and thus we choose ε− to be the north pole. When projected onto the

quantization axis, +z unless otherwise specified, we can then decompose the polarization

into σ± and π components.

When solving for the equations of motion, we choose to work in a system of units

where time is measured in 1/Γ and position is measured in terms of 1/k. Velocity is

thus measured in units of the Doppler velocity vD = Γ/k; and forces in terms of ~kΓ.

However, when discussing equilibrium forces, we prefer to measure distances in units of

~Γ/µBB
′, where ~ is the reduced Planck constant and µB is the Bohr magneton.

3. Type-I MOTs

In this section, we build on the textbook F = 0→ F ′ = 1 scenario described in Sec. 1 to

expand our discussion to the more general case of gMOTs operating on F → F ′ = F +1

transitions (“type-I MOTs”). In general, we shall see that pure input polarization with

ideal reflection (ε0 = ε+ and εl>0 = ε−) biases the optical pumping to push atoms into
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Figure 2. Optical pumping (top row), state populations (middle row), and forces

(bottom row) along the z direction in F = 1 → F ′ = 2 gMOTs with ∆/Γ = −3/2,

s0 = 1, Nb = 3, η = 0.33, θd = π/4, gF ′ = 1, and gF = 1 (left) or gF = 0 (right). In

all subplots, x = y = 0 and v = 0. The labels (A–D) of the level diagrams and optical

pumping strengths in the top row denote the z positions at which they were calculated

through the correspondingly labelled vertical lines in the lower plots. The thickness of

the olive lines denotes pumping rates for the incident laser beam and the thickness of

the cyan lines indicates pumping rates for diffracted laser beams. The populations of

the ground (solid) and excited (dashed) states in the middle row are colored to match

the mF color coding of the level diagrams. Total force in the bottom row plots is

the black curve, which is a sum of the force from the incident beam (olive) and the

diffracted beams (cyan). The dashed black curve shows the force for a F = 0→ F ′ = 1

atom [as in figure 1(c)]. Black dots on the total force curves show the location where

the MOT will form (fz = 0).

the mF > 0 states, causing different degrees of problems depending on the nature of the

level structure.

3.1. Basic F → F ′ = F + 1 transitions

Figure 2 shows the optical pumping, state populations, and axial forces as a function

of position z for a gMOT formed on F = 1 → F ′ = 2 with gF ′ = 1 and gF = gF ′ (left

column) or gF = 0 (right column). The former case, gF = gF ′ is an ideal case where all

transitions of the same type–π, σ+, and σ−–are degenerate. We are aware of no atom

that perfectly realizes this case, but it closely matches the situation in alkali atoms and
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highly magnetic species like Cr, Dy, and Er. The latter case, gF = 0 corresponds closely

to that of alkaline-earth atoms like Ca, Sr and Yb.

Despite the different level structures, the equilibrium populations of the ground

state as a function of position z show similar behavior. For any gF at z = 0, all

transitions are degenerate and the dominant polarization from both diffracted and

incident beams is σ+, causing a large population in |mF = F 〉. Extending to all z,

the atom has a non-zero spin projection 〈Fz〉 =
∑

mF
mFNmF

along +ẑ. This spin

polarization has markedly different effects, depending on the level structure.

Let us first consider the case where gF = gF ′ , which is closely analogous to the

F = 0 → F ′ = 1 case discussed in Sec. 1. Indeed, comparison of the total force

for F = 0 → F ′ = 1 [as in figure 1(c)] to F = 1 → F ′ = 2 (figure 2 left column,

bottom row) when gF ′ = gF shows a nearly identical dependence on position z. Two

resonances appear at z = ±~∆/µBB
′, when all the σ∓ transitions simultaneously come

into resonance (vertical lines B and D in the left column of figure 2). Compared to

the F = 0 → F ′ = 1 case, the magnitude of force due to the σ+ resonance is mostly

unchanged, while the magnitude of force due to the σ− resonance is reduced. The

reduction in σ− force occurs because the population is mostly in |mF = 0〉 and |mF = 1〉,
which have reduced Clebsch-Gordan coefficients for σ− transitions compared to the

F = 0→ F ′ = 1 case. The σ± resonances sit atop a nearly spatially-independent force,

which is generated by the spatially independent π transitions. Compared to figure 1(c),

the magnitude of this spatially-independent force is reduced slightly due to the reduced

Clebsch-Gordan coefficients for π transitions in a F = 1 → F ′ = 2 atom and varies

slightly as the populations in the various |mF 〉 levels shift with position. The net effect

is to shift the axial equilibrium position of the MOT to more positive z.

Contrast the gF = gF ′ case with the case of gF = 0, shown in the right panels of

figure 2, where the spin polarization has a more deleterious effect. The only magnetic

field independent transitions in this case are the |mF = ±1〉 → |mF ′ = 0〉, driven by σ∓

respectively, and |mF = 0〉 → |mF ′ = 0〉, driven by π. Because most of the population

is in |mF = +1〉 and the spatially-independent transition |mF = 1〉 → |mF ′ = 0〉 is

driven by the even smaller σ− component of the diffracted beams, the magnitude of the

spatially-independent force is reduced even further compared to the gF = gF ′ case.

To further explore the difficulties of the gF = 0 case, consider the resonances in fz in

the lower right of figure 2. At z = ~∆/2µBB
′ = −(3/4)~Γ/µBB

′ (vertical line B in the

right column of figure 2), the |mF = 1〉 → |mF ′ = 2〉 transition comes into resonance,

scattering photons from both the incident and diffracted beams, with both more photons

and more force per photon being delivered by the incident beam, as described in Sec. 1.

At z = ~∆/µBB = −(3/2)~Γ/µBB
′ (vertical line A in the right column of figure 2), the

|mF = 1〉 → |mF ′ = 1〉 π-polarized transition driven by the diffracted beams comes into

resonance, resulting in a negative force. At other positions where resonances should be

observed, like z = −~∆/µBB
′ = (3/2)~Γ/µBB

′ (vertical line D in the right column of

figure 2), where |mF = −1〉 → |mF ′ = −1〉 and |mF = 0〉 → |mF ′ = −1〉 both become

resonant, there is not enough population in |mF = −1〉 or |mF = 0〉 sublevels to have any



Grating magneto-optical traps with complicated level structures 9

0.00

0.02

0.04

f z/
(

k
)

4 2 0 2 4
z/( / BB ′)

0.2

0.4

0.6

0.8

1.0

〈 F z
〉 /F

gF/gF ′ = 3/4

gF/gF ′ = 0

gF/gF ′ = 1/4

gF/gF ′ = 3/4

gF/gF ′ = 1

gF/gF ′ = 3

4 2 0 2 4
z/( / BB ′)

Figure 3. Axial force fz (top row) and spin polarizations (bottom row) for F = 2 (left

column) and F = 4 (right column) as a function of z in a gMOT with ∆/Γ = −3/2,

s0 = 1, Nb = 3, η = 0.33, θd = π/4, and gF ′ = 1/F ′. In all subplots, x = y = 0 and

v = 0. Solid (dashed) curves represent ground state g factors that do (do not) fulfill

Eq. 5.

consequential effect on the force. As a result, the axial equilibrium position is displaced

to larger z compared to the gF ′ = gF case, which reduces both the longitudinal and

transverse trapping frequencies. As F becomes larger, the axial equilibrium position

displacement becomes more pronounced, such that gMOTs for F > 2 when gF = 0

do not appear feasible. We further explore the F dependence of zeq in Sec. 3.2 for

experimentally realizable gMOTs of Yb and Sr.

