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A Data-Driven Approach to Complex Voxel Predictions in
Grayscale Digital Light Processing Additive Manufacturing
Using U-Nets and Generative Adversarial Networks

Jason P. Killgore,* Thomas J. Kolibaba, Benjamin W. Caplins, Callie I. Higgins,
and Jacob D. Rezac

Data-driven U-net machine learning (ML) models, including the pix2pix
conditional generative adversarial network (cGAN), are shown to predict 3D
printed voxel geometry in digital light processing (DLP) additive
manufacturing. A confocal microscopy-based workflow allows for the
high-throughput acquisition of data on thousands of voxel interactions arising
from randomly gray-scaled digital photomasks. Validation between prints and
predictions shows accurate predictions with sub-pixel scale resolution. The
trained cGAN performs virtual DLP experiments such as feature
size-dependent cure depth, anti-aliasing, and sub-pixel geometry control. The
pix2pix model is also applicable to larger masks than it is trained on. To this
end, the model can qualitatively inform layer-scale and voxel-scale print
failures in real 3D-printed parts. Overall, machine learning models and the
data-driven methodology, exemplified by U-nets and cGANs, show
considerable promise for predicting and correcting photomasks to achieve
increased precision in DLP additive manufacturing.

1. Introduction

Additive manufacturing is leading a revolution in fabricating pre-
cision, architected materials with extensive customization. Vari-
ants of vat photopolymerization (VP) additive manufacturing, in-
cluding digital light processing (DLP),[1] liquid crystal display
VP,[2] and continuous liquid interface production [3] all leverage
advanced digital masks to locally cure layers of liquid resin se-
quentially into a solid 3D part, an example of which is shown in
Figure 1a. The availability of digital masks with 4K (e.g., 3840 ×
2160 pixels) or 8K (e.g., 7680 × 4320 pixels) resolution now en-
ables individuals to control millions of simultaneous, voxel-scale
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reactions in a single layer or billions to tril-
lions of reactions in a single part. Despite
the immense fabrication power of such
light engines, numerous interactions be-
tween adjacent voxels can undermine the
theoretical reaction control and the resul-
tant part fidelity.[4–6]

Early commercial printers employed
binary black (minimum light output) and
white (maximum light output) digital
masks.[2] Binary masks limit the abil-
ity of the printer to adjust exposure for
complex voxel interactions. Grayscale
masking utilizing the full bit depth of the
light engine can extend the utility of vat
photopolymerization.[7–9] Lower light in-
tensity of the gray pixels compared to white
pixels reduces the reaction rate, which cor-
relates to voxel size, for the same exposure
duration. The use of grayscale has thus be-
come a powerful tuning control for optimal

mask design. Grayscaling at the edge of local positive or negative
features, referred to as pixel blending or antialiasing, can elim-
inate stairstep effects (i.e., pixelation artifacts) and enhance fea-
ture accuracy.[7,10,11] Further uses of grayscale seek to limit the
degree of conversion of the photopolymerization reaction to in-
troduce controlled mechanical heterogeneity in final parts[12,13]

and can reduce stress concentration.[14] Such heterogeneity can
be amplified by means of dual-cure resin systems,[15] wherein a
secondary cure step can result in an elastic modulus range span-
ning orders of magnitude. Thus far, robust methods of optimiz-
ing mask design for geometric precision and mechanical control
are still in their infancy.[16]

The prediction of voxel scale geometry given an arbitrary
VP exposure mask is complicated by the numerous underlying
physical-chemical phenomena that govern local photopolymer-
ization at length scales equal to or less than the light engine pixel
pitch.[4] The complexity of the reaction starts with the cumulative
overlapping nature of light emission from adjacent mask pixels,
meaning that the tails of light from one pixel can interact with
the light from their neighbors.[6,7,17–20] Additionally, numerous
species, including radicals, oxygen, oligomers, and initiators, can
diffuse into or out of the illuminated pixels during exposure.[6]

Diffusion length scales can approach or exceed the pixel pitch
depending on resin and exposure characteristics.[21,22] In addi-
tion to mass transfer, the reactions are generally exothermic, and
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Figure 1. a) A typical bottom-up DLP vat-photopolymerization setup showing DLP projector, fluorinated ethylene propylene (FEP) window, vat, resin,
part and build plate. For single-layer model training, the vat is replaced by a functionalized glass slide and resin droplet, as shown in (b).

thus the local generation of heat affects neighboring reaction
rates.[4] To further complicate modeling, many of the underly-
ing resin properties are inherently conversion dependent. For ex-
ample, diffusivities can change dramatically between monomer,
oligomer, just-gelled network, and a fully converted network, pos-
sibly above its glass transition temperature. Numerous recent
efforts have pushed the ability to include the above phenom-
ena to predict VP printing.[4,6,20–22] Because of the complexity of
the reaction, often dozens of resin and light engine properties
are needed to model a print, requiring significant experimental
equipment and time. The multiphysics models provide immense
insight into the cure reactions, but there is still a need for empiri-
cal models that provide accurate prediction without being subject
to the dearth of material property information and the complexity
of accurately accounting for all the underlying phenomena. Fur-
thermore, as VP pushes hyperscale models with micron-scale fea-
ture sizes and meter-scale part sizes, the capacity of multiphysics
models will be pushed to their limit.

