
Scheduling for Time-Critical Applications Utilizing
TCP in Software-Based 802.1Qbv Wireless TSN

Richard Candell∗, Karl Montgomery∗, Mohamed Kashef (Hany)∗,
Susruth Sudhakaran†, and Dave Cavalcanti †

∗Smart Connected Systems Division, National Institute of Standards and Technology
(NIST), Gaithersburg, MD, USA

†Intel Labs, Intel Corporation Hillsboro, OR, USA
Emails: {richard.candell, karl.montgomery, mohamed.kashef}@nist.gov,

{susruth.sudhakaran, dave.cavalcanti}@intel.com

Abstract—Time-sensitive networking (TSN) is emerging as a
viable means to achieving deterministic quality of service (QoS)
communications within mission critical industrial applications
such as feedback control systems, robotics, and precision sensing
and actuation. Originally developed for Ethernet-based audio-
video applications using the User Datagram Protocol (UDP).
TSN assumes unidirectional flows from source (talker) to des-
tination(listener) and it is most easily implemented using UDP
in which packets are transmitted without an acknowledgment
from the recipient. However, most existing industrial protocols
are implemented using the reliable Transport Control Protocol
(TCP) in which each transmission is explicitly acknowledged.
In this work, a bandwidth efficient TSN schedule is developed
to accommodate the TCP traffic flow between two synchronized
robots collaboratively moving an object. We then demonstrate
an IEEE 802.1Qbv TSN schedule over an IEEE 802.11 wireless
medium that guarantees robot performance requirements are
maintained while accommodating concurrent best-effort traffic
flows. The process for schedule selection and experimental data
collection is discussed, and TSN configuration parameter tuning
and experimental results are provided.

Index Terms—Wireless, TSN, factory communications, IEEE
802.11, IEEE 802.1Qbv, WLAN

I. INTRODUCTION

A. TSN for Industrial Wireless

Wireless connectivity is increasingly becoming the primary
mode of communications on the factory floor. Its ease of
installation and low maintenance overhead make wireless
an attractive technology for factory communications. Factory
communications include classes of devices and communica-
tions applications requirements ranging from basic ambient
environmental sensing and the industrial internet of things
(IIoT) to time-sensitive applications, mission critical sensing,
precisely timed actuation, feedback motion control, and safety
integrated systems (SIS).

Time sensitive applications often require communications
transactions to occur within a single scan interval such as
with time-precise actuation and robot synchronization. In these
types of applications, information must arrive at their intended
destinations on-time (i.e., with low latency and low jitter).
Time-sensitive networking (TSN) has been developed as a set
of standards by the IEEE 802.1 working group [1] to support
applications needing time-based determinism. These standards

were originally developed to support audio-video (AV) dis-
tribution systems and are now envisioned to support other
time-critical applications such as those found on the factory
floor. Having been originally developed for AV applications,
TSN operates fairly easily with User Datagram Protocol
(UDP) transport layer. However, most industrial protocols [2]
are designed for Transport Control Protocol (TCP), such as
Modbus/TCP, Ethernet/Internet protocol (IP), Profinet, Open
Platform Communiciations (OPC), OPC/United Architecture
(UA), Extensible Markup Language remote procedure call
(XML-RPC), and Serial Real-time Communications System
(SERCOS), requiring an explicit acknowledgment (ACK) for
each TCP transmission, thus making the configuration of
TSN functions such as time-aware scheduling (defined by the
IEEE 802.1Qbv specification) more challenging. Additionally,
each of these protocols is functional over a wireless physical
transport, such as wireless local area network (WLAN), and
is a desirable communications option for industry. TSN has
been demonstrated to support TCP in a non-optimal manner
in [3] with severe loss in channel bandwidth to accommodate
the TCP ACK in the protected window. It is the central focus
of this paper to demonstrate a TSN time-aware scheduling
approach which supports the TCP transport more efficiently.

B. Real-Time TCP-based applications overview

Time critical applications require deterministic data delivery
from the underlying network stack. The data becomes irrele-
vant if it is not delivered on time. Most of these applications
rely on popular middleware or protocols like Modbus/TCP,
OPC, and Ethernet/IP. Most of these protocols rely on TCP
as transport layer for delivering data reliably. TCP is a
connection-oriented protocol that provides reliable data deliv-
ery through acknowledgments and retransmissions, but it also
has other very important features, namely, flow and congestion
control. TCP’s flow and congestion control mechanisms are
very well studied with many versions available [4]. The goal
of such mechanisms is to adapt the amount of data transmitted
by the source to avoid or minimize congestion on the network
while providing reliability. The TCP congestion control with
its multiple phases (slow start, congestion avoidance, and
congestion detection) was originally designed to minimize



congestion on the Internet. On the other hand, the TCP behav-
ior has an intrinsic randomness (e.g., as the number of bytes
sent changes during the slow start and congestion avoidance
phases) which goes against the principles of isochronous real-
time control systems. This random TCP behavior is even
more pronounced when using wireless communication as link
conditions change dynamically due to various factors causing
TCP transmission rate adaptation and inefficiencies [5].

