
Reusable Network Simulation for CPS Co-Simulations
Himanshu Neema
Harmon Nine

himanshu.neema@vanderbilt.edu
harmon.s.nine@vanderbilt.edu

Vanderbilt University
Nashville, TN, USA

Thomas Roth
thomas.roth@nist.gov

National Institute of Standards and Technology
Gaithersburg, MD, USA

ABSTRACT
Cyber-Physical Systems (CPS) require seamless integration of phys-
ical and computation components through communication net-
works. They often contain sub-systems from different physical
domains (e.g., electrical, mechanical, and electronic) that must coor-
dinate over a communications network to achieve a joint function.
Thus, network characteristics significantly affect CPS performance
and must be accurately modeled and simulated. However, sim-
ulation efforts are often siloed into specific domains (e.g., man-
ufacturing, transportation, and electric grid) due to the level of
complexity required to simulate even one domain. Co-simulation
standards such as the IEEE High Level Architecture (HLA) attempt
to facilitate model sharing between domains through definition of
common services such as time management on a shared message
bus. However, a well-developed, integrated, and configurable net-
work simulation component that can be readily deployed in CPS
co-simulations is lacking due to both the network simulation com-
plexity and customization needed for specific domains. This paper
presents a novel approach to create a highly reusable and config-
urable network simulation for HLA co-simulations which includes
a cyber-attack library for analyzing behavior of CPS under attack.
This work could provide effective means to quickly develop cyber
scenarios for analyzing CPS through networked co-simulations.

CCS CONCEPTS
• Computing methodologies → Modeling and simulation;
• Computer systems organization → Embedded and cyber-
physical systems.

KEYWORDS
networked co-simulation, cyber-physical systems, system-of-systems,

1 INTRODUCTION
Cyber-Physical Systems (CPS) [7] [6] achieve their function through
the networked coordination of cyber and physical components that
sense and control a physical environment. They derive their capa-
bilities from many physical domains, such as electrical, mechanical,
and electronic, that interact through network communication. For
example, the temperature sensor in a modern thermostat sends
its measured ambient temperature to the controller as a network
message which the controller uses to react when the temperature
crosses a set point. Similarly, when the controller triggers actuation
of the heating and cooling unit, that information is also sent over
a communication network. Most CPS are large system of systems
(SoS) that containmany independent sub-systems that must interop-
erate to fulfill the objectives of the system as a whole. For example,
a typical automotive vehicle contains multiple sub-systems (e.g., the
engine, transmission, fuel system, steering, braking, etc.) that are
networked for communication and control. Thus, communication
networks play a critical and central role in the correct working of
CPS, and the accurate modeling and simulation of these systems
must consider the potential impact of the network dynamics.

One approach to handle network dynamics is a modeling and
simulation technique called co-simulation, where multiple simula-
tors exchange information at run time to execute a joint simulation.
A co-simulation might combine a sophisticated vehicle dynamics
model with a network simulator, with the information exchange be-
tween vehicle sub-systems first routed through the network simula-
tion to induce realistic communication delays. However, real-world
networked co-simulations of CPS are highly challenging. This is not
only because network simulation is itself complex (e.g., simulation
of all networking and application layers, devices, routing, protocols,
etc.), but also because these systems continuously evolve and must
be evaluated in a variety of application contexts – necessitating a
general-purpose, reusable approach to integrating the network sim-
ulation. However, a well-developed, integrated, and configurable
network simulation component that can be readily deployed in CPS
co-simulations is lacking. Therefore, this paper describes a novel
approach to create a highly reusable and configurable network
simulation for use in networked co-simulations of CPS.

Various co-simulation techniques exist based on standards such
as Functional Mock-up Interface (FMI) [2], Distributed Interactive
Simulation (DIS) [4], and Data Distribution Service (DDS) [17].
However, these approaches have issues with real-world require-
ments such as time synchronization, variable time resolution and
time scales, flexible information flows with direct, broadcasted, and
filtered information, and distributed object management [12]. In ad-
dition, co-simulations must support simulators that have different
data models, are implemented in different programming languages,

https://orcid.org/0000-0003-4908-1596
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576914.3587531&domain=pdf&date_stamp=2023-05-09


and utilize different models of computation (e.g., continuous time, 
discrete event, discrete time, etc.). The IEEE High-Level Architec-
ture (HLA) standard [1] was designed to address these issues with 
distributed simulation. In HLA, a co-simulation is called a federa-
tion and the different systems that participate in the co-simulation 
are called federates. However, it can be difficult to make simulators 
conform to the HLA standard due to their size and complexity.