Because VP can produce millions to trillions of reactions and
interactions in a single part, the method is particularly well suited
to big data, machine learning (ML), and artificial intelligence
analysis approaches. Despite the intrinsic suitability of VP to ML
modeling, only a few studies have applied ML tools to VP.[23–26]

This adoption lags considerably behind applications of ML in
metal AM.[23] You et al. applied machine learning to predict the
lateral extent of polymerization of larger photopatterns[26]; how-
ever, to date, no VP ML studies have sought to quantitatively pre-
dict 3D voxel and sub-voxel scale geometry. The lack of develop-
ment in this space is attributed to a lack of demonstrated VP char-
acterization tools capable of generating the big, high-resolution
data sets necessary for model training. A single characteriza-
tion tool capable of measuring high-throughput, high-resolution
voxel geometry could potentially yield data-driven models with
predictive power at a fraction of the experimental burden of a
multiphysics-based approach.

Characterizing voxel scale interactions requires microscopic
tools to visualize and probe the part at sub-voxel scale (e.g., in
this work, ≪ 80 μm) resolution. Tools such as atomic force mi-
croscopy provide a high-resolution characterization of voxel mor-
phology and properties,[5,21,22,27] but they sacrifice field of view
and thus throughput. X-ray computed tomography provides ro-
bust 3D characterization of fully printed parts and has seen broad
adoption in metal additive manufacturing.[28,29] However, the
method has not yet been used to register sub-voxel scale reso-

lution in VP parts. Recently, laser scanning confocal microscopy
(LSCM) was used to characterize VP part surfaces in establish-
ing relationships between light engine heterogeneity and printed
voxel structure.[30] LSCM can image voxel geometry at a part sur-
face with single-micron lateral resolution and a few-nanometer
height resolution. LSCM also provides relatively high through-
put, with commercial instruments capable of imaging a single
field of view (≈0.01 to 1 mm2 depending on the microscope objec-
tive) in seconds, then automatically stitching together hundreds
of fields of view.

With access to large, high-veracity datasets, several ML mod-
els are available to establish the mapping between input mask
illumination and output voxel geometry. Given the representa-
tion of both input mask and output voxel geometry as 2D ar-
rays or images, neural networks provide a promising framework
to predict the mapping. Neural networks are a type of machine
learning algorithm modeled after the structure and function of
the human brain. Convolutional neural networks (ConvNets or
CNNs) are a specialized type of neural network used for image
and video recognition.[31] They are specifically designed to pro-
cess data through multiple layers of neurons, using convolutional
and pooling operations to identify patterns and features in im-
ages. The neurons in a layer are defined by weights and biases
and are separated by non-linear activation functions that option-
ally allow information to pass between layers. Neural networks
are trained with a backpropagation algorithm that seeks to min-
imize a loss function by adjusting weights and biases based on
how much each node contributes to the error in the loss func-
tion (i.e., a measure of how well the predicted outputs match
the ground truth targets). Training progresses for cycles through
the entire dataset, referred to as epochs until a desired loss is
achieved.

As shown in Figure 2, by building the CNN with a contract-
ing path that captures context and a symmetrical expanding path
that enables precise localization, the CNN becomes a U-net.[32]

Recently, U-nets have been further refined for image-to-image
processing to translate one image (e.g., a line-drawing sketch of
a clothing item) to a new image (e.g., a photo of the sketched
clothing item).[33] Pix2pix is a type of generative model based
on the concept of a conditional Generative Adversarial Network
(cGAN).[33] The generator network in a cGAN is trained to pro-
duce outputs that are conditioned on a given input, whereas
the discriminator network is trained to distinguish between the
generated outputs and the ground-truth target outputs. During
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Figure 2. The conditional GAN architecture of pix2pix is based on a U-net
with skip connections. The adversarial component arises from the incor-
poration of a discriminator D block in the training process. The generator
G produces synthetic outputs that are compared to real outputs by the dis-
criminator. As training progresses, it becomes more difficult for the dis-
criminator to differentiate the real and generated (i.e., fake) prints. For
application to DLP, the input images are grayscale photomasks and the
output images are predicted height maps of a single layer of voxels.

training, the generator and discriminator networks play a two-
player minimax game, with the generator attempting to produce
outputs that are indistinguishable from the target outputs and
the discriminator trying to correctly identify whether each sam-
ple is real or fake. In the case of pix2pix, the input to the gener-
ator is an image, and the output is a transformed version of the
same image. The goal of the cGAN is to learn a mapping from in-
put to output that is both realistic and conditioned on the input.
The U-Net architecture used in pix2pix also includes skip connec-
tions, which allow information from earlier layers to bypass the
series of down-sampling and up-sampling operations performed
by the network. These connections help to preserve the spatial
resolution and fine-grained details of the input image, allowing
the network to generate high-quality outputs that closely match
the input. Pix2pix has been used in a variety of increasingly chal-
lenging image-to-image translations, starting with tasks such as
converting line drawings to photographs[33] and now pushing the
envelope of medical image analysis.[34]

Here, we establish a high-throughput data workflow to char-
acterize the geometry of 1500 unique single-layer voxel patterns
produced by 100 000 randomly grayscaled pixel projections. The
data are subsequently used to train and validate the ability of
pix2pix cGAN and related non-adversarial U-nets to predict voxel
geometry with micron-scale precision. We establish numerous
metrics to validate the predictive capability of the models and
the intrinsic variability in the prints. All U-net models are found
to make compelling predictions of voxel geometry, with pix2pix
cGAN showing the best performance at producing sharp fea-
tures and capturing the spatial extent of adjacent voxel interac-
tions. The models allow for a variety of virtual experiments on
grayscale, single-layer printing to be carried out. Furthermore,
the single-layer predictions can qualitatively inform intralayer
and interlayer interactions and resulting geometry in real, multi-
layer 3D parts. Overall, the pix2pix model shows the promise of
data-driven, ML approaches to predict and optimize VP additive
manufacturing.