As TSN technologies bring the possibility of converged
networks for all types of traffic across wired and wireless
links, the TCP behavior needs to be carefully considered in
conjunction with TSN features, especially 802.1Qbv time-
aware scheduling. For each time-critical application data flow
from talker to listener, TCP creates a correlated data flow in
the reverse direction (from listener to talker) for delivering
acknowledgments that do not exist in connection-less trans-
port. Timely delivery of the TCP ACK becomes important
and needs to be considered in the TSN resource reservation
mechanism.

C. Wireless TSN overview

TSN refers to a group of networking-related protocols and
standards developed by the IEEE 802.1 working group in
order to provide reliable, and time bounded (deterministic)
delivery of data over 802-LAN (Local Area Network) tech-
nologies. Wireless Time-Sensitive Networking (WTSN) aims
to extend the features as defined by this standard over wireless
networks. WTSN allows industrial and robotics applications
to share real-time information across a wired-wireless hybrid
network. Two fundamental features of WTSN, namely Time
Synchronization and Time Aware Scheduling (TAS) make this
possible by guaranteeing deterministic and bounded latency
to time critical streams. Time Synchronization is defined by
IEEE 802.1AS which is a profile of the IEEE 1588 standard. It
defines a protocol to distribute a common reference time to all
nodes in a WTSN network to enable precise synchronization of
time across all TSN nodes. TAS is defined by IEEE 802.1Qbv
standard and it enables guaranteed delivery of time-sensitive
data in the presence of interfering background traffic on the
same network. By using the common time reference guarantee
provided by the IEEE 802.1AS standard, the IEEE 802.1Qbv
defines a set of time-controlled gates for each of the queues
associated with the various traffic classes in each of the WTSN
enabled nodes in the WTSN network. In this way, a time-
aware schedule is defined and synchronized across all the
nodes in a WTSN network for every traffic flow. This ensures
timely delivery of data for time critical traffic flows as well as
avoids interference from other flows during the transmission
of critical packets.

D. Contributions and Paper Organization

In this paper, we will explore the challenges of imple-
menting WTSN to provide deterministic delivery of time
critical control data exchanged using the Robot Operating
System(ROS) [6] middleware over TCP protocol with high
efficiency. The collaborative robotic leader-follower use case

Fig. 1. Leader-Follower Collaborative Robotics WTSN Use Case. Two
robots are synchronized by a velocity controller in which the Leader robot
instructs the Follower robot trajectory information isochronously every 8 ms.
Tight delay and jitter is critical for this application to function according to
specifications.

serving as the testbed scenario for this research is described in
detail in [3] and is shown in Fig.1. The contributions of this
paper are as follows:

1) We demonstrate a viable methodology for the design
of 802.1Qbv schedule that accommodates a TCP traffic
flow to support the operational requirements of a collab-
orative robotic scenario without wasting precious chan-
nel bandwidth by designing windows to independently
accommodate the TCP data transmission and ACK.

2) We provide an operational scenario that is representative
of actual industrial use cases and reusable by industry
and other researchers to improve upon WTSN imple-
mentations.

3) We provide a discussion of the challenges to WTSN
implementation and recommendations for improvements
to the related standards.

We begin in Section II by describing the problem presented
by the physical application and the TCP stack while deriving
a WTSN schedule. In Section III, we present our methodology
for experimentation and measurement. Results and discussions
are then presented in Section IV followed by conclusions in
Section V.

II. EFFICIENT TIME-AWARE SCHEDULING FOR TCP

A. 802.1Qbv Time-Aware Scheduling over Wi-Fi

An implementation of the 802.1Qbv Time-Aware Schedul-
ing over Wi-Fi has been described in [7]. It enables mapping
of traffic streams to queues at the network stack (using the
Linux Qdisc features [8]) and controls the queues (opening and
closing) based on the requirements of the traffic streams with
the goal of protecting the time-critical streams from interfering
traffic.