The contrast between gF = 0 and gF = gF ′ is reminiscent of the contrast between

alkali and alkaline-earth MOTs explored in Ref. [38]. Namely, we should expect that

gMOTs will work if the level structure is analogous to that of the F = 0 → F ′ = 1

atom: when all σ+ transition energies have a positive slope with magnetic field and all

σ− transition energies have a negative slope with magnetic field. This requirement on

the slope of the Zeeman shifts is fulfilled when

F − 1

F
<
gF
gF ′

<
F + 1

F
, (5)

as shown in Ref. [38]. Alkali atom MOTs have gF = 1/F and gF ′ = 2/F ′ for

|2S1/2, F = I + 1/2〉 → |2P3/2, F
′ = F + 1〉 transitions, where I is the nuclear angular

momentum quantum number. Thus, Eq. 5 is fulfilled for alkalis with F < 4 (all long-

lived alkalis except 40K and 133Cs). Demanding that Eq. 5 be satisfied partially alleviates

the difficulty of trapping high F species in a gMOT, as shown in figure 3. For the values



Grating magneto-optical traps with complicated level structures 10

of gF/gF ′ shown, those that satisfy Eq. 5 form stable MOTs for F = 2 and F = 4. Of

the displayed gF/gF ′ values that violate Eq. 5, only gF/gF ′ = 1/4 forms a stable MOT

when F = 2. Satisfying Eq. 5 appears to be sufficient, but not necessary, for gMOT

stability. We explore the viability of gMOTs for real atoms with level structures that

violate Eq. 5 in Sec. 3.2 and Sec. 3.3.

3.2. Real cases: strontium and ytterbium gMOTs

In our prior experimental investigation of strontium confinement in a gMOT [29], we

were unable to observe trapping of the fermionic isotope 87Sr. Fermionic alkaline-earth

atom have F = I in the ground state and therefore exhibit gF ≈ 0 because the ground

state magnetic moment is determined by the nuclear magneton. Our simulations in

Sec. 3.1 thus suggest that high F alkaline-earth fermions, such as 87Sr (F = 9/2), may

not be trappable in a gMOT. Such a conclusion would not be surprising, since six-

beam 87Sr MOTs operating on the narrow 1S0 → 3P1 intercombination transition are

known to exhibit very short trap lifetimes [38]. However, the six-beam 1S0 → 3P1

MOT lifetime can be extended close to the vacuum limit using sawtooth wave adiabatic

passage [39, 40] or a secondary “stirring” laser to rapidly randomize the ground

state populations [38, 41, 42]. Alkaline-earth MOTs operating on broad 1S0 → 1P1

transitions, such as our gMOT in Ref. [29], also have gF ≈ 0. In the standard six-beam

geometry, off-resonant excitation of F → F ′ = F and F → F ′ = F − 1 transitions is

sufficient to extend the MOT lifetime (i.e. broad transition MOTs are “self-stirring”).

Although the axial spin polarization inherent to a gMOT’s tetrahedral beam

arrangement disturbs the self-stirring dynamics (see figure 2 and figure 3), a long-lived

trap for fermionic alkaline-earth isotopes may still be possible if we consider the full

hyperfine structure of the excited state. Because the trap instability is dynamic, leaks in

the MOT may not be apparent in plots of the equilibrium MOT forces (see Sec. 3.1). We

therefore search for instability in fermionic 1S0 → 1P1 MOTs by numerically calculating

the MOT escape velocity vesc using the rate equations. We model the MOT laser

beams with Gaussian spatial modes that are truncated to match the 1.1 cm radius

patterned area of the grating chip [28, 29]. Using the pylcp package [37], we construct

the rate equations with parameters that mimic the experimental conditions [29]: s0 = 1,

∆/Γ = −1, incident laser beam 1/e2 radius w0 = 1.2 cm, Nb = 3, η = 0.33, and

B′ = 6 mT cm−1. Atomic properties for the rate equation model are taken from

Refs. [43, 44, 45, 46, 47, 48]. An escape velocity calculation initializes with an atom

with equilibrated state populations at the equilibrium position of the MOT, which may

not correspond to the quadrupole field zero [31]. The atom has an initial trial velocity

vt(θ, φ) directed radially outward from the trap equilibrium position with azimuthal

angle φ and polar angle θ (defined with respect to the coordinate system in figure 1(a)).

We numerically integrate the rate equations and the classical motion of the atom as

it moves through the MOT, neglecting stochastic momentum kicks due to spontaneous

emission (i.e. we compute the average atomic trajectory). If the atom remains inside,
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Figure 4. 88Sr trap depth maps for various grating chip diffraction angles θd
(increasing by column from left to right) and chip offsets zchip (increasing by row

from top to bottom). Each map shows the trap depth Ud(θ, φ) = mv2esc(θ, φ)/2 as a

function of the azimuthal angle φ ∈ [0, π/3] and polar angle θ ∈ [0, π] of the initial

atomic velocity. White regions of each map indicate combinations of φ and θ for which

the trap depth was not computed.

or returns to, the volume where all MOT laser beams overlap within five periods of

the smallest trap frequency (or 26 ms if that is shorter), then vt(θ, φ) ≤ vesc(θ, φ).

We vary vt(θ, φ) following a binary search pattern in a velocity space spanned by

kB × 5 mK ≤ mv2t (θ, φ)/2 ≤ kB × 20 K – where m is the atomic mass and kB is

Boltzmann’s constant – and take vesc(θ, φ) equal to the maximum trial velocity that did

not escape the MOT.

We produce maps of the escape velocity vesc(θ, φ) as a function of two experimental

parameters: the diffraction angle θd and the distance from the quadrupole field zero to

the surface of the diffraction grating chip zchip, which we refer to as the “chip offset”.

To minimize integration time for each map, we exploit the six-fold symmetry of our

diffraction grating chips and quasi-uniformly sample the resulting 2π/3 solid angle.

Figure 4 shows example maps of the escape velocity, colored according to the equivalent

trap depth Ud(θ, φ) = mv2esc(θ, φ)/2, for 88Sr. The trap depth is largest for velocities

directed parallel or antiparallel to the gMOT’s input laser beam. The difference between

the maps in figure 4 and those we reported in Ref. [34] for F → F ′ = F +1 transitions is

expected because Ref. [34] uses a heuristic model for laser cooling that does not include

local variation of the transition saturation [37]. The average trap depth of the gMOT

reaches a local maximum when the trap equilibrium position is farthest from the edge

of the laser beam overlap volume, which occurs at small zchip for large θd and at large

zchip for small θd.

In addition to the 88Sr escape velocity maps shown in figure 4, we produce escape

velocity maps over the same ranges of θd and zchip for 87Sr (F = 9/2), 174Yb, and 171Yb

(F = 1/2). We plot the minimum Ud(θ, φ) for each isotope as a function of θd and zchip in
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Figure 5. Minimum trap depth Ud(θ, φ) as a function of diffraction angle θd and

chip offset zchip for 171Yb (far left), 174Yb (left middle), 87Sr (right middle), and 88Sr

(right). For all subplots, s0 = 1, ∆/Γ = −1, w0 = 1.2 cm, Nb = 3, η = 0.33, and

B′ = 6 mT cm−1. For fermionic isotopes, ∆ is relative to the F → F ′ = F + 1

transition.

figure 5. The axial equilibrium positions of the gMOTs (not shown in figure 5) increase

with both θd and zchip. The variation in the minimum trap depth across isotopes has

three particularly interesting features. First, the trap depth minima for 174Yb and 88Sr

are nearly indistinguishable, as expected given the similar lifetimes of the Yb and Sr
1P1 excited states (approximately 5.5 ns and 5.2 ns, respectively [43, 46, 47]). Second,

for 171Yb, the minimum Ud(θ, φ) ≤ kB × 5 mK (i.e. it is consistent with zero given the

span of our binary search) over a wide range of diffraction angles and chip offsets. For

all θd and zchip combinations that we explored, the 171Yb gMOT has transverse trapping

frequencies ωx = ωy = 0. The lack of transverse confinement suggests that even when

the minimum trap depth is greater than zero, 171Yb gMOTs using our parameters

will act as atom recyclers – that keep atoms on looped trajectories through the beam

overlap volume – rather than true MOTs (see Sec. 4.2) and will have short lifetimes.