2. Results and Discussion

2.1. Data Curation and Workflow

A major hurdle in establishing voxel-scale ML for the prediction
of VP has been the ability to register print and mask data with
pixel or sub-pixel resolution. Figure 3 shows an example of the
workflow to register a series of 8 × 8 training masks to corre-
sponding LSCM height maps of the training print. The choice to
partition a larger print area into sub-prints was made based on
the ability to provide a pixel-to-voxel registry in the post process.
Gray level Y for individual pixels was randomly assigned 8-bit
values between Y = 0 and 255. The exposure time was set to 5 s,
which resulted in cure depth Cd≈200 μm in bulk (1 mm2) work-
ing curve measurements at full intensity (Y = 255). The selection
of the n = 8 pixels for n × n sub-mask dimensions was based on
eight being much greater than the naïve voxel-to-voxel interaction
distances determined by measuring cure depth as a function of
n (i.e., center cure depth of the square patterns plateaued above
n = 3). The choice of n = 8 has a few additional useful character-
istics: it allows representation of moderately complex geometries
for testing purposes, provides a large number of sub-masks in the
LSCM’s stitched field of view, and being base 2, provides scaling
without interpolation up to the typical (e.g., 128 × 128 or 256 ×
256 pixels) image sizes pix2pix was developed for. A total of 300
sub-masks, spaced n pixels apart, were fit onto an ≈25 × 50 mm
pattern area. Interspersed evenly throughout the projection area
were 14 full-intensity (Y = 255) fiducial sub-masks for image reg-
istration and alignment.

The masks were projected through a methacrylate-
functionalized glass coverslip and into a ≈1 mm deep droplet
of commercial photopolymer resin (as seen in Figure 1b) to
produce the printed single-layer patterns shown in Figure 3b.
The droplet thickness is expected to be sufficient to limit the
availability of environmental oxygen at the resin-air interface
to inhibit the reactions. The voxels adhere directly to the cov-
erslip, and their geometry is not bounded by a build plate.
This unbounded geometry may prove beneficial for predicting
eventual multilayer 3D properties because it can better inform
light penetration depth compared to a multilayer print with fixed
layer thickness.[5] LSCM imaging of the voxels was performed
on as-printed specimens with a 20× objective, resulting in
sub-micron lateral and a few-nanometer height resolutions. To
image the entire printed area required splitting the print into
four regions with 75 sub-prints each. Imaging each of these
four regions required ≈500 stitched fields of view, as shown in
Figure 3e. The LSCM height map of the voxel patterns exhibits
a significant range of variation because of the random gray
sub-masks. Regions of no polymerization connect to voxels of
varying heights. The fiducial prints are also clearly apparent
from their larger heights and more uniform shape. A total
of five coverslip specimens were printed (1500 sub-masks or
≈1 × 105 voxel interactions), with up to four specimens reserved
for training and one test specimen reserved for independent
verification.

Alignment between the mask and print was achieved by first
scaling the mask to be similar in dimension to the LSCM height
map of the print. Next, the centroids of the fiducial marks in
the masks and prints were used to estimate a random sample
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Figure 3. Workflow for measuring and processing gray-scale mask and corresponding print voxel geometry data. a) An example 8 × 8 pixels (8 × 8)
mask. b) 300 8 × 8 random masks assembled in a grid, including 14 uniform white (8-bit gray level Y = 255) fiducial features. c) An optical micrograph
of the print corresponding to the mask. d) A representative single field of view height map from the LSCM. e) The result of automatic stitching of 504
single fields of view to measure ¼ of the printed area from (b,c). Using reference features, the stitched LSCM map is aligned and registered to the input
mask. The LSCM mask is then partitioned into a f) print that corresponds precisely with a) the associated pixels of the training mask.

consensus (RANSAC) 2D affine transformation. The transform
was then applied to the print height map to register with the
mask. The print and mask were partitioned into sub-prints
and sub-masks, maintaining four border pixels around the sub-
masks for defined boundary conditions, with a proportional
border on the sub-prints. From the representative sub-masks
and sub-prints in Figure 3, the lateral extent of the printed
area is smaller than the corresponding mask due to under-
polymerization on the pattern edges and cure shrinkage. It is also
clear that all features printed from the random masks are lower
height than the fiducial prints even though pixels approaching
Y = 255 are present in the random masks, thus confirming that
pixel interactions are contributing to local voxel cure depth. The
input photomasks, raw LSCM maps, and processed training pairs
are freely available at https://doi.org/10.18434/mds2-2950.