The 802.1Qbv standard supports up to 8 different traffic
classes between talker and listeners on the network, but
without lack of generality, consider two classes of traffic -



Time Critical (TC) traffic and best-effort (BE) traffic between
a talker and a listener end devices. The TC stream is assumed
to be periodic with constant packet size and inter-arrival
periods with strict delivery deadlines, whereas the BE traffic
may include any other low priority traffic, typically without
timing constraints. A time-aware schedule is characterized by
a periodic cycle Time (Tcycle), which is the period at which
the schedule repeats. Each cycle is divided into time slots
(or protected windows) that can be mapped to different traffic
classes (TC traffic and BE traffic). During a particular slot,
only traffic belonging to that class is allowed to pass through
the gate (gate is open) and all other traffic streams are blocked
(gates closed). This gating rule is accomplished by a common
schedule applied to all wireless nodes associated with the
network and a single time reference for all nodes, which is
enabled by precision time protocol (PTP) synchronization.

To derive the scheduling configuration including Tcycle and
the slot times for the various traffic classes, a network config-
uration tool or scheduler need specific knowledge about each
TC stream and the required footprint on the wireless medium.
In other words, the scheduler needs to know the exact traffic
profile for each TC flow and the amount of airtime required
for transmitting the TC packets within a known deadline with
a very high success probability. The protected windows also
must strike a balance between meeting the minimum timing
requirement of the TC traffic and maximizing the amount of
traffic allowed on the network so that BE traffic requirements
are not completely ignored. In addition, accommodation must
be made for a slot where no traffic is let through, which is
usually called the guard band and it is used to ensure BE traffic
that starts at the end of its window can finish transmission
before the following protected window.

The configuration of the protected periods must consider the
packet size, the latency requirement of the traffic (deadline)
and the effective data rate of the link. In the case of Wi-Fi
links, in addition to the data rate, which is a function of the
MCS (Modulation and Coding Scheme) used, the channel ac-
cess delay also needs to be considered to compute an effective
data rate. The 802.1Qbv gate control mechanism can be ap-
plied directly to the multiple queues within the 802.11 medium
access control (MAC) layer and traffic can be released/blocked
with high precision considering the appropriate configuration
parameters for the link. Such implementation would require
hardware changes to the Wi-Fi queuing management in the
chipset, which would not be feasible with existing Wi-Fi cards.
The current WTSN implementation using off the shelf chipsets
[3] supports time-aware scheduling in software by leveraging
existing 802.1Qbv implementation in the Linux OS using
the Qdisc capability (see Fig. 2). In this implementation, the
802.1Qbv control of the OS queues is not tightly synchronized
with the underlying Wi-Fi Queues and MAC behavior. Once
the packets are released from the queues in the Kernel, they
enter the Wi-Fi layer (mapped to one of the MAC queues), and
the MAC layer follows the channel access procedure required
for transmitting the frames over the air. Therefore, the amount
of data passed down to the Wi-Fi layer during the multiple

Fig. 2. Time-sensitive Networking 802.1Qbv Protocol Stack. All Application
traffic traverses the 802.1Qbv Qdisc configured in the kernel of the operating
system. The Qdisc configuration will determine the behavior of the TSN
schedule and flow characteristics of the protected and best-effort windows.

time slots in the schedule needs to be carefully controlled to
avoid overflowing into the next slot due to packets already
buffered in the Wi-Fi queues that cannot be stopped by the
802.1Qbv gates at the operating system (OS) level.

Despite the limitations of software-based 802.1Qbv im-
plementation, results have shown the benefits of avoiding
congestion in the Wi-Fi domain and confirm that the 802.1Qbv
layer is still able to control the latency as reported in several
experiments [7]. Future enhancements in the hardware can
optimize the queuing process and further reduce the achievable
bounded latency.

B. Scheduling Challenges for TCP Service

The following issues arise when talkers generate application
streams over TCP transport in TSN-capable networks:

a) Unidirectionality Assumption: The TSN configuration
as defined in 802.1Qcc and the 802.1Qbv scheduling features
deal with unidirectional streams from talker to listeners includ-
ing all the overhead from higher layers including the combined
application layer and TCP transport layers constituting the
payload handled by the 802.1Qbv schedule. Once a TCP
socket is opened for serving a given traffic stream, the listener
automatically creates a correlated reverse flow for TCP ACK
that may impact the behavior of the traffic stream generated
by the talker. This is an open issue in most TSN configuration
guidelines (802.1Qcc), as they only consider application data



traffic streams from talkers to listeners independent of the
transport service required.

