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Recent advances regarding the interplay between ab initio calculations and metrology are reviewed, with
particular emphasis on gas-based techniques used for temperature and pressure measurements. Since roughly
2010, several thermophysical quantities – in particular, virial and transport coefficients – can be computed
from first principles without uncontrolled approximations and with rigorously propagated uncertainties. In
the case of helium, computational results have accuracies that exceed the best experimental data by at least
one order of magnitude and are suitable to be used in primary metrology. The availability of ab initio virial
and transport coefficients contributed to the recent SI definition of temperature by facilitating measurements
of the Boltzmann constant with unprecedented accuracy. Presently, they enable the development of primary
standards of thermodynamic temperature in the range 2.5–552 K and pressure up to 7 MPa using acoustic gas
thermometry, dielectric constant gas thermometry, and refractive index gas thermometry. These approaches
will be reviewed, highlighting the effect of first-principles data on their accuracy. The recent advances in
electronic structure calculations that enabled highly accurate solutions for the many-body interaction po-
tentials and polarizabilities of atoms – particularly helium – will be described, together with the subsequent
computational methods, most often based on quantum statistical mechanics and its path-integral formulation,
that provide thermophysical properties and their uncertainties. Similar approaches for molecular systems,
and their applications, are briefly discussed. Current limitations and expected future lines of research are
assessed.

CONTENTS

I. Introduction 2

II. Primary Metrology and Thermophysical
Properties 3
A. Paradigm reversal in temperature

metrology 3
B. Gas thermometry 5

1. Acoustic gas thermometry 5
2. Dielectric constant gas thermometry 7
3. Refractive index gas thermometry 9

a)Electronic mail: garberoglio@ectstar.eu

4. Constant volume gas thermometry 11
C. Pressure metrology 12

1. Low pressure standards (100 Pa to 100
kPa) 13

2. Intermediate pressure standards (0.1 MPa
to 7 MPa) 13

D. High pressures and equation of state 14
E. Transport properties and flow metrology 18

III. Ab initio Electronic Structure
Calculations 20
A. Methodology of electronic structure

calculations 20
1. Importance of explicitly correlated basis

sets 23
B. Helium atom polarizability 24



2

C. Helium dimer potential 25
1. Born–Oppenheimer level 25
2. Physical effects beyond the nonrelativistic

Born–Oppenheimer level 27
D. Nonadditive helium potentials 28
E. Heavier noble-gas atoms 29
F. Magnetic susceptibility 30

IV. From Electronic Structure to
Thermophysical Properties 30
A. Classical limit 32
B. Quantum calculation of virial coefficients 33

1. Path integral approach 33
2. Exchange effects 36

C. Uncertainty propagation 36
D. Mayer sampling and the virial equation of

state 37
E. Numerical results for virial coefficients 37

1. Density virial coefficients 38
2. Acoustic virial coefficients 39
3. Dielectric and refractivity virial

coefficients 39
F. Transport properties 40

V. Molecular Systems 41
A. Single-molecule calculations 41

1. Intramolecular potentials 41
2. Electromagnetic properties 42
3. Spectroscopy 42

B. Calculations for molecular clusters 43
1. Interaction potentials 43
2. Density virial coefficients 44
3. Dielectric and refractivity virial

coefficients 44
4. Molecular collisions 45

C. Humidity metrology 45
D. Pressure metrology 46
E. Atmospheric physics 46
F. Transport properties 46

VI. Concluding Remarks and Future
Perspectives 47
A. Current limitations of ab initio property

calculations 47
B. Molecular gases 48
C. Improved uncertainty estimations 48
D. Transport properties 48
E. Simulations of liquid helium 49
F. Reproducibility and validation 49

Acknowledgments 50

Author Declarations 50
Conflict of Interest 50

A. Formulae for the Third Acoustic Virial
Coefficient, γa 50

I. INTRODUCTION

On May 20, 2019, the base SI units of mass (kilo-
gram), electric current (ampere), temperature (kelvin)
and amount of substance (mole) were redefined by as-
signing fixed values to fundamental constants of nature:
the Planck constant, the electron charge, the Boltzmann
constant, and the Avogadro constant, respectively. [1–
3] By decoupling the base units from specific material
artifacts, this new redefinition is expected to lead to im-
proved scientific instruments, reducing the degradation in
accuracy when measuring quantities at larger or smaller
magnitudes than a predefined unit standard. Addition-
ally, the most accurate experimental technique available
at each scale can be used to implement a primary stan-
dard, resulting in easier calibrations, increased accuracies
of measuring devices, and further technological advance-
ments.

At many conditions, gas-based techniques provide un-
paralleled performance for primary measurements of tem-
perature and pressure. These involve acoustic, dielec-
tric, or refractivity measurements, because frequency and
electromagnetic measurements can be made with very
high accuracy. A model, typically expressed as the ideal-
gas behavior with a series of corrections in powers of
density, is used to relate the measured quantity to the
temperature or pressure; in the case of dielectric or re-
fractivity measurements, one set of corrections relates the
measured quantity to the gas density and the familiar
virial expansion is used to relate the density to the pres-
sure and temperature.

These gas-based methods have been greatly facilitated
in recent years by the ability to perform ab initio cal-
culations of the thermophysical properties (such as the
polarizability and the density, dielectric, and refractivity
virial coefficients) of the working gases with no uncon-
trolled approximations and rigorously defined uncertain-
ties. These calculated properties often have much smaller
uncertainties than the best experimental determinations,
especially when the gas considered is helium. These tech-
niques have been successfully applied for pressures up to
7 MPa and for thermodynamic temperatures in the range
(2.5 – 552) K (with extension to 1000 K or more progress-
ing [4]).

These achievements have been facilitated by the in-
crease in supercomputing power and advances in numer-
ical techniques for electronic structure calculations. For
example, state-of-the-art calculations for up to three He
atoms even include relativistic and quantum electrody-
namics effects. In particular, these numerical investiga-
tions produce pair and three-body potentials, as well as
single-atom, pair, and three-body polarizabilities, with
unprecedented accuracy.

Building on these results, the exact quantum statisti-
cal mechanics formulation enabled rigorous calculations
of the coefficients appearing in the density (virial) ex-
pansion of the equation of state, the speed of sound, the
dielectric constant, and the refractive index. The path-
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integral Monte Carlo (PIMC) method has been shown
to provide sufficient accuracy for these quantities. As a
consequence, it has been possible to devise a fully first-
principles chain of calculations with rigorous uncertainty
propagation to compute virial coefficients of helium gas.

As a result of these endeavors, since about 2010
thermophysical properties of gaseous helium have been
known from theory with an accuracy that in most cases
surpasses that of the most precise experimental deter-
minations. Currently, the uncertainties of the ab initio
second and third virial coefficients of helium are at least
one order of magnitude smaller than the experimental
ones. The situation is similar for the density dependence
of the speed of sound, the dielectric constant, and the
refractive index, where it leads to improved accuracy in
Acoustic Gas Thermometry (AGT), Dielectric Constant
Gas Thermometry (DCGT), and Refractive Index Gas
Thermometry (RIGT), respectively.

Section II describes these gas-based experimental tech-
niques for temperature and pressure measurement, in-
cluding their operating principles, temperature and pres-
sure ranges, recent technological improvements, and the
sources of uncertainty. We highlight the ways in which
theoretical knowledge, in the form of ab initio polariz-
abilities and virial coefficients, has improved these mea-
surements by reducing significant components of the un-
certainty.

First-principles calculations of virial coefficients in-
volve two steps: the ab initio electronic structure cal-
culation of interatomic potentials and/or polarizabilities,
followed by the solution of the exact quantum statistical
equations describing virial coefficients.

We therefore present in Sec. III a critical review
of the state of the art of non-relativistic, relativistic,
and quantum electrodynamic electronic structure calcu-
lations, with particular emphasis on the determination
of uncertainties. Our primary focus will be on helium –
which is currently the only substance for which computa-
tions can be performed that consistently exceed the accu-
racy of the best experiments – but other noble gases will
be briefly covered due to their importance in metrology.
For the sake of completeness, we will recall the hierarchy
of physical theories involved in quantum chemical calcu-
lations, with particular emphasis on the Full Configura-
tion Interaction (FCI) approach, which is exact within a
given orbital basis set and is currently feasible for sys-
tems with up to 10 electrons. Relativistic and quantum
electrodynamic effects (expressed as expansions in pow-
ers of the fine-structure constant) have been crucial for
achieving the extremely low uncertainty of the latest he-
lium calculations, and are also progressively important in
describing larger atoms (notably, neon and argon). Addi-
tionally, the evaluation of electronic polarizabilities and
magnetic susceptibilities will be discussed. All of these
theoretical advances will be exemplified for the case of
helium, where we will present the current state of the art
regarding interaction potentials and many-body polariz-
abilities.

Knowledge of interaction potentials and polarizabili-
ties enables calculation of the coefficients appearing in
the virial expansion of the equation of state, the speed of
sound, the dielectric constant, and the refractive index,
which are crucial ingredients in the uncertainty budgets
of AGT, DCGT, and RIGT. In the past 15 years, the
path-integral approach to quantum statistical mechanics
has been successfully applied in calculating virial coef-
ficients without uncontrolled approximations. The main
features of this method are reviewed in Sec. IV, with par-
ticular attention to the question of uncertainty propaga-
tion from the potentials and the polarizabilities. In the
case of pair properties, an alternative method based on
the solution of the Schrödinger equation is available and
provides mutual validation of the path-integral results,
as well as enabling the calculation of transport proper-
ties. Most of this review is focused on thermodynamic
properties, but ab initio calculations also provide viscos-
ity and thermal conductivity. We briefly review how this
leads to improvements in flow-rate measurements.
Although most efforts have been devoted to noble

gases, highly accurate theoretical calculations are also
available for molecular systems and have the potential
to enable a similar paradigm shift in some metrological
applications. We describe in Sec. V the present situation
in the first-principles calculation of molecular properties,
and point out a few areas where computational contri-
butions are expected to have an increasing impact in the
near future, namely humidity metrology, measurements
of very low pressures, and atmospheric science. We end
our review in Sec. VI, where future perspectives and an
overview of the status of highly accurate ab initio prop-
erty calculations will be presented.

II. PRIMARY METROLOGY AND THERMOPHYSICAL
PROPERTIES

A. Paradigm reversal in temperature metrology

Traditionally, accurate measurements of temperature-
dependent thermophysical properties of gases [such as:
second density virial coefficient B(T ), viscosity η(T ),
thermal conductivity λ(T )] have been used to determine
parameters in evermore-refined models for interatomic
and intermolecular potentials. This tradition/paradigm
can be traced back to the 18th century when “. . .
Bernoulli had proposed that in Boyle’s law the specific
volume v be replaced by (v − b), where b was thought
to be the volume of the molecules”. [5] During the past
25 years, the accuracy of the calculated thermophysical
properties of the noble gases (particularly helium) has
increased dramatically. An example is shown in Fig. 1,
which shows how the accuracy of the second virial coeffi-
cient B(T ) of 4He improved with time. The data plotted
are for temperatures near TNe, (TNe ≡ 24.5561 K is the
defined temperature of the triple point of neon on the
international temperature scale, ITS-90. [6]) Since the
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year 2012, the uncertainty of B(TNe), as calculated ab
initio, has been smaller than the uncertainty of the best
measurements of B(TNe).

FIG. 1. The standard uncertainty of both the measured and
the calculated values of the second density virial coefficient
of 4He decreased with time. After 2012, u(Bcalc) < u(Bmeas).
Both Bcalc and Bmeas are evaluated near 24.5561 K, which is
the defined ITS-90 temperature of the triple point of neon.
Calculated values (circles): Aziz et al. (1995) [7]; Hurly and
Moldover (2000) [8]; Hurly and Mehl (2007) [9]; Cencek et al.
(2012) [10]; Czachorowski et al. (2020). [11] Measured values
(squares): White et al. (1960) [12]; Berry (1979) [13]; Kemp
et al. (1986) [14]; Gaiser and Fellmuth (2009) [15]; Gaiser
and Fellmuth (2021) [16]; Madonna Ripa et al. (2021) [17].

The paradigm reversal (replacing measured thermo-
physical properties of helium with calculated thermo-
physical properties) applies to zero-density values of the
viscosity η(T ), thermal conductivity λ(T ), and 3He-4He
mutual diffusion coefficient as well as to the density and
acoustic virial coefficients, relative dielectric permittiv-
ity (dielectric constant) εr(p, T ), relative magnetic per-
mittivity µr(p, T ), and refractive index n(p, T ) =

√
εrµr.

For many of these properties, the values calculated for
helium are standards that are used to calibrate appara-
tus that measures the same properties for other gases.

The paradigm reversals for εr(p, T ) and n(p, T ) have
been combined with technical advances in the measure-
ment of εr(p, T ) and n(p, T ) to develop novel pressure
standards. One standard operating at optical frequen-
cies and low pressures (100 Pa ≤ p ≤ 100 kPa) is more
accurate than manometers based on liquid columns (see
Section IIC 1 and Ref. 18). Other standards operating
at audio and microwave frequencies and higher pressures
(100 kPa ≤ p ≤ 7 MPa) have enabled exacting tests of
mechanical pressure generators based on the dimensions
of a rotating piston in a cylinder (see Section IIC 2 and
Refs. 19 and 20). At still higher pressures (up to 40
MPa), the values of helium’s density calculated from the
virial equation of state (VEOS) have been used to cali-
brate magnetic suspension densimeters. [21] A more ac-
curate high-pressure scale may result. In Section II E, we
will comment on ab initio calculations of transport prop-
erties and their contribution to improved flow metrology.

During the past 25 years, the accurate calculations of

the thermophysical properties of the noble gases have
strongly interacted with gas-based measurements of the
thermodynamic temperature T . To put this in context,
we compare in Fig. 2 the evolution of “consensus” tem-
perature metrology with “thermodynamic” temperature
metrology. [22]

FIG. 2. Comparison over time of the standard uncertainty
of the Boltzmann constant to the reproducibility of the con-
sensus temperature scale. Circles represent the relative un-
certainty of measurements of the Boltzmann constant, mostly
from evaluations by groups such as CODATA. Squares repre-
sent the relative uncertainty of internationally accepted con-
sensus temperature scales in the vicinity of the normal boiling
point of water. Adapted from Ref. 22.

In Fig. 2, the squares represent estimates of the rel-
ative uncertainties ur(Tscale) of the consensus tempera-
ture scales disseminated by National Metrology Institutes
(NMIs). We plot the values of ur(Tscale) near the boil-
ing point of water at intervals of roughly 20 years. Most
of the points are at years when the NMIs agreed to dis-
seminate a new consensus scale that was either a better
approximation of thermodynamic temperatures and/or
an extension of the consensus scale to higher and lower
temperatures. The most recent scale is the “International
Temperature Scale of 1990” (ITS-90), and temperatures
measured using ITS-90 are denoted T90. [6] The data un-
derlying ITS-90 are constant-volume gas thermometry
(CVGT) and spectral radiation thermometry linked to
CVGT. [23] The pre-1990 CVGT was based on the ideal-
gas equation of state, as corrected by virial coefficients
either taken from the experimental literature or measured
during the CVGT. Post-1990 thermometry, together with
ab initio calculations of virial coefficients, revealed that
the authors of ITS-90 were unaware that errors in ITS-90
exceeded their expanded (k = 2) uncertainty by roughly
a factor of two. (See Fig. 3 and the discussion at the end
of Sec. II B 1).
In Fig. 2, the circles represent the relative uncertainty
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of determinations of the Boltzmann constant ur(kB). To
determine kB, one measures the mean energy kBT per
degree-of-freedom of a system in thermal equilibrium at
the thermodynamic temperature T . During the inter-
val 1960 to 2019, the thermodynamic temperature of the
triple point of water was defined as TTPW ≡ 273.16 K,
exactly. Thus, measurements of kBT that were con-
ducted near TTPW had a negligible uncertainty from T
and ur(kBT ) was an excellent proxy for ur(T ), the un-
certainty of measurements of T under the most favorable
conditions.

As displayed in Fig. 2, ur(Tscale) decreased from ∼ 10
ppm to ∼ 2 ppm (1 ppm ≡ 1 part in 106) during the
20th century. Also during the 20th century, the relative
uncertainty ur(kB) decreased from ∼ 20, 000 ppm to ∼
2 ppm. Thus, ur(kB) ≫ ur(Tscale) for most of the 20th
century, even though kB was a “fundamental” constant
and, therefore, a worthy challenge for metrology.

Between 1973 and 2017, AGT measurements decreased
the uncertainty of ur(kB) 100-fold from ∼ 40 ppm to
∼ 0.4 ppm. [24, 25] By 2017, DCGT achieved the uncer-
tainty ur(kB) = 1.9 ppm and Johnson noise thermometry
achieved ur(kB) = 2.7 ppm. [25]

In 1995, Aziz et al. [7] argued that the values of
the thermal conductivity λ(T ), viscosity η(T ), and sec-
ond density virial coefficient B(T ) of helium, as calcu-
lated using ab initio input, were more accurate than the
best available measurements of these quantities. Subse-
quently, helium-based AGT measurements of kB relied
on ab initio values of λ(T ) to account for the thermoa-
coustic boundary layer. Just before the Boltzmann con-
stant was defined in 2019, the lowest-uncertainty mea-
surements of kB used either the ab initio value of ther-
mal conductivity of helium λHe(273.16 K) or the value
of λAr(273.16 K) that was deduced from ratio measure-
ments using λHe(273.16 K) as a standard. [26, 27]

In 2019, the unit of temperature, the kelvin, was rede-
fined by assigning the fixed numerical value 1.380649 ×
10−23 to the Boltzmann constant, kB, when kB is ex-
pressed in the unit J K−1. [2, 3] Thus, the Boltzmann
constant can no longer be measured. However, the ther-
modynamic temperature of the triple point of water now
has an uncertainty of a few parts in 107, although the
best current value is still 273.16 K. [20]

As discussed in the next section, the techniques for
measuring thermodynamic temperatures are evolving
rapidly. They are becoming more accurate and easier to
implement. We anticipate NMIs will disseminate thermo-
dynamic temperatures instead of ITS-90 at temperatures
below 25 K. This would not be possible without the ac-
curate ab initio values of the thermophysical properties
of helium.

B. Gas thermometry

1. Acoustic gas thermometry

During the past two decades, acoustic gas thermom-
etry (AGT) has emerged as the most accurate primary
thermometry technique over the temperature range 7 K
to 552 K, achieving uncertainties as low as 10−6T . AGT
experiments were instrumental in measuring the Boltz-
mann constant for the redefinition of the kelvin, [28]
and have revealed small, systematic errors in the ITS-
90. [20, 23] The construction of ITS-90 and the defini-
tion of kB force T90 and T to be essentially equal at the
temperature of the triple point of water TTPW; however,
the derivative dT90/dT ≈ 1.0001 at TTPW. Figure 3 pro-
vides evidence that ITS-90 has errors of ∼ 25 × 10−6T
near water’s boiling point and ∼ −35 × 10−6T near 173
K. This section is necessarily brief; for an in-depth review
of AGT, the reader is referred to Ref. 29.
The underlying principle of AGT is the relationship

between thermodynamic temperature, T , and the ther-
modynamic speed of sound, w, in a gas: [30]

w2 =
γ0kBT

m

[
1 +

βa

RT
p+

γa
RT

p2 + . . .

]
, (1)

where kB is the Boltzmann constant, R = kBNA is the
molar gas constant, NA is the Avogadro constant, m is
the average molecular mass of the gas, γ0 is the limit-
ing low-pressure value of cp/cv where cp and cv are the
isobaric and isochoric heat capacities, respectively, (this
ratio is exactly 5/3 for a monatomic gas), p is the gas
pressure, and βa and γa are the temperature-dependent
acoustic virial coefficients. Helium-4 or argon gas is typ-
ically used, as these are considerably less expensive than
other noble gases and available in ultra-pure forms, al-
though xenon has also been used. [31]
Most modern realizations of primary AGT determine

the speed of sound from the resonance frequencies of
the acoustic normal modes in a cavity resonator of fixed
and stable dimensions. Resonators have been manufac-
tured from copper, aluminum, and stainless steel, with
internal volumes between 0.5 liters and 3 liters. Cav-
ity shapes have either been spherical, quasi-spherical
(with smooth, deliberate deviations from sphericity), or
cylindrical. The use of diamond turning to produce
quasi-spherical resonators (QSRs) with extremely accu-
rate forms (∼ 1 µm) and smooth surfaces (average sur-
face roughness on the order of 3 nm) has significantly im-
proved performance. [32] In spherical geometries, the best
results are obtained from the radially symmetric acous-
tic modes, since these possess high quality factors and
are relatively insensitive to imperfections in the cavity
shape. In cylindrical geometries, the longitudinal plane-
wave modes are typically favored.
Two distinct methods of primary AGT exist: absolute

and relative. In the absolute method, T is determined
by using the defined value of kB and by fitting Eq. (1)
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to measurements of w2(p, T ) to obtain T and βa, γa, . . .
Alternatively, when accurate, ab initio values of βa, γa, . . .
are available, T can be determined from Eq. (1) using a
measurement of w2(p, T ) at a single pressure. The terms
γ0 and kB are known exactly; m must be determined by
an auxiliary experiment; and w is calculated from the
radial acoustic mode frequencies, fa, of the QSR:

w =
fa −∆fa

za
(6π2V )1/3, (2)

where za are the acoustic eigenvalues, ∆fa is the sum of
the acoustic corrections, and V is the cavity volume. If
the longitudinal mode frequencies of a cylindrical cavity
are used, the term proportional to V 1/3 is replaced with
a multiple of the cylinder length.

Improvements in QSR volume measurements are per-
haps the most significant innovation in AGT in the last
two decades, and were driven by efforts to redetermine
the Boltzmann constant for the redefinition of the kelvin.
Modern AGT systems measure the frequency fm of mi-
crowave resonances in the cavity, which are related to the
volume through the equation

c

n
=

fm −∆fm
zm

(6π2V )1/3, (3)

where c is the speed of light in vacuum, n in the refrac-
tive index of the gas in the cavity, ∆fm is the sum of the
electromagnetic corrections, and zm are the microwave
eigenvalues. The microwave modes do not occur in isola-
tion, being at least 3-fold degenerate in perfectly spheri-
cal cavities. The smooth deformations of the QSR shape
lift these degeneracies, enabling accurate measurement
of the individual mode frequencies. A key theoretical re-
sult is that (to first order) the mean frequency of these
mode groups is unaffected by volume-preserving shape
deformations. [33]

In diamond-turned QSRs, the relative uncertainty in V
from the microwave method can be less than 1×10−6. [34]
This was made possible by improvements in theory, [35]
resonator shape accuracy, and studies of small perturba-
tions due to probes. [34] Recently, it has been demon-
strated that comparable uncertainties can be achieved
with low-cost microwave equipment. [36, 37] Accurate mi-
crowave dimensional measurements have also been per-
formed in cylindrical acoustic resonators. [38]

Relative primary AGT measures thermodynamic tem-
perature ratios:

T

Tref
=

w2

w2
ref

, (4)

where wref is the measured speed of sound at a known
reference temperature Tref . Most AGT determinations of
(T–T90) use the relative method. The main advantages
are that the molecular mass term, m, cancels in the ratio,
and that only the relative volume V/Vref need be mea-
sured. Also, many small perturbations to the acoustic

and microwave frequencies (e.g., due to shape deforma-
tions) either fully or partially cancel in the ratio. As a
result, excellent results can be obtained using resonators
with modest form accuracies that would be unsuited to
absolute AGT. The disadvantages are that relative AGT
propagates underlying errors and uncertainty in Tref , and
can require the apparatus to operate over a wide temper-
ature range when no suitable reference points are nearby.

In both absolute and relative primary AGT, maintain-
ing gas purity is of critical importance. Impurities will
shift the average molecular mass of the gas, and hence
the speed of sound, by an amount that depends on the
mass contrast between the bulk gas and impurity. For
example, the speed of sound in helium is approximately
16 times more sensitive to water vapor than it is in ar-
gon. Impurities can either be present in the gas source
or arise from outgassing or leaks in the apparatus itself.

Relative AGT requires only that m remain unchanged
between the measurements at T and Tref . Temperature
dependence in m can arise through several mechanisms:
impurities such as water, hydrocarbons, or heavy no-
ble gases can be condensed out at low temperatures;
higher temperatures (> 500 K) cause significant out-
gassing from the walls of steel resonators. [39] Gas purity
is vastly improved by maintaining a flow of gas (typically
< 50 µmol/s) through the resonator and supply manifold.

Absolute AGT has more stringent requirements on
gas purity than relative AGT. To determine an accurate
value for m, both the isotopic abundance of the gas and
any residual impurities must be quantified. Reactive im-
purities, including water, can be removed from the source
gas using gas purifiers, and noble gas impurities can be
removed from helium using a cold trap. [26] The isotopic
ratios 36Ar/40Ar and 38Ar/40Ar in argon, and 3He/4He
in helium, have been determined by mass spectrometry,
and vary significantly from source to source. [40] Alter-
natively, isotopically pure 40Ar gas can be used, although
this is only available in small quantities and at great ex-
pense. [41]

The low uncertainty of the AGT technique arises from
the excellent agreement between acoustic theory and ex-
periment. The simplicity of Eq. (2) hides a number
of temperature-, pressure-, and mode-dependent correc-
tions that constitute the term ∆fa. The largest of these
are the thermoacoustic boundary layer corrections, which
arise from an irreversible heat exchange between the
oscillating gas and resonator walls. [41, 42] This effect
both lowers the frequency of the acoustic resonances and
broadens them; a valuable cross-check of experiment and
theory can be made by comparing the predicted and mea-
sured resonance widths. The radial-mode boundary layer
correction in QSRs is approximately proportional to the
square root of the gas thermal conductivity – in cylin-
ders, the gas viscosity also features in the correction. [43]
For most temperature ranges, the uncertainty in these
parameters can be considered negligibly small for both
helium and argon due to improved ab initio calculations
(see section II E).
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AGT measurements are typically conducted on
isotherms in a pressure range between 25 kPa and
500 kPa, with the optimum pressure range depending on
several factors such as the type of gas, temperature, and
particular details of the apparatus. [44] At low pressures,
the accuracy in determining fa is compromised by weak
acoustic signals, interference from neighboring modes due
to resonance broadening, and the need to account for de-
tails of the interaction of the gas with the resonator’s
walls. [45] At high pressures, higher-order virial terms
are required to account for molecular interactions, and
the elastic recoil of the resonator walls becomes increas-
ingly significant. The shell recoil effect, which shifts fa
in proportion to gas density, [46] is difficult to predict
in real resonators [47, 48] because of the complex me-
chanical properties of the joint(s) formed when the cavity
resonator is assembled.

For this and other reasons, it is not common practice to
use Eq. (1) to determine T from w; instead, the measured
data are fitted to low-order polynomials that account for
the virial coefficients and perturbations that are propor-
tional to pressure. Isotherm measurements have the ad-
vantage of data redundancy and reduced uncertainty, but
are very slow to execute, with each pressure point taking
several hours. Single-state AGT, [49] which utilizes low-
uncertainty ab initio calculations of βa and γa in helium,
offers a much faster means of primary thermometry.

FIG. 3. Post-1990 acoustic measurements of T − T90. The
shaded area encloses 1990 estimates of the relative standard
uncertainties of ITS-90. The acoustic measurements indicate
that ITS-90 has an error of ∼ 25 × 10−6T near water’s boil-
ing point and ∼ −35 × 10−6T near 173 K. The solid arrows
indicate some ITS-90 fixed points. (The boiling point of wa-
ter is not a fixed point on ITS-90.) Data sources: USA:
Refs. 31, 39, and 50; U. Kingdom: Refs. 51 and 52; Italy:
Ref. 49 and 53; France + USA: Ref. 54; China: Ref. 55.
Adapted from L. Xing et al., J. Phys. Chem. Ref. Data
52, 031501 (2023), with the permission of AIP Publishing.

Figure 3 compares AGT measurements from 5 coun-
tries with ITS-90. The AGT data indicate that ITS-90
has an error of ∼ 25 × 10−6T near water’s boiling point

and ∼ −35× 10−6T near 173 K. Near TTPW, the deriva-
tive dT90/dT ≈ 1 + 1.0 × 10−4. This implies that heat-
capacity measurements made using ITS-90 will generate
values of the heat capacity that are 0.01% larger than the
true heat capacity. However, we are not aware of heat
capacity measurement uncertainties as low as 0.01%.
Prior to the AGT publications shown in Fig. 3, As-

trov et al. corrected an estimate used in their CVGT.
They had used measurements of the linear thermal ex-
pansion of a metal sample to estimate the thermal expan-
sion of the volume of their CVGT “bulb”. Using addi-
tional expansion measurements, Astrov et al. corrected
their T − T90 results. They now agree, within combined
uncertainties, with the AGT data. [56] (Because AGT
uses microwave resonances to measure the cavity’s vol-
ume in situ, it is not subject to errors from auxiliary
measurements of thermal expansion.)

2. Dielectric constant gas thermometry

DCGT, developed in the seventies in the U.K. [57, 58]
and later improved by PTB, [59, 60] is now a well-
established method of primary thermometry. The basic
idea of DCGT is to replace the density in the equation of
state of a gas by the relative permittivity (dielectric con-
stant) εr and to measure it by the relative capacitance
changes at constant temperature:

∆Cc

Cc
≡ Cc(p)− Cc(0)

Cc(0)
= εr − 1 + εrκeffp. (5)

In Eq. (5), Cc(p) is the capacitance of the capacitor at
pressure p and Cc(0) that at p = 0 Pa, and κeff is the ef-
fective isothermal compressibility which accounts for the
dimensional change of the capacitor due to the gas pres-
sure. In the low-pressure (ideal gas) limit, the working
equation can be simply derived by combining the classical
ideal-gas law and the Clausius–Mossotti equation:

p =
RT

Aε

εr − 1

εr + 2
, (6)

with the molar polarizability Aε. For a real gas in a
general formulation including electric fields, both input
equations are power series:

p

ρRT
= 1 +B(T )ρ+ C(T )ρ2 +D(T )ρ3 + . . . , (7)

where B(T ), C(T ), and D(T ) are the second, third, and
fourth density virial coefficient, respectively, ρ is the mo-
lar density, and

εr − 1

εr + 2
= Aερ

(
1 + bρ+ cρ2 + dρ3 + . . .