To assess the uniformity of the data sets across a given
slide and between slides, statistical comparisons were applied
to cropped versions of all 70 of the fiducial prints from the five
slides. The fiducial marks exhibit a mean height (taken as the 95th

percentile height of the voxel height map) of 215.3 μm with a stan-
dard deviation of 12.0 μm, lower bound of 154.2 μm and upper
bound of 228.0 μm. In order to provide a comprehensive com-
parison of the print reproducibility, the 70 fiducial prints were
assembled into 2415 unique pairings and the paired images were
compared. The four statistical metrics used in this study to com-
pare height maps of fiducial prints are the Pearson correlation
coefficient (CC), 95th percentile height similarity (h95), struc-
tural similarity index metric (SSIM), and root mean square er-
ror (RMSE). Figure 4 shows violin plots of the distributions of

Figure 4. a) A statistical comparison of the 70 fiducial prints generated
in this study. Fiducial prints are compared pairwise (2415 unique pairs)
based on four metrics, Pearson correlation coefficient (CC), 95th percentile
height similarity (h95), structural similarity index metric (SSIM), and root
mean square error (RMSE). b) Four randomly selected fiducial prints in-
dicative of the variability between the prints.

the various metrics across all the fiducial pairings. The CC val-
ues are calculated on flattened versions of the height maps and
indicate strongly correlated images, with a median value of 0.895
and a tight distribution around that value. The h95 metric is de-
signed to assess the similarity of extreme height features, which
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are particularly important in establishing interlayer adhesion in
DLP printing. The value of h95 is given by 1 minus the abso-
lute value of the difference between the 95th percentile heights
of both height maps in a pair, normalized by the 95th percentile
height of the first map in the pair. The fiducial marks exhibit 97%
median h95 similarity between pairs. Notably, extreme outliers
do exist, and h95 similarity as low as ≈50% was observed. The
SSIM has been widely used for image-to-image translation tasks
because it not only measures pixel-level similarity but also takes
into account the structural and perceptual similarities between
the images.[35,36] The median SSIM value of 0.33 represents the
structural variations between fiducials, such as random voids,
edge/boundary variations, and total cure depth variations, which
can be seen in Figure 4b. We use SSIM here on the fiducials as
a benchmark for later predictions of model performance. Finally,
RMSE is a useful metric because it predicts the height error ex-
pected for a given pixel. The median RMSE value of 40 μm ini-
tially appears large given the strong CC and h95 reproducibility
of the prints, however, these fiducial prints are typically > 200 μm
high, and they do exhibit some defects such that when discrep-
ancies do occur, they are often the full height between substrate
and top surface. Overall, the high degree of reproducibility indi-
cated by CC and h95 values between fiducial prints suggests that
spatial variations within a slide (e.g., from vignetting of the light
source) and between slides (e.g., due to sample preparation) were
not unacceptably large, and it is reasonable to use data from a se-
ries of slides to predict print performance at an arbitrary location
on a different slide.

2.2. Training of the Machine Learning Models

A publicly available implementation of pix2pix[37] for Pytorch
(V1.13.1) was adapted for machine learning of the mapping be-
tween grayscale masks and voxel prints. The model was modified
to optionally disable the discriminator block and implement the
traditional scalar loss functions of mean squared error (denoted
below by MSE) and mean absolute error (denoted below by L1) for
comparison with pix2pix cGAN training. To train the models, up
to 1144 sub-masks and sub-prints were loaded with 90% of data
used for training and 10% used for validation (1030 training pairs
and 114 validation pairs). All the fiducial prints were removed
from the training and validation data to avoid biasing those pre-
dictions. Numerous model and algorithm hyperparameters were
explored to optimize the print prediction quantitatively and qual-
itatively. While a globally optimized model was outside the scope
of this proof-of-concept, key performance parameters were still
identified. Of the conditions explored, the best compromise of
prediction quality, computational burden, and model complexity
was achieved with 1) a relatively small batch size of 8 to avoid
overtraining, 2) a larger, single-layer discriminator patch to “see”
a larger spatial extent of pixel interactions, and 3) 128 × 128 pixel
input and output image size to balance print fidelity and overall
image size. Given the physical expectation of rotational invari-
ance of the prints and to improve the veracity of the model pre-
dictions, random vertical and horizontal mirror augmentations
were applied identically to sub-masks and sub-prints.

In order to understand model training progression, the four
metrics discussed in the fiducial print comparison (i.e., CC, h95,

SSIM, and RMSE) were evaluated between 5 and 200 training
epochs for 300 test prints and corresponding predictions. The
masks and test prints were from a fully independent set of mask-
print pairs that were not included in the training or validation.
The results of the analysis are shown in Figure 5. As expected,
increased training generally improves predictive performance,
but optima for the different statistical quantities can occur at
different epochs. Overall, the results indicate accurate predic-
tions, but multiple metrics must be balanced when assessing
overall model performance. The statistical analyses can be com-
plemented with selected user inspections of representative prints
and predictions, as shown in Figure 6.

The MSE and L1 loss models are trained with their corre-
sponding loss functions enabled and the discriminator block dis-
abled. These models are computationally less expensive than the
cGAN, but they still produce compelling predictions of voxel ge-
ometry. From Figure 5, the rate of learning and SSIM perfor-
mance is slightly better for the L1 loss compared to MSE loss
functions. In contrast, MSE provides slightly improved CC and
h95 performance. For the exemplary print in Figure 6, both mod-
els capture the key features such as the diagonal channel, the
small moderate-height island in the upper left corner, and the
two-height-step nature of the larger lower-right feature. The L1
model identifies these features sooner during training and ap-
pears more accurate after the full 200 epochs.