b) Over-Allocation of Bandwidth: Accommodation of
the TCP ACK requires additional time within the TSN pro-
tected window. This may lead to an over-provisioning of
the resource, time, within the TSN schedule as the channel
will tend to go idle while waiting for the ACK, thereby
wasting channel bandwidth. In addition, packet aggregation
may also lead to a waste of network resources when the
listener discards some of the aggregated packets. One option
to protect the TCP ACK is to set the protected window for
the TC data stream to accommodate the TCP ACK in the
reverse direction as shown in Fig. 3. This however creates a
dependency on timely execution of other components in the
network stack as the listener must generate the TCP ACK and
make it available at the Wi-Fi layer for transmission during
the same protected window as the corresponding TCP data
packet. Moreover, the protected window duration must be large
enough to accommodate the packet transmission, Idle wait
time, and the ACK transmission. In our previous work [3], the
Idle time was more than an order of magnitude of the packet
transmission time. This problem is addressed in this paper in
which a separate protected window is created to accommodate
the ACK with best-effort traffic arriving in between.

c) Packet Aggregation and Variable Payloads Sizes: If
the reverse stream carrying the TCP ACK is not prioritized
to ensure timely and reliable delivery, it may trigger the
aggregation of application packets at the talker. For example,
when a TCP ACK is delayed, it may result in the TCP layer
queuing up future packets till the TCP ACK is received.
This creates a risk that the protected period is too small for
the larger aggregated packet. In some applications, such as
ROS-based applications, the listener is not aware of the data
aggregation by TCP, and it could consume the first message
while ignoring the remaining messages in the aggregated
packet. This could cause the application to misbehave by using
stale data or missing critical control data. Any excessive delays
or loss of the TCP ACK might also trigger congestion control
changing the amount of data that the talker sends.

C. Optimized Time-Aware Schedule

Understanding the time-sensitive traffic requirements is a
fundamental step in designing an optimized time-aware sched-
ule. The most critical stream in this collaborative robotics use
case is the periodic communication between the leader and
follower robots, whereby the leader conveys the position that
the follower should move to in the next step. It is important
to ensure timely delivery of position data to the follower in
a deterministic fashion without being affected by other traffic
streams on the same network. In our implementation, based on
the ROS middleware, new position data is generated by a ROS
node (leader) every 8 ms (125 Hz). The ROS application data
is written to the TCP stream interface, which generates TCP
packets at the transport layer and delivers them to the TSN
layer in the kernel. The scheduler identifies the data segments
as part of the TC stream and places them into the protected

Fig. 3. Resource Over-Allocation. Allocation of bandwidth to accommodate
the TCP ACK within the same protected window creates a variable channel
Idle time thus wasting resources. A solution is needed to minimize the
amount of Idle time needed for the ACK thus optimizing channel bandwidth
availability.

window queue. Once the TC queue opens, the TSN scheduler
uses a time-aware traffic shaping algorithm to determine how
many bytes may be transmitted according to the parameters
of the configured TSN Qdisc. Once data passes through the
TSN gating mechanism, it arrives at the physical layer device
- in this case, Wi-Fi for over-the-air transmission.

Inspecting the TC traffic and characterizing its time footprint
over the air is important to properly set the protected window
size. We measured the transmission time of the position
packets (tPkt) over the Wi-Fi link using a real-time spectrum
analyzer (RTSA) and observed tPkt = 88 µs at MCS 15 and tPkt
= 110 µs at MCS 13. Given the testbed configuration, the links
between the access point (AP) and the wireless stations (STAs)
have high signal-to-noise ratio (SNR) values, and MCS 13 was
the worst-case MCS used for leader-follower transactions. In
addition to the transmission time over the air, we also need
to consider other overheads in the 802.11 protocol, including
the channel access delay as well as potential contention from
other 802.11 transmissions in overlapping networks. Given the
unlicensed operation in the 2.4, 5, and 6 GHz bands, it is
possible that other devices that are not part of the managed
TSN infrastructure get access to the channel that increases
channel access delays for the STAs trying to transmit the TC
traffic within the protected window. In a managed network,
which is expected to be the case for most industrial deploy-
ments, admission control policies and frequency planning can
be used to minimize the potential impact of “unmanaged”
devices, i.e., devices that do not implement TSN features and
may not adhere to the timing and scheduling rules set for the
network. There are several techniques that can minimize the
impact of unmanaged networks, including multi-link operation
and 802.1CB redundancy, which are outside the scope of this



