
Analysis of Neural Network Detectors for
Network Attacks

Qingtian Zou a, Lan Zhang a, Anoop Singhal b, Xiaoyan Sun c and Peng Liu a

a College of Information Sciences and Technology, The Pennsylvania State University, PA, USA
E-mails: qzz32@psu.edu, lfz5092@psu.edu, pxl20@psu.edu
b Security Test, Validation and Measurement Group, National Institute of Standards and Technology,
MD, USA
E-mail: anoop.singhal@nist.gov
c College of Engineering & Computer Science, California State University, Sacramento, CA, USA
E-mail: xiaoyan.sun@csus.edu

Abstract. While network attacks play a critical role in many advanced persistent threat (APT) campaigns, an arms race exists
between the network defenders and the adversary: to make APT campaigns stealthy, the adversary is strongly motivated to evade
the detection system. However, new studies have shown that neural network is likely a game-changer in the arms race: neural
network could be applied to achieve accurate, signature-free, and low-false-alarm-rate detection. In this work, we investigate
whether the adversary could fght back during the next phase of the arms race. In particular, noticing that none of the existing
adversarial example generation methods could generate malicious packets (and sessions) that can simultaneously compromise
the target machine and evade the neural network detection model, we propose a novel attack method to achieve this goal. We
have designed and implemented the new attack. We have also used Address Resolution Protocol (ARP) Poisoning and Domain
Name System (DNS) Cache Poisoning as the case study to demonstrate the effectiveness of the proposed attack.

Keywords: Network Attack, Neural Network, Adversarial Example

1. Introduction

Network intrusion detection systems (NIDS), such as Snort [1] and Zeek [2], play an essential
role in enterprise network security operations. With the rapid rise of deep learning technology, neu-
ral network(NN)-based detectors (e.g., [3–6]) have been deployed in the real world to complement the
existing NIDS. For example, IBM [7] and Microsoft [8] have offered artifcial intelligence-based se-
curity products. IBM QRadar [7] is an AI-powered solution that “consolidates log events and network
fow data from thousands of devices, endpoints, and applications”. Microsoft Security Copilot [8] “sur-
faces prioritized threats in real time and anticipates a threat actor’s next move with continuous reasoning
based on Microsoft’s global threat intelligence”. Acting as an “ally", NN-based detectors enable accu-
rate detection of attacks even those not seen earlier, before the corresponding intrusion detection rule is
created. NN-based detectors are usually deployed in the real world as follows: the existing network traf-
fc monitoring tools (e.g., routers, Wireshark packet sniffers) are reused to capture the captured packets,
which are usually held in PCAP fles, to a node where the NN-based detectors are running with machine
learning libraries (e.g, PyTorch, TensorFlow).

mailto:qzz32@psu.edu
mailto:lfz5092@psu.edu
mailto:pxl20@psu.edu
mailto:anoop.singhal@nist.gov
mailto:xiaoyan.sun@csus.edu

Because adversarial examples [9, 10] are recognized as potentially a very serious threat to systems that
use machine learning models, NN-based NIDS have been triggering an increasing amount of interests in
the research community. In particular, several works [11, 12] have recently investigated the adversarial
examples specifc to NN-based NIDS, and they assume the following threat model: The data manip-
ulation threat model. This threat model assumes that the adversary is able to directly manipulate (i.e.
modify) the network data after it is captured (e.g., packets held in PCAP fles) and/or processed (e.g.,
data samples), but before it is fed to the NN-based NIDS.

Although this threat model is coherent with the adversarial example studies [9, 13] in other domains
such as computer vision, it is very different from the threat model assumed by real-world NIDS [14].
When NIDS are deployed to defend against network attacks, the following threat model is assumed as
a matter of fact: The de facto standard threat model. This threat model does NOT assume that the
adversary is able to manipulate data after it is generated. Rather, this threat model assumes that the
attacker can only take action before the data is collected. In another word, if the attacker wants to replay
the adversarial example, he/she must modify network packets before they are sent out. Once the packets
are sent and data are collected, the attacker can no longer intervene.