By introducing the discriminator block in the pix2pix model,
predictions improve further. Particularly, the h95 similarity is
higher for pix2pix compared to MSE and L1. From Figure 6,
patchiness attributed to the discriminator is apparent at lower
epochs, but this quickly transitions into a sharper-edged predic-
tion. One concern regarding the use of pix2pix for DLP predic-
tion was the model’s ability to translate lateral shrinkage from the
mask to the print. The presence of skip connections in the pix2pix
model generally preserves the spatial input information (e.g.,
preserving the silhouette of a segmented building or sketch).[33]

Nonetheless, the pix2pix model predicts similar lateral shrinkage
as the real test print. The consistent ability of pix2pix to predict
print geometry warrants further investigation into more complex
input masks, such as finer pixel pitch, and more process param-
eters like exposure time.

In order to explore the potential of reducing the experimen-
tal burden of microscopic training-print characterization, the
pix2pix models were also trained on significantly smaller train-
ing data sets of only 10 or 100 training pairs. The LSCM imaging
of the samples consumes a considerable fraction of the total ex-
pense of this data-driven methodology. Furthermore, LSCM may
not be appropriate for all voxel characterization in vat photopoly-
merization. For example, lower throughput techniques such as
atomic force microscopy can provide even higher resolution
imaging of voxel patterns in situ to the print environment and si-
multaneously provide other important information, such as me-
chanical property characterization.[5,21,27] In addition to lessen-
ing microscopy time, reduced data set size significantly reduces
training time. With 100 training prints, the model still identifies
the lateral pattern within 5 epochs, although the height range
of the print is compressed compared to the real print. By ≈100
epochs, the 100-print model is comparable to the result from the
full data set at 10 epochs and overall in good agreement on the
major features of the ground truth. Further reduction of the data
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Figure 5. Statistical summary of model training to predict 300 independent test prints as a function of training epoch. Results from non-adversarial
U-nets with scalar MSE and L1 loss functions and cGAN pix2pix are shown. For pix2pix, additional training with a reduced number of training pairs (T)
is presented. Plots show median values for 4 statistical quantities: a) CC, b) h95, c) SSIM and d) RMSE.

Figure 6. Progression of training for a representative grayscale mask and print. Results from non-adversarial U-nets with scalar MSE and L1 loss functions
and cGAN pix2pix are shown. The pix2pix model performs well even when the training data size T is reduced to 10 or 100 training masks and prints. The
structural similarity index metric SSIM is also shown between each prediction and the test print.
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Figure 7. Statistical comparisons of model predictive performance after 200 training epochs. Violin plots show median, distribution and extrema for 4
statistical quantities: a) CC, b) h95, c) SSIM and d) RMSE for the 5 trained models (200 epochs). Distributions from the fiducial prints are also shown
for reference.

set to only 10 prints adversely affects the print prediction over
the observed 200 epochs, but additional refinement with more
epochs may be possible. However, even with the limited data set,
accurate predictions of the lateral extent of the cure are possi-
ble, and some physically consistent variations in cure depth are
observed. Deliberate engineering of the input masks with more
sophistication than the present random grayscale may provide a
more efficient future pathway to accurate model training with a
smaller number of training pairs.

2.3. Predictions of Single-Layer Printing

To compare the predictive power of the different models, Figure 7
shows violin plots of the CC, h95, SSIM, and RMSE values be-
tween the 300 prints and predictions from the independent test
slide. For benchmarking, the results of the fiducial print inter-
comparison are also shown. For CC, h95, and SSIM, we seek val-
ues of 1 with a tight distribution. However, the intrinsic variabil-
ity of the prints sets an upper bound for predictive performance,
so at best, the prediction is a denoised version of the real print.
Cross-correlation values range from 0.72 to 0.75 for the different
models, which is lower than the CC value of 0.89 on the fiducial
prints. Despite similar median values between models, the min-
imum values are improved with the more sophisticated T = 1030
and T = 10 pix2pix models. The median h95 values between print
and prediction are also similar between models, with the T =
10 pix2pix having a value of 0.85 and the other models between
0.88 and 0.91. These were again lower than the experimental fidu-
cial h95 value of 0.97. The highest minimum value was achieved
for the T = 100 pix2pix, but the overall distribution was tighter

for the T = 1030 pix2pix model. SSIM values were generally well
below 1.0, but surprisingly, the model predictions generally out-
performed the inherent SSIM variability in the fiducial prints.
Only the T = 10 pix2pix underperformed the fiducials. We at-
tribute the ability of the models to overperform the fiducials to
the increased amount of deliberate structure present in the ran-
dom masks compared to the uniform fiducial masks. Even with
similar types of defects, the inherent structure remains appar-
ent in model predictions. Finally, median RMSE values ranged
from 16 to 17 μm, which was considerably lower than the 40 μm
RMSE value of the experimental fiducials, although the mean
heights are also much lower for the random prints. Overall, the
statistical analysis indicates that the models had a strong predic-
tive ability, with uncertainties that compared favorably to the re-
peated fiducial prints. The analysis also indicates the importance
of considering numerous metrics when assessing overall model
performance. If only considering CC, the T = 10 pix2pix appears
to be one of the best models, with a very small microscopy cost.
However, when considering the other metrics, that model over-
whelmingly performs the worst. Furthermore, we must consider
the distribution of prediction metrics across numerous test pat-
terns rather than just considering a mean or median value.