The authors have previously developed a model-based frame-
work, called the Cyber-Physical Systems Wind Tunnel (CPSWT)
[15] [16], for rapidly synthesizing large-scale integrated simula-
tions in HLA. CPSWT uses the Portico Run-Time Infrastructure 
(RTI) [3] for its implementation of the services defined in the HLA 
standard. In CPSWT, the different systems that participate in the 
co-simulation are abstractly modeled with their various informa-
tion exchanges. CPSWT supports extensive configuration of these 
systems and its software tools will transform the abstract models 
into HLA-compliant code for many widely used simulators. The 
HLA-based reusable network component is included in CPSWT 
and can be configured for use in a variety of different application 
domains and scenarios.

The reusable network simulation was developed using OMNeT++ 
[19] and the INET Framework [11], which are open source and 
widely used for network simulation. Several network modules were 
extended to make them configurable to domain-specific use cases 
in CPS and new modules were created for time synchronization and 
data exchange with the HLA. A reusable cyber-attack library from 
prior work was integrated with these modules to allow testing of 
CPS under various attack scenarios [9]. Further, a novel approach 
to dynamic and embedded messaging was developed to support 
processing of HLA message types through the simulated network.

The rest of the paper is organized as follows. Section 2 discusses 
related work. Section 3 identifies the key requirements for creating 
reusable network simulation for CPS co-simulations and Section 4 
presents the proposed solution including the detailed HLA inte-
gration architecture including the techniques of dynamic and em-
bedded messaging and the generic cyber-attack library. Section 5 
demonstrates the presented approach using a brief case study. Sec-
tion 6 concludes and provides directions for further research.

2 RELATED WORK
Networked co-simulations are critical for evaluation of CPS due 
to their huge reliance on reliable network communication. Several 
approaches to co-simulation of CPS are described in [15] and [16]. 
An evaluation of CPS security and resilience using co-simulation 
was presented in [9]. This paper focuses specifically on creating a 
reusable network simulation in the context of CPS co-simulations.

An earlier attempt at creating reusable network simulation based 
on simplified assumptions can be found in [5], but it requires chang-
ing the integration scheme based on changes to network topology 
and does not handle HLA object updates. An approach using a file to 
map parameters of the network simulation messages into HLA inter-
action class parameters appeared in [20]. However, it also does not 
handle object updates. Moreover, both of these approaches do not 
address the model integration problem. In the CPSWT framework, 
model-based integration is at the core of integrating heterogeneous 
simulations (including network simulation).

This work builds upon previous attempts at solving the network
simulation integration in a generic manner as described in [18],
which, however, required recompilation of network simulation
for different HLA federations, did not handle object updates, and
suffered from logical time delays through mapping messages. In
contrast, the proposed solution does not require recompilation,
handles object updates, and does not introduce any logical time
delays with only a little computational overhead (see Section 4).

3 NETWORK SIMULATION REQUIREMENTS
The reusable network simulation for CPS co-simulation was devel-
oped based on the following requirements:

• Reusability It should be possible to reuse the same network
model in multiple co-simulations, even those in different
application domains, without the need to modify or recom-
pile the model. This network model should be configurable
to support variations in network parameters. It should be
extensible for enhancing its functionality and for overriding
its implemented behavior.

• Well-Defined Interfaces: The network simulation imple-
mentation should modularly allow swapping implemented
components for different requirements (e.g., Wired vs Wire-
less connections). It should have a well-defined external
interface for ease of integration into different co-simulations.
This interface should be based on a single HLA Federation
Object Model (FOM) – or data model – that is reusable in
any co-simulation that uses network simulation.

• Cyber Attack Modeling: The messages propagated through
the simulated network should be subject to potential modifi-
cation due to fault or intentional cyber attack. It should be
possible to configure which messages are modified, and to
what extent, using a simple scripting or modeling language.

• Support for HLA Message Types: The network simulation
implementation should support the standard HLA message
types of interactions and object updates. For object updates,
it should be possible to route only a subset of the object
attributes through network simulation, while the remainder
are delivered using the default HLA delivery services.