Fig. 4. TSN schedule for the accommodation of the TCP acknowledgement.
Here, the duration of the time-critical traffic window is TC, and G is the
guard interval. The total schedule period is 8 ms which matches the scan
interval of the leader-follower velocity controller. The TC and G durations
are configurable where TC is an integer multiple of the worst-case packet
transmission time and G is a function of the Qdisc limit buffer size.

work, but could be incorporated into future work.
To accommodate the TCP behavior with minimal impact on

the application performance and network efficiency, we have
defined a schedule template, illustrated in Fig. 4, where TCP
data segments and ACKs belong to the same TC traffic class
but can use different protected windows. We chose to use a
symmetric TC window configuration for the TCP transmission.
In the case where a packet is missed in a TC window, the
next cycle can transmit the packet, regardless of weather it
is a data packet or ACK. We defined the Tcycle to be half of
the application period, denoted by tperiod, so that the position
data can be transmitted in the first 4 ms cycle (within the
protected window), while the ACK can be transmitted in the
next protected window thus closing the 8 ms scan cycle.
Note that depending on the protected window size, it is also
possible for the ACK to be ready for transmission within the
same window as the TCP data segment. If the ACK is not
yet available for transmission to catch the first window, it
has another opportunity in the next scheduling cycle. This
approach provides a template for trading off the performance
of the robot application with channel availability for the best-
effort traffic. Ultimately, the robot application will have strict
requirements on delay and jitter, and this places limits on how
small the protected window sizes can be, given the channel
conditions.

III. MEASUREMENT AND EXPERIMENTAL METHODOLOGY

A. Testbed Setup

The leader robot follows a pre-planned circular path, for
which the follower uses a real-time velocity controller, fed
with positional updates from the leader at 125 Hz, or an
8 ms update interval, to keep up with the leader. Under
ideal communications there is typically 13-15mm of error
between where the follower is and where it should be, which
is a property of the speed of the leader and gains for the
velocity controller. This leader-follower ROS topic stream uses
a predefined port, such that the WTSN schedule protects this
traffic in the TC window. For the WTSN experiments, an
802.11Qbv schedule was run using software emulation on the
AP, leader STA, and follower STA. This way, the AP gates the
best-effort and protected traffic, while the leader and follower
nodes are in sync, allowing for the protected traffic to be sent
in time with the TC window. In this case, the iPerf traffic flows

from the AP to another wireless STA using UDP, to emulate
a camera’s data stream.

The data streams are collected across the testbed using
Ethernet-based tap devices called SharkTaps, which are routed
to the globally synchronized data collection machine for
packet captures. These packet captures allow for the calcu-
lation of packet flight and inter-arrival times, to analyze the
latency performance of the network. Since we use Ethernet to
Wi-Fi bridges, we can capture all relevant packets that are sent
through the wireless network. We use IEEE 1588, PTP [9]
to synchronize the time for the wireless stations, AP, and
collection machine, for data collection and WTSN schedule
timing purposes. We have observed the timing errors to be
within <1 µs of error from the Grand Leader (GL) clock with
99% confidence.

B. Data Collection

Compared to our previous work, we have improved the
position tracking of the robots by installing a infrared tracking
system utilizing four OptiTrack 13W cameras, to reduce
overall measured uncertainty of positional errors from 1.4
mm to 0.22 mm at the 99% confidence level. Moving this
measurement to a singular camera tracking system greatly
improved the uncertainty for the position measurements of
each robot. For the latency measurements, we have calculated
the uncertainty to be <22 µs with the 99% confidence level
using SharkTaps.

For the experiments, a wired baseline test was performed
to see the performance of Ethernet-based connections as a
benchmark. Then, we enabled the wireless stations and the
AP, without WTSN, with increasing levels of traffic using
the iPerf [10] source and sink. The sink is wireless, such
that the AP transmits a UDP stream of 16, 32, 48, 64, or
80 Mbps, wirelessly. The packet length is 1000 Bytes for
these transmissions, emulating a wireless camera stream to
stress the network. Then, we enabled the WTSN schedule
with various window sizes with a 2, 4, 6, and 8x multiplier
of a maximum transmission time of 110 µs for the leader-
follower traffic, which we measured using a time-domain radio
frequency (RF) capture. After picking a multiplier for the TC
window size, based on the physical performance requirement
to be discussed in the next section, we then performed the
same iPerf traffic stream levels, to show that the performance
is not greatly altered with high levels of BE traffic.