)
(8)

= ρ
(
Aε +Bερ+ Cερ

2 +Dερ
3 + . . .

)
. (9)

In the literature, the quantities b, c, d and Bε, Cε, Dε are
both called the second, third, and fourth dielectric virial
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coefficient, respectively. The form used in Eq. (8) comes
from the tradition of DCGT [57, 59] of factoring out Aε

so that b, c, and d have the same units as B,C, and D.
Conversely, ab initio calculations naturally provide the
quantities Bε, Cε, and Dε.

The DCGT working equation is obtained by eliminat-
ing the density using Eqs. (7) and (8) and substituting
εr with the relative capacitance change corresponding to
Eq. (5).
This leads to a power expansion in terms of Ξ =

(∆Cc/Cc)/(∆Cc/Cc + 3):

p =

(
Aε

RT
+

κeff

3

)−1
[
Ξ + Ξ2

(
Aε

RT
+

κeff

3

)−1 [
B − b

RT
− κeff

3

(
1 +

B

Aε

)]
+ Ξ3 (· · · )

]
. (10)

The higher-order terms contain combinations of both
the dielectric and density virial coefficients and the com-
pressibility. Equation (10) up to the fourth order can be
found in Ref. 61.

DCGT works as a primary thermometer if the mo-
lar polarizability Aε and virial coefficients contained in
Eq. (10) are known from fundamental principles or in-
dependent measurements with sufficient accuracy. The
effective compressibility κeff is also required. For classi-
cal DCGT, where isotherms are measured and the data
are extrapolated to zero pressure via least-squares fit-
ting, only Aε and κeff are mandatory. This was the
way thermodynamic temperature was determined for
decades. [57, 59, 60] Consequently, in classical DCGT,
ab initio data on virial coefficients serve as a consistency
check or conversely DCGT is used for determination of
virial coefficients to check theory. [61] Since the theoret-
ical calculations of the virial coefficients for helium im-
proved drastically, it is now possible to use higher-order
virial coefficients from theory to reduce the number of
fitting coefficients or even to use the working equation
directly without fitting and to determine temperature at
each pressure point via the rearranged working equation.
Recently, all three approaches have been tested and com-
pared. [62] Especially, the point-by-point evaluation is a
shift of paradigm and at the moment only possible for
helium, where the uncertainty of the ab initio calcula-
tions, especially of the second density virial coefficient,
is small enough. Nevertheless, for other gases not only
the virial coefficients but also the molar polarizabilities
determined via DCGT have comparable or smaller un-
certainties than ab initio calculations. [63] This is a field
of potential improvement of theory already started with
calculations of Aε for neon [64, 65] and for argon. [66]

DCGT was operated in the temperature range from
2.5 K to about 273 K using helium-3, helium-4, neon, [67]
and argon. [68] All noble gases have the advantage that
the molar polarizability is independent of temperature
at a level of precision far beyond that of state-of-the-art
experiments. [69]

Besides the use of dielectric measurements in primary
thermometry, accurate determinations of polarizability
and virial coefficients of noble gases and molecules using
gas-filled capacitors have a much longer tradition. These

setups, very similar to DCGT, use thermodynamic tem-
perature as one of the input parameters. A complete
overview of measurements cannot be given here. Already
a very broad overview of existing data, partly at radio
frequencies, was summarized by NBS in the 1950’s. [70]
In the following decades, [71] different institutes with
changing teams performed measurements until the early
1990’s. [72] In the year 2000, NIST started measurements
on gases using capacitors resulting in the most accurate
values for the measured molecules. [73, 74] Very recently,
PTB established a setup for separate measurement of
dielectric and density virial coefficients using a combi-
nation of Burnett expansion techniques and DCGT. [75]
The focus of this setup is the determination of properties
of energy gases such as hydrogen-methane mixtures in
the context of the transition to renewable energy. The
setup will also provide lower-uncertainty tests of the ab
initio calculations of the dielectric and density virial co-
efficients of the noble gases.

For primary thermometry, most significant recent im-
provements in DCGT have been achieved by independent
determination of κeff using resonant ultrasound spec-
troscopy around 0 ◦C and an optimal choice of capacitor
materials. [76] For the Boltzmann experiment with mea-
suring pressures of up to 7 MPa, tungsten carbide was the
ideal choice, while at low temperatures beryllium copper
was used together with an extrapolation method. Rela-
tive uncertainties for κeff in terms of temperature on the
level of 1 ppm near 0 ◦C have been achieved. Equally im-
portant are the improvements in pressure measurement.
In contrast to AGT, where pressure is a second-order ef-
fect, in DCGT εr is directly linked to pressure. Therefore,
the relative uncertainty in pressure is transferred to a rel-
ative uncertainty in temperature. The major steps here
are discussed in section IIC 2 regarding the mechanical
pressure standard developed at PTB in the framework of
the Boltzmann constant determination. [77] These sys-
tems with relative uncertainties on the level of 1 ppm at
pressures up to 7 MPa have been used to calibrate com-
mercially available systems for pressures up to 0.3 MPa
with relative uncertainties between 3 ppm and 4 ppm.
The dominant uncertainty component in DCGT mea-
surements is the standard deviation of the capacitance
measurement. The typical relative uncertainty in terms
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of temperature connected to this component is on the
order of 5 ppm for the low temperature range but was
reduced to the 1 ppm level in the case of the Boltzmann
experiment at about 0 ◦C. [78] Finally, one problem in
DCGT using helium is the very small molar polarizabil-
ity compared to all other gases and molecules. Therefore,
special care must be taken concerning impurities and here
an especially severe issue is contamination with water.

The polarizability of water at frequencies of capac-
itance bridges and microwave resonators (see section
VA2) is about a factor of 160 larger than that of he-
lium. At cryogenic temperatures, water contamination
in the gas phase is naturally reduced by outfreezing,
but especially at room temperature the whole measur-
ing setup as well as the gas purifying system must be
highly developed. Furthermore, pollution with other no-
ble gases must be treated carefully because they can-
not be extracted by getters and filters. Ideally, a mass-
spectrometer should be used for the detection of noble
gas impurities to allow for an upper estimate of the un-
certainty due to gas purity. In summary, with DCGT in
the low temperature range from 4 K to 25 K uncertainties
near 0.2 mK for thermodynamic temperature are achiev-
able. At around 0 ◦C, the smallest uncertainty for DCGT
was achieved during the determination of the Boltzmann
constant. [78] Converted to an uncertainty for thermody-
namic temperature, this becomes about 0.5 mK.

In the intermediate range, the uncertainties are larger
(between 1 mK and 2 mK at 200 K [68]). The main
restriction of the present low-temperature setup is the
limited pressure range at intermediate temperatures. A
measurement of high-pressure isotherms in this range is
planned. Together with improved ab initio calculations
for the second virial coefficients of argon and neon, a
single-state version of DCGT might be possible, in anal-
ogy with single-state AGT. This could result in a sig-
nificant reduction in both uncertainty and measurement
time.

3. Refractive index gas thermometry

Both DCGT and RIGT are versions of polarizing gas
thermometry. Both rely on virial-like expansions of either
the dielectric constant εr or of the refractive index n in
powers of the molar density ρ, that is Eq. (9) in the case
of DCGT, and the Lorentz–Lorenz equation

n2 − 1

n2 + 2
= ρ

(
Aε +Aµ +BRρ+ CRρ

2 + . . .
)
, (11)

in the case of RIGT. In the limit of zero frequency,
Aµ/Aε ≈ −1.53 × 10−5 for He, Bε = BR, Cε = CR,
etc. [79] Except for the small magnetic-permeability term
Aµ (which is well-known from theory for helium [80]),
low-frequency measurements of n and of εr are analyzed
using the same ab initio constants. RIGT determines the
thermodynamic temperature T by combining measure-
ments of the pressure p with the density virial equation

of state, Eq. (7), and Eq. (11). The density is eliminated
from both equations, either numerically or by iteration,
to obtain

T =
p (Aε +Aµ)

R

n2 + 2

n2 − 1
+ . . . (12)

The constants B, BR, C, CR, etc. that appear in
the higher-order terms of Eq. (12) are obtained either
from theory or from fitting measurements of n2(p) on
isotherms. [DCGT determines T using a version of
Eq. (12) in which εr replaces n

2.]
Here, we focus on RIGT conducted at microwave

frequencies as developed by Schmidt et al. [81] and
as recently reviewed by Rourke et al. [82] These au-
thors determined n from measurements of the microwave
resonance frequencies fm of a gas-filled, metal-walled,
quasi-spherical cavity. Typical frequencies ranged from
2.5 GHz to 13 GHz; for this range, the frequency depen-
dence of n in the noble gases is negligible. As discussed
in Sec. II C 1, RIGT has also been realized at optical fre-
quencies in the context of pressure standards. [83] For he-
lium, the corrections of Aε and BR from zero frequency to
optical frequencies have been calculated ab initio. [79, 84]
A working equation for measuring n is:

n =
√
µεr =

⟨fm + g⟩vacuum
⟨fm + g⟩pressure(1− κeffp)

, (13)

where the brackets “⟨⟩” indicate averaging over the fre-
quencies of a nearly degenerate microwave multiplet and
g accounts for the penetration of the microwave fields
into the cavity’s walls. Usually, g is determined from
measurements of the half-widths of the resonances; its
contribution to uncertainties is small. The term κeffp ac-
counts for the temperature-dependent change of the cav-
ity’s volume in response to the gas pressure p. Often, the
uncertainty of κeff is the largest contributor to the un-
certainty of RIGT. To make this explicit, we manipulate
Eqs. (12) and (13) to obtain:

T =
3p

R

(
Aε +Aµ

n2 − 1

)(
1− 2κeffRTn2

3(Aε +Aµ)

)
+ . . . , (14)

where the term 2κeffRTn2/[3(Aε + Aµ)] ≈ 0.007 for a
copper-walled cavity immersed in helium near TTPW.
(This estimate assumes that the cavity’s walls are homo-
geneous and isotropic; therefore, κeff = κT /3 where κT

is the isothermal compressibility of copper.) Thus, a rel-
ative uncertainty ur(κeff) = 0.01 contributes the relative
uncertainty ur(TTPW) = 70×10−6 to a RIGT determina-
tion of TTPW. In the approximation n2 ≈ 1, this uncer-
tainty contribution is a function of T × κeff(T ), but it is
not a function of the pressures measured on an isotherm.
Because T × κeff(T ) decreases with T , RIGT is more at-
tractive at cryogenic temperatures than near or above
TTPW.
Recently, two independent groups explored a two-

gas method for measuring κeff of assembled RIGT res-
onators. [17, 85] Ideally, two-gas measurements would
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replace measurements of κT of samples of the material
comprising the resonator’s wall and also models for the
cavity’s deformation under pressure. Both groups relied
on new, accurately measured and/or calculated values of
the density and refractivity virial coefficients of neon or
argon. [61, 79] Using helium and argon, Rourke deter-
mined κeff at TTPW with the remarkably low uncertainty
ur(κeff) = 9.6 × 10−4. [85] Madonna Ripa et al. com-
bined helium and neon data to reduce the uncertainty
contribution from κeff to their determinations of T at
the triple points of O2 (≈ 54 K), Ar (≈ 84 K), and Xe
(≈ 161 K). [17] They reported “partial success” and sug-
gested that a revised apparatus using both gases and op-
erating at higher pressures (p > 500 kPa) would obtain
lower-uncertainty determinations of T . They also noted
that the two-gas method requires twice as much RIGT
data, accurate pressure measurements, and dimensional
stability between gas fillings.

Rourke’s review of RIGT [82] noted 5 groups imple-
menting RIGT using microwave technology. In contrast,
we are aware of only one group (at PTB) implement-
ing DCGT. [62] The relative popularity of RIGT results
from the commercial availability of vector analyzers that
can measure microwave frequency ratios with resolutions
of 10−9. To our knowledge, using commercially available
capacitance bridges, the best attainable capacitance ratio
resolution is 70 × 10−9. [86] To attain higher resolution
for DCGT, PTB developed a unique bridge that mea-
sures capacitance ratios with a resolution of order 10−8

in a 1 s averaging time. To achieve this specification, the
PTB bridge must operate at 1 kHz and both the stan-
dard (evacuated) capacitor and the unknown (gas-filled)
capacitor must have identical construction and be located
in the same thermostat. [87]

Figure 4 illustrates the several strategies being ex-
plored for acquiring RIGT data. Absolute RIGT ac-
quires many (p, n) data on an isotherm and determines
T via Eq. (14). This method requires state-of-the-art,
absolute pressure measurements; therefore, the pressure
gradient between the gas-filled cavity and the manome-
ter (normally at ambient temperature) is required. [88]
Uncertainty budgets for absolute RIGT can be found in
Refs. 17 and 85.

Relative RIGT (rRIGT) comes in several flavors, each
designed to simplify some aspect of absolute RIGT. Each
flavor requires measurements on at least two isotherms:
(1) a reference isotherm Tref for which the thermody-
namic temperature is already well known, and (2) an
unknown isotherm for which T will be determined. As
suggested in the lower panel of Fig. 4, one flavor of rRIGT
determines T/Tref by determining the low-pressure limit
of the ratio of slopes [81]

T

Tref
= lim

p→0

(
n2
T − 1

n2
Tref

− 1

)
. (15)

If Tref and T are low temperatures, where the pressure
deformation of the cavity κeffp is small, this strategy cir-
cumvents the problem of accurately determining κeff .

FIG. 4. Measurement trajectories for RIGT in the variables
pressure (p) and refractive index (n). Blue dashed lines repre-
sent isotherms. Top: Absolute RIGT takes many data points
on an isotherm at the unknown temperature T . Bottom:
Relative rRIGT takes several measurements on a reference
isotherm Tref and on an unknown isotherm T . Single pres-
sure (spRIGT) uses data at one pressure. Constant frequency
(cfRIGT) uses data at one value of the refractive index n.

Single-pressure RIGT (spRIGT) measures (p, n, T )
and (p, n, Tref) and determines T from T/Tref ≈ (n2

T −
1)/(n2

Tref
−1). This strategy entirely avoids accurate pres-

sure measurements; instead, the pressure in the cavity is
required to be identical when n is measured at T and Tref

and the pressure (actually, the density of the gas) must
be sufficiently low that an approximate pressure is ade-
quate for making the virial corrections. This strategy was
used by Gao et al. for RIGT between the triple point of
neon (Tref ≈ 24.5 K) and 5 K. [89] After establishing Tref

by acoustic thermometry, they claimed the uncertainties
of this implementation of RIGT were smaller than the
uncertainties of ITS-90. [90]
When constant-frequency RIGT (cfRIGT) is imple-

mented, the pressure in the cavity is changed to
keep the refractive index constant as the temper-
ature is changed from Tref to T . In this case,
T/Tref ≈ p(T, n)/p(Tref , n). [91] This scheme minimizes
the frequency-dependent effects of the coaxial cables on
the microwave determination of T/Tref .
To economically search for measurement or modeling

errors, one can obtain 3 redundant values of T/Tref by
measuring microwave frequencies at 4 judiciously chosen
values of (p, n). Two measurements are made on the
isotherm Tref at the values (p1, n1) and (p2, n2). Two
other measurements are on the isotherm T at (p2, n3)
and (p3, n1). spRIGT connects the points (p2, n2)
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and (p2, n3). cfRIGT connects the points (p1, n1) and
(p3, n1). All 4 points are used to approximately imple-
ment rRIGT via Eq. (15).

Compared with other forms of gas thermometry, rel-
ative RIGT has significant advantages at low tempera-
tures. We have already emphasized the availability of mi-
crowave network analyzers and the possibility of avoiding
state-of-the art pressure measurements. By measuring
several microwave resonance frequencies at each state,
certain imperfections of the measurements and model-
ing can be detected. Comparisons of the frequencies of
transverse electric (TE) and transverse magnetic (TM)
microwave modes might detect the presence of dielec-
tric films such as oxides, oil deposits, or adsorbed water
on the cavity’s walls. [92] Because relative RIGT relies
on microwave frequency ratios, the precise shape of the
cavity is unimportant. Cavity shapes other than quasi-
spheres may be advantageous in particular applications.

RIGT is simpler and more rugged than relative acous-
tic gas thermometry (rAGT) because RIGT requires nei-
ther delicate acoustic transducers nor acoustic ducts.
However, RIGT is unlikely to replace rAGT at ambient
and higher temperatures because RIGT is more sensi-
tive to the cavity’s dimensions than rAGT by the factor
1/(εr − 1), which typically ranges from 200 to 20000.
Furthermore, microwave RIGT is especially sensitive to
polar impurities. Adding 1 ppm (mole fraction) of water
vapor to dilute argon gas at 293 K will increase the di-
electric constant of the gas by 18 ppm and increase the
square of the speed of sound by 0.12 ppm. If the wa-
ter vapor were undetected, these changes would reduce
argon’s apparent RIGT temperature by 18 ppm and in-
crease argon’s apparent rAGT temperature by 0.12 ppm.
For helium, the corresponding temperatures are reduced
by 145 ppm and 4 ppm.

4. Constant volume gas thermometry

The website of the International Bureau of Weights
and Measures includes a document (“Mise en pratique
. . .”) that indicates how the SI base unit, the kelvin,
may be realized in practice using 4 different versions of
gas thermometry. [93] Surprisingly, this document omits
CVGT, the version of gas thermometry that was the pri-
mary basis of ITS-90. In this section, we briefly describe
the operation of a particular realization of CVGT and
the inconsistent results it generated. This may explain
why CVGT was omitted from the Mise en pratique. We
mention the post-1990 theoretical and experimental de-
velopments that suggest an updated realization of CVGT
might generate very accurate realizations of the kelvin.

CVGT at NBS/NIST began in 1928 and concluded
in 1990. We denote the most-recent realization of
NBS/NIST’s relative CVGT by “CVNIST90”. The heart
of CVNIST90 was a metal-walled, cylindrical cavity (“gas
bulb”; V ≈ 407 cm3) attached to a “dead space” com-
prised of a capillary leading from the bulb to a constant-

volume valve at ambient temperature. The valve sepa-
rated the gas bulb from a pressure-measurement system.
A typical temperature measurement using CVNIST90 be-
gan by admitting Nr ≈ 0.0023 mol of helium into the gas
bulb at a measured reference pressure (pr ≈ 13 kPa) and
a measured reference temperature (Tr ≈ TTPW). [94, 95]
Then, the valve was closed to seal the helium in the gas
bulb and dead space. The bulb was moved into a fur-
nace that was maintained at the unknown temperature
T to be determined by CVGT. After the gas bulb equi-
librated, the valve was opened to measure the pressure
p again. The temperature ratio T/Tr was determined by
applying the virial equation at each temperature:

T

Tr
=

pVT

NTR (1 + (BN/V )T + . . .)

NrR(1 + (BN/V )r + . . .)

prVr

(16)
Thus, T/Tr is determined, in leading order, by the
three ratios: p/pr, VT /Vr, and Nr/NT . For CVNIST90,
Nr/NT ̸= 1 because a tiny quantity of helium flows from
the bulb into the capillary when the bulb is moved into
the furnace. This quantity was calculated using the mea-
sured temperature distribution along the capillary. For
CVNIST90, VT /Vr was calculated using auxiliary measure-
ments of the linear thermal expansion of samples of the
platinum-rhodium alloy comprising the gas bulb. These
samples had been cut out of the gas bulb after completing
all the CVGT measurements.
The simplicity of Eq. (16) hides the many complica-

tions of CVGT. We mention three examples. (1) During
pressure measurements, helium outside the gas bulb was
maintained at the same pressure as the helium inside the
gas bulb. (2) Thermo-molecular and hydrostatic pres-
sure gradients in the capillary were taken into account.
(3) At high temperatures, creep in the gas bulb’s volume
was detected by time-dependent pressure changes; the
pressure was extrapolated back in time to its value when
the bulb was placed in the furnace.
We denote the second most recent realization of

NBS/NIST’s relative CVGT by “CVNBS76”. [96] Both
CVNIST90 and CVNBS76 shared apparatus and many pro-
cedures. However, Ref. 94 lists 11 significant changes.
Here, we mention only one. CVNIST90’s two cylindrical
gas bulbs had been fabricated entirely from sheets of (80
wt% Pt + 20 wt% Rh) alloy. The sides and bottom of
CVNBS76’s gas bulb were fabricated from the same alloy;
however, the top of the bulb was inadvertently fabricated
from (88 wt% Pt + 12 wt% Rh) alloy. Perhaps the slight
differences in thermal expansions of these alloys led to an
anomalous thermal expansion of the volume of CVNBS76’s
gas bulb.

Unfortunately, the results from CVNIST90 and
CVNBS76 were inconsistent, within claimed uncertain-
ties, in the range of temperature overlap (505 K ≤ T ≤
730 K). An approximate expression for the differences is:
TNIST90−TNBS76 ≈ 0.090× (T/K−400) mK. This incon-
sistency was not explained by the authors of CVNIST90

nor by the authors of CVNBS76. Furthermore, the au-
thors did not assert the more recent CVNIST90 results
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were more accurate than the earlier CVNBS76 results.
The working group that developed ITS-90 had no other
data, from NIST or elsewhere, that were suitable for re-
solving the inconsistency. Therefore, the working group
required ITS-90 to be the average of TNIST90 and TNBS76

in the overlap range. [97]

In the range 2.5 K to 308 K, ITS-90 relied, in part,
on another realization of CVGT that had a troubled his-
tory. Astrov et al. deduced the thermal expansion of
their copper gas bulb’s volume from measurements of the
linear thermal expansion of copper samples taken from
the block used to manufacture their bulb. [98] However,
the thermal expansion data were inconsistent with other
data for copper. Astrov’s group repeated the thermal ex-
pansion measurements using another (better) dilatome-
ter. The more recent expansion data, published in 1995,
changed the values of T by more than 50× 10−6T in the
range 130 K < T < 180 K, where the uncertainties had
been estimated as ≤ 26× 10−6T . [56]

Recently, a working group of the Consultative Com-
mittee for Thermometry reviewed primary thermome-
try below 335 K. [20] Astrov’s revised CVGT values are
close to the current consensus, which is primarily based
on AGT and DCGT. The working group retained three
other low-temperature realizations of CVGT. Post-1990
AGT measurements of T − T90 near 470 K and 552 K
indicate that CVNIST90 is indeed more accurate than
CVNBS76. [50] Despite the fact that CVGT was the pri-
mary basis for the ITS-90, the Mise en pratique does
not include CVGT. We speculate that no temperature
metrology group is pursuing CVGT because: (1) CVGT
is complex, (2) Astrov et al.’s thermal expansion prob-
lem, (3) unexplained problems with NBS/NIST’s CVGT,
and (4) rapid advances in other versions of gas thermom-
etry.

We now ask: is CVGT a viable method of primary
thermometry today? The gas bulb of a modern CVGT
would incorporate feedthroughs to enable measuring mi-
crowave resonance frequencies of the bulb’s cavity. The
resonance frequencies would determine the bulb’s vol-
umetric thermal expansion, thereby avoiding auxiliary
measurements of linear thermal expansion and also avoid-
ing the assumption of isotropic expansion. If the bulb in-
corporated a valve and a differential-pressure-sensing di-
aphragm, the dead-space corrections would vanish. (The
diaphragm’s motion could be detected using optical in-
terferometry.) Today, the ab initio values of B(T ) would
reduce the uncertainty component from B(T ) to near
zero. A contemporary CVGT could operate at ∼ 5×
higher helium densities than published experiments with-
out generating significant uncertainties from either the
virial coefficients or from pressure-ratio measurements.
The higher density, together with simultaneous pres-
sure and microwave measurements, might enable sepa-
ration of the bulb’s creep from contamination by out-
gassing. Most outgassing contaminants affect helium’s
dielectric constant, refractivity, and speed of sound much
more than they affect helium’s pressure, an advantage of

CVGT. However, CVGT inherently uses fixed aliquots
of gas. Therefore, CVGT cannot benefit from flowing
gas techniques that have been used, for example, in
high-temperature AGT. [50] In summary, contemporary
CVGT could be competitive with other forms of primary
gas thermometry, with a possible exception at the high-
est temperatures, where flowing gas might be required to
maintain gas purity.

C. Pressure metrology

Traditionally, standards based on the realization of the
mechanical definition of pressure, the normal force ap-
plied per unit area onto the surface of an artifact, include
pressure balances and liquid column manometers. The
combined overall pressure working range of these instru-
ments extends over seven orders of magnitude, roughly
between 10 Pa and 100 MPa. Liquid column manometers
achieve their best performance, with relative standard
uncertainty as low as 2.5 ppm, near their upper work-
ing limit at a few hundred kPa. [99] With a few notable
exceptions, the typical relative standard uncertainty of
pressure balances spans between nearly 1×10−3 at 10 Pa,
the lowest end of their utilization range, down to 2 to
3 ppm in the range between 100 kPa and 3 MPa. [99, 100]
One such exception is the remarkable achievement of
a relative standard uncertainty as low as 0.9 ppm for
the determination of helium pressures up to 7 MPa, [77]
though this achievement required the extensive dimen-
sional characterization, and the cross-float comparison,
of the effective areas of six piston–cylinder sets manufac-
tured to extraordinarily tight specifications, with a re-
search effort lasting several years. In spite of this out-
standing result, the accurate characterization of pressure
balances is challenging, due to the complexity of the di-
mensional characterization of the cross-sectional area of
piston–cylinder assemblies, which includes finite-element
modeling of their deformation under pressure. [101, 102]
International comparisons periodically provide realistic
estimates of the average uncertainty of realization of pri-
mary standards among NMIs. In 1999, a comparison
of primary mechanical pressure standards in the range
0.62 MPa < p < 6.8 MPa, involving five NMIs lead-
ing in pressure metrology exchanging a selected piston–
cylinder set, was completed. [103] The resulting differ-
ences ∆Aeff ≡ 106(Aeff/⟨Aeff⟩ − 1) of the effective area
Aeff of the piston from the reference value ⟨Aeff⟩ spanned
beyond their combined uncertainties with such significant
spread to show that the pressure standards realized by
different NMIs were mutually inconsistent.
These inconsistencies strengthened the motivation for

the development of standards realizing a thermodynamic
definition of pressure by the experimental determination
of a physical property of a gas having a calculable ther-
modynamic dependence on density, combined with accu-
rate thermometry. This possibility was initially proposed
in 1998 by Moldover, [104] who envisaged, already at that
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time, the potential of first-principles calculation to accu-
rately predict the thermodynamics and electromagnetic
properties of helium and the maturity of experiments de-
termining the dielectric constant using calculable capac-
itors. The metrological performance of thermodynamic
pressure standards has continuously improved over the
last two decades to become increasingly competitive in
terms of accuracy, providing important alternatives that
may test the exactness of the mechanical standards dis-
cussed above and eventually replace some of them. Also,
due to their reduced complexity and bulkiness, simpli-
fied versions of thermodynamics-based standards may
be more flexibly adapted to specific technological and
scientific applications of pressure metrology. The best-
performing recent realizations of gas-based pressure stan-
dards include measurements of the dielectric constant us-
ing capacitors and of the refractive index at microwave
and optical frequencies, respectively using resonant cavi-
ties and Fabry–Pérot refractometers. In Secs. II C 1 and
IIC 2, we separately discuss the most notable of these
developments depending on the pressure range of their
application.

1. Low pressure standards (100 Pa to 100 kPa)

In the low vacuum regime, several experimental meth-
ods are available which may provide alternative routes
for traceability to the pascal. For the cases involving
optical measurements, these methods include: (1) refrac-
tometry (interferometry), implemented in various config-
urations that employ single or multiple cavities or cells
with fixed or variable path lengths; (2) line-absorption
methods. The achievements and perspectives of all these
methods were recently reviewed. [105]

At present, Fabry–Pérot refractometry with fixed
length optical cavities (FLOC) has demonstrated the
lowest uncertainty for the realization of pressure stan-
dards near atmospheric pressure and down to 100 Pa.
In principle, the uncertainty of this method is limited
by several optical and mechanical effects, most impor-
tantly by the change in the length of the cavity due to
compression by the test gas, with the same sensitivity
to the imperfect estimate of the compressibility κT that
affects RIGT. However, this major uncertainty contribu-
tion may be drastically reduced, though not completely
eliminated, by measuring the pressure-induced length
change of a second reference FLOC monolithically built
on the same spacer, which is kept continuously evacuated.
In 2015, a dual-cavity FLOC achieved an extremely accu-
rate determination of the refractive index of nitrogen at
λ = 632.9908 nm, T = 302.9190 K and 100.0000 kPa by
reference to the pressure realized by a primary standard
mercury manometer, and using refractive index measure-
ments in helium to determine the compressibility. [106]
A comparison of the pressures determined by the nitro-
gen refractometer with the mercury manometer below
the primary calibration point at 100 kPa down to 100 Pa

showed relative differences within 10 ppm. A direct com-
parison between laser refractometry with nitrogen and a
mercury manometer was realized one year later also at
NIST. [18] The comparison showed relative differences
between these instruments within 10 ppm over the range
between 100 Pa and 180 kPa. The laser refractometer
outperforms the precision and repeatability of the liquid
manometer and demonstrates a pressure transfer stan-
dard below 1 kPa that is more accurate than its current
primary realization. Such remarkably low uncertainty
also favorably compares to the best dimensional charac-
terization and modeling of non-rotating piston–cylinder
assemblies.[107]
In 2017, more accurate measurements in helium and

nitrogen were performed between 320 kPa and 420 kPa
using a triple-cell heterodyne interferometer referenced
to a carefully calibrated piston gauge, showing relative
differences within 5 ppm with uncertainties on the order
of 10 ppm. [83] Some pressure distortion errors affect-
ing FLOC might in principle be eliminated by refractive
index measurement with a variable length optical cav-
ity (VLOC). The realization of this technique requires
extremely challenging dimensional measurements, with
displacements on the order of 15 cm that must be de-
termined with picometer uncertainty. [108] Gas modu-
lation techniques, with the measuring cavity frequently
and repeatedly switched between a filled and evacuated
condition, have been recently developed, [109, 110] aim-
ing at the reduction of the effects of dimensional insta-
bilities and other short- and long-term fluctuations that
affect Fabry–Pérot refractometers. A novel realization of
an optical pressure standard, based on a multi-reflection
interferometry technique, has also been recently devel-
oped, demonstrating the possible realization of the pas-
cal with a relative standard uncertainty of 10 ppm be-
tween 10 kPa and 120 kPa. [111] Optical refractometry
for pressure measurement is also being pursued at other
NMIs. [112, 113]
At microwave frequencies, the realization of a low-

pressure standard requires a substantial enhancement in
frequency resolution. Recently, it was demonstrated by
Gambette et al. that by coating the internal surface of
a copper cavity with a layer of niobium, and working at
temperatures below 9 K where niobium becomes super-
conducting, pressures between 500 Pa and 20 kPa can
be realized very precisely. [114, 115] The overall relative
standard uncertainty of this method is currently 0.04%,
with the largest contribution from non-state-of-the-art
thermometry, which is likely to be substantially reduced
in future work.