• Support for Multiple Network Simulations: The imple-
mentation should support co-simulations that contain more
than one network simulator for simulation of different net-
works, or different parts of a large network.When simulating
different parts of the same network, it should be possible to
seamlessly pass a message from one network simulator to
another when it crosses simulation boundaries.

• Tracing and Troubleshooting: Themodules of the network
simulation developed or modified to support co-simulation
should be configurable to log (as and if needed) their internal
behavior with detailed traces to support troubleshooting.

• Model Validation through Testing: The implementation
should be well tested using testing frameworks such as JUnit
and CPPUnit. To support efficient testing and validation, it
should be possible to quickly launch a test co-simulation
that stresses the implementation’s basic features.



4 INTEGRATION ARCHITECTURE
There are two delivery mechanisms for HLA messages. A Receive 
Order message will be delivered as soon as possible, while a Time 
Stamp Order message will be delivered at a specified logical time 
(provided that both sender and receiver are configured to use logi-
cal time). To simulate network delays, the logical time axis of the 
co-simulation must be mapped to a representation of physical time 
(for example, 1 logical time may be defined to be 5 seconds) and 
all messages must be sent using Time Stamp Order. Then the HLA 
messages (interactions and object updates) are routed through a 
network simulator which determines the exact logical time each 
message should arrive based on the network conditions. Dependent 
on the HLA implementation and number of unique message types, 
it can be difficult to configure the network simulator to support 
all the messages required for a particular federation. This is be-
cause, typically, the implementation of each HLA message type 
(interaction or object class, heretofore called an “HLA class”) con-
sists of a corresponding “language class”, i.e., a class written in a 
programming language such as Java or C++.

This results in two undesirable consequences. First, the network 
simulator generally requires compilation of federation-specific code 
to render an executable, which includes the language classes that 
implement the HLA classes. This means that the executable must 
be recompiled for each federation due to its unique HLA message 
types, and each time the data model for an existing federation is 
modified. This makes it difficult to reuse network models in co-
simulations, as it may not be possible to use the network simulator 
without a manual and time-consuming compilation process.

Second, even after a different set of HLA classes is compiled into 
the executable, the network simulation still needs to be modified to 
reference the new data model. So, in addition to the time taken to 
recompile the executable, the network simulation must be modified 
to incorporate the changes to messaging.

These problems are a result of binding the implementation of 
an HLA class to a specific language class, rather than having one 
dynamic message class that could encapsulate all of the HLA classes.

4.1 Dynamic Messaging
The solution to this problem is to allow one language class to im-
plement any HLA interaction class and any HLA object class by 
using generic representations of HLA message properties (param-
eters for interactions, attributes for objects). Rather than storing 
the HLA class properties as specific language class variables, a map 
is defined whose keys are the property names1, and whose values 
are the corresponding property values2. The language class used 
to implement any HLA interaction class is InteractionRoot and any 
object class is ObjectRoot. Both InteractionRoot and ObjectRoot are 
at the top of the HLA interaction and object inheritance hierarchies 
respectively, and so are called the base messaging classes.

1In reality, the keys are a 2-tuple of (full-class-name, property-name), where the
full-class-name is the full name of the HLA class in which the property (with name
property-name) is directly defined. This disambiguates two properties that have the
same name but are defined in classes that are at different levels of the class inheritance
hierarchy. The full-class-name of an HLA class is a dotted sequence of the names of the
class’s full ancestry in its inheritance hierarchy, starting with its most distant ancestor.
2The value type of the map must be one that can represent any type of value (e.g.,
Object class for Java.)

Figure 1: Extended FED with Type Information

Table 1 shows basic operations3 for the InteractionRoot class in
Java. This class can represent any arbitrary HLA interaction class
using these basic operations. There is also a method for iterating
through the parameters of the HLA class that the InteractionRoot
instance is implementing and processing them in a loop. This tech-
nique of implementing any HLA class with a single language class
is called dynamic messaging.