C. Objectives

While optimizing the schedule to adapt to the TCP traffic,
we deal with a number of objectives at different levels. The
network level objective is measured through the round-trip
time (RTT) of the TC stream, which can be minimized ideally
by allowing the TC traffic the explicit use of the channel
with no interfering streams. The application-level objective
is measured through the Cartesian error between the leader
and follower locations. Similar to the RTT of TC packets, the
Cartesian error is minimized by having no interfering streams.
On the other hand, we consider channel utilization objectives



that target the efficient use of the channel by allowing the TC
stream to achieve a predefined level of performance, while
maximizing the corresponding channel efficiency metrics.

We define the protected window utilization metric by the
ratio of the time utilized by the TC packet and its acknowl-
edgment to the total time of the protected window as follows,

UTC =
tpkt + tack

2TC
. (1)

The denominator has the protected window size multiplied
by 2 because the schedule allows for two protected windows
to occur during a single update period to accommodate the
position update packet from the leader and its corresponding
ACK from the follower. The other metric is the residual
channel bandwidth after protecting the TCP flow which is
defined by:

RCH = 1− 2TC
tperiod

. (2)

D. Schedule Tuning

In this work, we have a single TC stream that needs to be
scheduled, and hence, we have two main tuning parameters for
the schedule. These parameters are the TC protected window
size (tTC) and the guard band (G). The guard band is mainly
tuned to allow for any remaining traffic from the non-TC
streams to finish and guarantee that the wireless channel is
free and ready for the TC traffic. Note that the guard band
is very important in the TSN setup, where the scheduling is
performed at the Kernel, and hence, the guard band allows
any traffic at the Radio space to be finished before the start of
the protected window. The other parameter is the size of the
protected window, which should be large enough to allow for
the TC packets to be transmitted successfully accommodating
any overhead by the lower layers and should not be too
big to balance the utilization and residual channel metrics as
described above.

We set the protected window size as a base value of 110
µs scaled by a multiplier factor (5x, 10x, . . . ). We conducted
multiple experiments increasing the protected window size by
various scaling factors, as described in the next section. We
also configured a guard band based on the worst-case packet
transmission time for the BE traffic. In the next section, we
evaluate several performance metrics and efficiency tradeoffs
for various configurations of the protected window sizes.

IV. RESULTS

This section highlights the experiments performed with the
dual-lift use case, under various network configurations. Data
used occurs during the circular path of the leader and follower,
which under ideal communication should have a fairly constant
error value. We include a wired baseline with all Ethernet
connections to show this benchmark. At the application level,
we can tolerate up to 15.7mm of root mean squared (RMS)
Cartesian error between the leader’s and follower’s positions.
Further, we compare the system performance under TSN
scheduling to the basic carrier sense multiple access (CSMA)

scheme where all traffic streams contend for the wireless
medium. However, in the case of no interfering traffic, the
CSMA is considered the ideal wireless case in which the
wireless data will not wait for its protected window to access
the channel but will have access to the channel faster as there
is no competing traffic.

A. Qdisc Tuning
In order to perform the 802.1Qbv traffic shaping at the

Kernel, we tune the Qdisc traffic control at the Kernel to both
apply the schedule and limit the traffic going to the Wi-Fi
layer. The TSN schedule is performed at the Kernel so the
protected windows and guard band gates are opened to allow
data to the queue of the Qdisc traffic shaper. As a result, the
buffer size needs to be tuned to prevent the BE stream to fill it
to the extent that it occupies the channel in the TC protected
window. Also, it has to allow the BE traffic to buffer at least
two packets to leave a space for a second ready packet while
one is being transmitted. We set the LIMIT to two multiplied
by the maximum transmission unit (MTU) of the BE traffic
which equals to 2084 including the UDP overhead.

The second parameter is the BUFFER limiting the maxi-
mum burst size that can go to the Wi-Fi layer. It is tuned to
allow a single packet of the BE traffic from iPerf to go through
with other smaller size packets from other BE streams from the
operational testbed. We set the BUFFER, or the burst size, to
1500 bytes. Finally, the RATE is the token arrival rate for the
token bucket algorithm performed by the Qdisc which controls
the average rate of the data going to the Wi-Fi layer and we
tune it to be the maximum allowed data rate at the wireless
channel to avoid traffic delay or loss. We set the RATE to 104
Mbps corresponding to the observed bit rate achieved with
MCS 15 due to the IEEE 802.11 MAC overhead.