We will explore and suggest remedies for the lack of transverse confinement in Sec. 3.3.

Third, the minimum trap depths for 88Sr and 87Sr as a function of θd and zchip agree

qualitatively. The axial spin polarization of gMOTs does not disturb the self-stirring

dynamics enough to create leaks in the trap.

The difficulty in observing a 87Sr gMOT is instead caused by a displacement

between the bosonic and fermionic gMOT axial equilibrium positions. Axial confinement

in a 1S0 → 1P1 gMOT is provided primarily by the σ+-polarized input beam and

the π-polarized components of the diffracted beams (see figure 1). In alkali and

bosonic alkaline-earth atoms, transitions driven by π-polarized light exhibit little or

no Zeeman shift. By contrast, π-polarized transitions in fermionic alkaline-earths can

exhibit strong Zeeman shifts due to the mismatch in the ground and excited state
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Figure 6. Distance between boson and fermion MOT axial equilibrium positions

as a function of diffraction angle and chip offset. Left: difference in axial equilibrium

position of 88Sr and 87Sr gMOTs zeq,88 − zeq,87. Right: difference in axial equilibrium

position of 174Yb and 171Yb gMOTs zeq,174 − zeq,171. As in figure 6 and for both

subplots, s0 = 1, ∆/Γ = −1, w0 = 1.2 cm, Nb = 3, η = 0.33, and B′ = 6 mT cm−1.

For fermionic isotopes, ∆ is relative to the F → F ′ = F + 1 transition.

magnetic moments (see Sec. 3.1). Fermionic and bosonic alkaline-earth 1S0 → 1P1

gMOTs therefore exhibit significantly different axial restoring forces. The differing axial

restoring forces also shift the axial equilibrium position of a fermionic gMOT away from

the bosonic gMOT axial equilibrium position, an effect not seen in conventional 6-beam

MOT geometries. Figure 6 shows the difference in the axial equilibrium position zeq,A
for bosonic alkaline-earth gMOTs (A = 88, 174) and fermionic alkaline-earth gMOTs

(A = 87, 171). The distance between the axial equilibrium positions of the bosonic

and fermionic MOTs often exceeds the typical radius of the trapped atom cloud [29].

For 171Yb, the gMOT spin polarizes into the |F = 1/2,mF = 1/2〉 state and the π-

polarized |F = 1/2,mF = 1/2〉 → |F ′ = 1/2,mF ′ = 1/2〉 transition is Zeeman shifted

out of resonance with the diffracted beams as an atom approaches the grating chip, as

shown in figure 7. The axial equilibrium position of a 171Yb gMOT is therefore shifted

away from the quadrupole field zero (toward the chip) compared to a 174Yb gMOT. For
87Sr, the unresolved excited state hyperfine structure means that MOTs operate in the

intermediate field regime of the Zeeman effect [44]. The 87Sr gMOT still spin polarizes

toward the |F = 9/2,mF = 9/2〉 state, but the π-polarized transition corresponding to

|F = 9/2,mF = 9/2〉 → |F ′ = 9/2,mF ′ = 9/2〉 exhibits minimal Zeeman shift as an

atom approaches the grating chip and Zeeman shifts into resonance as an atom moves

away from the grating chip (see figure 7). Because the F ′ = 9/2 manifold is closer to

resonance with the laser beams than the F ′ = 11/2 manifold, a 87Sr gMOT will form

closer to the quadrupole field zero than a bosonic strontium gMOT for our trapping

parameters.
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Figure 7. Zeeman shifts in fermionic alkaline-earth gMOTs. Left: Gray curves

show the Zeeman shift of 1P1 hyperfine states of 87Sr as a function of axial position

z at x = y = 0. Right: Gray curves show the Zeeman shift of 1P1 hyperfine states of
171Yb as a function of axial position z. In both subplots, the {red, green, blue} curves

highlight states that are coupled to the ground |F,mF = F 〉 state by the {σ+, π, σ−}
component of the diffracted laser beams.

In our apparatus, the number of atoms confined by the gMOT is sufficiently

sensitive to the chip offset zchip that an 87Sr MOT is undetectable when the 88Sr gMOT

is optimized. To allow observation of a fermionic strontium gMOT, we replaced the

permanent magnets on the apparatus described in Ref. [29] with a pair of rail-mounted

electromagnets that can be repeatably re-positioned with respect to the grating chip.

Changing the position of the electromagnets allows us to adjust zchip over a range of

several millimeters, which was sufficient for us to observe and optimize fluorescence

from a 87Sr gMOT. Figure 8(a) and figure 8(b) show the average fluorescence image

of 88Sr and 87Sr gMOTs, respectively, at zchip ≈ 13 mm. The images in figure 8 were

acquired with s0 ≈ 1, ∆/Γ ≈ −1.0, w0 ≈ 1.2 cm, Nb = 3, η = 0.32, θd = 27.0(5)◦,

and B′ = 5 mT cm−1. The experimentally measured distance between the bosonic and

fermionic gMOT equilibrium positions is zeq,88−zeq,87 = 1.05(4) mm, indicating that the

effect seen in our simulations exists in the experiment. (Here, and throughout the paper,

parenthetical quantities represent the standard error). We calculated the axial force

profiles for both the 88Sr and the 87Sr gMOT under the experimental conditions, shown

in figure 8(c). The calculations include the additional polarization impurity due to the

Stokes parameters of the diffracted laser beams, as measured on a test bench [29]. The

force profiles predict zeq,88− zeq,87 ≈ 1.6 mm. Small variations in the programmed input

and diffracted beam polarization purity can drastically change the expected zeq,88−zeq,87.
For example, rotating the azimuthal angle of the diffracted polarizations through ±π on

the Poincaré sphere produces 0.3 mm . zeq,88−zeq,87 . 1.7 mm. Because we do not have

quantitative in-situ measurements of the input beam and diffracted beam polarizations,

we believe that the theory is in reasonable agreement with our measurements.



Grating magneto-optical traps with complicated level structures 15

Figure 8. Comparison of measured and computed MOT axial equilibrium position

shift for 88Sr and 87Sr. Average fluorescence images of 88Sr and 87Sr gMOTs are shown

in (a) and (b), respectively. The blue (orange) curve in (c) is the axial force profile for

a 88Sr (87Sr) gMOT at x = y = 0 and v = 0. The vertical gray line in (c) guides the

eye to the point of zero force in each profile. In all subplots, dashed (dotted) horizontal

lines denote the fitted axial equilibrium position of the 88Sr (87Sr) gMOT.

3.3. Mitigation strategies: effect of diffraction efficiency, diffraction angle, and

intensity

We now consider more thoroughly the feasibility of gMOTs for atoms with level

structures that do not satisfy Eq. 5. The analysis of Sec. 3.1 suggests that such atoms

may not be trappable in a gMOT, yet we demonstrated in Sec. 3.2 that 87Sr, which

violates Eq. 5, can be confined by a gMOT because of the unresolved hyperfine structure

of its 1P1 state. In this subsection, we tune the diffraction efficiency η, diffraction angle

θd, and input beam saturation parameter s0 beyond the values used in Sec. 3.1 to find

stable gMOT operating conditions for atoms that do not satisfy Eq. 5 and that have

resolved excited state hyperfine structure.