Table 1: Basic Operations of Dynamic Messaging

Operation Code Example
Instance Creation InteractionRoot messageInstance = new

InteractionRoot(“full-class-name”)
Set parameter value messageInstance.setParameter(

“parameter-name”, value)
messageInstance.setParameter(
“full-class-name”, “parameter-name”, value)

Get parameter value messageInstance.getParameter(
“parameter-name”)
messageInstance.getParameter(
“full-class-name”, “parameter-name”)

With dynamic messaging, the InteractionRoot and ObjectRoot
language classes can implement any HLA class and only need
to be compiled into the network simulation executable once. In
addition, the network simulation can operate on HLA messages
using the generic interface defined in Table 1 regardless of the actual
federation data model. This allows implementation of features in
networkmodules (e.g., a network attack that scrambles the property
values based on their type) that are reusable across all federations.

Fundamental to dynamic messaging is an enhanced federation
execution definition (FED) file that specifies type information for
the properties of all the HLA classes. The FED file is an alternative
specification of the Federation Object Model used in some HLA im-
plementations that defines the names and properties of all the HLA
3The getter/setter without HLA ’full-class-name’ will search for the parameter named
’parameter-name’ starting from the implemented HLA class and working its way up
the inheritance hierarchy. The getter/setter with HLA ’full-class-name’ searches for
the parameter named ’parameter-name’ starting from this HLA class. Note that this
HLA class must be in the inheritance hierarchy of the implemented HLA class. This
allows access to a parameter that is defined higher in the inheritance hierarchy but is
shadowed by parameter of the same name defined lower in the inheritance hierarchy.



 

classes required to run a federation. This file, formatted in JSON, 
was extended to include type information as shown in Figure 1. 
Federates (e.g., the network simulation federate) load the FED file 
before execution and use it to create instances of domain-specific 
messaging classes through the base messaging classes. Thus, a base 
messaging class can dynamically define this HLA class within itself, 
recording all the properties needed for the class and querying the 
RTI for the handles that pertain to the class and its properties.

4.2 Embedded Messaging
Though dynamic messaging allows a network simulator to work 
with any HLA class without being recompiled, it remains to de-
scribe how the simulator receives and sends interactions and object 
updates. The simulator must know which HLA classes it needs to 
handle (subscribe to and publish) in its current federation.

One way to configure the network simulator with the classes it 
must handle is to use a configuration file that contains the full names 
of these classes. The simulator can read this file at startup, and 
register the classes specified in the file. However, it is cumbersome 
to update this file if the Federation Object Model (FOM) [1] changes 
over the development of the federation. In addition, propagating 
object updates through the simulated network is not possible using 
this method. An HLA object instance can be thought of as a form of 
shared memory available to the federation. All federates have read 
access to this memory location, but only one federate designated as 
the owner of the object instance can write to and update the memory 
location. The following sequence of steps needed to propagate 
object updates via the simulated network illustrates the problem:

(1) A federate sends an update of an HLA object instance it owns
to the federation.

(2) The network simulator, having used a configuration file to
dynamically subscribe to the class of this HLA object in-
stance, intercepts the update and propagates it through the
simulated network.

(3) Once the update arrives at its destination in the simulated
network, the network simulator tries to relay the update to
the rest of federation on behalf of the original sender.

(4) The federation prevents the network simulator from sending
the object update, because it does not own the object to
which the update pertains.

To address this problem, a novel technique called embedded mes-
saging was developed which utilizes a special interaction, called
EmbeddedMessaging, that acts as a level of indirection when send-
ing or receiving HLA interactions and object updates. The Embed-
dedMessaging interaction embeds another HLA message within
itself and contains two parameters whose values are pertinent to
transmitting and processing its embedded message:

• command: Indicates the type of message being carried, as
well as how it should be processed.

• messagingJson: Embeds the JSON-encoded HLA message.
The parameter “command” generally indicates whether the em-

bedded message is an interaction or object update but could also be
used to indicate additional information for more specific processing.
Interactions and object updates are easily encoded into the “mes-
sagingJson” parameter due to the fact that, as described earlier, the
property values are stored in a map – this map simply needs to be

translated into JSON. The full class name of the embedded message
is stored together with its properties inside messagingJson. Note
that additional parameters in the EmbeddedMessaging interaction
can allow it to be filtered by federates so that it is received only by
those for which it is intended.

Importantly, the EmbeddedMessaging interaction should not be
used directly by a federate. This means that a programmer writing
the federate code should not try to send or receive the Embed-
dedMessaging interaction. Rather, when an HLA message config-
ured for network simulation is sent to another federate, the federate
code automatically wraps the message in an EmbeddedMessaging
interaction and sends this modified message to the federation. Sim-
ilarly, when an EmbeddedMessaging interaction is received by a
federate from the federation, the message it contains is automati-
cally unwrapped and presented to the federate as though it were
received directly from the RTI.