2. Intermediate pressure standards (0.1 MPa to 7 MPa)

Differently than initially envisaged, the first realization
of a thermodynamic pressure standard was not obtained
by capacitance measurements, but using a microwave res-
onant cavity working in the GHz frequency range, i.e.,
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by a RIGT method. A main motivation for this choice
was the development of quasi-spherical microwave res-
onators, whose internal triaxial ellipsoidal shape slightly
deviates from that of a perfect sphere. [92] This particular
geometry resolved the intrinsic degeneracy of microwave
modes, allowing enhanced precision in the determination
of resonance frequencies.

By 2007, Schmidt et al. [81] demonstrated a pressure
standard based on the measurement of the refractive in-
dex of helium to achieve overall relative pressure uncer-
tainty ur(p) within 9×10−6 between 0.8 MPa and 7 MPa.
At the upper limit of the pressure range, the uncertainty
was dominated by the uncertainty of the isothermal com-
pressibility κT of maraging steel, which was determined
using resonance ultrasound spectroscopy (RUS). [76] Re-
cently, Gaiser et al. [19] realized Moldover’s original pro-
posal of a capacitance pressure standard using DCGT
techniques that they had refined during their measure-
ments of the Boltzmann constant. They achieved the re-
markably low uncertainty ur(p) = 4.4×10−6 near 7 MPa.
Recently, the same experimental data were re-analyzed
to take advantage of the increased accuracy of the ab ini-
tio calculation of the second density virial coefficient B
of He, [11] reducing the overall uncertainty of the capac-
itance pressure standard to ur(p) = 2.2× 10−6. [116]

At pressures below 1 MPa, the uncertainty of the real-
ization of a pressure standard based on DCGT or RIGT
with helium is limited by the resolution of relative ca-
pacitance or frequency measurements. This limit would
be immediately reduced by up to one order of magnitude
by using, instead of helium, a more polarizable gas like
neon or argon. However, while a significant improvement
of the interaction potential, and hence of the ab initio
calculated B, has recently been achieved for neon [117]
and for Ar, [118] it is not likely that the best available
calculations of the molar polarizability Aε of neon [65]
or argon [66] can be improved sufficiently to replace ex-
periment in the near future. However, an experimen-
tal estimate of Aε of both neon and argon was obtained
by comparative DCGT measurements relative to helium,
with relative uncertainty of 2.4 ppm, [63] and may now be
used for the realization of pressure standards with other
apparatus. For similar purposes, the ratio of the refrac-
tivity of several monatomic and molecular gases, namely
Ne, Ar, Xe, N2, CO2, and N2O, to the refractivity of
helium was determined at T = 293.15 K, λ ∼ 633 nm,
with standard uncertainty within 16× 10−6, using inter-
ferometry. [119] At pressures higher than a few MPa, the
imperfect determination of the deformation of the cav-
ity under pressure would impact the overall uncertainty
of a pressure standard based on RIGT or DCGT. One
way to overcome this limit would be to measure the re-
fractivity of two gases at identical values of an unknown
pressure using a single apparatus at a known tempera-
ture. If the refractivity of both gases were known (either
from ab initio calculations or reference measurements),
the two measurements would determine both the effec-
tive compressibility κT of the apparatus and the unknown

pressure. The same strategy is also applied to increase
the upper pressure range where refractometry methods
like FLOC can be applied, though use of helium for the
determination of distortion effects requires correcting for
diffusion within the glasses used for the construction of
these apparatuses. [120]

D. High pressures and equation of state

Up to this point, we have considered interactions be-
tween temperature and pressure standards and the rigor-
ously calculated, low-density properties of the noble gases
including the polarizability and second and third density
and dielectric virial coefficients. We now compare ab ini-
tio calculations with measurements at pressures above
7 MPa and at correspondingly higher densities. The lit-
erature includes temperature-dependent values of 6 den-
sity virial coefficients of helium, [121] 7 acoustic virial
coefficients of krypton, [122] and 6 density virial coeffi-
cients of argon. [123] These calculations used the best ab
initio two-body and nonadditive three-body potentials
that were available at the time of publication. Many-
body non-additive potentials involving four or more bod-
ies, which are needed for the exact calculation of virial
coefficients from the fourth onwards, are not available
and are generally neglected, resulting in an uncontrolled
approximation. Here, we compare measurements of the
density of helium ρmeas(p, T ) with values calculated ab
initio. This comparison avoids fitting ρmeas(p, T ) to the
VEOS because such fits yield highly correlated values for
the separate virial coefficients, each with large uncertain-
ties. Later in this section, we comment on comparisons
using speed-of-sound data.
Measurements of gas densities with uncertainties be-

low 0.1% are expensive and rare because they are not re-
quired for chemical and mechanical engineering. The un-
certainties of most process models are dominated by im-
perfect models of equipment (heat exchangers, compres-
sors, distillation columns, etc.) and/or imperfect knowl-
edge of the composition of feedstocks and products. An
example of a demanding application of gas density and
composition measurements is custody transfer of natu-
ral gas as it flows through large pipelines near ambient
temperature and at high pressures (e.g., 7 MPa). An
international comparison among NMIs achieved a k = 2
volumetric flow uncertainty of only 0.22%. [124] In this
context, density and composition measurements with un-
certainties of order 0.1% are satisfactory for converting
volumetric flows into mass flows and heating values.
In Fig. 5, the remarkable data of McLinden and Lösch-

Will are used to test the ab initio VEOS of helium
in the ranges 1 MPa < p < 38 MPa and 223 K <
T < 323 K. [125] These data were acquired using a mag-
netic suspension densimeter. A weigh scale determined
the buoyant forces on two “sinkers” immersed in the he-
lium. The data are precise, well-documented, and traced
to SI standards with a claimed, k = 2, density uncer-
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FIG. 5. Top: Differences (in parts per million) on isotherms
between measured densities and the densities calculated us-
ing the ab initio terms Bρ,Cρ2, Dρ3, in the truncated VEOS.
Middle: Same as top with additional theoretical terms:
Eρ4, Fρ5. All data with ρmeas > 4000 mol/m3 are within
80 ppm of ρcalc. The claimed (k = 2) uncertainty of ρmeas is
the span of the figure: ±150 ppm. The dashed curves (- -)
bound the estimated uncertainty of ρcalc at 223 K. Bottom:
Averaged deviations from ρcalc for each isotherm in the high-
pressure range 10 MPa < p < 40 MPa. The dashed line fitted
to the points corresponds to calibrating the temperature de-
pendence of the sinker’s density using the helium VEOS. The
symbol □ identifies an anomalous isotherm that was measured
with helium of lesser purity.

tainty of 0.015% + 0.001 kg/m3 at the temperature ex-
tremes and at the highest density. These features at-
tracted previous comparisons with theory. [21, 121, 126]

For the present comparison, where recently published
theoretical values of the virial coefficients are used, we
converted the measured temperatures from the ITS-90
to thermodynamic temperatures using Ref. 20 and we
converted the measured mass densities to molar densi-
ties using the defined value of the universal gas constant
and the molar mass for McLinden and Lösch-Will’s he-
lium sample. At densities below ∼ 4000 mol/m3, the
uncertainties and the values of (ρmeas/ρcalc − 1) diverge
on isotherms as ρ−1 and/or p−1. (See Fig. 5.) These low-
density divergences result from time-dependent drifts in
the zeros of the densimeter and/or pressure transducer.

Because the divergences contain more information about
the apparatus than about helium’s VEOS, we do not dis-
cuss them.
At densities above 4000 mol/m3, we compared the

ρmeas(p, T ) data of McLinden and Lösch-Will [125] with
the values of ρ∗calc(p, T ) that are implicitly defined by the
truncated VEOS:

p

ρ∗calcRT
= 1+Bcalcρ

∗
calc+Ccalcρ

∗
calc

2+Dcalcρ
∗
calc

3 (17)

The fully quantum-mechanical values of Bcalc, Ccalc, and
Dcalc (the latter computed neglecting four-body interac-
tions) were taken from Refs. 11, 127, and 126, respec-
tively. The top panel of Fig. 5 shows that the differences
trend downward as the densities increase above about
4000 mol/m3. This trend, as a function of (p, T ), was
noted in Ref. 126, together with the suggestion “there
may have been a small error in the calibration for the
sinkers . . .” However, the trend (Fig. 5, top) plotted
as a function of density suggests that ρmeas is sensi-
tive to some of the truncated virial coefficients. The
truncation suggestion is confirmed by the middle panel
of Fig. 5, which includes in ρcalc(p, T ) the two addi-
tional terms Ecalc(T )ρ

4 and Fcalc(T )ρ
5 calculated semi-

classically in Ref. 121. Additional terms (e.g., Gcalc(T )ρ
6

from Ref. 121) are less than 1.3 ppm, too small to be vis-
ible in Fig. 5.
The claimed k = 2 uncertainty of ρmeas is

150 ppm; [125] the span of the upper panels of
Fig. 5 is ±150 ppm. The dashed curves (- -) in the
middle panel of Fig. 5 represent upper bounds to the
uncertainty of ρcalc(T, ρ) at 223 K. For these upper
bounds, we used the k = 2 uncertainties of the virial
coefficients U(B), U(C), . . . provided by their authors.
In Eq. (17) we replaced B with B + U(B); we replaced
C with C + U(C), etc. The uncertainties of ρcalc(T, ρ)
are smaller at higher temperatures. We conclude ρcalc
agrees with ρmeas well within combined uncertainties.
At densities above ∼ 4000 mol/m3, the differences

(ρmeas/ρcalc − 1) are nearly independent of the den-
sity; however, the average densities are 34 ppm larger
than their expected values ρcalc. These offsets are well
within the claimed measurement uncertainties (k = 2,
∼ 150 ppm). However, as shown in the lower panel of
Fig. 5, the offsets have both a random and a systematic
dependence on the temperature. The systematic temper-
ature dependence can be treated as a correction to the
calibration of the sinkers’ densities ρsinker(p, T ). Such a
correction does not remove the spread (±14 ppm) among
the 4 isotherms at 273 K. Possible causes of this spread
are changes between runs of temperature (±3.8 mK)
and/or of impurity content (e.g., ±2.3 ppm of N2). In
any case, the offsets are smaller than the claimed uncer-
tainties of ρmeas(p, T ).

Moldover and McLinden [21] extended McLinden and
Lösch-Will’s data [125] to 500 K. The extended data are
a less-stringent test of the VEOS than Fig. 5 because
they span the same pressure range (p < 38 MPa) at
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higher temperatures; therefore, they span a smaller den-
sity range. If McLinden’s data could be extended to lower
temperatures with comparable uncertainties, they would
test helium’s VEOS in greater detail and they might
reach a regime where U(ρmeas) < U(ρcalc). Schultz and
Kofke conducted much more detailed tests of McLinden
and Lösch-Will’s data. [121] We agree with their conclu-
sion that the data are consistent with the VEOS calcu-
lated ab initio.

It may be possible to significantly reduce the uncer-
tainty of ρmeas by improving magnetic suspension den-
simeters, as suggested by Kayukawa et al. [128] They fab-
ricated sinkers from single crystals of silicon and germa-
nium because these materials have outstanding isotropy,
stability, and well-known physical properties. Also, they
refined the model and the functioning of their magnetic
suspension so that it was independent of the magnetic
properties of the fluid under study at the level of 1 ppm.
They measured the density of a liquid near ambient tem-
perature and pressure with a claimed k = 1 relative un-
certainty of 5.4 × 10−6. To date, they have not demon-
strated this uncertainty far from ambient temperature
and pressure. Even if ρmeas achieved such low uncertain-
ties, tests of the VEOS would have to solve problems
arising from impure gas samples and imperfect tempera-
ture and pressure measurements.

Alternative methods of measuring equations of state
have been reviewed by McLinden. [129] Several methods
require filling a container of known volume Vcont(p0, T0)
with a known quantity of gas and then measuring the
pressure as the temperature is changed. These meth-
ods resemble the CVGT method discussed in Sec. II B 4.
Like CVGT, they require accurate values of Vcont(p, T );
however, unlike CVGT, testing a VEOS requires much
higher pressures. Determining Vcont(p, T ) over wide
ranges is complex because: (1) containers comprised of
metal alloys have anisotropic elastic and thermal expan-
sions; (2) containers have seals and joints or welds which
have complicated mechanical properties; (3) alloys creep
and/or anneal under thermal and mechanical stresses.
In summary, volumetric methods are unlikely to replace
Archimedes-type densimeters because Vcont(p, T ) is an
assembled object subjected to complicated stresses; in
contrast, the densimeter’s sinkers are single objects sub-
jected to hydrostatic pressure.

Remarkably, the Burnett method [130] of measur-
ing the equation of state requires neither determining
Vcont(p, T ) nor measuring quantities of gas. This method
uses two pressure vessels with stable volumes Va and Vb.
On each isotherm, gas is admitted into Va and the pres-
sure is measured. The gas is allowed to expand so that it
fills both Va and Vb and the pressure is measured again.
Vb is evacuated and the process is repeated several times.
The measured pressures on each isotherm are fitted to
the VEOS and an apparatus parameter: the volume ra-
tio at zero pressure (Va,0 + Vb,0)/Va,0. The pressure de-
pendences of Va and Vb must also be known. Usually,
they are estimated from elastic constants and models

of the pressure vessels; therefore, precise estimates en-
counter complications of estimating Vcont(p, T ). Perhaps
this explains the large scatter in Burnett determinations
of D(T ). [126] A fairly recent Burnett measurement of
the equations of state of nitrogen and hydrogen (353 K
to 473 K; 1 MPa to 100 MPa) claimed k = 2 uncertainties
of ρmeas ranging from 0.07% to 0.24%. [131]

In addition to ρmeas, measurements of the squared
speed of sound w2(p, T ) in gases have been used to criti-
cally test either the VEOS [122] of Eq. (7) or its acoustic
analog, Eq. (1). Accurate values of w2(p, T ) in gases are
readily available. At the low gas pressures used for acous-
tic thermometry, the relative expanded uncertainties
Ur(w

2(p, T )) measured using quasi-spherical cavity res-
onators are a few parts in 106 and are dominated by ther-
mometry problems and/or impurities. However, uncer-
tainties grow approximately linearly in pressure because
of imperfect models of the recoil of the cavity’s walls in
response to the resonating gas. In one study of argon,
Ur(w

2) ≈ 1.2× 10−4(p/20 MPa) except near the critical
point. [132] At pressures above ∼ 5 MPa to ∼ 10 MPa,
pulse-echo techniques achieve uncertainties comparable
to or smaller than resonance techniques. [122, 133] Re-
markably, w2 from the two techniques agreed within
60 ppm to 200 ppm within a range of overlap (argon,
250 K to 400 K, ∼ 10 MPa to ∼ 20 MPa [133])

It is more complex to compare w2
meas(p, T ) to a calcu-

lated VEOS than to compare ρmeas to the same VEOS.
To calculate the n-th acoustic virial coefficient from the
n-th density virial coefficient, one also needs the first and
second temperature derivatives of the n-th virial coef-
ficient as well as all the lower-order density virial co-
efficients and their temperature derivatives. There are
several routes to conduct such a comparison, which are
completely equivalent. First, the temperature deriva-
tives of the density virial coefficients can be calculated
from ab initio potentials using, e.g., the Mayer sampling
Monte Carlo method. Second, the temperature deriva-
tives can be obtained from fits of the theoretically calcu-
lated temperature-dependent density virial coefficients.
Third, the virial equation of state can be transformed
by thermodynamic identities into an acoustical virial
equation of state or it can be integrated to formulate
a Helmholtz energy equation, from which the speed of
sound can be calculated. Speeds of sound calculated by
either of the two resulting equations contain contribu-
tions from terms with higher acoustic virial coefficients
than those used in the density virial equation of state,
i.e., it can be expected that the region of convergence of
this virial equation of state for the speed of sound ex-
tends to higher pressures than that of the acoustic virial
equation of state with virial coefficients derived directly
from density virial coefficients. These terms describe con-
tributions of configurations of particles which are con-
tained in the low-order density virial coefficients to the
higher-order acoustic virial coefficients. Fourth, densi-
ties can be calculated from w2

meas(p, T ) by the method of
thermodynamic integration [134] and directly compared
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to the density virial equation of state. As initial condi-
tions for the integration, the density and heat capacity
on an isobar must be known. There are subtleties to
integrating w2

meas(p, T ). [135] In the first method the un-
certainties of the virial coefficients and their temperature
derivatives follow from the Monte Carlo simulation and
can be propagated into an uncertainty of the acoustic
virial equation of state, while in the other methods the
uncertainty of the density virial coefficients or the ex-
perimental speeds of sound can be propagated into the
acoustic virial equation of state or calculated densities,
respectively.

For helium, Gokul et al. [136] calculated the acous-
tic virial coefficients through the seventh order by the
second method outlined above from density virial coef-
ficients. They used the second density virial coefficients
reported by Czachorowski et al., [11] which are based on
the pair potential reported in the same work. The higher
virial coefficients were taken from the work of Schultz and
Kofke. [121] They are based on the pair potential of Przy-
bytek et al. [137] and the three-body potential of Cencek
et al. [138] Uncertainties in the density virial coefficients
were propagated into uncertainties in the acoustic virial
coefficients by the Monte Carlo method recommended in
Supplement 1 to the “Guide to the Expression of Uncer-
tainty in Measurement”. [139] Gokul et al. [136] formu-
lated the acoustic virial equation of state as expansion in
terms of density or pressure. The uncertainty of speeds
of sound calculated with the acoustic virial equation of
state was estimated from the uncertainty of the acoustic
virial coefficients.

The density expansion of Gokul et al. was compared
to the experimental data of Gammon, [140] Kortbeek et
al., [141] and Plumb and Cataland. [142] The data of
Gammon were measured with a variable-path interferom-
eter operating at 0.5 MHz. They cover the temperature
range between 98 K and 423 K with pressures up to 15
MPa, and according to the author have an uncertainty
of 0.003% of w2. For these data, we estimated the ex-
panded (k = 2) relative uncertainty Ur(w

2) = 0.00009 by
adding uncertainties of 0.003% (for the distance between
the crystals), 0.001% (for the precision), and 0.005% (for
sample impurities and/or the temperature errors, based
on the inconsistencies among the 14 isotherms). Gam-
mon’s data agree with the acoustic virial equation of state
within 0.01% with a few exceptions. The data of Kort-
beek et al. were measured with a double-path-length
pulse-echo technique, cover the temperature range from
98 K to 298 K at pressures between 100 MPa and 1 GPa,
and, according to the authors, have an uncertainty of
0.08%. They deviate from the acoustic virial equation of
state between a few tenths of a percent at 100 MPa up
to about 4% at 298 K and 1 GPa. These rather large
deviations are due to the fact that the acoustic virial
equation of state is not converged at such high pressures.
The measurements of Plumb and Cataland cover the low
temperature range between 2.3 K and 20 K at pressures
up to 150 kPa. They agree with the acoustic virial equa-

tion of state of Gokul et al. to within 0.05% except at
the lowest measured pressures of about 1.5 kPa, where
the deviations reach up to 0.18%. Gokul et al. also as-
sessed the pressure range in which the acoustic VEOS is
more accurate than the available experimental data for
the speed of sound. At low pressures, they observed that
speeds of sound calculated with the acoustic VEOS are
more accurate than the experimental data of Gammon.
Gokul et al. further noticed that speeds of sound calcu-
lated with the acoustic virial equation of state are more
accurate than the experimental data of Kortbeek et al.
up to about 300 MPa depending on temperature. At
higher pressures, they considered the experimental data
of Kortbeek et al. to be more accurate than the com-
puted virial equation of state. This conclusion appears
to be too optimistic in light of the low uncertainty of
0.08% in the experimental data and the rather large de-
viations of up to 2% from the virial equation of state
below 300 MPa.

Gokul et al. also examined the convergence behavior of
the acoustic virial equation of state more closely for the
expansions in density and pressure. They considered a
virial equation of state converged if the value of the speed
of sound calculated with it agrees with all higher orders of
the expansion within a certain tolerance. They observed
that the pressure range in which the expansion in density
converges is extended when the tolerance is increased.
However, the expansion in pressure hits a pressure limit
in the supercritical region, above which increasing the
tolerance does not extend the region of convergence far-
ther. Above this pressure limit, the expansion in pressure
completely fails. Recently, Wedler and Trusler measured
the speed of sound in supercritical helium with a dual-
path pulse-echo technique in the temperature range be-
tween 273 K and 373 K up to 100 MPa with an expanded
uncertainty (k = 2) of 0.02% to 0.04%. [143] Their data
agree with the 7th-order acoustic virial equation of state
in density of Gokul et al. [136] with a few exceptions
in the whole range of the measurements within 0.025%,
which shows that this form of the virial equation of state
is converged in the region of the measurements.

The first calculation of the third virial coefficient of ar-
gon using a first-principles three-body potential was per-
formed by Mas et al. [144] using the empirical pair poten-
tial developed by Aziz. [145] The results agreed almost to
within combined uncertainties with the third virial coeffi-
cients extracted from experimental data (with theoretical
constraints) by Dymond and Alder. [146] Jäger et al. cal-
culated density virial coefficients up to seventh order for
argon with their pair and nonadditive three-body poten-
tials. [123] The calculated virial coefficients were fitted by
polynomials in temperature. The seventh-order VEOS
was compared with the very accurate (p, ρ, T ) data of
Gilgen et al., [147] which were measured with a magnetic
suspension densimeter. These data are characterized by
a relative uncertainty (k = 2) in density of 0.02%. Pres-
sures calculated with the theoretical virial equation of
state agree with these data at the highest temperature of
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the measurements, 340 K, within 0.01%.

In further work, Jäger [148] used thermodynamic iden-
tities to calculate several properties of argon including
the speed of sound from the virial equation of state
and compared the results with the accurate experimental
data of Estrada-Alexanders and Trusler [132] and Meier
and Kabelac. [133] The data of Estrada-Alexanders and
Trusler [132] were measured with a spherical resonator
and cover the temperature range between 110 K and 450
K at pressures up to 19 MPa, while the data of Meier and
Kabelac were measured with a dual-path-length pulse-
echo technique and cover the temperature range between
200 K and 420 K with pressures between 9 MPa and 100
MPa. The expanded (k = 2) uncertainty of these data
sets was estimated to be 0.001%-0.007% and 0.011%-
0.036%, respectively. At 300 K and 400 K, the calculated
speeds of sound agree with both experimental data sets
up to 100 MPa within 0.04% and 0.08%, respectively.
At the near-critical temperature 146 K and supercriti-
cal temperature 250 K, the deviations of the calculated
values from the experimental data of Ref. 132 increase
with pressure from essentially zero in the ideal-gas limit
to about 0.3% at 3.7 MPa and about 0.02% at 12.2 MPa.

In another paper, Jäger et al. presented calcula-
tions of the second and third density virial coefficient
of krypton. [149] They developed a very accurate pair
potential for the krypton dimer, and nonadditive three-
body interactions were described by an ab initio ex-
tended Axilrod–Teller–Muto potential, which was fitted
to quantum chemical calculations of the interaction en-
ergy of equilateral triangle configurations of three kryp-
ton atoms. El Hawary et al. [122] calculated density virial
coefficients from the fourth to the eighth using the pair
potential and extended Axilrod–Teller–Muto potential of
Jäger et al. The calculated virial coefficients were fitted
to polynomials in temperature, and the virial equation
of state was integrated to formulate it as a fundamen-
tal equation of state in terms of the Helmholtz energy.
Furthermore, El Hawary et al. measured the speed of
sound in liquid and supercritical krypton between 200 K
and 420 K at pressures from 6.1 MPa to 100 MPa with
an uncertainty (k = 2) of 0.005%-0.018%. At 240 K,
320 K, and 420 K, the seventh-order and eighth-order
virial equations of state agree with each other within
0.02% up to 7 MPa, 17 MPa, and 38 MPa, respectively.
In the region where the virial equation of state is suf-
ficiently converged, the calculated speeds of sound are
systematically about 0.08% lower than the experimental
data. This small difference is probably due to the uncer-
tainty of the pair potential and the simplified treatment
of nonadditive three-body interactions with the extended
Axilrod–Teller–Muto model.

At high density in the supercritical region where the
virial equation of state does not converge and in the liquid
region, thermodynamic properties can be calculated by
Monte Carlo (MC) or molecular-dynamics (MD) simula-
tions. [150] Since the generation of Markov chains in MC
simulations avoids some of the numerical errors of algo-

rithms used to integrate the equations of motion in MD
simulations, MC simulations are the preferred method
for calculating accurate values for thermodynamic prop-
erties. In statistical mechanics, there are eight basic
ensembles for performing MC or MD simulations, [151]
which are characterized by a thermodynamic potential,
three independent variables, and a weight factor, which
describes the distribution of systems in the ensemble,
in which Monte Carlo simulations of fluids can be per-
formed. Ströker et al. [152] pointed out that the NpT
ensemble, in which the number of particles, the pressure,
and the temperature are the independent variables, is
best suited for the calculation of thermodynamic prop-
erties because only ensemble averages involving the en-
thalpy and volume, but no derivatives of the potential en-
ergy with respect to volume, appear in the equations for
thermodynamic properties. This means that no deriva-
tives of the potentials are needed in a simulation.
The argon calculations of Mas et al. [144] described

earlier were later extended by performing NV T , NpT ,
and Gibbs ensemble MC simulations [153] along the
vapor-liquid coexistence curve. The parameters of the
critical point agreed with experiments to within 0.8% or
better. [154]
Ströker et al. [152] carried out semiclassical Monte

Carlo simulations of thermodynamic properties of argon
in the NpT ensemble at the subcritical isotherm 100 K
and the supercritical isotherm 300 K at pressures up to
100 MPa. The interactions between argon atoms were
described by the pair potential of Jäger et al. [155] and
the nonadditive three-body potential of Jäger et al. [123]
Quantum effects were accounted for by the Feynman–
Hibbs corrections to the pair potential. Calculated den-
sities agree with the accurate data measured by Gilgen et
al. [147] and Klimeck et al. [156] within less than 0.01%,
while calculated speeds of sound agree within less than
0.1% with the accurate experimental data of Estrada-
Alexanders and Trusler [132] at low pressure in the su-
percritical region and Meier and Kabelac [133] at high
pressure in the liquid and supercritical region.
Ströker et al. [157] also performed Monte Carlo simula-

tions for liquid and supercritical krypton. They employed
the accurate pair potential and an extended Axilrod–
Teller–Muto potential of Jäger et al. [149] to account
for nonadditive three-body interactions. Quantum effects
were again accounted for semiclassically. Since the po-
tential models for krypton are not as accurate as those
for argon, the deviations of the results for the density
and speed of sound from experimental data were larger
than for argon, about 0.2% and 0.36%, respectively.

E. Transport properties and flow metrology

In this section, we describe the impact of the ab initio
calculations of the zero-density limit of helium’s thermal
conductivity λHe and viscosity ηHe. First, we mention the
impact of λHe and λAr on temperature metrology. Then,
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we describe how accurate values of ηHe have been used
as standards to reduce the uncertainty of viscosity mea-
surements of many gases by a factor of 10. We conclude
by briefly considering the impact of accurate viscosity
data on metering process gases, for example, during the
manufacture of semiconductor chips.

As discussed in Sec. II B 1, acoustic gas thermome-
try requires accurate values of λ of the working gas at
low densities to account for the effect of the thermo-
acoustic boundary layer on the measured resonance fre-
quencies. For example, in 2010, Gavioso et al. used
helium at ∼ 410 kPa in a single-state, AGT determina-
tion of the Boltzmann constant kB prior to its definition
in 2019. [158] They reported that a relative standard
uncertainty ur(λHe) = 0.015 generated a relative stan-
dard uncertainty of the Boltzmann constant ur(kB) =
(1 to 3)× 10−6.

Today, an uncertainty of (1 to 3)× 10−6 would be the
largest contributor to a state-of-the-art determination of
the thermodynamic temperature T near 273 K. At low
temperatures, the uncertainty of measured values of λHe

is much larger. Below 20 K, the λHe data span a range on
the order of ±6%. [159] This large an uncertainty would
lead to ur(T ) > 10−5 for acoustic determinations of T .
Fortunately, the values of λHe calculated ab initio have
extraordinarily small uncertainties, e.g., ur(λHe) = 9.6×
10−6 at 273 K and ur(λHe) = 7.3 × 10−5 at 10 K. [10]
In essence, the calculated values of λHe removed ur(λHe)
from the uncertainty budgets of acoustic thermometers
based on helium-filled quasi-spherical cavities.