B. Multiplier Selection
In this subsection, we show the detailed results for the mul-

tiplier selection to accommodate any Wi-Fi layer processing
to allow the TC traffic to be transmitted during the protected
window. We present the leader-follower performance at the
network and application layers for different multipliers of the
TSN schedule with no interfering traffic to the wired baseline,
and the CSMA wireless ideal benchmark. In this results, we
set the guard band to 770 µs which equals to six times the time
needed for a single packet of the BE traffic to be transmitted.

Figs. 5 and 6 illustrate the different multipliers (2-8x) tested
to determine what protected window length is optimal, based
on the network and physical performance of the use case.
We have determined that the 6x multiplier, or 660 us, to be
optimal, as it is less than the 15.7mm threshold, while still
providing ample time for the BE traffic. Moreover, at the
network level, almost 90% of the packets have a RTT less
than 8 ms and 98% of the packets have a RTT less than 12
ms, which is considered adequate for this sort of application.

C. Channel Efficiency Tradeoff
In this section, we present the tradeoff due to the multiplier

selection between the improved network and application per-



Fig. 5. RTT of leader-follower position data using WTSN schedule with 2-8x
multipliers.

Fig. 6. WTSN schedule with 2-8x multipliers with no interfering traffic.
The vertical dashed and dotted line represents the 15.7mm error operational
requirement threshold and the horizontal line represents the 95th percentile.

formance metrics, and the channel usage efficiency metrics.
In Table I, we present the results when the multiplier of the
protected window equals 2, 4, 6, and 8. We present the root
mean square (RMS) Cartesian error at the 95th percentile, the
percentage of the data packets with RTT ≤ 8 ms and 12 ms, the
protected window utilization as defined in (1), and the channel
bandwidth residual after protecting the TCP flow as defined
in (2). Additionally, one can see that the proposed schedule
for accommodating the TCP traffic has a better protected
window utilization compared to the corresponding scheduling
scheme in [3], where the protected window had been set

TABLE I
COMPARISON OF MULTIPLIER IMPACTS TO OPERATIONAL AND NETWORK

PERFORMANCE

Multiplier 2 4 6 8

RMS Cartesian Error
at 95th Percentile 16.9 15.7 15.4 15.3

Percentage Packets
with RTT ≤ 8 ms 7 80 90 94

Percentage Packets
with RTT ≤ 12ms 7 97 98 99

Protected Window
Utilization (UTC) 0.42 0.21 0.14 0.11

Channel Bandwidth
Residual (RCH) 0.89 0.78 0.67 0.56

to accommodate both the packet and acknowledgement. In
that work, a protected window utilization of 5.6% occurred
to achieve the same use case performance compared to the
14% value in the proposed TSN scheduling approach. The
tradeoff is demonstrated such that a procedure for selecting an
application-specific value for the multiplier can be performed
by building a similar table with the corresponding application
requirements.

As shown in Table I, one can observe that increasing the
protected window size can improve the network and physical
performance in the leader-follower use case. However, this
improvement rate decreases at higher multiplier values. In
this case, for example, the improvement in performance by
changing the multiplier from 6 to 8 is much less than the
improvement by changing the multiplier from 4 to 6.. On the
other hand, a similar increase has a clear negative impact on
the protected window utilization and the channel bandwidth
residual. Hence, this demonstrates the need for optimizing the
multiplier value with respect to various use case objectives.

D. best-effort Traffic Impact

In this subsection, we show the impact of allowing an iPerf
traffic stream to be transmitted at the BE window of the
schedule. We vary the rate of the iPerf interfering traffic from
16, 32, 48, 64, and 80 Mbps. We show these values at the
legends of the following figures. We compare it to the cases
of the wired baseline and the case of no interfering traffic,
which is referred to as having a rate of 0cMbps.

It can be observed from Fig. 7 that higher interference levels
with the CSMA scheme with no TSN, especially 48mbps and
above, are impacting the performance of the use case greatly
with higher average error, and most notably, jerkiness in the
movement of the follower. To remedy this, we implement the
wireless TSN schedule discussed in Section III.

In Fig. 8, we present the physical performance of the testbed
with the existence of the iPerf interfering BE traffic. The
physical performance is clearly improved compared to the
CSMA performance in Fig. 7. In the higher values of BE traffic
rates, the degradation rate of the performance while deploying
the TSN schedule is much lower in the CSMA case.



Fig. 7. Leader-follower error using Wi-Fi CSMA with 0-80Mbps interfering
traffic. CDF plot shown to show the increasing error with higher interference
levels.