For interactions, the advantage of embedded messaging is that
the network simulator needs to register (publish/subscribe) only the
EmbeddedMessaging interaction with the RTI because all messages
sent to the network simulation will be embedded in this interaction
class. Consequently, the aforementioned configuration file is no
longer needed. This approach also solves the problem with trying
to propagate object updates via a simulated network:

(1) A federate sends an update of an HLA object instance it
owns embedded in an EmbeddedMessaging interaction to
the federation.

(2) The network simulator receives the EmbeddedMessaging
interaction, unwraps the object update and sends it through
its simulated network.

(3) Once the update arrives at its destination in the simulated
network, the network simulator wraps the object update into
an EmbeddedMessaging interaction and sends this interac-
tion to one or more downstream federates.

(4) Downstream federates that receive the EmbeddedMessag-
ing interaction automatically unpack the embedded object
update and process it as a normal object update.

Through use of EmbeddedMessaging, the network simulator only
needs to send interactions to relay information to the federation.
This solves the object ownership issue from the prior case, because
the network simulator never tries to send a direct object update.

Note that there is very little computational overhead incurred
in using dynamic and embedded messaging. For dynamic messag-
ing, the overhead involved is the table lookup for parameter and
attribute values, and for embedded messaging, the overhead is the
JSON encoding and decoding of a message into and from an em-
bedded messaging interaction. In both cases, the overhead is small
compared to network latencies in sending the messaging across the
HLA. Importantly, it does not lead to logical time delays.

4.3 Network Simulation Federate
The network simulation federate was implemented using the INET
Framework [11] which is a network modeling framework for the
OMNeT++ network simulator [19]. INET consists of several C++
classes that are compiled into modules, where each module repre-
sents a TCP/IP component such as network hardware or protocol
layers. To simulate a network, these modules are brought together

125



Figure 2: Network Modeling in OMNeT++

Figure 3: Reusable OMNeT++ Network Federate

Figure 4: Federation Modeling in CPSWT

into an executable, and the network architecture is specified using
a NED (NEtwork Description) file. An example of a NED file is
shown in Figure 2, along with a graphical depiction of the network
it describes.

To include a simulated INET/OMNeT++ network in a federation,
two newmodules were developed in C++ and compiled into the exe-
cutable. The first is the HLAScheduler module, which synchronizes
the OMNeT++ simulation time with logical time in the federation.
The second is the HLAInterface module, which sends and receives
HLA messaging to and from the RTI. The resulting executable that
contains these two modules is called the OmnetFederate.

A few additional modules are required to allow a message re-
ceived by the HLAInterface to be sent through the simulated net-
work, and be routed back to the HLAInterface once the message
has transited the network. One of these is the BasicUdpApp module,
which acts as an application layer program that sends and receives
network packets from the simulated network. Another module, Ba-
sicUdpAppWrapper, is derived from the BasicUdpApp and extends
its functionality to accept messages from and send messages to the
HLAInterface (see Figure 3).

4.4 Reusable Cyber-Attack Library
The network simulator in a federation is used to model the flow
of messages (information) through a network in which federates
correspond to hosts. Given this, it is important to model disruptions
in this network, and in particular disruptions that are caused by
network attacks.

Modeling of network attacks utilizes the modules HLAInterface,
BasicUdpAppWrapper, and BasicUdpApp. In addition, a module
called CPSWTIPv4 (see Figure 3) is an IP-layer module to model
network attacks at the IP layer (e.g., a denial of service (DOS) at-
tack). These attacks are triggered by sending the OmnetFederate a
specific interaction that contains the parameters needed to start,
stop, and control specific aspects of the attack, including which
hosts participate in or are affected by the attack. The attacks are
maintained by a separate class called the AttackCoordinator, which
stores the attack parameters and can be queried by the OmnetFed-
erate modules implementing the attack. Appendix A provides a list
of cyber-attacks currently modeled in CPSWT.