Regarding why the data manipulation threat model is not assumed by real-world NIDS, we have the
following observations. First, most real-world network attacks only compromise non-admin user ac-
counts, and such accounts have limited infuence in network communications. For example, the attacker
may have compromised a user account on one host, but he/she cannot directly manipulate the packets
sent by another host which the compromised account has no access to. Second, packet capture reposito-
ries are usually guarded by strict access control and integrity protection. Countering such access control
and integrity protection assumes additional capabilities of the attackers.

Based on the above observations, it is important to check whether the adversarial examples success-
fully generated under the data manipulation threat model are also successful under the de facto standard
threat model. Specifcally, the checking process consists of the following checkboxes: (a) whether the
adversary can treat the generated adversarial examples as an adversarial attack packet; (b) whether the
adversarial examples can be somehow converted to adversarial attack packets; (c) whether the target
machine can be compromised by the back-converted packets; (d) whether the network communications
with back-converted packets, after being collected and processed in the same way as what is required of
the NN-based NIDS, is classifed as benign.

Using the above attack procedure, we have checked 17 general-purpose adversarial-example genera-
tion methods. We will summarize the experiment results in Section 2. In short, we found that none of the
adversarial examples generated in our experiments is still successful under the standard threat model.

In this work, we seek to develop a new approach which can generate successful adversarial examples
under the de facto standard threat model. These successful adversarial examples are denoted as stealthy
network attacks in this paper, since the proposed attack and the real-world network attacks follow the
same threat model. Though there exist other works that present similar ideas [15, 16], these works focus
on aligning the feature space with the problem space. In another word, they try to generate adversarial
examples in the feature space that satisfy constraints in the problem space. However, they adopt extensive
feature engineering [16, 17] or use network fow data [18–20], which makes it very diffcult, if not
impossible, to be verifed with real network packets and replayed in real network attacks. To the best of
our knowledge, this work is the frst work addressing this challenge and actually test the effectiveness
of adversarial attack packets in real attacks.

Our approach frstly uses masks to capture protocol constraints. Then, our approach adapts the ex-
isting adversarial example generation methods by applying masks to them. In particular, we make the

following two main modifcations: 1) we apply masks when generating perturbations; 2) when generat-
ing perturbed data samples, we confne and round all values to the valid range specifed for each feld.
With these two modifcations, our approach can generate constraint-satisfying adversarial examples.
For multi-packet network attacks, our approach uses a record-and-replay mechanism to help address
the session-level uncertainties that the adversary may face when performing stealthy attacks in a real
network.

The main contributions of this work are as follows: 1) We developed the frst approach which can
generate successful adversarial examples under the de facto standard threat model. The adversary can
use these adversarial examples to launch stealthy network attacks and evade NN-based NIDS. 2) We used
ARP poisoning and DNS cache poisoning attacks as the case studies to demonstrate the effectiveness of
the proposed approach.

The rest of the paper is organized as follows. Section 2 provides the background and highlights the
motivation. Section 3 describes the NN-based detectors. Section 4 formally defnes constraint-satisfying
adversarial examples, and then presents our problem statement. Section 5 described our proposed ap-
proach. Section 6 presents the evaluation results of the proposed approach. Section 7 discusses several
relevant issues. Section 8 summarizes the related work. Section 9 concludes the entire paper.

2. Background and Motivation

2.1. Network Attacks and NIDS

Network attacks are frequently used in Advanced Persistent Threats (APTs). Some common network
attack types include probing, denial of service (DoS), Remote-to-local (R2L), etc. These attacks can
often cause serious impacts. For example, ARP poisoning and DNS cache poisoning are two commonly
seen network attacks belonging to R2L attack type. With ARP poisoning attack, attackers can intercept
or redirect network traffcs within the LAN to any desired MAC addresses. In DNS cache poisoning
attack, a falsifed DNS record with the fake domain-to-IP mapping will be added and persist in the local
DNS server until it expires. Whenever a machine inquires the poisoned DNS server for the affected
domain’s IP, it will get the fake IP address.