Cylindrical, argon-filled cavities are being developed
for high-temperature acoustic thermometry. [4, 55] These
projects require low-uncertainty values of both λAr and
ηAr. Low-uncertainty values of ηAr were generated from
accurate measurements of the ratios ηAr/ηHe in the range
200 K to 653 K and the ab initio values of ηHe. Then
λAr(T ) was obtained by combining the ratio-deduced val-
ues of ηAr(T ) with values of the Prandtl number PrAr cal-
culated from model interatomic potentials. (Pr = Cpη/λ,
where Cp is the constant-pressure heat capacity per mass.
For the noble gases, Pr is only weakly sensitive to the
potential.) [160–162] The measured ratios ηAr/ηHe were
consistent, within a few tenths of a percent, with highly
accurate measurements made with an oscillating-disk vis-
cometer [163] and with calculations of ηAr based on ab
initio Ar–Ar potentials. [164] Thus, the needs of argon-
based acoustic thermometry are now met at all usable
temperatures. To put this achievement in context, we
note that measuring the thermal conductivity of dilute
gases is difficult, even for noble gases near ambient tem-
perature and pressure. Evidence for this appears in Lem-
mon and Jacobsen’s correlation of the “best” measure-
ments of λAr and ηAr near ambient temperature (270 K
to 370 K) and pressure. [165] The average absolute de-
viations of selected measurements from their correlation
ranged from 0.24% to 1.0%. Lemmon and Jacobsen esti-
mated the uncertainty of the correlated values of λAr was
2% and the uncertainty of ηAr was 0.5%. (With the ben-

efit of ab initio calculations and ratio measurements, we
now know their correlation overestimated λAr by 0.54%
at 270 K and by 0.45% at 370 K.)
In 2012, Berg and Moldover reviewed measurements of

the viscosity of 11 dilute gases near 25 ◦C. [166] These
measurements were made using 18 different instruments
that used 5 different operating principles and produced
235 independent viscosity ratios during the years 1959
to 2012. Using the ab initio value of ηHe at 25 ◦C as a
reference, the viscosities of the 10 other gases (Ne, Ar,
Kr, Xe, H2, N2, CH4, C2H6, C3H8, SF6) were deter-
mined with low uncertainties ur(η) ranging from 0.00027
to 0.00036. These ratio-derived uncertainties are less
than 1/10 the uncertainties claimed for absolute viscos-
ity measurements, such as the measurements of ηAr cor-
related by Lemmon and Jacobsen. [165] Now, any one of
these gases can be used to calibrate a viscometer within
these uncertainties. Such ratio-based calibrations have
reduced uncertainties of η for many other gases [167] and
they have been extended to a wide range of tempera-
tures. [168] During their study of viscosity ratios, Berg
and Moldover observed that the viscosity ratios deter-
mined using one instrument (a magnetically suspended,
rotating cylinder) were anomalous. Their observation led
to an improved theory of the instrument, thereby illus-
trating the power of combining a reliable standard ηHe(T )
with precise ratio measurements. [169]
Accurate measurements of gas flows are required for

tightly controlling manufacturing processes (e.g., deliv-
ery of gases to semiconductor wafers for doping). In gen-
eral, gas flow meters are calibrated using a benign, sur-
rogate gas over a range of flows and pressures, but only
near ambient temperature. However, calibrated meters
are often used to measure/control flows of reactive pro-
cess gases [e.g., Ga(CH3)3, WF6] under conditions dif-
fering from the calibration conditions. An accurate tran-
sition between gases and conditions can be made using
laminar flow meters for which there is a physical model
(similar to the model of a capillary tube). Also needed
are data for the virial coefficients of the process gas and
the viscosity ratio [170]

ηprocess(pprocess, Tprocess)

ηsurrogate(psurrogate, Tsurrogate)
.

Thus, there is a need for viscosity-ratio data for many
difficult-to-measure gases over a moderate range of den-
sities. The acquisition of such data would be facilitated
by a reliable model for the density dependence of the
viscosity of surrogate gases such as SF6.
The initial density expansion of the viscosity has the

form η/η0 = 1 + η1ρ , where the low-density limit of
the viscosity η0 depends entirely on pair interactions and
the virial-like coefficient η1 depends on the interactions
among two and three molecules. Unfortunately, unlike
the density and dielectric virial coefficients and η0, no
rigorous theory exists for η1(T ). An approximate the-
ory was developed by Rainwater and Friend, [171, 172]
who presented quantitative results based on the Lennard-
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Jones potential. It was later extended with more accu-
rate pair potentials for noble gases. [173] While the re-
sults from the Rainwater–Friend model are in reasonable
agreement with the limited experimental data available
for the initial density dependence of the viscosity for no-
ble gases, [173] the error introduced by its approxima-
tions is unknown. We note that it is a classical theory,
which introduces another source of error for light gases
(such as helium) where quantum effects might be impor-
tant, even at ambient temperatures.

III. AB INITIO ELECTRONIC STRUCTURE
CALCULATIONS

A. Methodology of electronic structure calculations

In principle, solutions of the equations of relativistic
quantum mechanics, possibly including quantum electro-
dynamics (QED) corrections, can predict all properties
of matter to a precision sufficient for thermal metrol-
ogy applications. In practice, if the goal is to match or
exceed accuracy of experiments, the range of systems re-
duces to few-particle ones. The first quantum mechanical
calculations challenging experimental measurements for
molecules appeared only in the 1960s (e.g., Ref. 174),
while the first calculations relevant to metrology were
published in the mid-1990s. [7, 175, 176] Currently, the
branches of metrology discussed in this review are be-
coming increasingly dependent on theoretical input, as
discussed in Sec. II.

Theory improvements leading to results with decreased
uncertainties proceed along three main, essentially or-
thogonal directions: level of physics, truncation of many-
electron expansions, and basis set size. There exists an
extended hierarchy of approaches in each direction. For
the first direction, there exists a set of progressively more
accurate physical theories that can be used in calcula-
tions relevant for metrology, from Schrödinger’s quantum
mechanics for electrons’ motion in the field of nuclei fixed
in space to relativistic quantum mechanics and to QED.
The second direction is relevant for any many-electron
system: one has to choose a truncation of the expansion
of the many-electron wave function in terms of virtual-
excitation operators at the double, triple, quadruple, etc.
level or, equivalently in methods that use explicitly corre-
lated bases (depending explicitly on interelectronic dis-
tances), to take into account only correlations of two,
three, four, etc. electrons simultaneously. Third, for any
given theory and many-electron expansion level, there are
several methods of solving quantum equations specific
for this level; in particular different types of basis sets
are used to expand wave functions, resulting in different
magnitudes of uncertainties from such calculations.

The lowest theory level is Schrödinger’s quantum
mechanics for electrons moving in the field of nuclei
fixed in space, i.e., quantum mechanics in the Born–
Oppenheimer (BO) approximation. At the next level,

one usually first accounts for the relativistic effects. Post-
BO treatment of the Schrödinger equation can be limited
to computations of the so-called diagonal adiabatic cor-
rection, which is the simplest method of accounting for
couplings of electronic and nuclear motions, or it can
fully include nonadiabatic effects, i.e., account for the
complete couplings of these two types of motion. The
highest level of theory applied in calculations relevant to
metrology is QED, and it can be implemented at several
approximations labeled by powers of the fine-structure
constant α.
The many-electron expansion starts at the

independent-particle model, i.e., at the Hartree–Fock
(HF) approximation, but this level is never used alone in
calculations for metrology purposes. For systems with a
few electrons (the current practical limit is about 10),
one can use the FCI expansion that potentially provides
exact solutions of Schrödinger’s equation (provided the
orbital basis set is close to completeness). In FCI, the
wave function for an N -electron system is represented as
a linear combination of Slater determinants constructed
from “excitations” of the ground-state HF determinant
|Φ0⟩

|Ψ⟩ = c0|Φ0⟩+
∑
r,a

cra|Φr
a⟩+

∑
r<s,a<b

crsab|Φrs
ab⟩+∑

r<s<t,a<b<c

crstabc|Φrst
abc⟩+ . . . , (18)

up to N -tuple excitations, where |Φr
a⟩ represents a singly

excited Slater determinant formed by replacing spinor-
bital ϕa with ϕr. Similarly, |Φrs

ab⟩ represents a doubly
excited Slater determinant formed by replacing spinor-
bital ϕa with ϕr and spinorbital ϕb with ϕs, and so on
for higher excited determinants. The linear coefficients
(CI amplitudes) are computed using the Rayleigh–Ritz
variational principle. While the FCI method is concep-
tually straightforward, the computation time it requires
scales with the number of electrons as N !, and there-
fore it is computationally very costly. One can limit the
expansion in Eq. (18) to a subset of excitations (for ex-
ample, retaining only single and double excitations leads
to a method denoted CISD), but truncated expansions
are not size extensive. This means that the CISD en-
ergy computed for very large separations between two
monomers (atoms or molecules) is not equal to the sum
of monomers’ energies computed at the CISD level. Only
FCI is free of this problem. Thus, truncated CI expan-
sions are not appropriate for calculations of interaction
energies.
Another potentially exact approach is to expand the

wave function in an explicitly correlated all-electron ba-
sis set. The set most often used in metrology-related
applications is the basis set of explicitly correlated Gaus-
sian (ECG) functions. If basis functions involve all elec-
trons, expansions in this basis approximate solutions of
Schrödinger’s equation in the BO approximation. For
He2, a four-electron system, the expansion can be writ-
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ten as [177]

Ψ = A4 Ξ
00
4 P̂

{
c0ϕ0 +

K∑
k=1

ck ϕk(r1, r2, r3, r4)

}
, (19)

where A4 is the four-electron antisymmetrizer, Ξ00
4 =

(αβ−βα)(αβ−βα) is the standard four-electron singlet

spin function, P̂ is the point-group symmetry projector,
P̂ = 1

2 (1 + ı̂) with ı̂ inverting the wave function through
the geometrical center, ck are variational parameters, and
ϕk, k > 0 are ECG basis functions. The function ϕ0 is
the product of ECG functions for the two helium atoms.
The explicit form of ϕk, k > 0, functions is

ϕk(r1, r2, r3, r4) =

4∏
i=1

e−αki|ri−Aki|2
4∏

i>j=1

e−βkij |ri−rj |2 ,

(20)
where αki, βkij , and Aki = (Xki, Yki, Zki) are nonlinear
variational parameters. For a given set of nonlinear pa-
rameters, the linear parameters are obtained using the
Rayleigh–Ritz variational method. The simplest way to
optimize the nonlinear ones is to use the steepest-descent
method, recalculating the linear parameters in each step
of this method. In actual applications, significantly more
advanced optimization methods are used.

Currently, the standard approach to account for elec-
tron correlation effects is the coupled cluster (CC)
method with single, double, and noniterative triple exci-
tations [CCSD(T)]. To reduce uncertainties of CCSD(T),
one can use the CC methods that include full triple, T,
noniterative quadruple, (Q), and full quadruple, Q, exci-
tations. The CC method represents the wave function in
an exponential form

|ΨCC⟩ = eT̂ |Φ0⟩, (21)

where the operator T̂ is the sum of excitation operators

T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂N . (22)

The operators Ti can be written in terms of pairs of cre-

ation r̂†, ŝ† and annihilation â, b̂ operators replacing the
occupied spinorbitals ϕa and ϕb by the virtual ones ϕr

and ϕs. For the two lowest ranks, we have

T̂1 =
∑
ar

tra r̂†â (23)

T̂2 =
1

(2!)2

∑
abrs

trsab r̂†ŝ†b̂â. (24)

The excitation operators r̂†â, r̂†ŝ†b̂â, etc. acting on the
ground-state determinant produce the same excited de-
terminants as those appearing in Eq. (18). For example,

r̂†ŝ†b̂â|Φ0⟩ = |Φrs
ab⟩. (25)

However, the amplitudes t are different from the am-
plitudes c. The former amplitudes are obtained by using

the expansion (21) in the Schrödinger equation and pro-
jecting this equation with subsequent determinants from
Eq. (18). Since the resulting set of equations is nonlin-
ear, the solution is obtained in an iterative way. If all
the excitation operators are kept in Eq. (22), the method
is equivalent to the FCI method, but this expansion is
almost always truncated. The simplest CC approach is
that of CC doubles (CCD), in which T̂ is truncated to

T̂CCD = T̂2. (26)

The simplest extension of this model is obtained by in-
cluding also single excitations (CCSD), i.e.,

T̂CCSD = T̂1 + T̂2. (27)

The CCSD method is most often used with orbital basis
sets, but can also be used with ECGs, which are then
used to expand two-electron functions resulting from the
actions of T2 and are called in this context Gaussian-type
geminals (GTGs). Higher-rank approximations are

T̂CCSDT = T̂1 + T̂2 + T̂3, (28)

T̂CCSDTQ = T̂1 + T̂2 + T̂3 + T̂4. (29)

An approximation to CCSDT is a method denoted as
CCSD(T), where the coefficients t of single and double
excitations in Eqs. (23) and (24) are computed iteratively
while those for triple excitations are evaluated using
perturbation theory. A similar approximation, denoted
CCSDT(Q), can be made for the CCSDTQ method. In
contrast to the truncated CI expansions, the truncated
CC expansions are always size extensive. This results
from the fact that the exponential ansatz of Eq. (21) can
be factored for large separations between subsystems into
a product of exponential operators for subsystems. The
CC method is applied to interatomic or intermolecular
interactions in the supermolecular fashion, i.e., subtract-
ing monomers’ total energies from the total energy of a
cluster. Due to size extensivity, the resulting potential-
energy surface dissociates correctly.

Another option for computing interaction energies
at theory levels similar to truncated CC is symmetry-
adapted perturbation theory (SAPT). [178–181] The ba-
sic assumption of SAPT is the partitioning of the total
Hamiltonian H of a cluster into the sum of the Hamilto-
nians of separated monomers

H0 = HA +HB + . . . (30)

and of the perturbation operator V that collects Coulomb
interactions of the electrons and nuclei of a given
monomer with those of the other monomers:

V = VAB + VAC + VBC + . . . (31)

The solution of the zeroth-order problem, i.e., of the
Schrödinger equation with H0

H0Φ0 = E0Φ0, (32)
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is then the product of the wave functions of free, nonin-
teracting monomers. This product is not fully antisym-
metric since permutations of electrons between different
monomers do not result only in a change of the sign of
the wave function, i.e., Φ0 does not satisfy Pauli’s ex-
clusion principle. For large intermonomer separations
R, one can ignore this problem and use the Rayleigh–
Schrödinger perturbation theory (RSPT), the simplest
form of intermolecular perturbation theory. Unfortu-
nately, RSPT leads to unphysical behavior of the in-
teraction energy at short R as it fails to predict the
existence of the repulsive walls on the potential-energy
surfaces. This failure is the result of the lack of cor-
rect symmetry of the wave function under exchanges of
electrons between interacting monomers. Thus, to de-
scribe interactions everywhere in the intermonomer con-
figuration space, one has to perform symmetry adap-
tation, i.e., antisymmetrization, and this is the origin
of the phrase “symmetry-adapted”. There are several
ways to do it, but the simplest is to (anti)symmetrize
the wave functions of the RSPT method. This leads to
the symmetrized Rayleigh–Schrödinger (SRS) approach,
[182] which is the only SAPT method used in practice.
For a dimer, the interaction energy is then expressed as
the following series in powers of V :

ESAPT
int = E

(1)
elst + E

(1)
exch + E

(2)
ind +

E
(2)
exch−ind + E

(2)
disp + E

(2)
exch−disp + . . . ,(33)

where the superscripts denote the powers of V (orders of
perturbation theory) and different terms of the same or-
der can be identified as resulting from different physical
interactions: electrostatic (elst), exchange (exch), induc-
tion (ind), and dispersion (disp). When SAPT is applied
to many-electron systems, monomers can be described at
various levels of electronic structure theory: from the HF
level to the FCI level. This leads to a hierarchy of SAPT
levels of approximations depending on treatment of in-
tramonomer electron correlation. If the monomers are
approximated at an order n of many-body perturbation
theory (MBPT) with the Møller–Plesset (MP) partition
of the Hamiltonians HA and HB , denoted as MPn, we
can write

E(i) ≈
n∑

j=0

E(ij), (34)

which becomes an equality when n → ∞.
The third direction determining the accuracy of elec-

tronic structure calculations involves the size of the basis
sets used to expand wave functions. In the CC and CI
approaches, the standard technique is to use products of
orbital (one-electron) basis sets. Many such basis sets are
available; the ones most often used in metrology-related
calculations are the correlation consistent (cc) basis sets
introduced by Dunning. [183] These basis sets are de-
noted by cc-pVXZ: cc polarized Valence (i.e., optimized
using a frozen-core approximation), X- Zeta, where X =

D, T, Q, 5, . . . is the so-called cardinal number determin-
ing the maximum angular momentum of orbitals. Such
basis sets can be augmented by an additional set of dif-
fused functions and are then denoted as aug-cc-pVXZ, or
two such sets: daug-cc-pVXZ. Another option is to use
explicitly correlated basis sets in the CC method or to
expand the whole many-electron wave function in such a
basis set. Explicitly correlated basis sets provide a much
faster convergence than products of orbital basis sets, but
in most cases require optimizations of a large number of
nonlinear parameters.

In order to achieve some target size of uncertainties,
one has to choose a proper level in each of the three hi-
erarchies defined earlier. For example, it is possible to
perform an FCI calculation for a 10-electron system such
as Ne. However, since FCI calculations scale factorially
with the number of orbitals, only very small basis sets can
be used, resulting in a large uncertainty of the results.
Consequently, a better strategy is to use the CCSD(T)
method which allows applications of the largest orbital
bases available for a system like Ne2. The computed in-
teraction energy will be accurate to about four significant
digits relative to the CCSD(T) limit, but will have a fairly
large error, of the order of 1–2%, with respect to the ex-
act interaction energy at the non-relativistic BO level. In
contrast, FCI calculations for Ne2 employing the smallest
sensible basis set of augmented double-zeta size, which
would be extremely difficult to perform, would have an
error of the order of 40% (such calculations might still be
useful in hybrid approaches discussed below).

The orbital basis sets consist of families of bases of
varying size. One usually carries out calculations in
two or more such basis sets and then performs approx-
imate extrapolations to the complete basis set (CBS)
limit. In addition to the standard extrapolations, which
assume the X−3 decay of errors, extrapolations using
very accurate ECG results can be performed. [184–186]
CCSD(T)/CBS results may have sufficiently small un-
certainties to make calculations of relativistic and diago-
nal adiabatic corrections necessary, i.e., these corrections
may be of the same order of magnitude as the uncertain-
ties of the CCSD(T)/CBS results. To reduce the errors
resulting from the truncation of the many-electron ex-
pansion, one can follow CCSD(T)/CBS calculations by
CCSDT(Q) or FCI ones in smaller basis sets. These ef-
fects are then included in an incremental way, i.e., by
adding the difference between FCI and CCSD(T) ener-
gies computed in the same (small) basis set.

Accurate solutions of quantum equations are followed
by estimates of uncertainties, absolutely necessary for
metrology purposes. The latter step is often more time-
consuming than the former. One should emphasize that
theoretical estimates of uncertainties are different from
statistical estimates of uncertainties of measurements
and in particular one cannot assign a rigorous confidence
level to them, although for purposes of metrology one
usually assumes that theoretical uncertainties are equiv-
alent to k = 2 expanded uncertainties (95% confidence
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level). This assignment of uncertainty is not rigorous,
but is based on the expert judgment of those who de-
velop the potentials, who usually try to err on the side
of conservatism.

A theoretical estimate of uncertainty consists of sev-
eral elements. The most rigorous and reliable estimates
are those of basis set truncation errors derived from the
observed patterns of convergence in basis set. Much
more difficult are estimates of uncertainties resulting
from truncations of many-electron expansions. Such esti-
mates can sometimes be made by performing higher-level
calculations at a single point on a potential-energy sur-
face, but one most often uses analogy to similar systems
for which higher-level calculations have been performed.
The same approach can be used to estimate the neglected
physical effects, for example, to estimate the uncertainty
due to relativistic effects.

Solutions of the electronic Schrödinger equation for a
given nuclear configuration of a dimer or a larger cluster,
providing accurate quantum mechanical descriptions of
such systems, are only the first step in theoretical work
of relevance to metrology, as most measured quantities
discussed in this review are either bulk properties or re-
sponse properties of atoms and molecules. In the former
case, i.e., to predict properties of gases or liquids rele-
vant for metrology, one needs to know energies of such
systems for a large number configurations, i.e., for dif-
ferent geometries of clusters. This issue is approached
by using the many-body expansion, where here the bod-
ies are atoms or molecules forming the cluster, start-
ing from two-body (pair) interactions, followed by three-
body (pairwise nonadditive) interactions. The approach
can be continued to higher-level many-body interactions,
but so far this has not been done. The ab initio energies
are usually fitted to analytic forms only for the two- and
three-body interactions.

In addition to energies, metrology applications often
require knowledge of accurate values of various prop-
erties of atoms and molecules, mainly the static and
dynamic polarizabilities and magnetic susceptibilities.
These quantities can be computed as analytic energy
derivatives with respect to appropriate perturbations.
Properties of a single atom or molecule change in con-
densed phases and the so-called interaction-induced cor-
rections to properties of isolated atoms or molecules are
of interest to metrology.

As already mentioned above, although Schrödinger’s
quantum mechanics at the BO level provides the bulk of
the physical values of interest to metrology, computations
of various effects beyond this level are often needed to re-
duce uncertainties of these properties to the magnitude
needed for metrology standards. We will refer to these
as post-BO effects. It should be stressed that we really
have in mind here the post-nonrelativistic-BO level, since
both the relativistic and QED corrections for molecules
are always computed using the BO approximation. One
goes beyond this approximation when computing adia-
batic and nonadiabatic corrections. Any reasonably de-

tailed description of methodologies used in post-BO cal-
culations would be too voluminous for the present review.
Therefore, we refer the reader to the original papers, in
particular Refs. 10, 11, 84, 137, 177, 187–192.
Systems of interest to thermodynamics-based precision

metrology are mainly noble-gas atoms and their clusters,
and this section will be restricted to such systems, with
the majority of text devoted to helium. Apart from being
the substance whose behavior is closest to the ideal gas,
it is also the only system where theory can currently pro-
vide values of physical quantities that are generally more
accurate than the measured ones. Nevertheless, neon
and argon are also of significant interest since they may
be used in secondary standards to improve instrument
sensitivity or ease of use. Although for most properties
computations for neon and argon have larger uncertain-
ties than the best measurements, such results are still
useful as independent checks of experimental work and
to guide extrapolation beyond the measured range.

1. Importance of explicitly correlated basis sets

The current theoretical results for helium owe their
very small uncertainties mostly to the use of explicitly
correlated basis sets. The calculations involving helium
atoms are probably one of the best examples where an
important science problem was solved using these bases.
To clearly show where this field would be without the use
of such basis sets, we discuss in this subsection numeri-
cal comparisons of ECG and orbital calculations for He2,
performed recently in Ref. 193. The majority of molecu-
lar electronic structure calculations are carried out using
orbital basis sets. This means that many-electron wave
functions are expanded in products of orbitals. The sim-
plest example is the CI method discussed earlier, where
the wave function is a linear combination of Slater de-
terminants built of orbitals that are usually obtained by
solutions of HF equations. However, expansions in or-
bital products converge slowly due to the difficulty of
reproducing the electron cusps in wave functions.
A way around this difficulty is to use bases that de-

pend explicitly on r12 = |r2 − r1|, the distance between
electrons. Bases of this type are called explicitly corre-
lated. For few-electron systems, such bases are mostly
used to directly expand the N -electron wave functions
of the nonrelativistic BO approximation. The explicitly
correlated bases are also often used for many-electron
systems within a perturbative or CC approach. [194, 195]
For two-electron systems, one uses Hylleraas bases [196]
with polynomial-only dependence on r12 or, recently
more frequently, expansions in purely exponential func-
tions, called Slater geminals. [84, 192] Bases combin-
ing both types of dependence on r12 are also sometimes
employed [197]. For more than two electrons, integrals
needed for such bases become very expensive and bases

involving Gaussian correlation factors e−γr2ij , i.e., ECG
bases, are mostly used. For a review of the ECG ap-
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proach, see Refs. 194 and 198.
Since expansions in explicitly correlated bases of

the type described above approach solutions of the
Schrödinger equation, the equivalent orbital calculations
should be performed at the FCI level. As already men-
tioned, FCI calculations scale as N ! with the number
of electrons and therefore are the most expensive of all
orbital calculations. Even for He2, FCI calculations can-
not be performed using the largest available orbital basis
sets. Therefore, the optimal orbital-based strategy is a
hybrid one consisting of performing calculations in the
largest basis sets at a lower level of theory, for example,
at the CCSD(T) level, and adding to these results FCI
corrections computed in smaller basis sets.

The BO energies computed in ECG basis sets in
Ref. 177 established a new accuracy benchmark for the
helium dimer; see the description of these calculations in
Sec. III C 1. These ECG interaction energies were com-
pared in Ref. 193 to those computed in orbital bases
at the hybrid CCSD(T) plus FCI level. The largest
available basis sets were applied. For most points, the
CCSD(T)+∆FCI approach gives errors nearly two orders
of magnitude larger than the ECG estimated uncertain-
ties. For a couple of points, the CCSD(T)+∆FCI results
are fairly close to the ECG results, but this is mainly
due to the former method overestimating the magnitude
of the interaction energy at small R and underestimat-
ing at large R. Since these points are near the van der
Waals minimum, some previous evaluations of the perfor-
mance of orbital methods restricted to this region might
have been too optimistic. When the whole range of R
is considered, CCSD(T)+∆FCI is no match for the ECG
approach. One should also realize that any improvements
of accuracy of the CCSD(T)+∆FCI approach would re-
quire a huge effort; in particular, one would have to de-
velop quadruple-precision versions of all needed orbital
electronic structure codes.

B. Helium atom polarizability

One of the properties of helium required by preci-
sion measurement standards [199–201] is the helium
atom polarizability, both static and dynamic (frequency-
dependent). Nonrelativistic calculations of the static
polarizability date back to the 1930s and reached an
accuracy of 0.1 ppb in 1996 calculations using Hyller-
aas basis sets. [202] However, the relativistic correction,
which is proportional to α2, could be expected to con-
tribute at the 60 ppm level relative to the total polar-
izability. Unfortunately, the values of these corrections
published before 2001 differed significantly from one an-
other. These discrepancies were resolved by accurate
calculations of Refs. 187 (using GTGs) and 203 (using
Slater geminals) with uncertainties of 20 ppb relative to
the total polarizability. This work used the Breit–Pauli
operator, [204] whose expectation values were computed
with the ground-state wave function for the nonrelativis-

tic Hamiltonian.

The authors of Ref. 203 also computed the QED cor-
rection of order α3, which turned out to be significant,
amounting to about 20 ppm relative to the total po-
larizability. However, a part of the α3 QED correction
to the polarizability, resulting from the so-called Bethe
logarithm, was only roughly estimated due to the very
difficult to compute second electric-field derivative of a
second-order-type perturbation theory expression involv-
ing the logarithm of the Hamiltonian. The first com-
plete calculation of Bethe-logarithm contribution to he-
lium polarizability was reported in Ref. 188. As such a
calculation had never been done before, the algorithms
and their numerical implementations had to be devel-
oped from scratch. The term containing the electric-field
derivative of Bethe’s logarithm turned out to be unex-
pectedly small, representing only about 0.6% of the total
α3 QED correction. Thus, this correction still makes a
contribution of about 20 ppm to the total polarizability.

Further improvement of the accuracy of helium’s static
polarizability was achieved in Ref. 192, which concen-
trated on the second derivative of the Bethe logarithm
with respect to the electric field. This quantity can be
obtained in a couple of ways, with completely different
algorithms. The goal was to achieve agreement between
two such approaches and also with Ref. 188. This goal
was met, providing a reliable cross-validation for both
approaches. The results of Ref. 192, providing currently
the most accurate theoretical determination of the polar-
izability of helium, are shown in Table I. The value of the
α3 QED contribution computed in Ref. 188 differs from
the current one by only 0.03% or 7 ppb relative to the
total polarizability. This error is much smaller than the
current uncertainty of the α4 QED contribution, which
is estimated to amount to 0.1 ppm; see Table I.

Calculations of Refs. 187 and 188 were extended to
frequency-dependent polarizabilities [84, 191]. This po-
larizability was expanded in inverse powers of the wave-
length λ up to λ−8. Different levels of theory were used
for each power of λ: up to α4 for the static term, α2 for
inverse powers 2 through 6 (only even powers contribute),
and nonrelativistic for 8. The dynamic polarizability at
the He-Ne laser wavelength of 632.9908 nm had an un-
certainty of 0.1 ppm. This uncertainty results entirely
from the uncertainty of the static polarizability. The lat-
ter was reduced compared to Ref. 188 mainly because
the work of Ref. 205 has shown that the error of the so-
called one-loop approximation used to evaluate the α4

terms is smaller than previously expected, amounting to
only about 5% when applied to the excitation energies of
helium. Another small change in the static polarizabil-
ity was due to a slightly improved value of the Bethe-
logarithm contribution; see also Ref. 192.