4.5 Deploying OmnetFederate in CPSWT
As previously described, CPSWT [15] [16] enables modeling and
synthesizing HLA federations for CPS co-simulations. It is imple-
mented in WebGME [8] - a generic web-based graphical meta-
modeling environment for creating rich, domain-specific modeling
languages (DSMLs). CPSWT provides such a DSML for HLA feder-
ations. Figure 4 shows a Federation Object Model (FOM) in CPSWT.
Here, the federates are in green, and the interaction that will be sent
between them (i.e., “TestInteraction”) is shown in a white box. The
interaction shows all of the types of parameters it can have. The
solid-arrowed-line from the Sender federate to TestInteraction indi-
cates that the Sender publishes TestInteraction via the Portico RTI.
The solid-arrowed-line from TestInteraction to the ReceiverDirect
federate indicates that ReceiverDirect subscribes to TestInteraction
via the RTI. The dashed-arrowed-line from TestInteraction to the
ReceiverFromNetwork federate indicates that this federate will also
subscribe to TestInteraction, but will receive it indirectly via a sim-
ulated network, in this case the network in the OmnetFederate,
named ExplOmnetFederate.

CPSWT also provides severalmodel interpreters (using JavaScript
and Python) that can interpret and validate the federation models
and generate artifacts (e.g., Java/C++ code, scripts, configuration
files). These artifacts can be modified by developers to implement
the desired simulation behavior. For simulators, CPSWT generates
wrapper code that makes them compliant with the HLA standard
and allows them to be executed in an integrated manner. In this
example, the code generated for ReceivedFromNetwork federate will
not subscribe it to TestInteraction directly from the RTI, but via
embedded messaging. This is done automatically without involving
the modeler or federate code developer.

CPSWT also provides a courses of action (COA) evaluation mod-
eling language for scenario-based execution [14] [13]. The COAs
can utilize attacks from the cyber-attack library and inject them
into the running simulation depending on the cyber scenario that
is being evaluated. The reusable network simulation component
supports simulating these cyber-attacks by design.



Figure 5: FOM Model for Traffic Scenario

Figure 6: Experiment Results with/without Cyber-Attack

5 CASE STUDY
A concrete example of using the OmnetFederate is for simulating
the effects of attacks on the networking infrastructure of smart
cities. Such a simulation would use the OmnetFederate to model
the city’s network in conjunction with a federated city simulator,
and federates to present command and control and bad actors trying
to perpetrate attacks on the city network. This case study uses the
city simulator called SUMO (Simulation for Urban Mobility) [10].
A simple SUMO model of a section of a city involving four traffic
light intersections was used.

Figure 5 shows the CPSWT model for this case study. Federates
represent the smart city’s network (CityNetwork), the city itself
(SUMOFederate), command and control (CommandAndControl) and
a malicious actor (MaliciousActor). Both CommandAndControl and
MaliciousActor publish an interaction that controls traffic lights
(TLControl), and subscribe, through the network, to an interaction
that relays the status of traffic lights. The SUMOFederate, which
models the city, subscribes to TLCommand through the network,
and publishes TLStatus. In addition, the MaliciousActor publishes
the interactions that enable it to launch denial of service attacks
(called StartNodeAttack in the model) and sniffer attacks on the
simulated network in the CityNetwork (i.e., OmnetFederate). Im-
portantly, the OmnetFederate implicitly subscribes to all of the
interactions that start/stop/control network attacks.

The scenario for an attack on the city’s traffic lights is:
• MaliciousActor launches a sniffer attack on the city network
to receive TLStatus information.

• MaliciousActor then launches a denial of service attack on a
network node to prevent CommandAndControl from receiv-
ing TLStatus and from sending TLControl commands.

• MaliciousActor sends a “spoofed” TLControl command to
change one or more traffic lights to blinking yellow for one
direction and blinking red for the other.

• MaliciousActor receives confirmation of attack success via
TLStatus information.

• CommandAndControl is unaware of the change to the traffic
lights operation because it is no longer receiving TLStatus
information due to the denial of service attack.

• CommandAndControl receives verbal notification of the at-
tack, but is unable to send TLCommand to correct the prob-
lem due to the denial of service attack.

The scenario continues with CommandAndControl executing coun-
termeasures to the attack and sending TLControl commands to
try to clear the resulting traffic congestion more quickly. Figure 6
shows the experiment results. Here, the bottom blue line represents
normal operation and shows the number of cars waiting to pass
intersection increases as simulation starts, but then stays around 15-
20. The orange line shows when the system does not recover from
attack so the number of cars waiting does not decrease. The other
two cases show that when the system does recover from attack, the
number of cars waiting gradually normalizes after recovery.