To complement the statistical analysis of print prediction,
Figure 8 shows a comparison of six selected test masks (five
random, plus a fiducial), real test prints, and pix2pix predicted
model prints obtained after 200 training epochs with T = 1030
training pairs. All prints are from the test slide that was not in-
cluded in the training. Overall, the model produces faithful pre-
dictions of diverse, complex geometries, picking up subtle fea-
tures such as narrow, sub-pixel width ribs, wider channels, and
taller features correlated with clusters of bright mask pixels. In
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Figure 8. Comparison of real test print and pix2pix predicted print cure depths Cd after 200 epochs of training with T = 1030 training image pairs. Test
pairs (a-f) were chosen randomly from the 300 prints on the fully independent test slide. Bottom row shows the cure depth error between the model
and the test print. Error is defined as error = Cd(model) − Cd(real).

comparing model predictions to real prints, some discrepancies
may be attributed to the denoising of the printing process by
the model, whereas other discrepancies may be the model’s in-
ability to fit certain features. The bottom row indicates the cure
depth error between model prediction and real print. Some er-
rors may arise from slight misalignment, and however generally,
the errors are distributed between over and under-estimation.
The largest errors are seen at the edges of tall features, where
a slight underestimation of lateral size can result in a very large
error. Large errors are also observed on some isolated sharp fea-
tures where the model might predict their location shifted by a
pixel. The SSIM values range from 0.33 to 0.59, indicating good
agreement between the model and predictions and representa-
tive of the broader statistical distribution in Figure 7c. The pre-
diction of maximum voxel height bears particular importance to
layer-by-layer printing. If voxel height is less than layer thickness,
there is no mechanism to adhere the present layer to the previous
layer, leading to geometric defects that could further propagate
into later layers. If voxel height is much greater than layer thick-
ness, the overlapping light exposures can result in unintended
mechanical property gradients or the loss of negative features in
a printed part.

Figure 8d shows a prediction for a uniform Y = 255 8 × 8 fidu-
cial mask. While the uniform print is less complex than most
of the modeled pixel/voxel interactions in the study, it has high
importance because real prints often have large regions of con-
tiguous illuminated pixels. Notably, as shown in Figure S1, Sup-
porting Information, the pix2pix model with T = 1030 training
pairs significantly outperformed all other examined models in
predicting the deeper cure depth of the Y = 255 square. Nonethe-
less, the predicted heights are still lower than the experimentally

measured fiducial prints. The ability to predict isolated single-
pixel cure depth, and larger cure depths arising from pixel-family
interactions is attributed to the patch size of the discriminator. In
traditional CNNs and U-nets, individual pixels are considered in-
dependent of adjacent pixels, and the result is unstructured loss.
By comparison, the discriminator in pix2pix considers the inter-
actions between adjacent pixels, resulting in a structured loss,
which allows the model to predict larger length-scale interac-
tions. The fiducial prints have double the average intensity of a
random print, requiring significant extrapolation for prediction.
Biasing some of the training data towards higher intensities may
provide a more accurate prediction of extreme features in the fu-
ture.

An advantage of the well-trained pix2pix model is the ability to
perform virtual print experiments with very little effort compared
to repeated printing and characterization. A wide range of virtual
experiments are possible with the model, examples of which are
shown in Figure 9. Figure 9a shows the prediction of cure depth
for n × n patterns with uniform gray illumination given by Y.
The curve is analogous to the working curve (WC) measurements
prevalent in VP research and industry,[38] except that the gray
level is used instead of the exposure dose. A notable feature of
the curve is the inflection point from zero cure depth to non-zero
cure depth. In WC measurements, the zero cure depth transition
point is known as the critical exposure dose Ec. Here, a critical
gray intensity Yc is considered. Early assumptions in VP asserted
that exposure energy was independent of feature size.[39] Here,
the model predicts that Yc is strongly size dependent, with no
cure (i.e., Yc > 255) for a small (i.e., n = 1 or 2 pixels) pattern com-
pared to Yc = 50 for an 8× 8 uniform exposure. Figure 9b expands
the control of cure depth by applying a gray padding border with
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Figure 9. Virtual experiments performed with the pix2pix cGAN model. a) The feature size dependent cure depth versus square n × n pattern size and
grayscale. b) The effects of gray padded border illumination of width np and intensity Yp around a center n = 2 and Y = 255 feature. The border provides
a means of providing finer pattern control. In (a,b), cure depth is determined from the 99th percentile of the height map prediction. c) cGAN predictions
of antialiasing efficacy for 3 different antialiasing strengths (AA = 1, AA = 4or AA = 16).

intensity Yp and width np to the perimeter of a Y= 255, n= 2 pixel
center feature. The presence of a gray border, even at intensities
below the minimum Yc value in Figure 9a, can be used to tune
the cure profile. The maximal values in Figure 9a,b are experi-
mentally verified by the fiducial prints summarized in Figure 3.
Both Figures 9a,b indicate that the length scale of pixel interac-
tion is increased at lower light intensities. This is attributed to the
increased time to gelation and hence increased time for species
diffusion to occur. This observation has consequences regarding
the choice of n for the training masks and padding. To further
refine low-intensity interactions, training on even larger n values
may be necessary.

