
Published as a conference paper at ICLR 2023

FORWARD AND INVERSE DESIGN OF HIGH TC SUPER-
CONDUCTORS WITH DFT AND DEEP LEARNING

Daniel Wines, Kevin F. Garrity & Kamal Choudhary∗
Materials Science and Engineering Division
National Institute of Standards and Technology (NIST)
Gaithersburg, MD 20899, USA
{daniel.wines,kevin.garrity,kamal.choudhary}@nist.gov

Tian Xie
Microsoft Research AI4Science
Cambridge, United Kingdom CB1 2FB
tianxie@microsoft.com

ABSTRACT

We developed a multi-step workflow for the discovery of next-generation con-
ventional superconductors. 1) We started with a Bardeen–Cooper–Schrieffer
(BCS) inspired pre-screening of 55000 materials in the Joint Automated Reposi-
tory for Various Integrated Simulations (JARVIS) density functional theory (DFT)
database resulting in 1736 materials with high Debye temperature and electronic
density of states at the Fermi-level. 2) Then, we performed DFT based electron-
phonon coupling calculations for 1058 materials to establish a systematic database
of superconducting properties. 3) Further, we applied forward deep-learning (DL)
using atomistic line graph neural network (ALIGNN) models to predict proper-
ties faster than direct first-principles computations. Notably, we find that by pre-
dicting the Eliashberg function as an intermediate quantity, we can improve the
model performance versus a direct DL prediction of TC . Finally, 4) we used
an inverse deep-learning method with a crystal diffusion variational autoencoder
(CDVAE) model to generate thousands of new superconductors with high chem-
ical and structural diversity. 5) We screened these CDVAE-generated structures
using ALIGNN to identify candidates that are stable with high TC . 6) We verified
the top superconducting candidates with DFT.

1 INTRODUCTION

Since the discovery of superconductivity in 1911 by Onnes Kamerlingh Onnes (1911), the iden-
tification of novel superconducting materials with high transition temperatures (TC) has been an
active area of research in condensed matter physics Poole et al. (2013); Rogalla & Kes (2011).
A data-driven search can assist in expediting the discovery of potentially high-TC superconduc-
tors. There are two key ingredients required to computationally identify Bardeen–Cooper–Schrieffer
(BCS) conventional superconductors Cooper & Feldman (2010); Giustino (2017) with high-TC : 1)
a robust computational workflow, and 2) a database of curated materials with prior knowledge such
as elastic constants and electronic density of states. Using density functional theory perturbation
theory (DFT-PT), the electron-phonon coupling (EPC) can be calculated and used to predict TC

with reasonable accuracy for a variety of materials Giustino (2017); Kawamura et al. (2020).

In this work, we developed such a computational approach to discover BCS superconductors, com-
bining several methods at various levels of computational expense and accuracy. We start with a
BCS-inspired pre-screening based on materials with high Debye temperature (θD) and high electron
density of states (DOS) at Fermi-level (N(0)), using the existing Joint Automated Repository for
Various Integrated Simulations (JARVIS) DFT database Choudhary et al. (2020c). We then develop
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and apply a DFT-PT workflow to compute TC using electron-phonon coupling and the McMillan-
Allen-Dynes formula McMillan (1968), with initially low k-point and q-point convergence settings.
For the best candidates, we perform additional convergence.

Going a step further, we used the data obtained from 1058 DFT-PT calculations of EPC properties to
train deep learning models for the forward and inverse design of new superconductors. For forward
design, we use the recently developed atomistic line graph neural network (ALIGNN) Choudhary &
DeCost (2021) (https://github.com/usnistgov/alignn). We used ALIGNN to train
models for θD and the DOS at the Fermi-level using datasets from the JARVIS-DFT database.
We also train models to predict the DFT-based TC and the underlying EPC parameters (ωlog and
λ), using the smaller datasets computed in this work. ALIGNN and the hand-crafted (Classical
force-field descriptor (CFID) Choudhary et al. (2018b))-based approaches are used for comparison.
For inverse design, we used a crystal diffusion variational autoencoder (CDVAE) model (https:
//github.com/txie-93/cdvae) developed by Xie et al. (2021) which is trained on these
1058 DFT-PT calculations. The CDVAE combines a variational autoencoder Kingma & Welling
(2013) and a diffusion model Song & Ermon (2019); Sohl-Dickstein et al. (2015) to generate new
stable periodic structures. After using CDVAE to generate new superconductors, we screened these
candidates with ALIGNN and performed additional DFT calculations on the best candidates.