6 CONCLUSION & FUTUREWORK
CPS co-simulations in the real-world are continuously evolving
with wide-ranging application contexts, which require a reusable
network simulation that can be quickly customized to the varying
needs. This is lacking in existing approaches due to the complexity
of network simulation and evolving nature of CPS applications
and their co-simulations. This paper presented a novel approach
to create such a reusable OMNeT++ network simulation based on
techniques of embedded messaging and conformance with the IEEE
HLA standard. It includes a reusable cyber-attack library, and a
courses of action tool that deploys these attacks with required
configurations to create various cyber scenarios to explore system
security and resilience.

Future work focuses on added support formultiple network simu-
lations to enable simulation of multiple connected networks needed
either by design (e.g., intranet with internet, or classified with open)
or for scalability of simulation. Further, the cyber-attack library
will be extended through creation of a cyber-defense library that
will further enhance the capability of CPSWT for experimentation
using various cyber-gaming scenarios. Other extensions include
network simulationwith variable resolution that dynamically varies
its fidelity level during co-simulation execution.

ACKNOWLEDGMENTS
This work at Vanderbilt University is supported in part by awards
#70NANB21H164 & #70NANB22H216 from the US National Insti-
tute of Standards and Technology (NIST). Official contribution of
the NIST is not subject to copyright in the US. Certain commercial
products are identified in order to adequately specify the procedure;
this does not imply endorsement or recommendation by NIST, nor
does it imply that such products are necessarily the best available
for the purpose.



 

REFERENCES
[1] 2010. IEEE Std 1516-2010, IEEE Standard for Modeling and Simulation (M&S)

High Level Architecture (HLA)- Framework and Rules. (2010). https://doi.org/
10.1109/IEEESTD.2010.5553440

[2] 2019. FMI-standard. https://fmi-standard.org/
[3] 2023. Portico Run-Time Infrastructure. https://github.com/openlvc/portico
[4] Deborah A Fullford. 1996. Distributed interactive simulation: its past, present,

and future. In Proceedings of the 28th conference on Winter simulation. 179–185.
[5] Emanuele Galli, Gaetano Cavarretta, and Salvatore Tucci. 2008. HLA-OMNET++:

An HLA compliant network simulator. In 2008 12th IEEE/ACM International
Symposium on Distributed Simulation and Real-Time Applications. IEEE, 319–321.

[6] Edward R Griffor, Christopher Greer, David A Wollman, and Martin J Burns.
2017. Framework for cyber-physical systems: Volume 1, overview. (2017). https:
//doi.org/10.6028/NIST.SP.1500-201

[7] Janos Sztipanovits. 2007. Composition of Cyber-Physical Systems. in Proc. of the
14th Annual IEEE Int. Conf. & Workshops on the Engineering of Computer-Based
Systems (ECBS’2007) (2007), 3–6.

[8] Tamás Kecskés, Qishen Zhang, and Janos Sztipanovits. 2017. Bridging Engi-
neering and Formal Modeling: WebGME and Formula Integration.. In MODELS
(Satellite Events). 280–285.

[9] Xenofon Koutsoukos, Gabor Karsai, Aron Laszka, Himanshu Neema, Bradley
Potteiger, Peter Volgyesi, Yevgeniy Vorobeychik, and Janos Sztipanovits. 2017.
SURE: A modeling and simulation integration platform for evaluation of secure
and resilient cyber–physical systems. Proc. IEEE 106, 1 (2017), 93–112.

[10] Daniel Krajzewicz, Jakob Erdmann, Michael Behrisch, and Laura Bieker. 2012.
Recent development and applications of SUMO-Simulation of Urban MObility.
International journal on advances in systems and measurements 5, 3&4 (2012).

[11] Levente Mészáros, Andras Varga, and Michael Kirsche. 2019. Inet framework.
Recent Advances in Network Simulation: The OMNeT++ Environment and its Ecosys-
tem (2019), 55–106.

[12] Himanshu Neema. 2018. Large-Scale Integration of Heterogeneous Simulations.
Ph. D. Dissertation.