We begin with the alkalis, which have gF = 1/F and gF ′ = 2/F ′ for |2S1/2, F =

I + 1/2〉 → |2P3/2, F
′ = F + 1〉 transitions. Figure 9 shows the axial equilibrium

position zeq, axial trapping frequency ωz, and transverse trapping frequency ωx for

alkali atoms with F = 2 (e.g. 87Rb), F = 3 (85Rb), F = 4 (133Cs), and F = 9/2 (40K).

We immediately see that combinations of η, θd, and s0 exist for which 133Cs and 40K

gMOTs are stable. As expected given Sec. 3.1, the confinement of a gMOT, as measured

by the trapping frequencies, decreases with F due to the increasingly adverse effects of

spin polarization.

There are several potential ways to increase the trapping forces for large F alkali

gMOTs. One possible way is to increase the power in the diffracted beams by increasing

η. As η increases, the axial equilibrium position zeq moves closer to the quadrupole field

zero because there is more scattering from off-resonant transitions when z > 0 (see

figure 9(a)). However, the reduction in zeq does not increase ωz until zeq ≈ ~Γ/µBB
′,

as shown in figure 9(b).

The transverse trapping frequency ωx is smaller than ωz but has similar behavior as
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Figure 9. Effects of diffraction efficiency, diffraction angle, and intensity in type-I

gMOTs with gF = 1/F . (a) Axial equilibrium position zeq and (b) trapping frequency

along the z direction (solid) and the x direction (dashed curves) of a gMOT vs.

diffraction efficiency η. The gMOT has infinite plane-wave beams with s0 = 1,

∆/Γ = −3/2, θd = π/4, Nb = 3, gF ′ = 2/F ′, and gF = 1/F for various F . The

ideal η for balanced molasses is η = 1/Nb ≈ 0.33. (c) Axial equilibrium position and

(d) trapping frequencies vs. diffraction angle θd for the same gMOT parameters as (a)

and (b), except η = 0.33. (e) Axial equilibrium position and (f) trapping frequencies

vs. input beam saturation parameter s0 for the same gMOT parameters as (a) – (d),

with η = 0.33 and θd = π/4.

a function of η. For simplicity, we consider motion along x, where the off-axis Zeeman

shift is |B(x, 0, zeq)| = B′
√
z2eq + x2/4. For |x| & zeq, the Zeeman shift is linear in x

and the restoring force resembles a textbook one-dimensional MOT [49]. For |x| . zeq,

the lack of an appreciable Zeeman shift produces little confining force or—depending

on the values of θd, η and s0—a small anti-confining force. In figure 9, we calculate an

“average” ωx by taking the difference max(fx)−min(fx) divided by the distance between

the two, which is approximately 4zeq for zeq � ~∆/µBB
′ and approximately 4~∆/µBB

′

for zeq � ~∆/µBB
′. This choice masks an important complication: realizing a large F ,

alkali gMOT requires that the patterned grating area, input beam size, magnetic field

gradient, and zchip, combine such that the distance from r = (0, 0, zeq) to the edge of the

overlap region of the beams is larger than roughly 2zeq to ensure transverse confinement.

A more promising approach to increased confining forces in large F alkali gMOTs

is tuning the diffraction angle θd, which preserves balanced molasses for subsequent sub-

Doppler cooling. The resulting axial equilibrium positions and trapping frequencies are

shown in figure 9(c) and figure 9(d), respectively. As θd gets larger, the projection of the

diffracted beam polarization on to the z axis gains π and σ− character at the expense
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of σ+, helping to reduce spin polarization. As a result, the σ− component has a larger

effect when it becomes resonant at z > 0, leading to a deeper negative force peak at

z > 0 that pushes zeq back toward zero. This occurs despite the fact that momentum

kicks along z due to the diffracted beams are reduced as θd gets larger. We expect

that gMOTs of 133Cs and 40K may be attainable at θd & 3π/8 over a wide range of

η, though the large gratings and beam sizes needed to maintain trapping volume could

prove impractical.

Finally, the trapping forces in a gMOT can be improved by increasing the input

beam saturation parameter s0. Both ωz and ωx roughly double when the input

saturation raises from s0 = 1 to s0 > 5 (see figure 9(f)), as transitions due to the π and

σ− components of the diffracted beams enter the strongly saturated regime. Boosting

s0 has a minimal effect on zeq, as shown in figure 9(e). We expect that experiments

attempting to produce gMOTs for alkalis that violate Eq 5, should use large s0, large

θd, and η ≈ 1/Nb to preserve balanced molasses.

We now turn our attention to gMOTs operating on transitions with gF ≈ 0 and

resolved excited state hyperfine structure, which arise for alkaline-earth elements. As

with an alkali gMOT, one way to improve confinement is to increase the power in the

diffracted beams by increasing η. The improved confinement is clear in figure 10(a) and

figure 10(b). Again, as η increases, the axial equilibrium position zeq moves closer to the

origin. The axial trapping frequency ωz is roughly constant with η for zeq > ~Γ/µBB
′

and increases slowly with η for zeq < ~Γ/µBB
′. For large values of η, ωz maximizes

and subsequently drops rapidly as the force from the diffracted beams overwhelms the

force from the input beam, making the MOT unstable. As in figure 9, we calculate

an “average” ωx by taking the difference max(fx) − min(fx) divided by the distance

between the two. Around zeq = 0, ωx has a broad peak as a function of η. Increasing

confinement via higher diffraction efficiency is quite promising; the only drawback is

it unbalances the optical molasses that might be used in any subsequent sub-Doppler

cooling [30].

Rather than compromising the balanced molasses for sub-Doppler cooling, one can

tune the diffraction angle θd. The resulting axial equilibrium positions and trapping

frequencies are shown in figure 10(c) and figure 10(d). Again, as θd gets larger, the

projection of the diffracted beam polarization on to the z axis gains π and σ− character,

which leads to reduced spin polarization that pushes zeq toward zero. At η = 0.33, large

diffraction angles, θd & 3π/8, are required to trap F = 5/2 (173Yb) and F = 9/2 (87Sr)

atoms. The large grating and beams needed to maintain a reasonable capture volume

likely make increasing θd alone impractical. However, increasing both η and θd appears

ideal, in combination, a stable 1S0 → 3P1 transition gMOT may be attainable for 173Yb

and 87Sr.

The trapping forces in a gF ≈ 0 gMOT can also be improved by tuning s0. The

dependence of ωz and ωx on s0 shown in figure 10(f) differs from the alkali case shown

in figure 9(f). Both ωz and ωx peak between 1 < s0 < 10. The maximum ωz occurs

when π and σ− transitions from the diffracted beams become saturated strongly enough
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Figure 10. Effects of diffraction efficiency, diffraction angle, and intensity in

type-I gMOTs with gF = 0. (a) Axial equilibrium position zeq and (b) trapping

frequency along the z direction (solid) and the x direction (dashed curves) of a gMOT

vs. diffraction efficiency η. The gMOT has infinite plane-wave beams with s0 = 1,

∆/Γ = −3/2, θd = π/4, Nb = 3, gF ′ = 1/F ′, and gF = 0 for various F . The ideal

η for balanced molasses is η = 1/Nb ≈ 0.33. (c) Axial equilibrium position and (d)

trapping frequencies vs. diffraction angle θd for the same gMOT parameters, except

η = 0.33. (e) Axial equilibrium position and (f) trapping frequencies vs. input beam

saturation parameter s0 for the same gMOT parameters as (a) – (d), with η = 0.33

and θd = π/4.

to begin dragging the entire force profile below zero. For F = 5/2, ωx ≈ 0 for all s0 in

figure 10(f). We also note that F = 9/2 does not appear in figure 10(e) or figure 10(f)

because the F = 9/2 gMOT is not stable for any s0 at η = 0.33 and θd = π/4.