Figure 9c applies the pix2pix model to the most common
present use of grayscale DLP, antialiasing.[8] An n = 16 mask is
populated with a curved feature, resulting in pixelation steps to
represent the curvature. Without antialiasing (i.e., AA = 1), the
stair step profile is clearly evident in the predicted print. In con-
trast, by increasing the intensity of the antialiasing setting in the
slicing software (AA = 4 or 16), the stairstepping is largely elim-
inated. AA values of 4 or 16 result in slightly different lateral ex-
tent of cure between one another, thus, the model can optimize
antialiasing to minimize stairstepping while maintaining dimen-

sional control. While the model could help choose suitable AA
values for the print from a discrete set of choices, the model is
also invertible, which could allow for target geometries to be di-
rectly input.[33] Notably, the antialiasing study is performed on
an n = 16 pixel pattern rather than the n = 8 size of the training
data set. A known benefit of the pix2pix model is its applicabil-
ity to larger images (given base 2-pixel dimensions) than it was
trained on.[33] Validation of large mask performance is shown
in Figure S6, Supporting Information. The larger masks were
validated by partitioning the test mask into 32 by 32 pixel re-
gions (256 × 256 after scale-up for mask and print), then per-
forming the same statistical analyses as above. Validation val-
ues of 0.77, 0.90, 0.73, and 11 μm were obtained for CC, h95,
SSIM, and RMSE, respectively. The model performs very well on
the larger masks, outperforming even the smaller photomasks
due to the grid-like structure of the larger partition. Figure S6b,
Supporting Information shows an example large mask print and
prediction, which visually confirms the accurate model perfor-
mance. This applicability to larger masks has benefits when
predicting real print outputs, given that real printers typically
have pixel dimensions of hundreds or thousands in a given
direction.
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A demonstration of print prediction with pix2pix cGAN in a
real 3D-printed DLP part is shown in Figure 10. From Figure 1,
a key difference between multilayer 3D prints and single-layer
training prints is the type of window material. For multilayer
printing, the window must exhibit very low adhesion to the lay-
ers, which is achieved here using fluorinated ethylene propy-
lene (FEP) film. FEP relies on low surface energy to prevent
adhesion, compared to other methods like CLIP that comple-
ment low surface energy with high oxygen permeability to in-
hibit the reaction.[3] Because the functionalized glass used in
single-layer training and the FEP used in multilayer printing
have low oxygen permeability, similar reaction kinetics in the ad-
jacent resin are expected. Multilayer parts also provide an op-
portunity for interactions between layers, such as monotonic
heat build-up from the exothermic reactions,[40,41] swelling and
shrinkage-induced deformation,[42] oligomer trapping, and arbi-
trary z-boundary conditions depending on previous layer print
geometry. Thus, the single-layer prediction can only provide qual-
itative insight into the final multilayer part geometry. Nonethe-
less, the single-layer predictions can inform over- and under-
polymerization within and between layers, which could be pre-
dictors of multilayer failures.

A pixelated gyroid lattice geometry (shown in Figure 10a) was
chosen for demonstration because of the relevance of lattice
structures in AM and the broad feature size variation present in
the part (from single pixel-wide features to large pixel clusters).
To assess both layer-scale and pixel-scale print failures, the gyroid
part was replicated across the build plate while varying the gray
level Y and the end layer of the part zlast. Variation of zlast allows
for the final layer of the part to represent what would otherwise
be an internal layer in the part. The masks associated with the
last six layers (z = 31 to 36) are shown in Figure 10b, noting that
only Y = 255 is shown, but other Y levels from 60 to 250 were
also printed. Parts were printed with four burn-in layers with 30
s exposure per layer, followed by the same 5 s exposure used in
model training for layers z = 5 through z = zlast. The layer thick-
ness was fixed at 50 μm throughout the print. Between each layer,
an atypically slow retraction speed for the build plate was used to
give the system ≈120 s to dissipate any heat and local oligomers
generated in the reaction before exposing the next layer. Tran-
sient phenomena at the scale of the full part are not trained in
the model and thus were sought to be minimized. In principle,
layer-layer interactions could be trained from multilayer prints
with 3D CNNs. Conversely, some effects could be encoded into
a second layer, such as controlling and measuring vat tempera-
ture or deliberately creating pre-gelation oligomers. As shown in
Figure S8, Supporting Information, printing with a more typi-
cal 5 s between layers resulted in considerably more overall poly-
merization of features and was not well predicted by the pix2pix
model, which was trained on single, isolated layers.