[13] H. Neema, G. Karsai, and A. H. Levis. 2015. Next-Generation Command and Control
Wind Tunnel for Courses of Action Simulation. Technical Report no. ISIS-15-119.
Institute for Software-Integrated Systems, Vanderbilt University.

[14] Himanshu Neema, Bradley Potteiger, Xenofon Koutsoukos, Gabor Karsai, Peter
Volgyesi, and Janos Sztipanovits. 2018. Integrated simulation testbed for security
and resilience of cps. In Proceedings of the 33rd Annual ACM Symposium on
Applied Computing. 368–374.

[15] Himanshu Neema, Thomas Roth, Chenli Wang, Wenqi Wendy Guo, and Anir-
ban Bhattacharjee. 2022. Integrating Multiple HLA Federations for Effective
Simulation-Based Evaluations of CPS. In 2022 IEEE Workshop on Design Automa-
tion for CPS and IoT (DESTION). IEEE, 19–26.

[16] Himanshu Neema, Janos Sztipanovits, Cornelius Steinbrink, Thomas Raub, Bas-
tian Cornelsen, and Sebastian Lehnhoff. 2019. Simulation integration platforms
for cyber-physical systems. In Proceedings of the Workshop on Design Automation
for CPS and IoT. 10–19. https://doi.org/10.1145/3313151.3313169

[17] Gerardo Pardo-Castellote. 2003. OMG data-distribution service: Architectural
overview. In 23rd International Conference on Distributed Computing Systems
Workshops, 2003. Proceedings. IEEE, 200–206.

[18] Thomas Roth, Cuong Nguyen, Martin Burns, and Himanshu Neema. 2020. In-
tegrating a Network Simulator with the High Level Architecture for the Co-
Simulation of Cyber- Physical Systems. 2020 Simulation Innovation Workshop,
Orlando, FL. https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=929390

[19] A Varga. 2001. The OMNeT++ Discrete Event Simulation System. In: Proceedings
of the European Simulation Multiconference (ESM’2001) (2001).

[20] Fan Zhang and Benxiong Huang. 2007. HLA-based network simulation for inter-
active communication system. In First Asia International Conference on Modelling
& Simulation (AMS’07). IEEE, 177–180.

https://doi.org/10.1109/IEEESTD.2010.5553440
https://doi.org/10.1109/IEEESTD.2010.5553440
https://fmi-standard.org/
https://github.com/openlvc/portico
https://doi.org/10.6028/NIST.SP.1500-201
https://doi.org/10.6028/NIST.SP.1500-201
https://doi.org/10.1145/3313151.3313169
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=929390


 

A REUSABLE CYBER-ATTACK LIBRARY
The table below lists the various cyber-attacks that are modeled in CPSWT framework’s reusable cyber-attack library.

Table 2: Cyber-Attack Library in CPSWT

Attack Name Attack Description
Denial of Service Targeted host is unable to receive or send HLA messages.
Out of Order Packets On the compromised host, for HLA messages that sent and received by a specified host pair, messages

received from the sending host are intentionally sent out-of-order to the receiving host.
Replay The compromised host records a sequence of HLA messages that are being sent and received by a

specified host pair. During the attack, the compromised host repeatedly sends this sequence of messages
to the receiving host while dropping packets from the sending host.

Integrity The compromised host corrupts the property (parameter or attribute) values of every HLA message it
encounters according to a specified formula.

Modify to HLA Pack-
ets

The compromised host modifies HLA messages it is going to send to the HLAInterface (so the host is
at the end of the transit of the message through the simulated network) by setting the properties of the
message to their default values.

Modify from HLA
Packets

The compromised host modifies HLA messages it is has received from the HLAInterface (so the host is
at the start of the transit of the message through the simulated network) by setting the properties of
the message to their default values.

Delay The compromised host delays HLA messages passing through it by a specified amount of time.
Sniffer The compromised host sends copies of HLA messages being sent and received by a specified host pair

and sends the copy to a specified host.


	Abstract
	1 Introduction
	2 Related Work
	3 Network Simulation Requirements
	4 Integration Architecture
	4.1 Dynamic Messaging
	4.2 Embedded Messaging
	4.3 Network Simulation Federate
	4.4 Reusable Cyber-Attack Library
	4.5 Deploying OmnetFederate in CPSWT

	5 Case Study
	6 Conclusion & Future Work
	Acknowledgments
	References
	A Reusable Cyber-Attack Library