The F = 1/2 gMOT simulations in figure 10(d) indicate that a 171Yb gMOT

should be stable, contradicting Sec. 3.2. However, the simulations of Sec. 3.2 used

laser beams with Gaussian spatial modes, while the simulations in figure 10 used laser

beams with uniform intensity. When a gMOT employs Gaussian beams, the intensity

of the diffracted beams that push toward (away from) the gMOT equilibrium position

decreases (increases) as an atom moves off the z axis. When F = 0, the transverse

intensity variation of Gaussian diffracted beams only reduces the transverse restoring

force [31]. For F > 0, the spin polarization combines with the intensity variation to

promote anti-trapping. For gMOTs operating at low s0, as is typical for 1S0 → 1P1

transition alkaline-earth MOTs [50, 51], the anti-confining forces due to the Gaussian

beam shape can be large enough to destabilize the gMOT. Transverse confinement can

be restored by significantly increasing the radius of the input laser beam. We anticipate

that power efficient operation of a 171Yb 1S0 → 1P1 transition gMOT may require

uniform illumination of the grating chip, as has recently been demonstrated for 87Rb



Grating magneto-optical traps with complicated level structures 19

and 88Sr in Refs. [23, 32].

A gF ≈ 0 gMOT could also be stabilized by introducing a second input laser beam

at a different optical frequency. Following the conventional six-beam stirring approach

for 87Sr, the second beam could be red-detuned from a resolved F → F ′ = F transition

(see figure 7). However, for large F , we do not expect conventional stirring to prevent

spin polarization because the F → F ′ = F input beam still biases the population

toward the |mF = F 〉 Zeeman state and, once an atom is pumped into that state, all

transitions from the stirring diffracted beams will be far from resonance [38]. There

are two unconventional ways that a second input beam could stabilize a gF ≈ 0 gMOT

at large F . First, the second beam could exploit the spin polarization and drive a

F → F ′ = F − 1 transition. Because F → F ′ = F − 1 transitions in alkaline-earth

fermions have negative gF ′ , the σ− component of the F → F ′ = F − 1 diffracted beams

will tune into resonance with the |mF = F 〉 state at z > 0, pulling fz below zero and

stabilizing the gMOT. Second, we can borrow the “dual-frequency” MOT technique§
from molecule laser cooling by blue-detuning a second ε−-polarized input beam by ∆b

from a F → F ′ = F or F → F ′ = F + 1 transition [36] (and see Sec. 4). In the dual-

frequency configuration, the blue-detuned diffracted beams shift into resonance with the

|mF = F 〉 state at z > 0, once again pulling fz below zero and stabilizing the gMOT.

The forces in both single-frequency and dual-frequency gF = 0 gMOTs, when the blue-

detuned beam drives F → F ′ = F + 1, are shown in figure 11 for F = 5/2 (173Yb) and

F = 9/2 (87Sr). We note that alkaline-earth 1S0 → 3P1 MOTs are typically frequency

modulated at frequencies comparable to Γ and therefore operate out of equilibrium.

Optical Bloch equation simulations, including frequency modulation, will be necessary

to confirm that a second input beam can stabilize 1S0 → 3P1 gMOTs. Such simulations

are beyond the scope of this work and will be the subject of a future publication.

4. Type-II MOTs

The on-axis spin polarizing effect seen in type-I MOTs is amplified in type-II MOTs.

In particular, atoms in type-II gMOTs tend to be pumped into a dark state that does

not vary dramatically with position along the axis of the MOT. This nearly-spatially

independent dark state tends to eliminate any potential restoring force on axis in the

simplest type-II gMOT configurations.

4.1. Simple angular momentum cases

4.1.1. F → F ′ = F transitions The force for a gMOT operating on an F = 1→ F ′ = 1

transition, where the diffracted beams have opposite polarization as the incident beam, is

shown in the left column of figure 12. The ground state Landé g-factors are gF = gF ′ = 1,

a case that is partially reflective of some X2Σ → B2Σ transitions in alkaline-earth-

§ In a “dual-frequency” MOT at least one transition is addressed by both a red-detuned and a blue-

detuned laser beam.
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Figure 11. Forces in single-frequency and dual-frequency gMOTs with gF = 0.

Left: force fz(0, 0, z) along z at v = 0 for one-color gMOT (dashed) formed on a

F → F ′ = F + 1 transition with s0 = 1, ∆/Γ = −3/2, θd = π/4, Nb = 3, gF ′ = 1/F ′

and a dual-frequency MOT (solid) with the same parameters, but with an additional,

oppositely polarized input beam with ∆b/Γ = +3. Points show the stable equilibrium

point fz(0, 0, zeq) = 0. Right: force fx(x, 0, zeq) along x at v = 0 for the same gMOTs

as on the left.

monofluoride molecules. The magnetic-field-independent π transitions tend to pump

the atoms toward the |mF = 0〉 dark state, most easily observed at large |z|, where

NmF=0 → 1 and fz → 0. At z = −~∆/µBB
′, the dark state of |mF = 0〉 is perturbed by

the σ− component of the diffracted beams, pumping atoms into |mF = −1〉 and exerting

a small, negative fz. At z = ~∆/µBB
′, the dominant σ+ light becomes resonant and

changes the dark state to |mF = 1〉. Once in |mF = 1〉, an atom needs to scatter a

π or σ− photon from the diffracted beams to be excited out of the dark state. In the

former case, the atom moves to |mF ′ = 1〉. From |mF ′ = 1〉, the atom can decay to

the dark |mF = 1〉 state or bright |mF = 0〉 state with roughly equal probability. If

it decays into |mF = 0〉, it will most likely be pumped back by the resonant σ+ light

to |mF ′ = +1〉 receiving a momentum kick from either the incoming or the reflecting

beam. On average for η = 1/Nb and θd = π/4, the atom receives more force from the

diffracted beams through this process and therefore fz < 0. Because fz < 0 for all z, no

MOT will form.

Following the approach of Sec. 3.3, we find two paths to creating the positive fz
required for a MOT. The first path is increasing the diffraction angle to reduce the

ẑ momentum kick from the diffracted beams and simultaneously strengthen their π-

polarized component. Achieving a stable MOT in this way requires very large diffraction

angles, θd & 80◦ for F = 1 → F ′ = 1. For F > 1, the necessary θd increases further,

making diffraction angle engineering alone even more impractical than in Sec. 3.3.

The second, and more promising, path to a type-II gMOT is the dual-frequency

MOT [52]. As previously noted in Sec. 3.3, a dual-frequency MOT adds a second,

blue-detuned laser with opposite circular polarization to repump Zeeman dark states.

We take the detuning of the second beam to be ∆b/Γ = 3, which yields a reasonable

compromise between enhanced trapping force and reduced damping force. The operation
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Figure 12. Optical pumping (top row), populations (middle row) and forces (bottom

row) along the axial direction for a standard gMOT (left column) and dual-frequency

gMOT (right column) operating on a F = 1 → F ′ = 1 transition. In all subplots,

x = y = 0 and v = 0. The MOT parameters are ∆/Γ = −3/2, s0 = 1, Nb = 3,

η = 0.33, θd = π/4, gF = 1, and gF ′ = 1. The second, blue-detuned beam has the same

intensity and detuning ∆b/Γ = +3. The labels A, B, C, D indicate the positions at

which the level diagrams and optical pumping strengths in the top row are calculated.