Figure 10c shows the resultant build plate from the printed ar-
ray varying Y and zlast. Notably, for Y < 140, only the burn layers
print. At Y = 140, extremely fragile structures were printed, but
they failed partially or completely during rinsing in isopropanol.
For Y > 140, parts generally printed to completion, however, de-
fects in lattice geometry were apparent. Figure 10d shows the
pix2pix prediction of cure depth for z= 36 (z= 31 to 35 are in Sup-
porting Information). Because printed parts are assembled on a
build plate opposite the window, the model predictions must be

considered based on how the current layer with predicted cured
depth would adhere to a preceding layer whose thickness was
fixed by the layer height. If Cd is less than layer thickness for
a contiguous feature, we expect that feature to fail to adhere to
the previous layer. If Cd is greater than layer thickness, we expect
adhesion to be possible, however, we risk over-polymerizing de-
liberate void space in the previous layer. If Cd varies between less
than and greater than layer thickness, intermittent adhesion of
that feature may occur. Within layers 31 through 36, layer z = 36
exhibits the smallest average feature size and is predicted to have
the shallowest cure depth. The cure is negligible up to Y = 100.
At Y = 140, we predict that only intermittent pixels of the largest
features will reach a cure depth close to the 50 μm layer thickness.
The partial printing of the full part at Y = 140 is attributed to the
ability of larger features to cure deeper and provide intermittent
adhesion, as well as possible swelling of the part in the monomer,
which might slightly reduce the programmed layer height. As Y
is increased to 160 and above, increasing numbers of features can
reach 50 μm cure depth, however, the single pixel-wide features
do not reliably reach 50 μm until Y > 220.

While the model proves useful in making qualitative, layer
scale predictions of print failure, the utility of the subvoxel
scale geometry training with pix2pix is the ability to make voxel
scale predictions for whatever arbitrary layers compose the part.
Figure 10e shows LSCM height maps of the last printed layer
when zlast is varied from 31 to 36 and Y is either 160 or 255. The
accompanying pix2pix predictions indicate where the cure depth
is expected to achieve the 50 μm layer thickness versus where it
will come up short. Considerable variation in cure depth is ob-
served between z = zlast = 31 and z = zlast = 36. The smaller av-
erage feature widths at higher z result in locally shallower cure
depths, with many features failing to reach 50 μm cure depth.
These predictions are consistent with the LSCM height maps,
which show feature replication at zlast = 31, albeit with a warpage
of the final morphology. For zlast = 32, the presence of narrower
features in the mask results in regions of cure depth ≪ layer
thickness. In the height maps, these regions show up as defects,
where larger features abruptly terminate when mask dimensions
reduce to a single pixel. For zlast > 32, the prevalence of failed
features increases, and the parts exhibited considerable deforma-
tion, which we attribute to increased stress from lower average
conversion in the part. In contrast to the Y = 160 result, at Y =
255, nearly all illuminated features are predicted to cure deeper
than the layer thickness. Narrow features only just reach 50 μm
cure depth, but wide features exceed 100 μm cure depth. In the
LSCM height maps, the Y = 255 part surfaces show the com-
plete nature of the patterns, with much wider features than cor-
responding features at Y = 160. Overall, the example shows the
pitfall of printing full parts with uniform irradiance. To print fine
features, large features will be over-polymerized, but for printing
accurate large features, the fine features will fail to print at all. A
key use of grayscale voxel models going forward will be to design
optimal masks for parts with varying length scale features.

3. Conclusion

A high throughput method of characterizing voxel scale geom-
etry of test patterns printed with grayscale digital light process-
ing was developed. The method uses laser scanning confocal
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Figure 10. Application of pix2pic cGAN to layer prediction in real 3D printed lattices. a) Pixelated geometry of the gyroid lattice model, with the last six
layers exploded for clarity. b) Detailed photomasks of the last six layers (z = 31 through z = 36), which exhibit progressively smaller average feature sizes.
c) Photograph of build plate from the DLP printer where the gyroid part was printed at varying gray scale Y and sequentially increasing last layer zlast.
A wait time of 120 s between layers was used to mitigate heat buildup and diffusion effects. d) The pix2pix prediction of layer z = 36 for increasing Y
from 60 to 255. The transition from Cd ⪆ 50 μm to Cd ⪅ 50 μm coincides with the transition from failed print to generally successful print in (c). e) The
experimental height map (top and bottom rows) and predicted cure depth (middle two rows) variation in voxel scale cure on layers z = 31 through z =
36 at Y = 160 or Y = 255. Experimental variation is assessed based on the LSCM height maps taken when z = zlast. Height scale for LSCM maps is set
to the last 500 μm (≈10 layers) of print.
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microscopy to measure the geometry of tens of thousands of in-
teracting voxels. The printed voxels are aligned to their corre-
sponding grayscale masks and then the mask-print pairs are used
as training data for machine learning models. Neural network
models based on U-net architecture are shown to provide accu-
rate predictions of the complex patterns that arise from neighbor-
ing voxels interacting with one another. The pix2pix cGAN is used
as an exemplary adversarial network to capture the sharp features
and spatial interactions that arise in DLP printing. In pix2pix,
the discriminator patch can consider numerous interacting pix-
els and voxels during training, making it well suited to capture
the effects of light non-uniformity, mass transport, heat transfer,
and reaction kinetics that dictate final part geometry. The trained
model successfully predicted numerous pixel patterns that were
not included in the training data. The model was also used to per-
form virtual experiments and to predict layer scale and voxel scale
failures in real 3D printed parts. Overall, the use of data-driven
methods in DLP predictions can improve mask design, promote
new process discovery, and ultimately enable the production of
higher-performance parts for critical applications.
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