2 METHODS

2.1 DFT CALCULATIONS

To investigate new superconductors and generate training data, we performed EPC calculations us-
ing DFT-PT Baroni et al. (1987); Gonze (1995) (using the interpolated/Gaussian broadening method
Wierzbowska et al. (2005)) with the Quantum Espresso (QE) software package Giannozzi et al.
(2009), PBEsol functional Perdew et al. (2008), and the GBRV Garrity et al. (2014) pseudopoten-
tials. We begin with structures from the JARVIS-DFT database, and perform the full workflow in
QE. It is important to note that the robustness of this workflow was heavily benchmarked against
experimental data and higher levels of theory in ref. Choudhary & Garrity (2022) and Wines et al.
(2023a), which indicates that the training data for these deep learning models is of high quality,
given the level of theory used to produce the data.

2.2 ALIGNN MODEL

In ALIGNN, a crystal structure is represented as a graph using atomic elements as nodes and atomic
bonds as edges. Each node in the atomistic graph is assigned 9 input node features based on its
atomic species: electronegativity, group number, covalent radius, valence electrons, first ionization
energy, electron affinity, block and atomic volume. The inter-atomic bond distances are used as edge
features with radial basis function up to 8 Å cut-off. We use a periodic 12-nearest-neighbor (N )
graph construction. This atomistic graph is then used for constructing the corresponding line graph
using interatomic bond-distances as nodes and bond-angles as edge features. ALIGNN uses edge-
gated graph convolution for updating nodes as well as edge features using a propagation function
(f ) for layer (l), atom features (h), and node (i):

h
(l+1)
i = f(hl

i{hl
j}i) (1)

ALIGNN uses bond-distances as well as bond-angles to distinguish atomic structures. One ALIGNN
layer composes an edge-gated graph convolution on the bond graph with an edge-gated graph con-
volution on the line graph. The line graph convolution produces bond messages that are propagated
to the atomistic graph, which further updates the bond features in combination with atom features.
The hyperparameters for ALIGNN are kept same as the original paper. For the Debye temperature
and electronic density of states at the Fermi-level, we use a batch size of 64 for 500 epochs and
80:10:10 training-validation-testing data split, while for predicting the EPC parameters and Eliash-
berg functions, we use a batch size of 16, 90:5:5 split and training for 300 epochs. The test set was
never used during the training procedure.
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2.3 CDVAE MODEL

In this work, we used a CDVAE model developed by Xie et al. (2021) The CDVAE combines a
variational autoencoder Kingma & Welling (2013) and a diffusion model to generate new periodic
structures, where crystals are represented by a tuple containing: atom types, atomic coordinates, and
the basis vectors of the unit cell. The CDVAE consists of three networks that are trained jointly:
1) the encoder, 2) the property predictor, and 3) the decoder. The encoder is a SE(3) equivariant
graph neural network, that encodes onto a lower dimensional latent space. From here, the prop-
erty predictor predicts the number of atoms N , lattice vectors, and the chemical composition. The
decoder, which is a noise conditional score network Song & Ermon (2019); Ho et al. (2020), then
takes a structure with noise added to the coordinates and type of atoms and learns to denoise it into
the original stable structure. This noise added to the type of atoms updates the element type for
each atom into another element within the predicted composition with a certain probability (given
by the noise level). Coordinate noise is Gaussian noise added to the coordinates of each atom of the
crystal. The score of the conditional score network diffusion model is an estimate of the gradient
of the probability distribution of the materials and is predicted by another SE(3) equivariant GNN.
The decoder being an equivariant diffusion model makes it possible to work with atomic positions
directly, without any need for intermediate representations such as graphs or descriptors. As a result,
this makes the CDVAE model general to the kind of structures and chemical environments it is used
for. More details of the CDVAE method can be found in Xie et al. (2021).

3 RESULTS AND DISCUSSION
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Figure 1: Prediction of Eliashberg function with ALIGNN for the 5 % test set. ALIGNN can capture
peak-positions and heights reasonably well.