The thickness of the magenta, gray, olive, and cyan lines denotes pumping rates for the

red-detuned incident, red-detuned diffracted, blue-detuned incident, and blue-detuned

diffracted laser beams, respectively. The populations of the ground (solid) and excited

(dashed) states in the middle row are colored to match the mF color coding of the

level diagrams. Total force in the bottom row plots is the black curve, which is a sum

of the force from the incident red-detuned beam (magenta), the diffracted red-detuned

beams (gray), the incident blue-detuned beam (olive), and the diffracted blue-detuned

beams (cyan). Black dots on the total force curves show the location where the MOT

will form (fz = 0).

of an F = 1→ F ′ = 1 dual-frequency gMOT is shown in the right panel of figure 12. In

molecular six-beam MOTs, dual-frequency operation sacrifices damping force to increase

spatial confinement. In a gMOT, dual-frequency operation completely salvages the

situation, rapidly changing the dark state between the locations of resonance for the

blue and red detuned beams, generating a large peak with fz > 0 and a zeq < 0.

We explore the robustness of dual-frequency gMOTs for several relevant ratios of gF
to gF ′ in figure 13. Alkali atoms with I = 3/2 (e.g., 7Li, 23Na, and 87Rb) with a type-II

MOT operating on the D2 line have either gF/gF ′ = ±3/4. Likewise, alkali atoms with
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Figure 13. Axial force fz as a function of position z in a F = 1→ F ′ = 1 (top) and

F = 2 → F ′ = 2 (bottom) dual-frequency gMOT with ∆/Γ = −3/2, s0 = 1, Nb = 3,

η = 0.33, θd = π/4, and gF ′ = 1/F ′. The blue-detuned beam has the same intensity

as the red-detuned beam and detuning ∆b/Γ = +3. In both subplots, x = y = 0 and

v = 0.

I = 3/2 have gF/gF ′ = 3 for a type-II MOT operating on the D1 line. Alkaline-earth

atoms like Sr, Ca, and Yb generally have gF/gF ′ ≈ 0. Alkaline-earth-monofluoride

MOTs operating on X → A transitions typically have gF/gF ′ � 1. A hypothetical

MOT operating on a X → B transition in CaF would have gF/gF ′ ≈ 0.8 for the upper

F = 1 → F ′ = 1 transition and gF/gF ′ ≈ −0.3 for the lower F = 1 → F ′ = 1

transition [52]. The dual-frequency gMOT operation only produces a axial confinement

when gF/gF ′ = 3/4 or gF/gF ′ = 3 (for F = 1 → F ′ = 1 transitions) and gF/gF ′ = 3 or

gF/gF ′ = 10 (for F = 2→ F ′ = 2 transitions). The dual-frequency gMOT may also be

stable for for F = 1→ F ′ = 1 transitions when gF/gF ′ = −3/4 after flipping the input

laser beam polarization to ε−.

4.1.2. F → F ′ = F − 1 transitions The spin polarization into a single |mF 〉 state

creates a rather dire situation for F → F ′ = F −1 transitions, precluding the formation

of a stable MOT. Figure 14 shows the level diagrams, populations, and axial forces

for a F = 2 → F ′ = 1 transition with gF/gF ′ = 1 in a gMOT with ε− incident light

(switched from ε+ according to rules of Ref. [36]). The now dominant ε− light in both

the incident and diffracted beams drive σ− transitions, biasing the population toward

|mF = −2〉. The population only depolarizes when the now suppressed σ+ component

of the diffracted beams comes into resonance at z = ~∆/µBB
′. At this location, the σ+
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Figure 14. Optical pumping (top row), populations (middle row) and forces (bottom

row) along the axial direction in the F = 2 → F ′ = 1 grating for a standard gMOT

(left column) and dual-frequency gMOT (right column). In all subplots, x = y = 0

and v = 0. The MOT parameters are s0 = 1, ∆/Γ = −3/2, θd = π/3, Nb = 3, gF = 1,

and gF ′ = 1. The second, blue-detuned beam has the same intensity and detuning

∆b/Γ = +3. The labels A, B, C, D indicate the positions at which the level diagrams

and optical pumping strengths are calculated. Colorings are the same as in figure 12.

transitions driven by the diffracted beams cause scattering from the |mF = −2〉 state

lead to fz < 0. Because there is no location where scattering from the incident beam is

larger than that of the diffracted beam, no stable MOT will form.

Dual-frequency operation again salvages the type-II gMOT. The additional blue-

detuned beam drives population out of the dark state as evidenced by the more

complicated dependence of NmF
with z in the right column of figure 14. Curiously,

stable MOT operation requires the opposite incident polarization as predicted by

Ref. [36], namely ε+. Reversing the incident polarization would mirror the total force

in the right column of figure 14 about z = 0, and produce a stable trapping point

at zeq < 0. Figure 15 shows the performance of a dual-frequency, F = 2 → F ′ = 1

gMOT for several relevant ratios of gF to gF ′ . Alkali atoms with I = 3/2 have

gF/gF ′ = 3/4 in a F = 2 → F ′ = 1 MOT operating on the D2 line and they have

gF/gF ′ = −3 in a F = 2 → F ′ = 1 MOT operating on the D1 line. As in the

F = 1 → F ′ = 1 gMOT considered earlier, alkaline-earth atoms have gF/gF ′ ≈ 0,

alkaline-earth-monofluorides have gF/gF ′ � 1 for X → A transitions, and alkaline-

earth-monofluorides have gF/gF ′ ≈ 0.5 for X → B transitions. Dual-frequency gMOT
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Figure 15. Axial force fz(0, 0, z) as a function of position z at v = 0 in a

F = 2 → F ′ = 1 dual-frequency gMOT with ∆/Γ = −3/2, s0 = 1, Nb = 3, η = 0.33,

θd = π/4, gF ′ = 1, and various gF /gF ′ .

operation only produces a stable F = 2 → F ′ = 1 MOT when gF/gF ′ = 3/4 or

gF/gF ′ = 3.

4.2. Experimental cases: D1 MOTs in 7Li

The results shown in Sec. 4.1.1 and 4.1.2, suggest that gMOTs utilizing type-II, or

even hybrid type-I and type-II, transitions will only work for a very specific set of level

structures. Consider gMOTs with Li atoms on the D1 (2S1/2 → 2P1/2) transition.

There are three possible type-II transitions: (1) F = 1 → F ′ = 1 with gF/gF ′ = 3, (2)

F = 2 → F ′ = 2 with gF/gF ′ = 3, and (3) F = 2 → F ′ = 1 with gF/gF ′ = −3. Of

the three type-II transitions, the most promising for a gMOT is case (2) according to

figure 13 and figure 15. Case (1) appears marginal at best and case (3) looks impossible.

Despite the rather grim prospects of success, we nonetheless attempted to make

type-II, and hybrid type-I and type-II, gMOTs using transitions on the D1 line of 7Li.

The experimental apparatus and grating chip are described in detail in Refs. [28, 35]. To

summarize, the grating chip has a 1.1 cm radius patterned area, which produces Nb = 3

beams with a diffraction angle of θd ≈ 42◦ and diffraction efficiency η ≈ 0.37. With

a normally incident, left-hand circularly polarized input beam, our grating produces

near perfect circular polarization on reflection: the Stokes parameter corresponding to

circular polarization is V = 0.92(1).

There are two hyperfine states (F ′ = 1, 2) in the excited D1 manifold of 7Li (since

I = 3/2). The ground state g-factors are gF=1 = −1/2 and gF=2 = 1/2; likewise, the

excited state g-factors are gF ′=1 = −1/6 and gF ′=2 = 1/6. Given the total angular

momenta of the ground and excited states, there are four possible combinations of

frequencies and polarizations that can create MOTs on the D1 transition. Ref. [53]

explored these four combinations in a six-beam MOT geometry, and found that all could

form a MOT. The level diagrams of these four combinations are shown in figure 16.