The polarizabilities computed in Refs. 84, 187, 188, and
191 had uncertainties orders of magnitude smaller than
the best experimental results. However, recently a
new, very accurate measurement of this quantity was
published. [63] The measured value of the molar po-
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TABLE I. Static polarizability of 4He (in a3
0, where a0 is

the Bohr radius) including relativistic and QED corrections.
When no uncertainty is given, the last digit is certain. m is
the mass of the helium nucleus. ∂2

ϵ ln k0 denotes the second
derivative of the Bethe logarithm with respect to the electric
field

Contribution Ref. 192

Nonrelativistic 1.383 809 986 4
α2 relativistic −0.000 080 359 9
α2/m relativistic recoil −0.000 000 093 5(1)
α3 QED − ∂2

ϵ ln k0 term 0.000 030 473 8
∂2
ϵ ln k0 term 0.000 000 182 2

α3/m QED recoil 0.000 000 011 12(1)
α4 QED 0.000 000 56(14)
Finite nuclear size 0.000 000 021 7(1)
Total 1.383 760 78(14)

larizability, 0.517 254 4(10) cm3/mol, is consistent with
the theoretical molar polarizability computed from the
atomic one listed in Table I and equal to 0.517 254 08(5)
cm3/mol. The combined uncertainty is more than three
times the difference while the experimental uncertainty
is 20 times larger than the theoretical one.

When a helium atom is in a gas or condensed phase,
one can expect that its polarizability changes due to in-
teractions with other atoms. More precisely, the polar-
izability of a helium cluster is not equal to the sum of
polarizabilities of helium atoms. This change is often re-
ferred to as collision-induced polarizability and for atoms
is a function of interatomic distance. For a pair of helium
atoms, reliable values of this quantity were computed
in Ref. 206, reconciling previously published inconsistent
calculations. The results of Ref. 206 were used to com-
pute the second [79] and third [207] dielectric virial co-
efficients of helium. Very recently, the collision-induced
three-body polarizability of helium was computed. [208]

Due to inversion symmetry, a system consisting of one
or two helium atoms cannot have a dipole moment in the
BO approximation. However, configurations of three or
more atoms may have a non-zero dipole moment, which
in turn influences the value of the third dielectric virial
coefficient. [207] Presently, the only ab initio description
of the three-body dipole moment of noble gases is the one
developed by Li and Hunt. [209] However, the results of
Ref. [209] apply only at large separations, and do not
have associated uncertainties. A dipole-moment surface
for the helium trimer with rigorously defined uncertainty
is currently being developed. [210]

C. Helium dimer potential

1. Born–Oppenheimer level

The interest in the helium dimer potential is nearly as
old as quantum mechanics. In 1928, Slater [211] devel-
oped the first potential for this system, which gave the

interaction energy of −8.8 K at the internuclear distance
R = 5.6 bohr (1 bohr ≈ 52.91772109 pm). There is a
wide range of helium dimer potentials available in the
literature; see Ref. 212 for a comparison of bound-state
calculations using a large number of potentials. Figure 6
illustrates the remarkable progress in accuracy of pre-

FIG. 6. Comparison of ECG BO interaction energies Eint

(in kelvin) at R = 4.0, 5.6, and 7.0 bohr with those from
selected earlier potentials. For empirical potentials (HFDHE2
and HFD-B), the sum of post-BO corrections was subtracted
in each case. The energies are plotted as error bars from Eint−
σ to Eint+σ (with dots at E) whenever uncertainty estimates
σ are available and as squares otherwise (for three cases at
R = 7.0 bohr, the energies are not available). The horizontal
lines denote the positions of the BO energies calculated in
Ref. 177. For acronyms, see the text.

dictions achieved since 1979. Empirical potentials domi-
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nated the field until the end of the 1980s; the two most
widely used ones, HFDHE2 [213] and HFD-B, [214] were
developed by Aziz et al. The first really successful ab
initio one was the LM-2 potential (published only in a
tabular form) developed by Liu and McLean. [215] Those
authors performed CI calculations and, by analyzing the
configuration space and basis set convergence, obtained
extrapolated interaction energies with estimated uncer-
tainties. Although these estimates were rather crude and
do not embrace the current best values for most values
of R, cf. Fig. 6, they are reasonable.

Aziz and Slaman [216] used the HFD-B functional form
with refitted parameters to “mimic” the behavior of the
LM-2 potentials, of the unpublished ab initio data com-
puted by Vos et al., [217] and of the small-R Green-
function Monte Carlo (GFMC) data [218] to obtain po-
tentials denoted as LM2M1 and LM2M2, differing by as-
suming, respectively, the smallest and the largest well
depth of the LM-2 potential as determined by the esti-
mates of uncertainty. The parameters of these poten-
tials were not fitted directly to ab initio data, but cho-
sen by trial and error to reproduce both theoretical data
and measured quantities to within their error bars. The
LM2M2 potential was considered to be the best helium
potential until the mid-1990s, when purely ab initio cal-
culations took the lead. Among the latter ones, the TTY
potential developed by Tang et al. [219] has a remark-
ably simple analytical form based on perturbation the-
ory. The HFD-B3-FCI1 potential was obtained by Aziz et
al., [7] who used the HFD-B functional form with its orig-
inal parameters adjusted so that the new potential runs
nearly through the ab initio data points. These points
were GFMC results of Ref. 218 and the FCI results of
van Mourik and van Lenthe. [220] No uncertainties were
assigned to HFD-B3-FCI1, and Fig. 6 shows that it was
about as accurate as LM2M2.

The SAPT96 potential [175, 176] opens an era of he-
lium potentials based mostly on calculations with ex-
plicitly correlated functions. It was the first fully first-
principles He2 potential with a systematic estimation of
uncertainties. The potential was obtained using a two-
level incremental strategy. The leading SAPT corrections
(the complete first-order and the bulk of the second-
order interaction energies) were computed using GTG
basis sets. The GTG-based variant of SAPT was devel-
oped in Refs. 221–225. Higher-order SAPT corrections
were computed using the general SAPT program based
on orbital expansions. [226–230] Large orbital basis sets
including up to g-symmetry functions and midbond func-
tions (placed between the nuclei) [231] were used. The re-
maining many-electron effects were computed using both
SAPT based on FCI-level monomers, with summations
to a very high order of perturbation theory (using He2-
specific codes), and supermolecular FCI calculations in
small orbital basis sets. It is interesting to note that
the actual errors of the SAPT96 potential relative to the
current best results turned out to be completely domi-
nated by the residual orbital (rather than GTG) contri-

butions. For instance, at R = 5.6 bohr, the orbital part
constitutes only −1.81 K out of −11.00 K, but its error
was −0.05 K out of the total SAPT96 error of −0.06 K.
The factor of 2 underestimation of the uncertainties seen
in Fig. 6 for R = 5.6 bohr was entirely due to this is-
sue. SAPT96 is about as accurate as LM2, except for
large R where it is more accurate, with SAPT96 overes-
timating and LM2 underestimating the magnitude of in-
teraction energy. With an added retardation correction,
SAPT96 was used (under the name SAPT2) by Janzen
and Aziz [232] to calculate properties of helium and found
to be the most accurate helium potential at that time.

In 1999, van Mourik and Dunning [233] calculated
CCSD(T) energies in basis sets up to daug-cc-pV6Z,
CCSDT − CCSD(T) differences in the daug-cc-pVQZ
basis set, and FCI − CCSDT differences in the daug-
cc-pVTZ basis set. The CCSD(T) energies were CBS-
extrapolated and then refined by adding a correction
equal to the R-interpolated differences between highly
accurate CCSD(T)-R12 results (available at a few dis-
tances in Ref. 234) and the obtained CBS limits. The
CC-R12 methods are analogous to CC-GTG methods,
but the explicit correlation factor enters linearly. [195]
Ass seen in Fig. 6, the results of Ref. 233 were more
accurate than any previously published ones, but no es-
timates of uncertainties were provided and the computed
interaction energies were not fitted.

Supermolecular ECG-based calculations for He2
started to appear in the late 1990’s, [235, 236] and were
initially aimed at providing upper bounds to the interac-
tion energies (by subtracting essentially exact monomer
energies), as the authors did not attempt to extrapolate
their results to the CBS limits. Another application of
explicitly correlated functions to the He–He interaction
was a series of papers by Gdanitz, [237–239] who used the
multireference averaged coupled-pair functional method
with linear r12 factors, r12-MR-ACPF. The extrapolated
results from the last paper of the series, Ref. 239 (denoted
“Gdanitz01” in Fig. 6), were among the most accurate
results available at that time. However, the reported un-
certainties were strongly underestimated at shorter dis-
tances (as much as 5 times at 5.6 bohr and 17 times at
4.0 bohr).

Another important series of papers was published by
Anderson et al., [240–242] who reported quantum Monte
Carlo energies with progressively reduced statistical un-
certainties. Although these results were obtained only
for a few internuclear distances, they represented very
valuable benchmarks for mainstream electronic structure
methods. In fact, until the publication of the CCSAPT07
potential [185], the result from Ref. 242, −10.998(5) K
(see “Anderson04” in Fig. 6), was the most accurate value
available at 5.6 bohr.

In Refs. 243 and 244, a hybrid supermolecular
ECG/orbital method was applied to the helium dimer.
The bulk of the correlation effect on the interaction en-
ergy, at the CCSD level, was evaluated using GTG func-
tions and the method developed in Refs. 245–256. The
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nonlinear parameters were optimized at the MP2 level.
The effects of noniterative triple excitations (the “(T)”
contribution), i.e., the differences between CCSD(T) and
CCSD energies, were calculated using large orbital ba-
sis sets (up to aug-cc-pV6Z with bond functions and
daug-cc-pV6Z) and extrapolated to the CBS limits. Fi-
nally, the FCI corrections (differences between FCI and
CCSD(T) energies) were obtained in basis sets up to aug-
cc-pV5Z with bond functions and daug-cc-pV5Z, and also
extrapolated. Results for three distances were reported
in Ref. 244 (see “Cencek04” in Fig. 6).

Hurly and Mehl (HM) analyzed the best existing ab
initio data for the helium dimer and created a new poten-
tial [9] representing a compromise based on uncertainties
of existing data and their mutual agreement (for instance,
as can be seen in Fig. 6, the result from Ref. 244 was used
at R = 7.0 bohr). The diagonal adiabatic corrections
from Ref. 257 were added to the final potential, which
was then used to calculate the second virial coefficient,
viscosity, and thermal conductivity of helium. HM rec-
ommended that the values of these thermophysical prop-
erties should serve as standards for measurements.

The CCSAPT07 potential [185] based on the hybrid
GTG/orbital method, published in 2007, was a signifi-
cant improvement over the previous complete potential
of this type, i.e., the SAPT96 potential. [175, 176] CC-
SAPT07 combined three different computational tech-
niques, according to the criterion of the lowest uncer-
tainty available for a given internuclear distance. Vari-
ational four-electron ECG calculations were used for
R ≤ 3.0 bohr and SAPT+FCI was employed for R > 6.5
bohr. At intermediate distances, the hybrid supermolec-
ular method developed in Refs. 243 and 244 and de-
scribed above provided the highest accuracy. Compared
to Refs. 243 and 244, several computational improve-
ments were introduced, [184] resulting in significantly
reduced uncertainties. The SAPT calculations [185] of
CCSAPT07 followed the SAPT96 recipe, but also with
larger basis sets and some computational improvements.
The uncertainties of this potential were smaller than
some effects that are neglected at the nonrelativistic BO
level. Calculations of these effects will be discussed in
Sec. III C 2.

Another highly accurate potential, by Hellmann, Bich,
and Vogel (HBV), [258] appeared at almost the same time
as CCSAPT07. Those authors used very large basis sets
(up to daug-cc-pV8Z with added bond functions at the
CCSD level, and gradually smaller bases for higher lev-
els of theory up to FCI) followed by CBS extrapolations.
After augmenting the HBV potential with adiabatic, ap-
proximate relativistic, and retardation corrections, the
authors used it to calculate thermophysical properties
of helium. [259] However, the uncertainties of the HBV
potential were not estimated, which restricts its useful-
ness. A direct accuracy comparison between the pure
BO component of HBV and CCSAPT07 is now possible
because of the much higher accuracy of the present-day
benchmark energies, [177] and we performed such analy-

sis using the values reported in the last column of Table
3 in Ref. 258. Out of 11 distances for which all three
energies are available, the largest relative error (with re-
spect to the results of Ref. 177), equal to 0.90%, occurs
for the CCSAPT07 energy at 5.0 bohr, while the error
of the HBV energy at this distance is 0.48%. If one ex-
cludes this distance, which is close to where the helium
potential crosses zero, and calculates the average relative
error at the remaining distances, one obtains 0.007% for
CCSAPT07 and 0.011% for HBV. Therefore, both poten-
tials exhibit a similar accuracy and represent a significant
improvement over all previously published helium dimer
potentials.

The current most accurate nonrelativistic BO poten-
tial for the helium dimer (labeled as “Przybytek17” in
Fig. 6) was published in Ref. 177; see Ref. 193 for details
of these calculations. The significant improvement over
all previous potentials was achieved by a combination of
three factors. First, a pure ECG approach was used,
i.e., with all four electrons explicitly correlated and no
contributions calculated with orbital methods. Indeed,
the residual errors of the older hybrid ECG/orbital po-
tentials, SAPT96 [175, 176] and CCSAPT07, [185] were
dominated by insufficient basis set saturation of the rel-
atively small orbital contributions. Second, the use of
the monomer contraction method, [189, 260] i.e., the use
of the product of helium atoms wave functions as one of
the functions in the basis set, dramatically improved the
energy convergence with respect to the ECG expansion
size. Furthermore, a replacement of the simple prod-
uct of monomer wave functions by a more compact sum
of four-electron functions optimized for two noninteract-
ing helium atoms [206, 261] reduced the computational
cost at the nonlinear optimization stage. Third, a near-
complete optimization of nonlinear parameters in large
basis set expansions was possible due to this reduced cost
and due to other improvements of the optimization algo-
rithm.

2. Physical effects beyond the nonrelativistic
Born–Oppenheimer level

With the small uncertainties of the CCSAPT07 BO po-
tential, [185] it became clear that a further reduction of
uncertainties required inclusion of post-BO effects. The
first calculation of all relevant such effects for the whole
potential-energy curve was presented in Ref. 137 and
later improved in Refs. 10, 11, and 177. Some post-BO
effects for the whole curve were included even earlier in
Refs. 258 and 259, but this work omitted non-negligible
two-electron terms in the α2 relativistic and α3 QED
corrections. The helium dimer potentials of Refs. 11 and
177 include at the post-BO level the diagonal adiabatic
correction, relativistic corrections (earlier computed in
Ref. 189, but for the minimum separation only), the QED
correction, and the retardation effect (a long-range QED
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correction)

V (R) = VBO + Vad + Vrel + VQED + Vret. (35)

In Refs. 10 and 137, all the post-BO corrections
were computed in the supermolecular way as the differ-
ences of expectation values of appropriate operators with
the dimer and monomer wave functions, except at the
CCSD(T) level, see below. The nuclear kinetic energy
operator was used for the adiabatic correction, the α2

Breit–Pauli operator [204] for the relativistic correction,
and the α3 QED operator [262] for the QED correction.
In the latter case, one approximation was made in the
operator. In the term

−8α

3π
D̂1 ln k0, (36)

with

D̂1 =
π

2
α2
∑
I

4∑
i=1

ZIδ(ri − rI), (37)

where the sum over I is over the nuclei, the value of ln k0
should be computed for each R, but instead a constant
value was taken, equal to the value of ln k0 for the helium
atom. This is an excellent approximation since ln k0 de-
pends very weakly on R. Calculations for two interacting
ground-state hydrogen atoms [263] have shown that ln k0
changes by less than 1.15% when R varies from 1.4 bohr,
the distance of the potential minimum, to infinity, where
it assumes the atomic value. For H2, this R-dependence
is important since its inclusion changes the dissociation
energy by 0.004 cm−1, while the uncertainty of this quan-
tity is 0.001 cm−1. This inclusion changes the value of
the QED term by 1.8%. The same relative change for
He2 would result only in a 0.00002 K contribution to the
interaction energy at the minimum of the potential, neg-
ligible compared to the uncertainties coming from other
sources.

All post-BO corrections were computed using both
four-electron ECG basis sets and orbital basis sets (ex-
cept for the so-called Araki–Sucher part of the QED
operator where only ECG functions were used). The
calculations with smaller uncertainties were selected for
the final potential. Orbital calculations were performed
using a combination of CCSD(T) and FCI approaches
or FCI alone. For the adiabatic correction, only FCI
was used. The calculations of the average values of the
operators listed above with ECG and FCI wave func-
tions are straightforward (although regularization tech-
niques have to be used for singular operators). However,
the CCSD(T) wave function needed to compute expec-
tation values is not available (not defined) and instead
the CCSD(T) linear response method was used. [264]
The retardation effects of long-range electromagnetic in-
teractions were computed from the Casimir–Polder for-
mula [265] by subtracting the retardation part of the α2

relativistic and α3 QED corrections [190].

The calculations of Ref. 177 significantly improved the
accuracy of the helium dimer potential with uncertain-
ties reduced by an order of magnitude compared to those
of Refs. 137 and 185. As already discussed, the main
improvement was due to the use of larger and better op-
timized ECG wave functions at the nonrelativistic BO
level of theory for all R ≤ 9 bohr. Accuracy of the adi-
abatic and relativistic corrections was also improved by
using larger basis sets than in Refs. 10 and 137. A major
theoretical advance was the calculation of the properties
of the very weak bound state of He2 (the so-called halo
state) with full inclusion of nonadiabatic effects.
The accuracy of relativistic and QED contributions

was further improved in Ref. 11. The contributions to
the interaction energy at the van der Waals minimum
are presented in Table II. Clearly, with the uncertainty
of the BO contribution of 0.00020 K, all the included
post-BO contributions are relevant, except for the retar-
dation contribution, but this contribution does become
important at very large separations. [190] One can also
see that uncertainties of the adiabatic, relativistic, and
QED terms are almost negligible compared to the uncer-
tainty of the BO term. The potential of Ref. 11 was used
to compute the second virial coefficient and the second
acoustic virial coefficient of helium.

TABLE II. Contributions to the interaction energy of helium
dimer (in K) at the van der Waals minimum separation of
R = 5.6 bohr. Results from Refs. 11 and 177.

Contribution Value Uncertainty

VBO −11.00071 0.00020
Vad −0.0089048 0.0000097
Vrel 0.0153911 0.0000154
VQED −0.0013327 0.0000018
Vret 0.000012

D. Nonadditive helium potentials

In any fluid, the total interaction energy includes
terms beyond pairwise-additive interactions between
monomers. These so-called nonadditive contributions
begin with three-body nonadditive terms defined as the
part of the trimer interaction energy that cannot be re-
covered by the sum of two-body interactions. The ad-
ditive and nonadditive interactions form a series called
the many-body expansion of interaction energy. Fortu-
nately, for all fluids consisting of monomers interacting
via noncovalent forces, this expansion converges very fast
and usually it is sufficient to limit calculation to two-
and three-body terms. For a review of the many-body
expansion, see Ref. 266. For metrology, the three-body
potential is needed to calculate the third virial coefficient.
A pairwise-nonadditive potential for helium was de-

veloped in Ref. 267 and improved in Ref. 138. In the
earlier work, two independent potentials were obtained.
One was based on three-body SAPT [268–272] and the
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other on the supermolecular CCSD(T) approach. Or-
bital basis sets up to aug-cc-pV5Z were used. The two
potentials were in very good agreement. In Ref. 138, the
CCSD(T) potential was improved by calculating the FCI
correction in an incremental approach and increasing the
number of grid points, with CCSD(T) values taken from
Ref. 267 except for the new grid points. Near the mini-
mum of the total potential, the three-body contribution
is only −0.0885 K, which should be compared to the total
interaction energy of about ∼ 33 K, but the three-body
contribution is much larger than the uncertainty result-
ing from the two-body term, which is 0.0006 K. The un-
certainty of the three-body term at the minimum of the
total potential was estimated to be 0.002 K.
Recently, the three-body potential for helium was fur-

ther improved [273] by adding the relativistic and adia-
batic corrections, as well as using a new set of correlation-
consistent basis sets specifically developed for helium
atoms. [177] An improved functional form was also used
to analytically represent the potential at large distances.
In particular, new terms were developed for the case
when two atoms remain close while the third is progres-
sively more distant. These refinements resulted in a re-
duction of the uncertainty by a factor of about 5 overall.
In particular, the uncertainty at the minimum was re-
duced to 0.5 mK, a factor of 4 smaller than that of the
previous work. [138]

E. Heavier noble-gas atoms

While theory is superior to experiment for the helium
atom and helium clusters, this is not the case for neon,
and even less so for argon. The simple reason is the
number of electrons per atom: 2, 10, and 18, respec-
tively. While for the helium atom and small helium clus-
ters the N -electrons explicitly correlated bases can reach
ppm or smaller uncertainties, and FCI calculations can
be performed in fairly large bases, for neon neither type
of calculation can be performed in bases large enough
to get meaningful results. To quantify this statement,
let us examine the most accurate calculations for the
neon dimer, [117] see Table III. The calculations at the
CCSD(T) level of theory were performed in the largest
available basis sets: modified daug-cc-pV8Z with bond
functions. The uncertainty of the interaction energy ob-
tained in this way is about 200 ppm, which is only 10
times larger than the 20 ppm uncertainty of the He2 BO
interaction energy. However, uncertainties coming from
some excitations of higher rank are significantly larger:
the pentuple excitation contribution, ∆(P), increases the
uncertainty of the total value of interaction energy to
about 1000 ppm. The increase of uncertainties is due to
the use of smaller and smaller basis sets as the number of
excitations increases: at the CCSDTQ(P) level of theory
only the daug-cc-pVDZ basis set could be used. Further-
more, based on the results in Table III, it is not possible
to estimate the uncertainty resulting from neglecting ex-

citations beyond (P). The lower part of Table III shows
the convergence in the rank of excitation. One can see
that while the contribution of the triple excitations is
very substantial, a 29% increase in the magnitude of in-
teraction energy relative to the CCSD level, the contri-
bution of quadruple excitations is 57 times smaller than
that of triple ones. However, the contribution of pentu-
ple excitations breaks this fairly fast convergence: it is of
similar magnitude to that of the quadruple excitations.
Note that one cannot blame the noniterative character of
the pentuple excitations, as for lower-rank excitations the
iterated and noniterated values are fairly similar. One
may ask if the value of the pentuple contribution com-
puted in Ref. 117 could be a numerical arifact resulting
from the use of a rather small basis set. This issue was
investigated in Ref. 117, and the results computed in the
aug-cc-pVDZ and aug-cc-pVTZ were 0.0227 and 0.1113
K, respectively. While these results may indicate that
even the first digit in the pentuple excitations contribu-
tion may be uncertain, they also indicate that the order
of magnitude will likely remain the same when going to
larger basis sets. This would indicate that for Ne2 the
coupled-cluster expansion converges very slowly, whereas
for other closed-shell systems investigated in the litera-
ture CCSDTQ(P) agrees with FCI very well, indicating
that effects of higher excitations are negligible. Unfortu-
nately, FCI calculations would be extremely difficult to
perform for Ne2 even in the aug-cc-pVDZ basis set.

TABLE III. Contributions to the interaction energy of the
neon dimer (in K) at the van der Waals minimum separation
of R = 3.1 Å. (P) denotes noniterative pentuple excitations.
The results in the upper part are taken directly from Table I
of Ref. 117 and except for CCSD(T) are FC values computed
in the largest bases used in that work and in all cases not
involving the (P) contribution are extrapolated to the CBS
limits. The results in the lower part are computed in the
same basis sets and are all FC.

Contribution Value Uncertainty

CCSD(T) −41.3301 0.0100
CCSDT-CCSD(T) −0.5730 0.0115
CCSDT(Q)-CCSDT −0.1602 0.0112
CCSDTQ-CCSDT(Q) −0.0043 0.0009
CCSDTQ(P)-CCSDTQ 0.1179 0.0589
CCSD −32.5355
CCSDT-CCSD −9.4437
CCSDTQ-CCSDT −0.1645
CCSDTQ(P)-CCSDTQ 0.1179

Similar calculations at the limits of the available tech-
nology were reported for Ar2 in Ref. 274 (see also earlier
calculations [275] with accurate treatment at very small
values of interatomic distances R). The value of the inter-
action energy obtained at the van der Waals minimum is
−142.86 K and its uncertainty was estimated at 0.46 K.
This uncertainty, representing 3000 ppm (0.3%) of the
computed well depth, does not include an estimate of ef-
fects beyond CCSDTQ. The results of Ref. 117 for Ne2
indicate, however, that the post-CCSDTQ contribution
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may be not negligible.
The first first-principles three-body potential for ar-

gon was developed in Ref. 269 using three-body SAPT.
It was then used to compute the third virial coefficient of
argon [144] and to simulate vapor-liquid equilibria. [153]
An improved three-body potential for argon was devel-
oped in Ref. 276 using the CCSDT(Q) level of theory and
including core correlation and relativistic effects. Uncer-
tainties of the potential were estimated. The authors of
Ref. 276 also computed the third virial coefficient, ob-
taining good overall agreement with experimental data.
In particular, in some regions of temperature, theoretical
values exhibited smaller uncertainties than experiment
and comparisons with theory allowed evaluation of dif-
ferent experiments. When the experimental data were
refitted by a new model that included an approximate
fourth virial coefficient, [123] the agreement with theory
improved, which can be considered to be a validation of
the new model. The work of Ref. 276 shows that despite
limitations of accuracy, for some properties of argon the-
ory may provide information relevant for metrology and
its accuracy may be competitive with experimental ac-
curacy.

F. Magnetic susceptibility

Magnetic susceptibilities of noble gas atoms are rele-
vant for RIGT; see Eq. (11). In general, the magnetic
susceptibility is several orders of magnitude smaller than
its electric counterpart (hence, Aµ is several orders of
magnitude smaller than Aε). This means that only mod-
est accuracy for the magnetic susceptibility, on the order
of 0.1% or even 1%, is sufficient for it to make a negli-
gible contribution to the uncertainty budget of current
or planned refractivity-based thermodynamic metrology.
Calculations at the BO level are therefore probably suf-
ficient, but it is still desirable to compute additional ef-
fects, at least at lowest order, to verify that they are
relatively small.

The first comprehensive calculation of the magnetic
susceptibility of the helium atom was performed by Bruch
and Weinhold. [277] They added corrections for rela-
tivistic effects and nuclear motion to an existing high-
accuracy calculation at the BO level. However, their cal-
culation included only some of the relativistic corrections
that enter at lowest order. Recently, Puchalski et al. [80]
presented a definitive calculation of all effects through or-
der α4, along with a more accurately computed value for
the nonrelativistic BO limit using Slater geminals. They
obtained agreement within mutual uncertainties with the
independent calculations of Bruch and Weinhold for in-
dividual terms, [277] but included some terms that had
been omitted in the previous work. When converted from
the atomic units used in the paper, the final result for 4He
corresponds to Aµ = −7.92128(13) × 10−6 cm3 mol−1.
The relative uncertainty of this result, primarily due to
neglected QED effects that enter at the α5 level, was

conservatively estimated at 16 ppm. This is far more
than sufficient for any conceivable application of refrac-
tivity for temperature or pressure measurement, and the
agreement with previous independent work encourages
confidence in the result.
As with other properties, the greater number of elec-

trons renders the calculation of magnetic susceptibility
much more difficult for neon and especially for argon.
The current state-of-the-art calculations for neon [64] and
argon [66] were performed only at the nonrelativistic BO
level, with a rough uncertainty estimate for neglected rel-
ativistic effects based on the magnitude of those effects
for the electric polarizability. The estimated uncertainty
of this calculated quantity was approximately 0.2% for
neon [64] and 1% for argon. [66] The limited experimental
information for the magnetic susceptibility is discussed in
Sec. IVE3.

IV. FROM ELECTRONIC STRUCTURE TO
THERMOPHYSICAL PROPERTIES

Virial expansions are exact results from quantum sta-
tistical mechanics which enable a systematically improv-
able evaluation of various thermophysical properties as a
power series in density starting from the ideal-gas refer-
ence system. The coefficients appearing in the N -th term
of the series can be computed from the knowledge of the
interaction of clusters of N particles.
In the case of the equation of state – i.e., the expansion

of the pressure p as a function of density ρ – one obtains
Eq. (7) [278, 279] together with rigorous expressions for
the virial coefficients B(T ), C(T ), D(T ), etc., which turn
out to be functions of temperature only and are given by

B(T )
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with

ZN

N !
=

QN (V, T ) V N

Q1(V, T )N
, (41)

where QN (V, T ) is the partition function of a system of
N particles evaluated in the canonical ensemble. These
partition functions can be calculated once the interaction
potential UN (x1, . . . ,xN ) among N particles is known;
the potential is generally expressed as

UN =

N∑
i<j

u2(xi,xj) +

N∑
i<j<k

u3(xi,xj ,xk) + . . . , (42)
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where u2 is the pair potential, u3 is the non-additive
contribution to the three-body potential, and so on. In
Eq. (42) we specialized to the case of atomic systems,
which will be principal topic of this review; in this case
xi represents the position of the i-th atom. In the case
of molecules, which we will discuss in Sec. V, the various
potentials appearing in Eq. (42) depend also on coordi-
nates yi that describe the intramolecular configuration of
molecule i. In particular, a single-body potential u1(y1)
will also appear in Eq. (42). The potentials and their
uncertainties can be computed from first principles using
the methods described in Sec. III. The most general ex-
pression for QN (V, T ) in quantum statistical mechanics
is given by

QN (V, T ) =
∑
i

′
⟨i|e−βHN |i⟩ (43)

=
1

N !

N !∑
j=1

∑
i

⟨i|e−βHNPj |i⟩, (44)

where β = (kBT )
−1 and the primed sum in Eq. (43) is on

a complete set of states |i⟩ of the N -body Hamiltonian
HN with the proper symmetry upon particle exchange
due to the bosonic or fermionic nature of the particles in-
volved. Equation (44) is an equivalent expression where
the sum over the states has no restriction on the symme-
try and the operators Pj represent the j-th permutation
of particles in the Hilbert space, including the sign of
the permutation in the case of fermions. The latter ex-
pression will be the most convenient when discussing the
path-integral Monte Carlo approach for the calculation of
virial coefficients. [280, 281] The non-relativistic N -body
Hamiltonian is conveniently written as

HN =

N∑
i=1

π2
i

2mi
+ UN ≡ TN + UN , (45)

where we have introduced the momentum operator πi

and mass mi for the i-th particle and the second equality
defines the N -body kinetic energy TN .