For the forward design of new superconductors, we developed deep-learning models to accelerate
both our initial BCS-inspired screening and our calculation of the EPC parameters. While the BCS
pre-screening step is less expensive than a full EPC calculation, it still requires the DOS at the Fermi
level and θD, which still requires substantial computation. Therefore, we developed regression mod-
els to predict these properties directly from an arbitrary crystal structure, using the large datasets
available in the JARVIS-DFT database. In this work we used the ALIGNN model, which has been
shown to outperform many well-known benchmarks for solids and explicitly capture chemical and
many-body physical interactions. Our results of these models on 5 % held test sets are shown in
Fig. A.2. The baseline model MAE was computed by using mean of the target values in the training
dataset and using it as predictions for all the materials in the 5% test data. We observe that the mean
absolute error for the Debye temperature is 49 K while that for DOS is 1.5 states/eV/Nelect. The
baseline model MAE for the Debye temperature and DOS are 145.5 K and 3.62 states/eV/Nelect
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respectively. In addition, we developed machine-learning models to directly predict EPC proper-
ties using our database of 626 dynamically stable data-points from the explicit DFT calculations.
Two methods were used: hand-craft descriptors (CFID) and a deep-learning approach (ALIGNN).
Specifically, we trained models for the McMillan-Allen-Dynes transition temperature (TC) and the
EPC parameters (ωlog and λ). We note that usually ML models require larger datasets, but we
display preliminary useful results with our current smaller dataset, which will continue to grow.

CFID based performances are shown in Fig. A.2c), Fig. A.2d) and Fig. A.2e) for TC , ωlog and λ.
Similarly, ALIGNN based performances are shown in Fig. Fig. A.2f), Fig. A.2g) and Fig. A.2h).
We observe that the MAE using the CFID approach for TC , ωlog and λ are 1.84 K, 53.48 K and
0.19. Additionally, the MAEs for the ALIGNN approach are 1.84 K, 37.43 K and 0.14 respectively.
ALIGNN outperforms CFID in predicting ωlog, but the performances for the other quantities are
similar. Moreover, we notice that it is significantly easier to learn ωlog than TC and λ. We observe
that the model for λ is only slightly better than the baseline model. Using ALIGNN for ωlog and λ,
and Equation A.7, we predict TC with an MAE of 1.77 K.

We attempt an alternate method to directly predict the Eliashberg function using the ALIGNN
model. We choose an energy range of 0 meV to 100 meV with 1 meV bin size and predict the
Eliashberg functions. In Fig. 1, we show the DFT and ALIGNN based Eliashberg functions for
samples in the test set. We find that the ALIGNN model does a good job of capturing most of
the peaks. We calculate the TC using the ALIGNN-based Eliashberg function predictions, and find
the MAE to be 1.39 K, which improves on our direct prediction method above by 24%. This im-
plies that learning more fundamental and information-rich quantities such as Eliashberg functions
can be useful for ML approaches with limited data, as compared to direct predictions of integrated
quantities.
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Figure 2: The full inverse design workflow for new superconductors using DFT, ALIGNN and the
CDVAE generative model.

For the inverse design of new superconductors, we used our database of superconducting properties
along with a CDVAE generative model to predict unknown stable superconductors with high TC .
A full schematic of the inverse design workflow is depicted in Fig. 2. After training on the 1058
structures in the JARVIS superconductor database (JARVIS-SC), 3000 structures are created using
the CDVAE model, with the target property being a high TC . An analysis of the distribution of
the 3000 CDVAE created structures, including prototypes (chemical formula), densities and pack-
ing fractions, indicates that CDVAE can generate a structurally diverse set of structures from the
relatively small amount of training data. To screen these 3000 structures, we use the previously
mentioned ALIGNN model to predict the TC , formation energy, and band gap with the intention of
finding materials with high TC , negative formation energy and low band gap (high DOS at the Fermi
level). Fig. A.4 depicts a comparison of the distribution of the TC obtained from the 1058 struc-
tures in the JARVIS-DFT database the 3000 CDVAE created structures with a TC predicted from
ALIGNN, respectively. After carefully screening the ALIGNN computed properties of the CDVAE
structures, we found 62 materials that met the criteria (shown in Fig. 2), and performed our DFT
workflow on them. Out of these 62 structures, we found 20 to have a DFT computed TC above 5 K,
to be dynamically stable and do not have a chemical formula already in the training data (the 1058
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structures from JARVIS-SC). In addition, we computed the formation energy and energy above the
convex hull of these 20 structures. Full details of these 20 new candidate superconductors (which
all have a P1 spacegroup) can be found in Table 1. The structures that are closest to the convex hull
are depicted in Fig. A.5.