When we use only red-detuned light (red arrows in figure 16), we label the four
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Figure 16. Hyperfine level diagrams and absorption images of the four types of

D1-line MOTs. Red and blue arrows denote red-detuned and blue-detuned input laser

beams, respectively. When a blue-detuned beam is present, we use prime notation

to indicate dual-frequency gMOT operation as described in the text. The absorption

images were taken after 10 ms in the MOT at magnetic field gradients of 1.9 mT/cm

(type-A′), 6.0 mT/cm (type-B′), 2.3 mT/cm (type-C), and 2.3 mT/cm (type-D). We

have also tested the type-D′ MOT; an absorption image is not shown.

combinations as types A–D. A blue-detuned beam (blue arrows in figure 16) can be

added to any of the combinations to make a dual-frequency MOT, which we denote

with a prime, e.g., type-A′.

Our type-II gMOTs are loaded from a standard type-I gMOT formed on the Li

D2 transition (2S1/2 → 2P3/2). Our laser system allows us to test D1 MOT types A′,

B′, C, D, and D′. Further details on the D1 laser system and MOT loading procedure

contained in Appendix A.

We attempted to make a type-B′ gMOT using an incident beam with three

frequency components. One frequency component drives the F = 1→ F ′ = 1 transition

with saturation parameter s0 ≈ 0.9, detuning ∆/Γ = −1.0, and ε− polarization. The

other two frequency components drive the F = 2→ F ′ = 2 transition: one component

has ∆/Γ = −2.0, s0 ≈ 1.8, and polarization ε+; the other component has ∆/Γ = 3.0,

s0 ≈ 0.2, and polarization ε−. The magnetic field gradient gradient was 6.0 mT/cm. No

gMOT was observed (see figure 16).

We attempted to make a type-C MOT using an incident beam with two frequency

components with the same ε+ polarization. Both frequency components have detuning

∆/Γ = −1.0. The saturation parameters are s0 ≈ 1.3 for the F = 1→ F ′ = 2 frequency

component and s0 ≈ 1.0 for the F = 2 → F ′ = 1 frequency component. The magnetic

field gradient gradient was scanned from 1.5 mT/cm to 6.0 mT/cm. No gMOT was

observed (see figure 16).

We did observe a type-A′ gMOT, as shown in figure 16. The type-A′ gMOT
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uses an input beam with three frequency components. One component drives the

F = 1→ F ′ = 1 transition with saturation parameter s0 ≈ 1.1, detuning ∆/Γ = −1.5,

and ε− polarization. The other two frequency components drive the F = 2 → F ′ = 1

transitions: One component has ∆/Γ = −1.5, s0 ≈ 1.8, and ε+ polarization; the other

has ∆/Γ = 3.0, s0 ≈ 0.2, and ε− polarization. The image in figure 16 shows a type-A′

MOT at B′ = 1.9 mT/cm. Type-A′ gMOTs are observed at all B′ between 1.5 mT/cm

and 6 mT/cm, but the lifetime decreases with larger B′.

We also successfully observed a hybrid type-I/type-II (type-D) gMOT. The type-D

gMOT uses an input beam with two frequency components, each with ∆/Γ = −1.5. The

frequency component addressing the type-I F = 1→ F ′ = 2 transition has s0 ≈ 1.1; the

component addressing the type-II F = 2→ F ′ = 2 transition has s0 ≈ 1.4. The image

in figure 16 shows a type-D gMOT at B′ = 2.3 mT/cm. We see Type-D gMOTs at all

B′ between 1.5 mT/cm and 6 mT/cm, but the lifetime decreases with larger B′ (as with

type-A′). Adding an additional blue-detuned beam, making a type-D′ MOT, reduced

the initial atom number in the MOT without increasing the lifetime. We therefore focus

our subsequent analysis solely on the type-D MOT.

The existence of the type-A′ and type-D gMOTs is quite surprising, if we näıvely

consider the analysis of Sec. 4.1. For the type-A′ gMOT, the F = 1 → F ′ = 1

transition should provide no confinement according to figure 12 and we are driving

the F = 2 → F ′ = 1 transition with the incorrect polarization according to figure 14.

For the type-D gMOT, figure 12 suggests that there should be no confinement; only a

type-D′ gMOT would be expected to yield confinement on both F = 1 → F ′ = 2 and

F = 2→ F ′ = 2 transitions (see figure 13). Both initial analyses of the D1-line gMOTs

assume that forces due to transitions from the F = 1 and F = 2 ground states are

additive, which, given the presence of dark states, is incorrect.

To characterize their curious existence, we measured the atom loss rates and

temperatures of the D1-line gMOTs. The type-A′ and type-D gMOTs have single-

body loss rates of γ = 7.7(7) s−1 and γ = 24(3) s−1, as shown in figure 17(a) and

(c). The measured loss rates are larger than the vacuum-limited loss rate of the type-I

gMOT, which is approximately 1.3 s−1. Rather than decaying to a non-zero equilibrium

atom number, both type-II gMOTs have no atoms remaining in the trap after 1 s.

This indicates that they have no appreciable capture velocity – if atoms were being

continuously loaded into the trap from the atomic source, the equilibrium number N

would be N = R/γ, where, in this context, R is the loading rate and γ the loss rate

from the trap. The negligible capture velocity of type-II gMOTs is particularly striking

in the context of the six-beam counterpart [53], which was loaded directly from a hot

atomic vapor. The temperatures of the gMOTs are shown in figure 17(b) and (d). Both

type-II gMOTs are hotter than the type-I gMOT. The temperature along the transverse

direction Ty is hottest, with temperatures of Ty/TD ≈ 10 and Ty/TD ≈ 8, for the type-

A′ and type-D MOTs, respectively (TD = ~Γ/2kB is the Doppler temperature). The

higher temperatures compared to a type-I MOT are consistent with observations from

six-beam type-II MOTs.
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Figure 17. Properties of the observed type-II Li gMOTs. (a) Atom number vs.

time with exponential fit to extract the lifetime for type-A′ gMOT. (b) Width squared

w2
i=y,z vs. time squared t2 with a linear fit to extract the temperature in both directions

for the type-A′ gMOT. (c) and (d) are the same as (a) and (b), but for the type-D

gMOT.
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Figure 18. Simulation of the type-A′ (top row) and type-D 7Li gMOTs. The

columns correspond to the same data viewed along three different cut-through planes,

oriented along the azimuthal angle φ. Each panel shows the total intensity of lasers,

both incident and diffracted, in a colormap from blue to yellow. The vector field

encodes the direction and magnitude of the equilibrium forces exerted on a stationary

atom. The magenta curves show the simulated trajectories of atoms in the MOT. The

corresponding view angle for figure 16 is φ = π/6.
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To complete our understanding of the type-A′ and type-D gMOTs, we simulated

them using our rate equation model, including the full level structure of the D1 line. We

use the same incident beam size, relative detunings and intensities as the experiment.

We use B′ = 2 mT/cm both type-A′ and type-D simulations since the experimental

trap loss rate varies slowly with B′. In the simulations, we include the finite size of

the grating, the Gaussian nature of the incident beams, and reflection of the beams

from the grating given the incident Gaussian beam. We neglect diffraction effects in

the reflection, which will have the effect of softening the edges of the diffracted beams

as they propagate away from the grating. The resulting laser intensity map stotal(r) is

shown as the color plots in figure 18. In the center, there is the a region of maximum

intensity, which corresponds to the overlap region of the incident and three diffracted

beams. At the top, there is a portion of the incident beam that transmits through the

hole in the chip [28]. Other regions correspond to the overlap of the incident beam with

either one or two of the diffracted beams.