Virial expansions of the form of Eq. (7) have been de-
rived for several other quantities measured by the gas-
based devices described in Sec. II: the speed of sound in
Eq. (1), the dielectric constant in Eq. (9), and the index
of refraction in Eq. (11). The coefficients appearing in
Eq. (1) are given by [282]

βa(T ) = 2B + 2(γ0 − 1)T
dB

dT
+

(γ0 − 1)2

γ0
T 2 d
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dT 2
(46)
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T
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where the quantity Q is

Q = B + (2γ0 − 1)T
dB

dT
+ (γ0 − 1)T 2 d

2B

dT 2
. (48)

The density expansion of the dielectric constant εr
is generally given as a generalization of the Clausius–
Mossotti equation in one of the two equivalent forms
given by Eqs. (8) and (9). Until recently, derivations for
the coefficients appearing in these equations would agree
on the expression for the second dielectric virial coeffi-
cient, Bε, but differ in the case of the higher-order coeffi-
cients. [283–285] A systematic review of the dielectric ex-
pansion showed that the correct expressions are [207, 285]
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where α1 is the atomic polarizability and the functions
ZN are given by expressions similar to Eq. (41), where
the interaction Hamiltonian among the constituent par-
ticles of Eq. (45) is extended with two terms in order to
include the effect of the interactions of the dipole mo-
ment and the electronic polarizability of the system with
an external electric field of magnitude E0. In Eqs. (49)–
(51), the derivatives are to be evaluated at E0 = 0. The
two additional terms in the Hamiltonian are

Hdip
N = −

 N∑
i=1

m1(i) +
∑
i<j

m2(i, j)+

∑
i<j<k

m3(i, j, k) + . . .

 ·E0 (52)

Hpol
N = −1

2
E0 ·

 N∑
i=1

α1(i) +
∑
i<j

α2(i, j)+

∑
i<j<k

α3(i, j, k) + . . .

 ·E0, (53)

where mn and αn are the (non-additive) dipole moments
and the (non-additive) electronic polarizabilities of a sys-
tem of n particles. In the case of atoms, m1 and m2 are
both zero, but a system of three particles has, in general,
m3 ̸= 0. [286, 287]
An expression analogous to the Clausius–Mossotti

equation (9) was derived by Lorentz and Lorenz for the
refractive index n and is given in Eq. (11). The Lorentz–
Lorenz equation (11) is relevant to those experiments
where the refractive index is measured by optical meth-
ods. In this case, the refractive virial coefficients are a
function of the angular frequency ω of the electromag-
netic radiation as well as the temperature. Usually, the
frequency dependence is approximated as a power-law
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expansion of the form

BR(T ) = Bε + ω2B
(2)
R , (54)

where B
(2)
R depends on the interaction-induced Cauchy

moment ∆S(−4). [288]

A. Classical limit

Although the focus of this review is on calculations
with no uncontrolled approximation, let us briefly dis-
cuss the classical limit of the approach we have outlined.
Classical expressions can be computed relatively easily,
and provide a useful high-temperature check for the more
involved calculations described below.

Since quantum exchange effects are absent in classi-
cal mechanics, the only term that remains in Eq. (44) is
the one corresponding to the identity permutation, giv-
ing rise to the “correct Boltzmann counting” factor of
1/N ! in the partition functions. [279] In the same limit,
the kinetic term in the Hamiltonian (45) commutes with

the potential energy UN as well as with Hdip
N and Hpol

N .
Its contribution can be integrated exactly, resulting in a
factor of the form V N/Λ3N

m where Λm = h/
√
2πmkBT

is the thermal de Broglie wavelength of the atoms under
consideration. Putting all of this together, one obtains

Z
[class]
N (V, T,E0) =

∫
e−β(UN+Hdip

N +Hpol′
N) dXN , (55)

where the Hpol′
N is the same as Eq. (53), but without

the terms corresponding to α1. Additionally, we have
denoted by dXN the integration element in the space
of all the coordinates needed to describe a system of N
atoms, e.g., the Cartesian coordinates x1, . . . ,xN . Since
the system is translationally invariant, the integration
produces a factor of V with the understanding that one
particle, usually labelled as 1, is fixed at the origin of the

coordinate system. Using rotational invariance, one can
further write for the integration elements

dX2 = V 4πr212 dr12 (56)

dX3 = V 8π2(r12r13)
2 dr12dr13d cos θ23 (57)

dX4 = V 8π2(r12r13r14)
2 ×

dr12dr13dr14d cos θ23d cos θ14dϕ, (58)

where rij = |rij | = |xi − xj | and θij the angle between
the vectors ri1 and rj1. In Eq. (58), the angle ϕ is the
polar angle corresponding to the vector r14 in spherical
coordinates.

Using Eqs. (38), (46), and (50), one obtains the classi-
cal expressions
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for the second density, acoustic, and dielectric virial
coefficient, respectively. In Eq. (61) we have defined
∆α2 = 1

3Tr(α2), which is the average of the interaction-
induced pair polarizability. The classical expression for

B
(2)
R,cl is analogous to Eq. (61), where ∆α2 is substituted

by the Cauchy moment ∆S(−4).

In the same way, one can derive expressions for the
classical limit of the third density, acoustic, and dielectric
virial coefficients using Eqs. (39), (47), and (51). After
some lengthy, but straightforward, evaluation, they turn
out to be

Ccl = −8π2
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dΩ3, (63)

where dΩ3 = (r12r13)
2 dr12dr13d cos θ23, r23 =√

r212 + r213 − 2r12r13 cos θ23, and ∆α3 = 1
3Tr(α3) +∑

i<j

∆α2(rij). The classical expression for the third

acoustic virial coefficient γa is more involved and is given
in Appendix A.
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B. Quantum calculation of virial coefficients

The classical approach can be expected to be valid
when Λ/σ ≪ 1, where σ is the size of the hard-core
repulsive region of atoms (which is around 6 bohr for the
noble gases); this implies that the classical formulae will
be asymptotically valid for high temperatures and heavy
atoms. However, in the case of helium this approxima-
tion is too drastic even at room temperature.

The inclusion of quantum effects in the calculation of
virial coefficients (density, acoustic, or dielectric) requires
evaluating theN -body partition functionsQN of Eq. (43)

in a quantum framework. A straightforward approach
would be to consider in Eq. (43) the eigenstates |i⟩ of the
N -body Hamiltonian, HN |i⟩ = Ei|i⟩, so that Eq. (43)
becomes a simple sum. To the best of our knowledge,
this method has been demonstrated to date only in the
case of the second dielectric virial coefficient. [79]
In the case of Q2 (which enables the calculation of

virial coefficients of order 2), a very fruitful approach
dating back to the late 1930s [278, 289] is to rewrite it
as the sum of three terms: one depending on the bound-
state energies, one depending on the phase shifts of the
scattering states, and one depending on the bosonic or
fermionic nature of the atoms involved. The expression
of B(T ) then becomes

B(T ) = Bth(T ) +Bbound(T ) +Bxc(T ) (64)

Bth(T ) = −
NAΛ

3
µ

π

∫
e−βES(E) βdE (65)

S(E) =
∑
l

(2l + 1)f(I, l)δl(E) (66)

Bbound(T ) = −
NAΛ

3
µ

2

∑
l,n

(2l + 1)f(I, l)
(
e−βEbound

nl − 1
)

(67)

Bxc(T ) = −NA
(−1)2I

2I + 1

Λ3
µ

16
, (68)

where µ is the reduced mass of the pair of atoms con-
sidered, Ebound

nl is the energy of the n-th bound state
with relative angular momentum l, and f(I, l) = 1 +
(−1)2I+l/(2I + 1) with I the nuclear spin in the case of
identical atoms (the case of different atoms can be recov-
ered by letting I → ∞). The quantity δl(E) in Eq. (66) is
the absolute scattering phase shift for two particles with
relative energy E and angular momentum l. Absolute
phase shifts are continuous functions of E that tend, in
the limit of E → 0, to π times the number of bound
states at angular momentum l. With the advent of elec-
tronic computers, the use of Eqs. (64) to (68) enabled the
calculation of accurate numerical values [290, 291] and
it is still the most efficient way to compute the second
virial coefficient of atomic species. [10, 11] One impor-
tant benefit of this method is that once the energies of
all the bound states have been computed and phase shifts
are known for a sufficiently high number of total angular
momenta and scattering energies, the values of B(T ) and
its derivatives, and hence βa(T ), can be easily computed
at all temperatures; knowledge of the collision-induced
pair polarizability also enables the calculation of Bε. [79]
Additionally, transport properties such as the viscosity
and the thermal conductivity – see Sec. IVF below – can
be computed in a straightforward manner.

Unfortunately, this approach cannot be easily extended
to higher-order coefficients. Some attempts in this direc-

tion were made in the 1960s, [292, 293] but all of them
required the introduction of some uncontrolled approxi-
mations and did not take into account the non-additive
parts of the many-body potential.

1. Path integral approach

At the same time, the path-integral approach to quan-
tum statistical mechanics [280] was shown by Fosdick and
Jordan to provide a systematic way to compute virial co-
efficients of any order without any uncontrolled approxi-
mation. [294, 295] The path-integral formulation is based
on a controlled approximation of the exponential of the
N -body Hamiltonian, that is

e−βHN =
(
e−β(TN+UN )/P

)P
(69)

≃
(
e−βTN/P e−βUN/P e−βO/P

)P
, (70)

where

O =
β2ℏ2

24P 2m

N∑
i=1

|∇iUN |2. (71)

Equation (70) is the Li–Broughton expansion of the
exponential of the sum, [296] which was independently
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discovered by Kono et al. [297] based on an initial idea by
Takahashi and Imada. [298] It can be shown that Eq. (70)
becomes an exact equality in the case P → ∞, although
in practice satisfactory convergence is reached for a fi-
nite value of the parameter P . Actually, Eq. (70) be-
comes an equality in the P → ∞ limit also when O is
omitted in Eq. (70) (this is the original Trotter–Suzuki
approach), [299, 300] although in this case convergence
requires higher values of P ; this approach is called the
primitive approximation, [281] and, for the sake of sim-
plicity, will be used throughout this review.

The path-integral approach is obtained by using
Eq. (70) in Eq. (44) and inserting P − 1 additional com-
pleteness relations between the P factors in Eq. (70).
Additionally, one uses as a complete set the (generalized)

position eigenstates |i⟩ = |X(1)
N ⟩, where we have included

a superscript (1) for later convenience. In this case, the
sum over i in Eq. (44) becomes an integral over the 3N

coordinates X
(1)
N and the P − 1 completeness relations

can be written as

1 =

∫
|X(k)

N ⟩⟨X(k)
N | dX(k)

N , (72)

with k = 2, . . . , P − 1. Notice that in this case the effect
of the permutation operators Pj is to exchange atomic
coordinates in the rightmost ket. For example, if P(12)
denotes the permutation of particles 1 and 2 (assumed to
be bosons), one has

P(12)|x(1)
1 ,x

(1)
2 , . . . ,x

(1)
N ⟩ = |x(1)

2 ,x
(1)
1 , . . . ,x

(1)
N ⟩. (73)

Let us first proceed assuming that P is the identity per-
mutation (that is, we are considering Boltzmann statis-
tics; this approximation is essentially exact for T ≳ 10 K
even in the case of helium) and the case of density viri-
als of pure species (so that our Hamiltonian is given by
Eq. (45) with mi = m). The operators UN (and, if
needed, O) of Eq. (70) are diagonal in the position ba-
sis. The matrix elements of the exponential of the kinetic
energy operators can be calculated exactly [301] and are
given by

⟨x(k+1)
i |e−

βπ2
i

2mP |x(k)
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exp
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−πP
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(k)
i

∣∣∣2) ,

(74)
so that ZN can be written as

ZN =

∫
e−βUN

N∏
i=1

Fi
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dX
(k)
i , (75)

where
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(k)
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(77)

∆r
(k)
i

2
≡
∣∣∣x(k+1)

i − x
(k)
i

∣∣∣2 , (78)

with the understanding that x
(P+1)
i = x

(1)
i . Equations

(75)–(77), which correspond exactly (in the P → ∞
limit) to the original quantum statistical formulation, can
be interpreted as the partition function of a classical sys-
tem. [301] For each of the original N particles of coordi-

nates x
(1)
i , one has introduced P−1 copies of coordinates

x
(k)
i , which, as one can see from Eq. (77), are connected

via harmonic potentials. The equivalent classical system
is then made by N ring polymers of P monomers each.
As shown by Eq. (76), these polymers interact with the
original potential averaged over all the monomers. It can
be shown that the functions Fi of Eq. (77) represent prob-
ability distributions. [302] Although they are not Gaus-
sian probabilities, because of the ring-polymer condition

x
(P+1)
i = x

(1)
i , they can be sampled exactly using an in-

terpolation formula due to Levy [294, 295] (also known
as “the Brownian bridge”). The harmonic intra-polymer
interaction, which ultimately comes from the kinetic en-
ergy term TN of the quantum Hamiltonian (45), has the
effect that the average “size” of the ring-polymer corre-
sponding to each particle is of the order of the de Broglie
thermal wavelength Λ, thus taking into account quantum
diffraction (that is, the Heisenberg uncertainty principle).

In order to compute the functions ZN (and, hence, the
virial coefficients), it is convenient to separate the NP

vector coordinates x
(k)
i as follows: first of all, we notice

that the energy of the equivalent classical system is in-
variant upon an overall rigid rotation or rigid translation.
We can use the latter property to extract a factor of V
and at the same time pin one of the coordinates – con-

ventionally the first monomer of particle 1, that is x
(1)
1 –

at the origin of the coordinate system. The rotational in-
variance can be taken into account by assuming that the
first monomer of one particle (particle 2, say) lies along
the x axis of the coordinate system and that the first
monomer of another particle (particle 3) lies in the xy
plane. This convention brings about a factor of 4π when
N = 2 (corresponding to the integration over the two po-

lar angles describing x
(1)
2 ) and a factor of 8π2 (that is the

integration over the two polar angles describing x
(1)
2 and

the azimuthal angle of x
(1)
3 ) when N ≥ 3. The remaining

3NP − 6 coordinates (or 3NP − 5 in the case of N = 2)
can be conveniently divided into

1. The coordinates of the first bead of all the particles,

that is r12 = |x(1)
2 − x

(1)
1 | and, for N ≥ 3, r13 =

|x(1)
3 − x

(1)
1 |, cos θ23 and x

(1)
i (the latter only for

N ≥ 4), where θ23 is the angle between the position
of particles 2 and 3 in the xy plane.

2. The relative coordinates ∆r
(k)
i (k = 1, . . . , P − 1).

Since the functions Fi depend only on ∆r
(k)
i , one can
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rewrite the partition functions ZN of Eq. (75) in the form

Z2 = V 4π

∫ 〈
e−βU2

〉
r212dr12 (79)

ZN (N ≥ 3) = V 8π2

∫ 〈
e−βUN

〉
dΩN (80)

dΩN (N ≥ 4) = dΩ3

N∏
i=4

dx
(1)
i , (81)

where 〈
e−βUN

〉
=

∫
e−βUN

N∏
i=1

Fi

P−1∏
k=1

d∆r
(k)
i , (82)

denotes the average of the Boltzmann factor of the po-
tential energy over the internal configurations of the ring
polymers. Finally, using Eqs. (79)–(81) and the defini-
tion of the virial coefficients (38) and (39), one obtains

B = −2πNA

∫ 〈
e−βU2(r12) − 1

〉
r212 dr12 (83)

Bε =
8π2

3
N2

A

∫ 〈
∆α2(r12)e

−βU2(r12)
〉
r212dr12 (84)

C = −8π2

3
N2

A

∫ 〈e−βU3(r12,r13,r23) −
∑
i<j

e−βU2(rij) + 2− 3(e−βU2(r12) − 1)(e−βU2(r13) − 1)

〉 dΩ3 (85)

Cε =
16π2

9
N3

A

∫ 〈(β|m3|2

3
+ ∆α3

)
e−βU3 −

∑
i<j

∆α2(rij)e
−βU2(rij)−

6
(
e−βU2(r12) − 1

)
∆α2(r13)e

−βU2(r13)
]〉

dΩ3, (86)

which are very similar to the classical expressions re-
ported in Sec. IVA. The path-integral expressions are
obtained from the classical expressions by substituting
the evaluation of potentials and polarizabilities as aver-
ages over the ring-polymer beads (see Eq. (76)) and aver-
aging the resulting expressions over the configurations of
the ring polymers, as evidenced by the angular brackets

in Eqs. (83)–(86). The path-integral expression for B
(2)
R

is obtained from Eq. (84) by the substitution of ∆α2 with

∆S(−4). [79] Explicit expressions for the third acoustic
virial coefficient in the path-integral formulation are quite
cumbersome, for reasons discussed in Appendix A; they
can be found in Ref. 303.

It is important to notice that in the case of C(T ) the
terms coming from Z2

2 in Eq. (39) actually involve av-
erages over four ring polymers, since these two terms
involve two particles each and have to be treated as in-
dependent, lest spurious correlations be introduced in the
calculation of the ⟨· · · ⟩ average. In fact, in the last term
of Eq. (85) two of these polymers are used to compute

e−βU2(r12)−1 and the other two to compute e−βU2(r13)−1.
Similar considerations also apply when calculating γa and
Cε using path integrals.

Quantum effects are taken into account by averaging
over the ring-polymers configurations, and at the same

time evaluating the interaction energy as an average over
the monomers, as in Eq. (76). We recall that in Eqs. (83)

and (85) the radial variables rij = |x(1)
i − x

(1)
j | are the

distances between the first monomer of particles i and j.
In the classical limit, the size of the ring polymers shrinks
to zero so that one recovers the results of Sec. IVA.

It is worth noting that one can find several semi-
classical approximations of the exact path-integral ex-
pressions of Eqs. (83) – (86). In general, they can be
obtained by expanding the full quantum-mechanical re-
sults in powers of ℏ2, where the first term is the clas-
sical one. This approach was pioneered by Wigner
and Kirkwood [304, 305] and subsequently developed by
Feynman and Hibbs, [280] who put forward the idea
of estimating semiclassical values by using the classi-
cal expressions with suitably modified (and temperature-
dependent) potentials. Although the Feynman–Hibbs
approach considered systems with pair potentials only, a
systematic derivation of semiclassical expressions in the
case of three-body interactions has been developed by
Yokota. [306] Even if semiclassical approaches introduce
uncontrolled approximations, they are quite effective in
the case of heavier atoms such as argon at high temper-
atures and provide a useful check for the fully quantum
calculations.
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2. Exchange effects

The bosonic or fermionic nature of the particles en-
ters in those terms of Eq. (44) where the permutation
operator is different from the identity. In the case of the
equivalent classical system, the main effect of the per-
mutation operators is that the condition of closed ring

polymers, that is x
(P+1)
i = x

(1)
i , is no longer valid. For

a general permutation, one would have x
(P+1)
i = x

(1)
P(i)

where P(i) denotes the particle exchanged with i under
the action of permutation P. This is equivalent to say-
ing that some of the ring polymers would coalesce into
larger polymers, depending on the specific permutation
that is being considered in the sum of Eq. (44). These
larger ring polymers are still described by probability dis-
tributions similar to those of the Boltzmann case, that is
Eq. (77). As an illustrative example, let us see how the
probability distribution for the internal coordinates of
particles 1 and 2 is modified in the presence of exchange

for bosons of spin 0. Defining Ri = x
(i)
1 and Ri+P = x

(i)
2

for i = 1, . . . , P as well as ∆Ri = Ri+1 − Ri (notice
that R2P = R1 because we are considering the permuta-
tion involving only particle 1 and 2), and Λµ =

√
2Λ, the

kinetic energy terms that would give rise to the proba-
bilities F1F2 can be written as

F1F2 → Λ6

(
P 3/2

Λ3

)2P

exp

(
−πP

Λ2

2P∑
k=1

∆Ri
2

)
(87)

=
Λ3Λ3

µ

23/2

(
(2P )3/2

Λ3
µ

)2P

exp

(
−π2P

Λ2
µ

2P∑
k=1

∆Ri
2

)
(88)

≡ Λ3

23/2
Fµ, (89)

where we recognize the probability distribution of a single
ring polymer of 2P monomers describing a particle of
mass µ = m/2 at the same temperature (cf. Eq. (77)).
In the case of the second virial coefficient, where this is
the only exchange term present, this contribution is just
a simple average over the larger polymer, and can then
be written as [307]

Bxc(T ) = −2πΛ3NA

23/2

〈
exp

(
− β

P

P∑
i=1

U2(|Ri+P −Ri|2)

)〉
µ

.

(90)
In addition to this, the various terms in the sum over

permutation of Eq. (44) also acquire factors depending on
the number of nuclear spin states of the particles, that
is factors of 1/(2I + 1) for a nuclear spin I. A detailed
derivation of these factors is reported in Refs. 79 and 126.

C. Uncertainty propagation

As is apparent from their definition, the calculation of
virial coefficients depends on the knowledge of few-body

properties of atoms, namely interaction potentials, polar-
izabilities, and dipole moments. In a completely ab initio
calculation of virial coefficients, these quantities – as seen
in Sec. III – are determined by electronic-structure calcu-
lations and are provided with a full uncertainty estima-
tion. In this section, we will show how this uncertainty
can be propagated to the uncertainty in virial coefficients,
using the third virial coefficient C(T ) as an example.
The first approach consists of calculating values of

C(T ) using perturbed pair and three-body potentials,
that is:

C
[ui]
± = C(T ;ui ± δui), (91)

and

δC [ui] =
1

4

∣∣∣C [ui]
+ − C

[ui]
−

∣∣∣ , (92)

where we have assumed that the uncertainties in the po-
tential – δui for i = 2 or i = 3 in the case of the pair
and three-body potential, respectively – are given as ex-
panded (k = 2) uncertainties. Assuming that a (k = 2)
perturbation of the potential results in a (k = 2) pertur-
bation of the virial coefficient, one fourth of the absolute
value of the difference, that is δC [ui] in Eq. (92), is in-
terpreted as a standard (k = 1) uncertainty. The overall
standard uncertainty in C(T ) due to the uncertainty in
the potentials is then obtained as a sum in quadrature

δC =
√
(δC [u2])2 + (δC [u3])2. (93)

Although this approach was used in early calculations of
the virial coefficients, [127, 308] it is unsatisfactory for
several reasons. First of all, it considers only rigid shifts
of the potentials, while in principle the actual potential
can be closer to the upper bound for some configurations
and closer to the lower bound for others. Secondly, the
uncertainty (92) is obtained as a difference of quantities
which are themselves computed with some statistical un-
certainty. This requires very long runs to make sure that
the difference in Eq. (92) is not influenced by the statis-

tical error in the calculation of C
[ui]
± .

A more satisfactory approach is obtained by consider-
ing that the virial coefficients are functions of the tem-
perature T as well as functionals of the potentials. [126]
A variation δui in the potential will then produce a cor-
responding variation in the value of the virial coefficient,
given by

δC [ui] =

∫ ∣∣∣∣δui
δC

δui

∣∣∣∣ dΩ3, (94)

where we have used the definition of the functional
derivative δC/δui. The absolute value in Eq. (94) comes
from the conservative choice of assuming that all the vari-
ations will contribute with the same (positive) sign to the
final uncertainty. We note in passing that in the case of
the second virial coefficient, B(T ), Eqs. (94) and (92)
produce the same result. As is apparent from Eq. (39),
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the evaluation of Eq. (94) requires the functional deriva-
tive of Z3 and Z2 with respect to the pair and three-
body potential. As a first approximation, one can use
the classical expression Eq. (55) (possibly augmented by
semiclassical corrections). [126] More accurate results (es-
pecially at low temperatures) are obtained by functional
differentiation of the path-integral expressions (79) and
(80) so that one has [303]

δZ2|u2
= −4πV β

∫ 〈
δu2e

−βU2

〉
r212dr12 (95)

δZ3|u2
= −8π2V β

∫ 〈∑
i<j

δu2(rij)e
−βU3

〉
dΩ3(96)

δZ3|u3
= −8π2V β

∫ 〈
δu3e

−βU3

〉
dΩ3, (97)

where we have defined

δZi|uj
=

∫
δuj

δZi

δuj
dΩi. (98)

The same approach can be used in the calculation of
the propagated uncertainties for dielectric virial coeffi-
cients. [207, 210]

In actual practice, these expressions enable rigorous es-
timation of the uncertainty propagated from the poten-
tials with a much smaller computational effort than that
needed to compute virial coefficients. Additionally, the
a priori knowledge of a lower bound on the uncertainty
and its temperature dependence facilitates the process
of finding the optimal set of parameters for the path-
integral simulations (cutoff distance, number of beads P ,
number of Monte Carlo integration points) in order to
make the statistical uncertainty of the calculation a mi-
nor contributor to the total uncertainty.

D. Mayer sampling and the virial equation of state

Equations (38)–(40) show that the expressions for the
virial coefficients become more involved when the order is
increased. Although these expressions can be systemati-
cally derived using computer-algebra systems, their sub-
sequent implementation in classical or quantum frame-
works becomes more and more time-consuming. Tak-
ing also into account the limited availability of ab ini-
tio many-body potentials (at the time of this writing,
these are limited to three bodies and have been devel-
oped only for a small set of atoms and molecules), it
might seem that a fully ab initio calculation of the equa-
tion of state using virial expansions could not be feasi-
ble. Nevertheless, it is observed that the largest contri-
butions to the value of the virial coefficients come from
the many-body potentials of lower orders, as already
discussed in Sec. IID. As a consequence, even if only
pair and three-body potentials are available, a calcula-
tion of higher-order virial coefficients can provide useful

and reasonably accurate representations of the equation
of state. [309, 310]
A very efficient procedure to perform this task is

based on the diagrammatic approach by Ursell [311] and
Mayer, [312, 313] who showed how the various terms
contributing to the virial coefficients can be related to
simpler cluster integrals that can be catalogued using
a diagrammatic form. The contributions from the dia-
grams can be added very efficiently using Monte Carlo
sampling methods. [314] Although the number of dia-
grams increases exponentially with the order of the virial
coefficient, it has been shown that calculations can be
kept within a manageable size up to virial coefficients
of order 16, [315–317] resulting in equations of state with
very good accuracy up to the binodal (condensation) den-
sity. [310]
Mayer sampling methods, originally developed

for monatomic systems, have been extended to
molecules [318] and therefore can also be used to
perform path-integral calculations of density [121, 319]
and acoustic virial coefficients. [136] This approach
provides an independent validation of the framework
outlined in this review. Virial coefficients calculated
using both approaches are found to be compatible within
mutual uncertainties. [303]

E. Numerical results for virial coefficients

As seen in Sec. IVB, a fully first-principles calcula-
tion of virial coefficients requires the knowledge of many-
body potentials and, in the case of dielectric properties,
polarizabilities, which can be obtained by ab initio elec-
tronic structure calculations. Currently, as discussed in
Sec. III, the only system for which these calculations can
be made without uncontrolled approximations is helium.
Much effort has been devoted to produce high-quality
potentials from first principles. At the time of writing,
the most accurate pair potential is the one developed
by Czachorowski et al., [11] which includes relativistic
and QED effects. This potential was developed using
exactly the same approach as the potential of Ref. 177,
the only difference being that the relativistic and QED
corrections were computed using a larger basis set. As
a consequence of including the adiabatic corrections and
recoil terms, slightly different pair potentials are available
for the 4He-4He, 3He-3He, and 4He-3He interaction.
Recently, a new three-body potential for 4He, includ-

ing relativistic effects, has been developed, [273] resulting
in a significant increase of accuracy with respect to the
previous non-relativistic potential (see Sec. IIID). [138]
In the case of dielectric properties, the single-atom po-
larizability has been calculated with outstanding accu-
racy. [192] The most accurate pair-induced polarizabil-
ity currently available is that of Cencek et al. [206] and,
recently, fully ab initio calculations of the three-body
polarizability [208] and dipole moment [210] have been
performed, enabling a calculation of the third dielec-
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TABLE IV. Bibliographic data for the state-of-the-art ab ini-
tio calculations of virial coefficients and transport properties.
Results for helium have rigorous theoretical uncertainties that
are smaller than the best experimental determination. For
neon and argon many of the values computed from first prin-
ciples have a higher (and sometimes less rigorous) uncertainty
than the best experimental determination. Multiple refer-
ences indicate independent validation of theoretical results or
complementary studies.

Helium Neon Argon

B Ref. 11 Ref. 117 Ref. 118
C Ref. 273 and 303 Ref. 324 Ref. 276
D Ref. 126 Ref. 324 Ref. 123
βa Ref. 11 Ref. 117 Ref. 118
γa Refs. 273 and 303 — Ref. 325
Aε Ref. 192 Ref. 65 Ref. 66
Bε Ref. 79 Ref. 117 Ref. 79 and 164
Cε Refs. 208 and 210 Ref. 207 Ref. 207

Aµ
a Ref. 80 Ref. 64b Ref. 66b

BR Ref. 79 Ref. 79 and 117c Ref. 79
η Ref. 10 Ref. 117 Ref. 118
λ Ref. 10 Ref. 117 Ref. 118
a Note that AR = Aε + Aµ.
b Improvement in progress; see Ref. 326.
c Best values can be obtained by applying the frequency dependence

of Ref. 79 to Bε calculated from Ref. 117.

tric virial coefficient with well-defined uncertainties com-
pletely from first principles. [210]

In the case of neon, the most recent pair potentials
and polarizabilities have been computed by Hellmann
and coworkers. [65, 117] Parametrizations of three-body
potentials have appeared in the literature, [320] but no
first-principles calculations have been published so far.