4 CONCLUSION

In this work, we have used deep learning methods trained with DFT data for forward and inverse
design of high TC superconductors. Using the ALIGNN model for property prediction (forward de-
sign), we trained models for the Debye temperature and DOS at the Fermi-level (for BCS screening)
and trained models to predict the TC and the underlying EPC parameters, using the smaller DFT
datasets computed in this work. Using the CDVAE model (inverse design), we generated thousands
of candidate superconductors, which we screened with ALIGNN and verified with additional DFT
calculations. This work emphasizes the importance of deep learning for the discovery of exotic ma-
terials. Unfortunately, a drawback of deep-learning models is that it is difficult to extract physical
insight from their internal parameters, but we hope to investigate these ideas further in future works.
In addition, the small datasets used in this work limit our deep learning models, but we are making
an ongoing effort to expand our database of superconducting properties.
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A APPENDIX

A.1 JARVIS INFRASTRUCTURE

We utilize the publicly available JARVIS Choudhary et al. (2020c) infrastructure to for our DFT and
deep learning goals mentioned above. JARVIS (https://jarvis.nist.gov/) is a collection
of databases and tools to automate materials design using classical force-field, density functional the-
ory, machine learning calculations and experiments. In particular, we obtain elastic tensor and DOS
data from JARVIS-DFT database, establish the DFT workflow with JARVIS-Tools package and
train the deep-learning model using ALIGNN. JARVIS-DFT is a density functional theory based
database of over 70000 materials with several material properties such as formation energy, band
gap with different level of theories Choudhary et al. (2018c), solar-cell efficiency Choudhary et al.
(2019a), topological spin-orbit coupling spillage Choudhary et al. (2021; 2019b; 2020b), elastic
tensors Choudhary et al. (2018a), dielectric tensors, piezoelectric tensors, infrared and Raman spec-
trum Choudhary et al. (2020d), electric field gradients Choudhary et al. (2020a), exfolation energies
Choudhary et al. (2017), two-dimensional (2D) magnets Wines et al. (2023b), and bulk Choudhary
& Garrity (2022) and 2D superconductors Wines et al. (2023a), all with stringent DFT-convergence
setup Choudhary & Tavazza (2019).
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Figure A.1: Schematic showing the steps involved in identifying high-TC superconductors. a) sta-
tistical distribution of Debye temperature (K) and b) statistical distribution of electronic density
of states (states/eV/total number of electrons) at Fermi level from the JARVIS-DFT database, c)
probability that compounds containing a given element have θD >300 K. The flow chart shows
the application of BCS-inspired screening, density functional theory calculations and deep-learning
training.

A.2 FURTHER DETAILS OF BCS SCREENING AND DFT CALCULATIONS

BCS-theory Bardeen et al. (1957) states that the attractive electron-electron interaction mediated
by phonons results in Cooper pairs, which are bound states that are formed by two electrons with
opposite spins and momenta. BCS-theory gives the relation between the Debye temperature (θD),
electronic DOS at Fermi level N(0), electron-phonon interaction (V ) and the superconducting tran-
sition temperature (TC):

TC = 1.14θD exp

(
− 1

N(0)V

)
(A.1)

θD is defined as Anderson (1963):

θD =
h

kB

[
3nNaρ

4πM

] 1
3

vm (A.2)

where h is Planck’s constant, kB is the Boltzmann constant, n is the number of atoms per formula
unit, NA is Avogadro constant, ρ is the crystal structure’s density, M is the molar mass, and vm is
the average sound velocity obtained from the elastic tensor Anderson (1963).