Fig. 8. WTSN schedule with 6x muliplier with 0-80 Mbps of BE traffic CDF.
The vertical dashed and dotted line represents the 15.7 mm error operational
requirement threshold and the horizontal line represents the 95th percentile.

V. CONCLUSION

Reliable protocols are ubiquitous in industrial networks and
must be considered when discussing time-aware scheduling of
network traffic for use in industrial time-critical applications.
Time-critical industrial applications include precision actua-
tion, feedback control, and safety-integrated systems. In this
work, a methodology for 802.1Qbv scheduling of wireless
time-critical industrial traffic in a collaborative robotic sce-
nario that accommodates the TCP acknowledgement and effi-
ciently utilizes the channel bandwidth is presented. Through
careful analysis of the traffic patterns for a particular use case,
this efficiency scheme may be utilized for other industrial
wireless applications that must coexist in an heterogeneous

mix of traffic. While the merit of this approach has been
demonstrated in this paper, more research is required to reduce
the impact of high-throughput best-effort traffic conditions, as
exemplified in the results.

Next steps to this research may include further optimization
of Qdisc 802.1Qbv configuration to enable tighter instanta-
neous bandwidth control of the best-effort traffic window,
eliminating overflow of packets in the guard interval into the
next protected time-critical window. Finally, synchronization
is needed between the application, network stack and the
TSN control layer which would include adding time-awareness
to the application layer, TCP/IP implementation, and Wi-Fi
medium access control with channel management implementa-
tions. Finally, the method presented here requires strict control
of the channel conditions to maintain the MCS above 13. Un-
der extreme channel conditions in a production environment,
the time-aware schedule would need to quickly adapt the best-
effort allocated bandwidth and extend the protected window
duration to accommodate a lower transmission bit rate.

DISCLAIMER

Certain commercial equipment, instruments, or materials are
identified in this paper in order to specify the experimental
procedure adequately. Such identification is not intended to
imply recommendation or endorsement by the National Insti-
tute of Standards and Technology, nor is it intended to imply
that the materials or equipment identified are necessarily the
best available for the purpose.

REFERENCES

[1] IEEE 802.1 Time Sensitive Networking (TSN) Task Group:
https://1.ieee802.org/tsn/.

[2] Eric D. Knapp, Joel Thomas Langill, ”Industrial Network Se-
curity (Second Edition)”, Syngress, 2015, ISBN 9780124201149,
https://doi.org/10.1016/B978-0-12-420114-9.00018-6.

[3] R. Candell, K. Montgomery, M. Kashef Hany, S. Sudhakaran, J. Albrecht
and D. Cavalcanti, ”Operational Impacts of IEEE 802.1Qbv Scheduling
on a Collaborative Robotic Scenario,” IECON 2022 – 48th Annual Con-
ference of the IEEE Industrial Electronics Society, Brussels, Belgium,
2022, pp. 1-7, doi: 10.1109/IECON49645.2022.9968494.

[4] A. Afanasyev, N. Tilley, P. Reiher and L. Kleinrock, ”Host-to-Host
Congestion Control for TCP,” in IEEE Communications Surveys and
Tutorials, vol. 12, no. 3, pp. 304-342, Third Quarter 2010, doi:
10.1109/SURV.2010.042710.00114.

[5] A. Mammadov and B. Abbasov, ”A review of protocols related to
enhancement of TCP performance in wireless and WLAN networks,”
2014 IEEE 8th International Conference on Application of Information
and Communication Technologies (AICT), Astana, Kazakhstan, 2014,
pp. 1-4, doi: 10.1109/ICAICT.2014.7035964.

[6] Jason M. O’Kane, ”A Gentle Introduction to ROS”, Jason M. O’Kane,
2013, ISBN 1492143235.

[7] S. Sudhakaran, K. Montgomery, M. Kashef, D. Cavalcanti and R.
Candell, ”Wireless Time Sensitive Networking Impact on an Industrial
Collaborative Robotic Workcell,” in IEEE Transactions on Industrial
Informatics, doi: 10.1109/TII.2022.3151786.

[8] V. Gomes, “TAPRIO - Time Aware Priority Shaper.”
https://manpages.ubuntu.com/manpages/focal/en/man8/tc-taprio.8.html.

[9] ”IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems,” IEEE Std 1588-2019
(Revision of IEEE Std 1588-2008) , vol., no., pp.1-499, 16 June 2020,
doi: 10.1109/IEEESTD.2020.9120376.

[10] “iPerf - The ultimate speed test tool for TCP, UDP and SCTP,”
https://iPerf.fr/iPerf-doc.php