Due to its easy accessibility and large measurement
effects, argon has been the subject of many theoretical
studies. However, the large number of electrons prevents
calculations of potentials and polarizabilities with the
same accuracy as the lighter noble gases, and some un-
controlled approximations are still necessary. The most
accurate pair potential so far has been developed by Lang
et al., [118] while a three-body potential with well charac-
terized uncertainties was computed and characterized by
Cencek and coworkers. [276] Regarding dielectric prop-
erties, the most accurate pair polarizability is the one
developed by Vogel et al.. [164] In the case of neon and
argon, no three-body polarizabilities are available. Cal-
culations have been performed using the superposition
approximation [321, 322] for the three-body polarizabil-
ity. Although the results of these calculations compare
well with the available experimental data, their uncer-
tainty is to a large extent unknown. [207]

We report in Table IV the most up-to-date references
regarding ab initio calculations of virial coefficients. This
table to some extent serves as an update to the table of
recommended data presented by Rourke. [323]

1. Density virial coefficients

The most accurate ab initio values of the second virial
coefficients of helium for both isotopes are those com-
puted by Czachorowski et al. [11] In order to visualize
the recent progress in this field, we report in Fig. 7 the
evolution of the theoretical uncertainty of B(T ) in the
past 20 years. Theoretical and computational improve-
ments enabled a reduction of two orders of magnitude in
the relative uncertainty, which is presently on the order
of 10−4 at low temperatures (< 10 K) and decreases to
less than 10−5 at higher temperatures. In general, the
current theoretical uncertainties of B(T ) are more than
one order of magnitude smaller than the best experimen-
tal determinations.
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FIG. 7. Values of the relative expanded (k = 2) uncertainty in
the calculated values of B(T ) for 4He for different pair poten-
tials. Stars: the first calculation of thermophysical properties
using ab initio potentials with well characterized uncertain-
ties. [8] Squares: the ϕ07 potential. [9] Triangles: the first
potential including a complete description of relativistic ef-
fects. [10, 137] Diamonds: the latest pair potential. [11] The
filled circles are experimental data, compiled in Ref. 11. The
peaks are due to the fact that B(T ) crosses zero near 23 K
and hence relative uncertainties become large.

Figure 8 shows the development of the uncertainty in
the calculations of C(T ) for helium in the past 12 years,
starting from the first calculation with fully character-
ized uncertainties from 2011, [127] whose results were
independently confirmed a year later using the Mayer
sampling approach. [319] One can clearly see that the
subsequent improvement of the pair potential resulted in
a reduction of the uncertainty at the lowest temperatures
(T ≲ 50 K), while the uncertainty at the highest temper-
atures is dominated by the propagated uncertainty from
the three-body potential. Recent improvements resulted
in a further reduction of the uncertainty by a factor of
∼ 5 across the whole temperature range 10 K−3000 K.
The current theoretical uncertainty in C(T ) is a few parts
in 104 at high temperature, and increases to a few parts
per 103 below 50 K. At temperatures below ∼ 10 K, the
theoretical uncertainty budget is dominated by the prop-
agated uncertainty from the pair potential.
Although no well-characterized four-body potential

has yet been published for helium, several groups have
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performed calculations of the fourth virial coefficient,
D(T ). Although initially the effect of the four-body po-
tential was neglected, [319] more recent work tried to
estimate its contribution using known asymptotic val-
ues. [126] These results are in good agreement with the
limited experimental information.
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FIG. 8. Values of the relative expanded (k = 2) uncertainty
in the calculated values of C(T ) for 4He for different pair and
three-body potentials. Stars: calculation from 2011, [127] us-
ing the pair potential of Ref. 137 and the three-body poten-
tial of Ref. 138. Solid line: calculation from 2021, using the
latest pair potential [11] and the three-body potential from
Ref. 138. Squares: latest calculation, using the pair poten-
tial from Ref. 11 and the latest three-body potential. [273]
Experimental data are from McLinden and Lösch-Will [125]
(circles) and from Blancett et al. [327] (triangles). The peaks
around T = 3 K are due to the fact that C(T ) crosses zero
and hence relative uncertainties become large.

In the case of neon, the most recent calculations for
B(T ) with a pair potential having well-characterized
uncertainties [117] resulted in a relative uncertainty at
T = 273.16 K of ur(B) = 2 × 10−3. As expected, this
is larger than the corresponding uncertainty for helium,
due to the fact that electronic structure calculations for
the heavier atoms are much more computationally de-
manding. Unfortunately, the three-body potential for
neon is only approximately known at the moment. To
the best of our knowledge, no first-principles calculation
is available in the literature, and only a semi-empirical
parametrization is currently known. [320] As a conse-
quence, no ab initio calculation of higher-order coeffi-
cients has been performed to date and only approximate
values are known. [324]

The pair potential of argon is well characterized and
has been calculated independently by two groups, [155,
274] and hence thermophysical properties at the pair level
are well characterized. [29, 164, 325] The relative uncer-
tainty of B(T ) at T = 273.16 K is ur ∼ 0.6%. The
pair potential has recently been improved by including
relativistic effects, but the uncertainty of the resulting
second virial coefficients is still larger than for the best
experimental determinations. [118]

The three-body potential for argon has also been com-
puted independently by two groups [123, 276] and its
uncertainty has been rigorously assessed. Therefore, the

third virial coefficient of argon is also known with rigor-
ously propagated uncertainties. The relative uncertainty
is on the order of ur ∼ 1% at T = 273.16 K and increases
up to ur ∼ 6% at T = 80 K. Analogously to the other no-
ble gases, the four-body (and higher) non-additive contri-
bution to the potential energy of argon is not known from
first principles. Nevertheless, higher-order virial coeffi-
cients for argon, up to the seventh, have been computed
based on pair and three-body potentials. [123]

2. Acoustic virial coefficients

The situation regarding first-principles calculations of
acoustic virial coefficients closely follows that of the den-
sity virials. In the usual approach using phase shifts, the
calculation of B(T ) also provides the temperature deriva-
tives needed to compute βa(T ), and therefore very accu-
rate values for the second acoustic virials for helium, [11]
neon, [117] and argon [29, 118, 164] can be found in the
papers where the pair potential and B(T ) calculations
are reported.
In the case of the third acoustic virial coefficient, the

situation is similar. The most accurate values of γa for
helium isotopes are reported in Refs. 273 and 303, which
are in very good agreement with the values obtained in-
dependently using the Mayer sampling approach. [136]
The current relative uncertainty in γa for helium from ab
initio calculations is ur ∼ 0.02− 0.2% across the temper-
ature range from 10 K to 1000 K. [303]
As already mentioned, the lack of an accurate three-

body potential for neon has prevented a fully first-
principles calculation of the third virial coefficient, and
hence no ab initio values of γa are currently available for
neon.
Regarding argon, ab initio acoustic virial coefficients

up to the fourth, together with a thorough analysis of
their associated uncertainties, have been reported by
Wiebke et al. [325] The uncertainty γa at T = 273.16
is ∼ 1.4%.

3. Dielectric and refractivity virial coefficients

The first dielectric virial coefficient Aε for helium has
been computed in Ref. 192 with an accuracy exceeding
the best experimental determination. In the case of neon
and argon, the most accurate theoretical results are less
accurate than the best experimental determination. [63]
The most accurate computed value for neon can be found
in Ref. 65, and a calculation for argon, including the
frequency dependence needed for refractivity estimates,
has recently appeared. [66]
Magnetic susceptibilities computed from first princi-

ples and the corresponding quantities Aµ that are used
in RIGT are available for helium, [80] neon, [64] and ar-
gon. [66] Work in progress will significantly reduce the
uncertainties from theory for neon and argon. [326] As
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noted by Rourke, [323] there are some discrepancies be-
tween the ab initio calculations of the susceptibilities
and the experimental values often cited from Barter et
al.; [328] the discrepancies are many times larger than the
stated uncertainties in the theoretical calculations. This
may be due to errors in the 1930s-era argon data used in
Barter’s calibration; error in the theoretical value seems
unlikely at least for helium, where there is independent
verification as discussed in Sec. III F. It is noteworthy
that the large discrepancy between theory and Barter’s
experiments is in the opposite direction for helium than
it is for neon and argon, suggesting that Barter might
have had an experimental problem specific to helium. A
modern experimental determination of Aµ for helium and
argon (perhaps involving measuring the ratio of the two)
would be highly desirable. Even a 1% uncertainty for
this measurement would be good enough to resolve the
existing discrepancies, which are on the order of 7%.

First-principles calculations of Bε(T ) for helium have
been available for a long time. [284] Reference values
from the latest pair potential and polarizability can be
found in Ref. 79. These results have been indepen-
dently confirmed (except at the lowest temperatures) by
semiclassical calculations. [329] Due to the recent devel-
opment in three-body polarizabilities [208] and dipole-
moment surfaces, [210] ab initio values of Cε(T ) with
well-defined uncertainties are also available for both he-
lium isotopes. [210] These values agree with the limited
experimental data available, but have much smaller un-
certainties.

In the case of neon, the most accurate ab initio Bε(T )
has been computed by Hellmann and coworkers, [117]
who also reported well-characterized uncertainties. The
results are in very good agreement with DCGT measure-
ments. The third dielectric virial coefficient of neon is
only approximately known from ab initio calculations,
since the contributions from the three-body polarizabil-
ity and dipole-moment surfaces can only be estimated
with several uncontrolled approximations. [207]

Regarding argon, the second dielectric virial coefficient
has been computed using a fully ab initio procedure in
Refs. 164, 79, and 329. Analogously to neon, the lack
of ab initio three-body surfaces for the polarizability and
dipole moment has prevented a fully first-principles cal-
culation of Cε(T ) for argon. Approximate values were
reported in Ref. 207.

Calculations of the second refractivity virial coefficient,
BR, for helium, neon, and argon were performed by Gar-
beroglio and Harvey [79] using the best pair potentials
and Cauchy moments available at the time, although in
many cases a rigorous uncertainty propagation was not
possible. In the case of neon, the subsequent improved
Bε from Hellmann et al. [117] can be combined with the
frequency-dependent correction from Ref. 79 to provide
improved values of BR.

F. Transport properties

When the thermodynamic equilibrium of a gas is per-
turbed, dynamic processes will tend to restore it. The
actual response depends on the specific kind of induced
non-homogeneity: density variations will give rise to dif-
fusive processes, relative motions will be damped by in-
ternal friction, and temperature gradients will result in
heat flowing through the system.
The kinetic theory of gases [330] provides a theoreti-

cal framework to analyze non-equilibrium behavior and
transport properties of gases, determining how the flux
of matter, momentum, or heat depends on the spatial
variation of density, velocity, or temperature. The most
accurate description is based on the Boltzmann equa-
tion, which describes the evolution of the state of a fluid
where simultaneous interactions of three or more parti-
cles are neglected; hence, it is valid in the low-density
regime only. Despite this limited scope, additional ap-
proximations are needed to make the kinetic equations
manageable, for example by limiting the strength of the
inhomogeneities to the linear or quadratic regime, which
are situations that find widespread application.
In the following, we will briefly review the theory and

the main computational results regarding heat and mo-
mentum transport in monatomic fluids, and how the rele-
vant quantities – viscosity and thermal conductivity – can
be calculated from first principles. In the low-density and
linear regime, the shear viscosity (η) and thermal conduc-
tivity (λ) describe the linear relation between momentum
and temperature inhomogeneities, and the resulting in-
ternal friction and heat

πij = pδij − η

(
∂ui
∂xj

+
∂uj
∂xi

)
(99)

qi = −λ
∂T

∂xi
, (100)

where πij is the pressure tensor, p the isotropic pressure,
u the macroscopic velocity, q the heat flux, and T the
temperature. Kinetic theory shows how to compute η
and λ from the details of the microscopic interaction be-
tween atoms. To this end, it is useful to define

Q(l)(E) = 2π

∫ (
1− cosl θ

)
σ(E, θ) sin θdθ (101)

Ω(l,s)(T ) = 2

∫
e−E/(kBT )

(s+ 1)!

(
E

kBT

)s+1

Q(l) dE

kBT
,(102)

where σ(E, θ) is the differential cross section for two par-
ticles with energy E in the scattering reference frame
(E = µv2/2, where µ = m/2 is the reduced mass and v
the modulus of the relative velocity). The quantities de-
fined by Eq. (102) are known as collision integrals. Equa-
tion (101) is valid when the cross section is calculated
either in the classical or quantum regime; in the latter
case one must further consider the fermionic or bosonic
nature of the interacting atoms. [278] The viscosity and
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thermal conductivity are given by

η(T ) =
5

16

√
2πµkBT

Ω(2,2)
f (k)
η (103)

λ(T ) =
75

64

√
kBT

2πµ

1

Ω(2,2)
f
(k)
λ , (104)

where f
(k)
η and f

(k)
λ are factors of order 1 that depend on

the specific order k of the approximations involved, which
in turn involve collision integrals of higher order. In the
quantum case, collision integrals cannot be computed us-
ing path-integral Monte Carlo methods, but their value
depends on the scattering phase shift (see Sec. IVB). For
example, the expression for Q(2)(E) becomes [331]

Q(2)(E) =
4πℏ2

µE

∞∑
l=0

(l + 1)(l + 2)

2l + 3
sin2 (δl(E)− δl+2(E)) ,

(105)

and explicit expressions for f
(k)
η and f

(k)
λ can be found in

Refs. 278 and 332 for k = 3 and k = 5, respectively.
As pointed out in Sec. II E, the accuracy of ab ini-

tio calculations of transport properties for helium vastly
exceeds that of experiments. We report in Fig. 9 the
evolution of the relative uncertainty in the theoretical
calculation of ηHe in the past 20 years. The most recent
theoretical values, which have an accuracy that is more
than enough for several metrological applications, can be
found in Ref. 10. It is worth noting that a more accurate
pair potential has been published in the meantime, [11]
although no corresponding calculation of transport prop-
erties has yet been published.
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FIG. 9. The evolution of the relative uncertainty in the ab
initio calculation of viscosity for 4He. Stars: calculations from
Ref. 8. Triangles: calculations from Ref. 9. Crosses: calcu-
lations from Ref. 10. The minimum of the calculated uncer-
tainty near 40 K is unphysical; see Sec. VIC. Black dots:
experimental data from Ref. 333. The gray square is the ex-
perimental value reported in Ref. 334.

In the case of neon, the best theoretical estimates of
transport coefficients are given in Ref. 117, while for ar-
gon they can be found in Ref. 118. For both gases, the
best experimental results are obtained from ratio mea-
surements using the ab initio value of the viscosity or
thermal conductivity of helium.

V. MOLECULAR SYSTEMS

While the focus of this review is on noble gases, which
are the fluids of choice for most ab initio-based primary
temperature and pressure metrology, first-principles ther-
mophysical properties for molecular species can also be
of interest and make significant contributions. Three of
the most promising areas are humidity metrology, low-
pressure metrology, and atmospheric physics.
There are two main factors that make rigorous ab

initio calculations of properties much more difficult for
molecules than for monatomic species. The first is the
increased dimensionality, where interactions depend not
only on distance but on the relative orientations of the
molecules. This not only complicates the development
of potential-energy surfaces between molecules, but also
makes the calculation of properties such as virial coeffi-
cients a sampling problem in many dimensions. Second,
for rigorous calculations the internal degrees of freedom
of the molecule must be considered, because properties of
interest (such as the mean polarizability) depend on the
molecular geometry and a distribution of geometries is
sampled for each quantum state of the molecule. In some
cases it may be adequate to assume a rigid molecule, but
at a minimum an estimate of the uncertainty introduced
by this assumption is needed, even though it might be
difficult to compute.
In this section, we will describe the calculation of

single-molecule quantities and quantities involving two or
more molecules, along with their use to calculate prop-
erties of interest for metrology. Particular attention will
be given to methods for addressing the challenges spe-
cific to molecular species. Finally, we will discuss some
metrological applications that use properties of molecular
species.

A. Single-molecule calculations

1. Intramolecular potentials

In order to compute values of a property of a molecule
averaged over nuclear motions, it is necessary to have
a potential-energy surface for the molecule. Such sur-
faces can be developed with ab initio calculations, and
they can often be refined if accurate spectroscopic mea-
surements are available. Development of the intramolec-
ular potential is relatively straightforward for diatomic
molecules such as H2, N2, and CO because the potential
is one-dimensional, but the dimensionality and complex-
ity increases quickly with the number of atoms. Sur-
faces of sufficiently high quality for most purposes have
been developed for the triatomic molecules H2O [335] and
CO2. [336] These intramolecular potential-energy sur-
faces are also needed in order to sample configurations
when considering molecular flexibility for pair calcula-
tions as described in Sec. VB2. Except for few-electron
diatomic species and two-electron triatomics, pure ab
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initio surfaces are not accurate enough to provide rovi-
brational spectra competitive with experiments, and the
most accurate molecular surfaces are always semiempiri-
cal.

2. Electromagnetic properties

In contrast to noble gases, molecular species have
multipole moments in the BO approximation (dipole,
quadrupole, etc.). The most significant for metrology is
the electric dipole moment. Rigorous ab initio calculation
of the dipole moment for a molecule such as H2O requires
the development of a surface in which the dipole mo-
ment vector is given as a function of atomic coordinates,
along with the single-molecule PES. The dipole moment
for a given rovibrational state can then be computed as
the expectation value averaged over the wave function
of that state. Because the population of states changes
with temperature, the average dipole moment will also
change (slightly) with temperature; this has been ana-
lyzed for H2O and its isotopologues by Garberoglio et
al. [337]

The polarizability is another important quantity, both
in the static limit for capacitance-based metrology and
at higher frequencies for metrology based on optical re-
fractivity. Unlike a noble gas whose polarizability at a
given frequency is a single number, the polarizability of
a molecule is a tensor that reflects the variation with di-
rection of the applied field and of the molecular axes.
However, the quantity of interest for metrology is the
mean polarizability, defined as 1/3 of the trace of the
polarizability tensor.

Polarizability reflects the response of the electrons to
an electric field. It can be computed ab initio in a rela-
tively straightforward way. While for monatomic species
(and homonuclear diatomic species) the electronic po-
larizability is the only contribution, more complicated
molecules have an additional contribution in the static
limit and at low frequencies; this is usually called the
vibrational polarizability. It can be thought of as the
electric field distorting the molecule (and therefore its
charge distribution) by pushing the negatively and pos-
itively charged parts of the molecule in opposite direc-
tions.

The molecular dipole moment and polarizability are
defined as the first- and second-order response to an ex-
ternally applied electric field E0, respectively. They can
be computed by numerical differentiation of the molecu-
lar energy computed in the BO approximation as a func-
tion of E0, or by perturbation theory. Although in prin-
ciple these two approaches should give the same result, in
practice some differences are observed. For atomic sys-
tems, the results from perturbation theory are found to
be more accurate than numerical differentiation and are
generally preferred. [206] In the case of water, numeri-
cal differentiation is considered more accurate for dipole-
moment calculations. [338]

Once intramolecular potential-energy surfaces, polar-
izability surfaces, and dipole-moment surfaces are avail-
able, one can calculate the temperature-dependent elec-
tromagnetic response of a molecule, that is the first di-
electric virial coefficient Aε (see Eq. (8)), which is gen-
erally given by two contributions: [337] the first is pro-
portional to the rovibrational and thermal average of
the electronic polarizability surface, while the second de-
pends on the squared modulus of the transition matrix
element of the dipole-moment surface. Additionally, one
can separate the contribution from the dipole-moment
transition matrix elements into those transitions where
the vibrational state of the molecule changes and those
for which the vibrational state of the molecule does not
change, but the rotational state does: these two compo-
nents of the dipole-moment contribution to the molecu-
lar polarizability are known as vibrational and rotational
polarizabilities, respectively. [339]

For small molecules (two or three atoms), one can solve
directly the many-body Schrödinger equation for nuclear
motion [340] (e.g., using the efficient discrete-variable
representation [341] of the few-body Hamiltonian [342])
and then perform the appropriate rovibrational and ther-
mal averages to obtain Aε. It has recently been shown
that the path-integral approach outlined in Sec. IV can
be successfully used to compute the first dielectric virial
coefficient of water. [337] It can possibly be generalized to
larger molecules, where the direct solution of the many-
body Schrödinger equation becomes very demanding in
terms of computational power.

In the case of water, computational results using
the most accurate intramolecular potential-energy sur-
face, [335] polarizability surface, [343] and dipole-moment
surface [338] are within 0.1% of the experimental value
for the static dipole moment, [344] although the theoreti-
cal surfaces for water do not yet have rigorously assigned
uncertainties.

3. Spectroscopy

It is now possible, especially for molecules containing
only two or three atoms, to compute the positions and
intensities of spectroscopic lines ab initio. The calcula-
tion of line positions requires only the single-molecule
potential-energy surface. The more important quantity
for thermodynamic metrology, however, is the intensity
of specific lines. This requires both the PES and a surface
for the dipole moment as a function of the coordinates.
Accurate ab initio dipole-moment surfaces have been de-
veloped for H2O, [338] CO2, [345, 346] and CO. [347]
The possible use in pressure metrology of intensities cal-
culated from the surfaces for CO and CO2 will be dis-
cussed in Sec. VD
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B. Calculations for molecular clusters

1. Interaction potentials

The development of interaction potentials for molecu-
lar gases is more difficult than for atomic ones due to the
additional degrees of freedom, but much of the descrip-
tion in Sec. III is still applicable. A common approxi-
mation when developing intermolecular pair potentials is
to treat the molecules as rigid rotors, which reduces the
dimensionality considerably. For example, the PES of a
pair of flexible water molecules has 12 degrees of free-
dom. By freezing the four OH bond lengths and the two
HOH bond angles, only six degrees of freedom, usually
taken to be the center-of-mass separation and five angles
describing the mutual orientation, remain. To minimize
the consequences of freezing the intramolecular degrees
of freedom, the zero-point vibrationally averaged struc-
tures of the monomers are often used instead of the cor-
responding equilibrium structures. [348, 349]

However, even a six-dimensional dimer PES requires
investigating thousands or even tens of thousands of pair
configurations with high-level ab initio methods. As dis-
cussed in Sec. III, the most commonly applied level of
theory is CCSD(T) [350] for molecular monomers; this
method is usually applied with the frozen-core (FC) ap-
proximation. Such a level of theory was only the starting
point in the schemes used to develop the most accurate
pair potentials for the noble gases beyond helium. For the
CCSD(T) method, the computational cost scales with
the seventh power of the size of the molecules, and the
scaling becomes even steeper for post-CCSD(T) meth-
ods.

In recent years, several intermolecular PESs have been
developed that go beyond the CCSD(T)/FC level of
electronic structure theory. The first step is to in-
clude all electrons in the calculations. Examples of all-
electron (AE) surfaces are the flexible-monomer water
dimer PES of Ref. 351 and the rigid-monomer ammo-
nia dimer PES of Ref. 352. Also, post-CCSD(T)/AE
terms were used in the H2–CO flexible-monomer PESs
starting in 2012. [353, 354] The T(Q) contributions were
shown to have surprisingly large effects on the H2–CO
spectra. [355]

Intermolecular pair potentials can be accurately rep-
resented analytically by a number of different base func-
tional forms. Mimicking the anisotropy of the PES is
most commonly achieved either by using spherical har-
monics expansions or by placing interaction sites at dif-
ferent positions in the molecules, with each site in one
molecule interacting with each site in the other molecule
through an isotropic function. The site-site form is also
often used for the empirical effective pair potentials com-
monly employed in molecular dynamics and Monte Carlo
simulations of large molecular systems. The analytic
functions used to represent high-dimensional ab initio
PESs for pairs of small rigid molecules typically have a
few tens up to a few hundred fit parameters.

Determination of these parameters, i.e., fitting a PES
to a set of grid points in a dimer configurational space and
the corresponding interaction energies, was until recently
a major task taking often several months of human effort.
This bottleneck has recently been removed by computer
codes that perform such fitting automatically. In partic-
ular, the autoPES program [351, 356] can develop both
rigid- and flexible-monomer fits at arbitrary level of elec-
tronic structure theory. The automation is complete: a
user just inputs specifications of monomers and the pro-
gram provides on output an analytic PES. This means
that the program determines the set of grid points, runs
electronic structure calculations for each point, and per-
forms the fit. In addition to developing automation, the
autoPES project introduced several improvements in the
strategy of generating PESs. In particular, the large-R
region of a PES is computed ab initio from the asymp-
totic expansion. Such expansion predicts interaction en-
ergies well down to R about two times larger than the
van der Waals minimum distance. This means that no
electronic structure calculations are needed in this region
and autoPES can develop accurate PESs for dimers of
few-atomic monomers using only about 1000 grid points,
while most published work used dozens of thousands of
points.

Accurate analytic rigid-rotor PESs exist for a large
number of both like-species and unlike-species molecule
pairs. For metrology, the most noteworthy of these are
N2–N2, [357] CO2–CO2, [358, 359] H2O–CO2, [360] H2O–
N2, [361] and H2O–O2. [362] Other accurate PESs of this
type are: N2–HF, [363] H2O–H2O, [351, 364] (HF)2, [365]
and H2–CO. [353, 355]

Many of these PESs (e.g., those from Refs. 357, 358,
360–362) are based on nonrelativistic interaction ener-
gies corresponding to the frozen-core CCSD(T) level of
theory in the CBS limit and are represented analytically
by site-site potential functions, with each site-site inter-
action modeled by a modified Tang–Toennies type po-
tential [366] with an added Coulomb interaction term.
In the case of the N2–N2 PES, [357] corrections to the
interaction energies for post-CCSD(T), relativistic, and
core-core and core-valence correlation effects were consid-
ered. Motivated by the availability of extremely accurate
experimental data for the second virial coefficients of N2

and CO2, the N2–N2 [357] and CO2–CO2 [358] PESs were
additionally fine-tuned such that these data are almost
perfectly matched by the values resulting from the PESs.
The maximum well depths of the PESs were changed by
the fine-tuning by less than 1%. Such fine-tuning does,
however, mean that properties such as virial coefficients
calculated from these tuned potentials cannot be consid-
ered to be truly from first principles for the purpose of
metrology.

The second group of PESs listed above was also devel-
oped using either CCSD(T), with FC or AE, or SAPT.
Post-CCSD(T) terms were considered in some cases, as
already mentioned above. A range of different functional
forms was used in the fitting; for larger monomers it was
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most often the site-site form.
While the error introduced by approximating

molecules as rigid rotors is believed to be small for the
molecules considered here, more rigorous calculations
should include the intramolecular degrees of freedom;
this has been done for example for the H2–H2, H2–CO,
and H2O–H2O potentials. [351, 353, 354, 367, 368] There
are several difficulties involved in the generation of fully
flexible potentials. The first is the larger number of de-
grees of freedom. A system of N molecules approximated
as rigid rotors can be described by Cr = 6N − 6 coor-
dinates, while Cf = 3nN − 6 coordinates are necessary
to fully describe a configuration of the same molecules
if each of the monomers has n atoms. For sampling c
configurations per degree of freedom, the number of cal-
culations needed to explore the potential-energy surface
grows exponentially as cCr|f . In the case of, say, the
water trimer (N = 3, n = 3), even assuming c = 3 one
goes from 312 ≈ 5 × 105 configurations for rigid models
to 321 ≈ 1010 configurations for a fully flexible approach.
The exponential increase of the number of configurations
as a function of the number of degrees of freedom to be
considered is sometimes called the dimensionality curse.
Not all of these configurations are equally important
and there is room for significant pruning and clever
sampling strategies: one of the most useful starts from
potentials developed for rigid molecules and enables
the development of fully flexible versions optimizing
the number of additional molecular configurations to
be evaluated. [369, 370] More generally, even for a few
degrees of freedom, the product of dimensions strategy
leading to the cC is the worst strategy to follow. Instead,
one uses various types of guided MC generation of
grid points. In particular, the statistically guided grid
generation method of Ref. 371 reduces the number of
points needed for a 6-dimensional PES to about 300
(assuming the use of ab initio asymptotics). Another
important issue regards the choice of a suitable form for
the analytic potential and the fitting procedure. As in
the case of rigid potentials, site-site interaction models
(based on exponential functions at short range, inverse
powers at long range, and Coulomb potentials) are com-
monly used for intermolecular flexible potentials. For the
intramolecular interactions, Morse functions are often
used but polynomial expansions work sufficiently well for
molecules in their low-energy rovibrational state. [351]
Nevertheless, the dimensionality curse drastically limits
the development of fully flexible potentials and for
the time being only pair and three-body potentials
involving diatomic and triatomic molecules (notably
water [364, 372, 373]) have been developed.

2. Density virial coefficients

The calculation of density virial coefficients for molecu-
lar systems can be performed in a way very similar to that
for noble gases. The main difference concerns the evalu-

ation of the matrix elements of the free-molecule kinetic
energy operator, that is the generalization of Eq. (74)
which in turn depends on the specific degrees of freedom
considered in the molecular model under consideration.
In the most general case, one considers the transla-

tional degrees of freedom of all the atoms in the molecule.
Equation (74) remains the same (with the obvious mod-
ification of an atom-dependent mass m), but one needs
an intramolecular potential to keep the molecule bound
and, in general, a large number of beads, especially if
light atoms (such as hydrogen or one of its isotopes) are
to be considered. This approach allows flexibility effects
to be fully accounted for and has been applied to inves-
tigate the second virial coefficient of hydrogen [367] and
water [368] isotopologues. As one might expect, flexi-
bility is more important at higher temperatures. On the
other hand, this approach requires intramolecular and in-
termolecular potentials that depend on all the degrees of
freedom, which in turn call for very demanding ab initio
electronic structure calculations.
At sufficiently low temperatures, molecules occupy

their vibrational ground state, and rigid-monomer mod-
els are expected to be quite (although not perfectly) ac-
curate. In this case, a whole molecule is described as a
rigid rotor, that is by 3 translational and 3 rotational de-
grees of freedom (2 in the case of linear molecules). The
matrix elements of the kinetic energy operator are, in this
case, more complicated than that in Eq. (74), but their
expression has been worked out for both linear [374] and
non-linear [375, 376] rotors.
The rigid-rotor approximation of a molecular system is,

in principle, an uncontrolled approximation and, conse-
quently, cannot directly provide rigorous data for metro-
logical applications. On the other hand, the associ-
ated uncertainties can be partially offset by the fact
that potential-energy surfaces can be generated with
higher accuracy than in the case of fully flexible mod-
els. [261, 377] Validation of the ab initio results with ex-
perimental data can be used to establish the temperature
range in which a rigid model is valid, and provide useful
estimates of virial coefficients where experimental data
are lacking. Additionally, rigid models can be a stepping
stone towards the more accurate fully flexible approaches.
Also, semiclassical approximations of density [378] or

dielectric virial coefficients [285] for molecular systems
are available. They are generally much easier to evaluate
than by path-integral calculations, and are quite accurate
in many cases. [337, 368, 379]

3. Dielectric and refractivity virial coefficients

The calculation of dielectric and refractivity virial co-
efficients for molecular species is much more difficult
than for the monatomic systems discussed in Sec. IVE3.
In addition to the increased dimensionality, the charge
asymmetry creates additional polarization effects in in-
teracting molecules. A complete treatment must there-
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fore include the effect of the molecular interactions not
only on the polarizability of the molecules, but also on
their charge distribution. Because of this complexity, it
seems unlikely that coefficients beyond the second virial
will be calculated in the foreseeable future, and quanti-
tatively accurate calculations with realistic uncertainty
estimates may be limited to diatomic molecules such as
N2 or H2.