We first calculate the equilibrium forces for a stationary atom, shown as the vector

field in figure 18. As we expect from the single-color gMOT results in Sec. 4.1, the

forces in the overlap region tend to point away from the grating chip, toward −z (which

is parallel to gravity). The blue-detuned frequency component of the type-A′ gMOT

does not produce a restoring force, perhaps due to its low s0. We then place 128 atoms

at the origin with all eight hyperfine ground states equally populated and evolve the

atoms according to Eq. 1-4. To include the stochastic force due to spontaneous emission,

random recoils of magnitude 2~k are periodically inserted with a probability NeΓ∆t,

where Ne is the total population in the excited state and ∆t is the variable timestep in

the simulation. To ensure that scattering events are not “missed”, we constrain ∆t such

that ∆t < 0.1/(NeΓ) (i.e. the probability of a random recoil in any timestep is always

less than 0.1). Each atom’s motion is simulated for 10.4 ms, unless the atoms’ position

r exceeds twice the length of a parallel vector r′ that extends from the magnetic field

zero to the edge of the overlap volume. Such an atom is considered “lost”.

The simulated atom trajectories are shown in figure 18 as magenta lines. The

simulations show both type-A′ and type-D gMOTs forming, despite the equilibrium

forces indicating a net downward force in the overlap region. While the simulated shapes

do not agree with those in figure 16, other properties are in reasonable agreement. For

example, the simulations predict, based on the loss of some atoms, loss rates of 33.5 s−1

and 12 s−1 for type-A′ and type-D gMOTs, respectively. They also predict an increase

of about a factor of 4 in loss rate as B′ is increased from 2 mT/cm to 6 mT/cm,

similar to what we observe in the experiment. Finally, the simulated Ty = 1.2 mK

and Ty = 0.97 mK for type-A′ and type-D gMOTs, respectively, also agree with our

measurements.

The simulations indicate that the D1-line gMOTs exist because the grating and

incident beam are not infinite. Specifically, the atoms in the simulation do experience

a net force that tends to eject them down and out of the overlap region. In fact, all

atoms, even the ones not lost, leave the overlap region of the beams. However, once
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outside of the overlap region, the forces they experience are dramatically different: the

forces tend to push the atoms toward positive z and back toward the overlap region.

Thus, the D1-line gMOTs are not acting like stable MOTs: the atoms are constantly

leaving and reentering the overlap region. Instead, D1-line gMOTs act more like atom

recyclers, keeping the atoms in looped trajectories.

We also simulated type-C and type-B′ gMOTs for completeness. The simulated

type-C MOT does not efficiently recycle the atoms along the loop trajectories; instead,

once atoms are in the overlap region, they are ejected upwards. Our simulations predict

that a type-B′ atom recycler should form. It is unclear why we were unable to observe

it experimentally.

Finally, we also repeated these simulations using the full optical Bloch

equations [37], to ensure that the forces were not underestimated due to dark states

rotating into bright states by Zeeman precession. Simulations of the full optical Bloch

equations show no significant difference compared to those of the rate equations. Thus,

we conclude that Zeeman precession of the ground states does not play a significant role

in the formation of these gMOTs.

5. Discussion

We have studied the operation of gMOTs with real atoms and molecules both

experimentally and theoretically, using a rate equation model. Our model predicts

that high F atoms and many laser-coolable molecules will be extremely difficult to

trap in the asymmetric laser beam geometry of a gMOT. The challenge in trapping

both arises due to spin polarization into states that do not scatter photons from the

diffracted or incident beams. For high F atoms, gMOTs using gratings with large

diffraction angles and high diffraction efficiency should be able to confine isotopes with

high nuclear spin (such as 133Cs, 40K, 173Yb, and 87Sr). The rate equations also suggest

that dual-frequency operation will stabilize high-F fermionic alkaline-earth gMOTs, but

optical Bloch equation simulations are needed to confirm this prediction. We believe

the more promising approach to realizing fermionic alkaline-earth gMOTs operating on

dipole-forbidden transitions is to work with low-nuclear-spin isotopes, such as 171Yb.

For open shell molecules (such as MgF, CaF, SrF, and YO), dual-frequency gMOT

operation appears mandatory, rather than beneficial, as in six-beam molecule MOTs.

Unfortunately, dual-frequency operation only salvages the gMOT for a narrow range of

ground and excited state g-factors. As a result, molecular type-II gMOTs will be highly

species dependent and ascertaining their stability will likely require simulations of the

full transition level structure on a case-by-case basis. Closed shell molecules (such as

BH, AlF, and AlCl), which can form type-I gMOTs, are more promising, but are subject

to the same concerns as alkali and alkaline-earth elements regarding high nuclear spin.

Our results will inform future development of compact quantum devices based

on laser-cooled atoms or molecules. Type-II gMOTs appear to be of little utility, so

quantum devices based on open shell molecules will prefer compact MOT geometries
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that preserve the symmetry of the six-beam MOT, such as photonic-integrated-circuit

MOTs or pyramid MOTs [15, 18, 19]. Type-I gMOTs are effective for initial laser

cooling and can load “bright” or “gray” optical molasses to achieve sub-Doppler

temperatures [30, 35]. As a result, type-I gMOTs are promising platform for devices

such as quantum memories, atom interferometers [26], or vacuum sensors [27]. In these

applications, the spin polarization of the gMOT may even be beneficial. Because spin

polarization destabilizes high-nuclear-spin alkaline-earth gMOTs, optical lattice clocks

employing gMOT atom sources should be easiest to realize with bosonic isotopes or
171Yb.
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Appendix A. Lithium type-II gMOT apparatus

Our type-II gMOTs are loaded from a standard type-I gMOT formed on the Li D2

transition (2S1/2 → 2P3/2), which is described in detail in Ref. [28, 35]. The type-I MOT

is loaded with detuning ∆/Γ = −5.1, s0 ≈ 4.9, and an axial magnetic field gradient

of B′ ≈ 6 mT/cm. After loading, the type-I MOT is “compressed”: the detuning is

rapidly changed to either ∆/Γ = −2.0, to load types B and D, or ∆/Γ = −1.5, to

load types A and C, and the intensity is dropped to s0 ≈ 0.5, causing a rapid density

increase and temperature reduction. The final axial and radial temperatures of the

type-I compressed MOT are approximately 400 µK and 700 µK, respectively. Finally,

the laser light addressing the D2 transition is shuttered and the D1 light introduced. At

the same time, the magnetic field gradient is also instantaneously changed to a value

between 1.5 mT/cm and 6 mT/cm. The incident beam has a 18 mm 1/e2 radius,

apertured down to an 11 mm radius. Saturation parameters s0 refer to peak saturation

parameter in the incident beam.

Light for the D1 type-II MOT comes from a laser locked to either the F = 2 →
F ′ = 1 transition (type A), F = 2 → F ′ = 2 transition (types B and D), or the

F = 1→ F ′ = 2 transition (type-C). Light from the laser is passed through two different

acousto-optic modulators (AOMs) for independent frequency and intensity control,

coupled into independent polarization-maintaining optical fibers, and then recombined
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on a polarizing beam splitting cube to form the incident beam. Thus, the light from

these two AOMs have opposite circular polarization. An electro-optic modulator (EOM)

installed after one of the AOMs generates light addressing transitions from the F = 1

state (types A, B, and D) or F = 2 state (type-C) [35]. The light from the combined

EOM/AOM path is always accompanied by an additional optical frequency component

with the same polarization that addresses transitions from F = 2 (types A, B, and D)

or from F = 1 (type-C). For the type-A and type-B gMOTs, the extra component is

incorrectly polarized at red detuning (see figure 16), so we instead detune it to the blue

and make a dual-frequency gMOT.
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