The EPC parameter is derived from spectral function α2F (ω) which is calculated as follows:

α2F (ω) =
1

2πN(ϵF )

∑
qj

γqj
ωqj

δ(ω − ωqj)w(q) (A.3)

where ωqj is the mode frequency, N(ϵF ) is the DOS at the Fermi level ϵF , δ is the Dirac-delta
function, w(q) is the weight of the q point, γqj is the linewidth of a phonon mode j at wave vector
q and is given by:

γqj = 2πωqj

∑
nm

∫
d3k

ΩBZ
|gjkn,k+qm|2δ(ϵkn − ϵF )δ(ϵk+qm − ϵF ) (A.4)
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Here, the integral is over the first Brillouin zone, ϵkn and ϵk+qm are the DFT eigenvalues with
wavevector k and k + q within the nth and mth bands respectively, gjkn,k+qm is the electron-phonon
matrix element. γqj is related to the mode EPC parameter λqj by:

λqj =
γqj

πhN(ϵF )ω2
qj

(A.5)

Now, the EPC parameter is given by:

λ = 2

∫
α2F (ω)

ω
dω =

∑
qj

λqjw(q) (A.6)

with w(q) as the weight of a q point.

The superconducting transition temperature, TC can then be approximated using McMillan-Allen-
Dynes McMillan (1968) equation as follows:

TC =
ωlog

1.2
exp

[
− 1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

]
(A.7)

where

ωlog = exp

[∫
dωα2F (ω)

ω lnω∫
dωα2F (ω)

ω

]
(A.8)

In Eq. A.7, the parameter µ∗ is the effective Coulomb potential parameter, which we take as 0.09.
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Figure A.2: Atomistic line graph neural network based deep-learning (DL) regression model perfor-
mance on 5 % test set for a) Debye temperature and b) DOS. Classical force-field descriptor (CFID)
(c,d,e) and DL (f,g,h) based regression model performance on 5 % test set for DFT calculated tran-
sition temperature (TC), EPC parameter ωlog, and EPC parameter λ. In (f), we show performance
with direct TC prediction (red color), TC prediction with direct prediction of ωlog and λ and then
using eq. A.7 (green color) and TC prediction with Eliashberg function (black color).
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Figure A.3: The number of prototypes (chemical formula), distribution of densities, and distribution
of packing fractions for a) - c) the 3000 CDVAE generated structures and for d) - f) the 1058 struc-
tures used for training from the JARVIS-DFT database.
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Figure A.4: The distribution of TC for the a) 1058 JARVIS-DFT structures (TC computed with
DFT) and b) the 3000 CDVAE structures (TC computed with ALIGNN). c) - d) the relation between
EPC parameters for the CDVAE candidate materials verified with DFT.
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Table 1: Chemical formula, JARVIS ID (JID), TC , formation energy per atom and energy above
the convex hull per atom of the 20 candidate superconductors from CDVAE verified by DFT calcu-
lations.

Structure JID TC Eform Ehull
(K) (eV/atom) (eV/atom)

VN2 JVASP-161655 20.2 -0.56 0.32
NTaB (I) JVASP-161630 16.2 -0.32 0.84
BORu JVASP-161610 12.4 -0.72 0.75
BTa2N JVASP-161612 11.9 -0.37 0.67
NTaB (II) JVASP-161624 11.1 -0.32 0.84
BN2Zr JVASP-161608 9.3 -1.23 0.43
BTaNS JVASP-161613 9.1 -0.33 0.88
NP2Sr JVASP-162663 8.4 -0.54 0.22
TaP2 JVASP-161649 8.1 -0.45 0.25
NPdTi2 JVASP-161629 7.7 -0.78 0.47
PScSi2 JVASP-161644 7.4 -0.43 0.49
AlN2V (I) JVASP-161599 7.2 -1.14 0.34
TiO2NbN JVASP-161653 7.1 -2.15 0.30
NBaP JVASP-161626 6.6 -0.59 0.22
NVBRu JVASP-161631 6.3 -0.14 0.74
ScO3Zr JVASP-161647 6.3 -3.43 0.15
Al2N JVASP-161597 5.9 -0.79 0.31
AlN2V (II) JVASP-162662 5.4 -1.14 0.34
ScBORuCa JVASP-161646 5.2 -1.12 0.58
B2TaS JVASP-161604 5.2 -0.07 0.58
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Figure A.5: Top and side view of the top superconductor candidates (closest to the convex hull)
generated with CDVAE and verified with DFT: a) VN2, b) BN2Zr, c) NP2S, d) TaP2, e) AlN2V (I),
f) TiO2NbN, g) NBaP, h) ScO3Zr, i) Al2N and j) AlN2V (II). Tc, Eform and Ehull are also given for
each material.
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