The only attempt at such calculations we are aware of
for realistic (polarizable) molecular models is the work
of Stone et al., [380] who calculated the second dielec-
tric virial coefficient for several small molecules, includ-
ing CO and H2O. A recent experimental determination
of the second dielectric virial coefficient for CO [381] was
in qualitative but not quantitative agreement with the
prediction of Stone et al.
For rigorous metrology, it would be necessary to char-

acterize the uncertainty of the surfaces describing the mu-
tual polarization and pair polarizability of the molecules.
The dimensionality, and therefore the complexity, of
these calculations for a diatomic molecule like N2 would
be similar to that for the three-body polarizability and
dipole surfaces for monatomic gases.

4. Molecular collisions

In some pressure-metrology applications near vacuum
conditions, collision rates, which are related to colli-
sion integrals, are required. We already introduced col-
lision integrals for atom-atom collisions in Sec. IVF,
but the concept can be generalized to include atom-
molecule and molecule-molecule collisions, enabling the
calculation of transport properties for dilute molecu-
lar gases. While the collision integrals for atom-atom
collisions result in a classical treatment from the solu-
tion of the linearized Boltzmann equation and in the
quantum-mechanical case from the solution of the lin-
earized Uehling–Uhlenbeck equation, [382] the corre-
sponding classical and quantum-mechanical equations for
collisions involving molecules are the linearized Curtiss–
Kagan–Maksimov equation [383–386] and the linearized
Waldmann–Snider equation. [387–390]

The formalism for the calculation of collision inte-
grals involving molecules is much more complex than in
the case of atom-atom collisions. Relations for classi-
cal collision integrals were derived by Curtiss for rigid
linear molecules [391] and extended to rigid nonlin-
ear molecules by Dickinson et al. [392] The quantum-
mechanical calculation of collision integrals involving two
molecules has rarely been attempted because of the
mathematical complexity and large computational re-
quirements, whereas atom-molecule collisions have been
studied quantum-mechanically more often. For collisions
between a helium atom and a nitrogen molecule, collision
integrals were calculated both classically and quantum-
mechanically. [393, 394] The comparison showed that
quantum effects are small except at low temperatures.

The degree to which the quantum nature of collisions
can be neglected for pairs with larger expected quantum
effects, such as H2O–H2O, remains an open question, but
the agreement with experiment of classically calculated
dilute-gas viscosities for H2O [395] suggests that the clas-
sical approximation is adequate for most purposes.

C. Humidity metrology

Much humidity metrology requires knowledge of hu-
mid air’s departure from ideal-gas behavior. Because the
densities are low, this can be described by the virial ex-
pansion. The second virial coefficient of pure water has
been calculated [368] based on flexible ab initio pair po-
tentials computed at a high level of theory. [364, 372, 373]
It is necessary to take the flexibility of the water molecule
into account to obtain quantitative accuracy. [368]
The most important contribution to the nonideality of

humid air comes from the interaction second virial coef-
ficient of water with air. While fairly accurate measure-
ments of this quantity exist near ambient temperatures,
it can now be computed with similar or better uncer-
tainty by combining the cross second virial coefficients for
water with the main components of dry air. [396] Good
quality pair potentials exist for water with argon, [397]
nitrogen, [361] and oxygen, [362] and these have been
combined by Hellmann [362] to produce accurate water–
air second virial coefficients between 150 K and 2000 K.
For humidity metrology at pressures significantly

higher than atmospheric, corrections at the third virial
coefficient level become significant. Only very limited
data exist for the relevant third virial coefficients (water–
water–air and water–air–air), [398] so ab initio calcula-
tion of these quantities would be useful. This requires
development of three-body potential-energy surfaces for
systems such as H2O–N2–N2 and H2O–H2O–O2. To
our knowledge, no high-accuracy surfaces exist for these
three-molecule systems, but their development should be
feasible with current technology.
The same framework can be used for humidity metrol-

ogy in other gases. Hygrometers are typically calibrated
with air or nitrogen as the carrier gas, but some error will
be introduced if the calibration is used in the measure-
ment of moisture in a different gas. Calibrations can be
adjusted if ab initio values of the cross second virial coef-
ficient are known for water with the gas of interest. Such
values have been developed for several important gases,
such as carbon dioxide, [360] methane, [399] helium, [400]
and hydrogen. [401]
Some emerging technologies for humidity metrology

can be aided by ab initio property calculations. Instru-
ments to measure humidity from the change in dielectric
constant with water content of a gas [402, 403] require the
first dielectric virial coefficient of water, which depends
on its molecular polarizability and dipole moment. These
quantities and their temperature dependence have been
a subject of recent theoretical study. [337]
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Spectroscopic measurement of humidity has also been
proposed; [404] this requires the intensity of an absorp-
tion line for the water molecule. Thus far, work in
this area has used measured line intensities due to their
smaller uncertainty compared to ab initio values. The
recent work of Rubin et al. [405] demonstrated mutu-
ally consistent sub-percent accuracy for both experimen-
tal and theoretical intensities based on a semiempirical
PES for an H2O line, offering promise for the future use
of calculated intensities to reduce the uncertainty of hu-
midity metrology.

D. Pressure metrology

Molecular calculations are also promising for pressure
metrology at low pressures. [105] Refractivity-based pres-
sure measurements using noble gases are discussed in
Sec. II C. Some proposed approaches use ratios of the
refractivity of a more refractive gas (such as nitrogen or
argon) to that of helium. Use of nitrogen in these sys-
tems would be aided by good ab initio results for the
polarizability of the N2 molecule and its second density
and refractivity virial coefficients.

For low pressures, on the order of 1 Pa and below, ab-
sorption spectroscopy is a promising approach for pres-
sure measurement. The absorption of a gas such as CO
or CO2 can be used to measure low gas densities (from
which the pressure is calculated by the ideal-gas law, per-
haps with a second virial correction); this can be a pri-
mary pressure standard if the line intensity is calculated
from semiempirical potential-energy and dipole-moment
ab initio surfaces tuned to spectral data. Even if mea-
sured intensities are used, theoretical results are valu-
able to check their accuracy. For CO2, uncertainty of
intensity measurements and agreement between theory
and experiment below 0.5% has been obtained. [346, 406]
The simpler CO molecule is more amenable to accurate
theoretical calculations; consistency between experimen-
tal and theoretical line intensities on the order of 0.1%
has recently been achieved. [347] In these calculations,
the potential-energy curve was purely empirical, but the
dipole-moment surface was obtained ab initio. An unre-
solved question in this work so far is the uncertainty of
ab initio calculated line intensities, which must depend in
a complex way on the uncertainties in the intramolecu-
lar potential and in the dipole-moment surface. Without
reasonable estimates for the uncertainty of calculated in-
tensities, the utility of this spectroscopic method for pri-
mary pressure standards is diminished.

For ultrahigh vacuum, gas densities can be measured
based on the collision rate between the gas and a collec-
tion of trapped ultra-cold atoms. Both lithium and ru-
bidium have been proposed as the trapped species. [407–
413] While in some implementations an apparatus con-
stant is derived from measurements, [409, 410] it has re-
cently been recognized [414] that the proposed procedure
introduces error when light species (such as Li and H2)

are involved in the collisions.
It is also possible to determine the relevant proportion-

ality factor for the collision rate from first principles using
collision cross sections calculated from ab initio pair po-
tentials and quantum collision theory. These calculations
have been performed for lithium with H2 (the most com-
mon gas in metallic vacuum systems) and He; [415, 416]
ab initio calculations with rubidium are more challenging
due to the large number of electrons. A recent paper has
reported first-principles collision rate coefficients for both
Rb and Li with noble gases, H2, and N2. [417] It is also
possible to measure the ratio of two collision pairs (for
example, Rb–H2 versus Li–H2) to obtain the coefficient
for a system that is more difficult to calculate ab ini-
tio; [407, 414] in this approach a low uncertainty for the
simpler-to-calculate system (that with fewer electrons) is
essential.

E. Atmospheric physics

In atmospheric physics, the interaction of radiation
with atmospheric gases, particularly H2O and CO2, has
received increasing attention for climate studies; it is also
important for Earth-based astronomy where the atmo-
sphere is in the optical path. Scientists in these fields
rely on line positions and intensities in the HITRAN
database. [418] Increasingly, ab initio calculations are be-
ing used to supplement experimental measurements for
these quantities, as has recently been summarized for
CO2. [419]

F. Transport properties

While transport properties of molecular gases are of
little relevance in precision metrology, for the sake of
completeness we mention briefly the current state of the
art for pure molecular gases. Most of the transport
property calculations for such gases performed so far are
based on classically calculated collision integrals for rigid
molecules using the formalism of Curtiss [383] for lin-
ear molecules and of Dickinson et al. [392] for nonlinear
molecules (see Sec. VB4.)
A representative example of such calculations for gases

consisting of small molecules other than H2 are the clas-
sical shear viscosity and thermal conductivity calcula-
tions of Hellmann and Vogel [395] and Hellmann and
Bich, [420] respectively, for pure H2O. The agreement
with the best experimental data is within a few tenths of
a percent for the viscosity and a few percent for the ther-
mal conductivity. For both properties, these deviations
correspond to the typical uncertainties of the best exper-
imental data. The significant contribution to the thermal
conductivity due to the transport of energy “stored” in
the vibrational degrees of freedom, which is not directly
accounted for by the classical rigid-rotor calculations, was
estimated using a scheme that only requires knowledge
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of the ideal-gas heat capacity in addition to the rigid-
rotor collision integrals. [420] The main assumption in
this scheme is that collisions that change the vibrational
energy levels of the molecules are so rare that their effects
on the collision integrals are negligible.

For pure H2, classical calculations are not accurate
enough even at ambient temperature. Fully quantum-
mechanical calculations were performed by Mehl et
al. [421] using a spherically-averaged modification of a
H2–H2 PES, [261] thus reducing the complexity of the
collision calculations to that for monatomic gases. De-
spite this approximation, the calculated shear viscosity
and thermal conductivity values for H2 agree very well
with the best experimental data, particularly in the case
of the viscosity where the agreement is within 0.1%.

VI. CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

The outstanding progress achieved during the last
three decades by the ab initio calculation of the ther-
mophysical properties of pure fluids and mixtures has
drastically reduced the uncertainty of the measurement
of these properties and of the thermodynamic variables
temperature, pressure, and composition.

For example, consider primary thermometry. Ab initio
calculations directly contributed to the acoustic and di-
electric determination of the value of the Boltzmann con-
stant that is used in the new SI definition of the kelvin.
The remarkably accurate theoretical calculations of the
polarizability and the non-ideality of thermometric gases
have also facilitated simplified measurement strategies
and techniques. [29, 49, 53, 54] Consequently, new paths
directly disseminating the thermodynamic temperature
are now available at temperatures below 25 K, where the
realization of ITS-90 is particularly complicated. Vari-
ous methods of gas thermometry have determined T with
uncertainties that are comparable to or even lower than
the uncertainty of realizations of ITS-90. [35, 62, 63] Im-
proved theory has also suggested that primary CVGT
could usefully be revisited, as discussed in Section II B 4.

In the near future, technical achievements will likely
further reduce the uncertainty of measurements of the
thermodynamic temperature and the thermophysical
properties of gases. Efforts include: (1) improving the
purity of the thermometric gases at their point of use,
(2) implementing two-gas methods to reduce the uncer-
tainties from compressibility of the apparatus, and (3)
developing robust microphones (possibly based on opti-
cal interferometry) to facilitate cryogenic AGT. In the
remainder of this section, we will summarize current lim-
itations and describe some prospects for future contribu-
tions.

A. Current limitations of ab initio property calculations

As described in Sec. III, ab initio calculations of prop-
erties for individual helium atoms and pairs of atoms
have achieved extraordinarily small uncertainties. Even
for three-body interactions, the potential energy is now
known with small uncertainty, and good surfaces are
available for the three-body polarizability and dipole mo-
ment. This enables accurate calculations, with no uncon-
trolled approximations, of the second and third density,
acoustic, and dielectric virial coefficients. This high ac-
curacy is due to the small number of electrons involved;
electron correlation at the FCI level is still tractable for
three helium atoms with a total of six electrons.
For DCGT and RIGT, it would be desirable to have

similarly accurate properties for neon and argon, be-
cause their higher polarizability (and therefore stronger
response) reduces the relative effect of other sources of
uncertainty such as imperfect knowledge of the compress-
ibility of the apparatus or the presence of impurities in
the gas. Unfortunately, this level of accuracy for neon
and argon is unlikely to be obtained in the foreseeable
future. The neon atom has 10 electrons, as many as
five helium atoms, and argon has 18. While recent ef-
forts have (at large computational expense) significantly
reduced the uncertainty of single-atom and dimer quan-
tities for neon and argon, [64–66, 117, 118] they do not
approach the levels of accuracy achieved for helium. For
example, the relative uncertainty of the best calculation
of the static polarizability of a neon atom [65] is more
than 100 times greater than that of a helium atom. [192]
Similarly, the relative uncertainty of the pair potential
minimum energy is about 100 times larger for neon [117]
than for helium. [11] Therefore, the relative uncertainties
of calculated gas-phase thermophysical properties will be
much higher for other gases than for helium. In such
cases, the most accurate values of properties may be ob-
tained by measuring ratios of properties relative to that
of helium. This has already been done for the static po-
larizability of neon and argon [63] and for the low-density
viscosity of several gases. [166–168]
Refractivity-based thermal metrology [82, 323] requires

AR, and preferably also BR and CR. At microwave fre-
quencies, the static values (Aε, Bε, etc.) can be used. At
optical frequencies, AR has been computed at a state-of-
the-art level for helium, [84] neon, [64] and argon. [66]
BR has been computed at a state-of-the-art level for he-
lium, [79] but corresponding calculations for neon and
argon rely on values for the Cauchy moment ∆S(−4)
that could be significantly improved.
Even with state-of-the-art ab initio results, it seems

likely that ratio measurements using helium, such as
those of Egan et al. for AR, [119] will produce lower
uncertainties. To our knowledge, the theory for calculat-
ing CR at optical frequencies is not available. Therefore,
at the moment, it is necessary to take rather uncertain
values from experiment or assume (based on the small
difference between BR and Bε) that it is equal to Cε.
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As mentioned in Sec. IVE3 and also noted by
Rourke, [323] another issue for refractivity methods is the
unclear situation surrounding the Aµ contribution. The
best calculations of the magnetic susceptibility for he-
lium, [80] neon, [64] and argon [66] disagree with the old,
sparse measurements of these quantities [328] by amounts
much larger than their stated uncertainties. Independent
calculations of the magnetic susceptibility for one or more
of these species would be helpful in assessing this discrep-
ancy, but what is most needed is a modern measurement
of the magnetic susceptibility of a noble gas (probably ar-
gon), either as an absolute measurement or as a ratio to
a substance with a better-known magnetic susceptibility,
such as liquid water.

To reach higher pressures with helium-based appara-
tus, it would be desirable to have reliable values, with
uncertainties, for the fourth virial coefficient D(T ). The
most complete first-principles estimate so far [126] used
high-accuracy two-body and three-body potentials, but
had a significant uncertainty component due to the un-
known four-body potential. Accurate calculations of the
nonadditive four-body potential for helium are feasible
with modern methods. A four-body PES for helium, even
if its relative uncertainty was as large as 10%, would al-
low reference-quality calculation of D(T ) and enable im-
proved metrology. The fitting of ab initio calculations to
functional forms with many variables could, in this case,
benefit from recent progress in machine-learning-based
methods. [422]

B. Molecular gases

Nitrogen is an attractive option for gas-based metrol-
ogy due to its availability in high purity and its long-
standing use in traditional apparatus such as piston
gauges, but its lack of spherical symmetry and its inter-
nal degree of freedom add complication to ab initio cal-
culation of its properties. The development of potential-
energy surfaces for pair and three-body interactions for
rigid molecular models is certainly feasible. This is also
possible for flexible models, pending the difficulties dis-
cussed in Sec. VB1. Once these surfaces are available,
the methods for calculations of density virial coefficients
have already been proven. [261, 368, 377] (see Sec. VB2.)
To the best of our knowledge, no fully ab initio calcula-
tion of dielectric virial coefficients for molecular systems
has been performed. This task will require the develop-
ment of the molecular interaction-induced polarizability
function and dipole-moment function. The path-integral
approach described in Sec. IV can certainly be extended
to compute these quantities as well as rigorously propa-
gate their uncertainties.

C. Improved uncertainty estimations

As mentioned in Sec. IVC, much progress has been
made in estimating realistic uncertainties for density and
dielectric virial coefficients. The old method of simply
displacing the potentials in a “plus” and “minus” direc-
tion, while correct for one-dimensional integrations such
as B and Bε, is inefficient and can produce inaccurate
results for higher coefficients. The functional differen-
tiation approach discussed in Sec. IVC provides more
rigorous results.
However, it is not entirely clear how to obtain uncer-

tainties for acoustic virial coefficients, because they in-
volve temperature derivatives of B(T ) and C(T ). The
rigorous assignment of uncertainty to a derivative of a
function computed from uncertain input is an unsolved
problem as far as we are aware. Binosi et al. [303]
recently applied a statistical method (the Schlessinger
Point Method) to the estimation of uncertainties for
acoustic virial coefficients; this may provide a way for-
ward.
A similar issue exists for the low-density transport

properties. The very low uncertainty of the viscosity of
helium shown in Fig. 9 near 40 K, obtained with the
traditional method of “plus” and “minus” perturbations
to the pair potential, is an artifact of competing effects
on the collision integral of perturbations from different
parts of the potential. While B(T ), for example, ex-
hibits monotonic behavior with respect to perturbations
in the potential, that is not the case for the collision
integrals used to compute transport properties, which
can cause uncertainties to be artificially underestimated.
This was recognized by Hellmann and coworkers, who
created potentials perturbed in additional ways to pro-
vide a non-rigorous but reasonable estimation method
for the uncertainty of low-density transport properties
for krypton, [149] xenon, [423] and neon. [117] Further
analysis would be welcome to improve the rigor of uncer-
tainty estimates for transport collision integrals.

D. Transport properties

In addition to the uncertainty issue just mentioned, we
see two areas for improvement in the field of transport
properties. The first concerns the density dependence
beyond the low-density limiting values discussed in this
work. As mentioned in Sec. II E, for flow metrology it
would be desirable to know the viscosity with small and
rigorous uncertainties not only at zero density, but at
the real densities at which instruments are calibrated.
The first correction should be a virial-like term linear in
density, but the most successful theory so far [171–173]
relies on some simplifying assumptions. A more rigorous
theory would be a significant advance. Even if the initial
density dependence were only known for helium, that
would enable better metrology for other gases because of
the established methods for measuring viscosity ratios.
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The second area is the transport properties of molecu-
lar species, such as N2 or H2O. As mentioned in Sec. IVF,
classical collision integrals can be calculated for these
species when they are modeled as rigid rotors. While
it is believed that the errors introduced by the assump-
tions of classical dynamics and rigid molecules are small,
it would be desirable to have verification from a more
rigorous calculation. One might expect quantum effects
to be significant for the dynamics of H2O collisions, since
they make a large contribution to B(T ) for H2O. [367]
Since fully quantum calculation of collision integrals is
currently intractable for all but the simplest systems, the
development of a viable “semiclassical” method for trans-
port properties would be desirable. No such formulation
exists to our knowledge.

E. Simulations of liquid helium

While we have focused on the gaseous systems where
ab initio properties are already making major contribu-
tions to metrology, the thermophysical properties of con-
densed phases (particularly for helium) are also impor-
tant in temperature metrology. For example, the vapor
pressures of liquid 3He and 4He are part of the definition
of ITS-90. [6] With highly accurate two- and three-body
potentials for helium (perhaps eventually supplemented
by a four-body potential), high-accuracy simulation of
thermodynamic properties of liquid helium may become
feasible.

In fact, path-integral simulations of liquid 4He can be
performed without uncontrolled approximations, [281] al-
though, to the best of our knowledge, the most recent ab
initio potentials have not yet been employed to compute
any liquid helium property (e.g., the specific heat – and
hence the vapor pressure, via the Clapeyron equation – or
the temperature of superfluid transition). Consequently,
the accuracy of first-principles many-body potentials for
liquid 4He is largely unknown. The use of three-body
(or higher, when available) potentials would require con-
siderable computational resources, as has been recently
observed in simulations of liquid para-H2, [424] but the-
oretical developments in efficient simulation methods for
degenerate systems [425] might pave the way for a fully
ab initio calculation of the thermophysical properties of
condensed 4He.

In the case of fermionic systems such as 3He, the path-
integral approach suffers in principle from a “sign prob-
lem”, [426] which generally requires some approximations
and results in a large statistical uncertainty. However,
two research groups have recently claimed to have over-
come these limitations, [427, 428] which might result in
accurate calculations of thermophysical properties in the
liquid phase also for this isotope.

F. Reproducibility and validation

It is desirable for metrological standards to be based
on multiple independent studies, so that they will not
be distorted by a single unrecognized error. For exam-
ple, for the recent redefinition of the SI in which several
fundamental physical constants were assigned exact val-
ues, it was required that the value assigned to the Boltz-
mann constant be based on consistent results from at
least two independent experiments using different tech-
niques and meeting a low uncertainty threshold. [28] Sim-
ilarly, metrological application of the calculated results
discussed in this Review would be on a firmer basis if
there was independent confirmation of the results.
The danger of an unrecognized error in calculated

quantities is not merely hypothetical. For several years,
the “best” calculated values of C for 3He were in error be-
low about 4.5 K because the effects of nuclear spin on the
quantum exchange contribution had been incorporated
incorrectly; this was eventually recognized and corrected
in Errata. [126, 127] An early quantum calculation of Bε

of argon [429] disagreed with a later study, [79] appar-
ently because of inexact handling of resonance states in
the earlier work. Ideally, there would be independent
confirmation of all the results cited in Table IV so that
any errors could be detected.
One helpful step in this direction would be more com-

plete documentation of calculations, including computer
code, so that others can reproduce or check the work. It
is common to provide computer code for potential-energy
surfaces, but the calculation of virial coefficients has typ-
ically been performed with specialized software that is
not public.
More important for metrology, however, would be in-

dependent verification of the calculated results. Concep-
tually, this has two parts: validation of the calculated
quantities and surfaces described in Sec. III (potential-
energy, polarizability, and dipole surfaces; atomic and
magnetic polarizabilities) and validation of the calcula-
tion of virial coefficients from these quantities (described
in Sec. IV).
Validation of calculated virial coefficients is probably

the easier of the two parts, because it is typically less
computationally demanding. This has been done for a
few quantities; for example, two groups have performed
fully quantum calculations (in one case neglecting ex-
change effects that become important below 7 K) of
C [127, 319] and D [126, 319] for 4He. Consistency
checks can also be made by comparing different calcu-
lation methods, including classical and semiclassical ap-
proaches that should agree with the quantum calcula-
tions at high temperatures. The error in Bε for ar-
gon mentioned above was detected by comparing phase-
shift calculations to PIMC and semiclassical calculations,
showing the value of multi-method comparisons.
The independent validation of calculated atomic quan-

tities and intermolecular surfaces is more difficult, be-
cause these require large amounts of dedicated computer
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time. There have been a few cases where parallel efforts
have produced independent, high-quality results; these
include Aε for neon [64, 65] and the three-body poten-
tial of argon. [123, 276] Some validation is also provided
when the state of the art advances and new potentials
are produced that agree with previous potentials (but
have smaller uncertainties); this has been the case with
the sequential development of pair potentials for helium
(Sec. III C). In some cases, however, these are not truly
independent verifications because they are developed by
the same group and use many of the same methods.
While it may be difficult to justify the extensive work
required to independently confirm a state-of-the-art cal-
culated surface, there would be value in performing spot
checks of a few points. This would require developers of
surfaces to make their calculated points available (or at
least a subset of them), and also the multiple calculated
quantities that typically contribute to each point.

We believe that more attention should be paid to the
reproducibility and validation of the calculated results
that are increasingly important in precision metrology.
Work of this nature may not be very attractive to funding
agencies (or graduate students), but it is needed for more
confident use of gas-based metrology.
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Appendix A: Formulae for the Third Acoustic Virial
Coefficient, γa

As is apparent from Eqs. (46), (47), and (43), the ex-
plicit expression of the third acoustic virial coefficient as
a function of the pair and three-body potential is quite
involved. We found that it is most conveniently expressed
by defining

b(r, T ) = e−βU2(r) − 1 (A1)

bT (r, T ) = βU2(r)e
−βU2(r) (A2)

bTT (r, T ) = βU2(r)(βU2(r)− 2)e−βU2(r) (A3)

and

c = e−βU3 −
∑
i<j

e−βU2(rij) + 2 (A4)

cT = βU3e
−βU3 −

∑
i<j

βU2(rij)e
−βU2(rij) (A5)

cTT = βU3(βU3 − 2)e−βU3 −∑
i<j

βU3(βU3 − 2)e−βU3 , (A6)

where c, cT and cTT are functions of the temperature T
as well as r12,r13, and r23 through their dependence on
U3. Performing the substitution γ0 = 5/3, we obtain

RTγa(T ) =
8π3

3
N2

A

∫ [
2

15
bTT (r12)bTT (r13) +

14

15
bT (r12)bTT (r13) + b(r12)bTT (r13)+

73

30
bT (r12)bT (r13) +

34

5
b(r12)bT (r13) +

33

5
b(r12)b(r13)−(

2

15
cTT (r12, r13, r23) +

16

15
cT (r12, r13, r23) +

13

5
c(r12, r13, r23)

)]
dΩ3. (A7)

The path-integral expression for γa is more compli-
cated, due to the fact that the ring-polymer distribution
function F of Eq. (77) depends on temperature. In par-
ticular, defining U so that

F = Λ3

(
P 3/2

Λ3

)P

exp (−βU) , (A8)

one can show that

dF

dβ
=

(
U − 3(P − 1)

2β

)
F, (A9)

and derive path-integral expressions for γa. However,
this straightforward approach is characterized by large
variance in the Monte Carlo simulations, since Eq. (A9)
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has a form analogous to the thermodynamic estimator of
the kinetic energy. [301] It is possible to derive equivalent
expressions with smaller variance, using the same ideas
that lead to the virial estimator. [301, 430] The result-
ing formulae are very cumbersome, and can be found in
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375E. G. Noya, L. M. Sesé, R. Ramı́rez, C. McBride, M. M. Conde,
and C. Vega, “Path integral Monte Carlo simulations for rigid
rotors and their application to water,” Mol. Phys. 109, 149
(2011).

376E. G. Noya, C. Vega, and C. McBride, “A quantum propagator
for path-integral simulations of rigid molecules,” J. Chem. Phys.
134, 054117 (2011).

377G. Garberoglio, P. Jankowski, K. Szalewicz, and A. H. Harvey,
“Second virial coefficients of H2 and its isotopologues from a
six-dimensional potential,” J. Chem. Phys. 137, 154308 (2012).

378G. K. Schenter, “The development of effective classical poten-
tials and the quantum statistical mechanical second virial coef-
ficient of water,” J. Chem. Phys. 117, 6573 (2002).

379R. Subramanian, A. J. Schultz, and D. A. Kofke, “Quantum
virial coefficients of molecular nitrogen,” Mol. Phys. 115, 869
(2017).

380A. J. Stone, Y. Tantirungrotechai, and A. D. Buckingham, “The
dielectric virial coefficient and model intermolecular potentials,”
Phys. Chem. Chem. Phys. 2, 429 (2000).

381G. Tsankova, M. Richter, P. L. Stanwix, E. F. May, and R. Span,
“Accurate high-pressure measurements of carbon monoxide’s
electrical properties,” Chem. Phys. Chem. 19, 784 (2018).

382E. A. Uehling and G. E. Uhlenbeck, “Transport phenomena in



60

Einstein–Bose and Fermi–Dirac gases. I,” Phys. Rev. 43, 552
(1933).

383C. F. Curtiss, “The classical Boltzmann equation of a gas of
diatomic molecules,” J. Chem. Phys. 75, 376 (1981).

384C. F. Curtiss, “The classical Boltzmann equation of a molecular
gas,” J. Chem. Phys. 97, 1416 (1992).

385Y. Kagan and L. A. Maksimov, “Kinetic theory of gases with ro-
tational degrees of freedom,” Zh. Eksp. Teor. Fiz 41, 45 (1961).

386Y. Kagan and L. A. Maksimov, “Kinetic theory of gases with
rotational degrees of freedom in an external electric field,” Zh.
Eksp. Teor. Fiz 51, 1893 (1966).

387L. Waldmann, “Die Boltzmann-gleichung für gase mit rotieren-
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