Signature-based, rule-based, and anomaly-based detection are commonly used to detect these network
attacks. However, signature-based methods [21] can be easily fooled by slightly changing the attack
payload; rule-based methods [1] need experts to formulate and regularly update rules; and anomaly
based detection [22, 23] tends to raise lots of false positives. Especially in attacks where attackers can
intentionally craft their packets to make them seem legitimate, such as in ARP poisoning and DNS cache
poisoning attacks, the aforementioned methods usually fall short. Therefore, new detection methods need
to be explored.

2.2. ML-based Network Attack Detectors

Recently, researchers have been applying traditional machine learning and deep learning tech-
niques for network attack detection. Support vector machine (SVM) [24, 25], K nearest neighbors
(kNN) [26, 27], and decision tree (DT) [28, 29], etc. have all been applied on public cybersecurity
datasets like KDD CUP 99 [30] and NSL-KDD [31]. Though many of these works present satisfying
detection results, traditional “shallow” machine learning approaches share the common drawback of

requiring extensive feature engineering. If data samples are represented with minimal feature engineer-
ing, traditional machine learning algorithms may not be able to achieve comparable performance with
deep learning [6]. For compensation, dimension reduction (like principal component analysis) has been
proposed, but this can cause loss of information.

In recent years, deep learning-based NIDS is attracting more attentions, where feature engineering
is performed by the neural network internally. DeepDefense [32], applying recurrent neural networks
(RNN) for DoS detection, achieves higher than 97% accuracy; PCCN [4] which uses convolutional
neural networks (CNN) to detect abnormal network traffc fows, can achieve higher than 99% accu-
racy; Long-Short Term Memory (LSTM) neural network has also demonstrated an accuracy of higher
than 99% for detecting network attacks [5]. Many industries, including Splunk [33], FireEye [34],
and Fortinet [35], etc., are incorporating deep learning into their network security products. One re-
cent work [6] also studies applying deep learning techniques to the detection of two network attacks:
ARP poisoning and DNS cache poisoning. The best trained deep learning models are quite accurate:
for ARP poisoning, the detection rate is about 99.8%; for DNS cache poisoning, the detection rate is
100%. In another word, evasion rates are about 1 − 99.8% = 0.2% for ARP poisoning, and 0% for DNS
cache poisoning. Therefore, blindly launching network attacks in the same old fashion without any
countermeasures to evade neural networks is very likely to be detected. This will directly motivate
attackers to alter their ways of launching network attacks.

2.3. Adversarial examples for DNNs

Adversarial examples are specialized data examples created with the purpose of confusing a DNN,
resulting in the misclassifcation of a given data example. In the domain of computer vision, these ad-
versarial data examples are indistinguishable to the human eye, but cause the DNN to fail to classify
the corresponding images. In the domain of network security, these adversarial data examples cause
the DNN to fail to classify the corresponding network data. A variety of automatic adversarial exam-
ple generation methods have been proposed in the literature, and 17 of these methods will be shortly
summarized in the next section.

2.4. Why the adversarial examples generated by existing methods fail under the standard threat model

Our experiments. Though there are works discussing domain-constrained adversarial examples, we
did not observe any work verifying the effectiveness of adversarial examples in launching real network
attacks. Therefore, we decided to do a preliminary motivating experiment. We tested 17 general-purpose
adversarial example generation methods against the DNN trained to detect ARP poisoning attacks.
(When we did the experiments, the 17 methods were all the methods that we are aware of.) The de-
tection model and the datasets are from a prior work [6]. In particular, we followed the attack procedure
described in Section 1, that is, we frstly used the 17 methods to generate adversarial examples against
the DNN; then, generated adversarial examples are transformed to attack packets; fnally, we ran the
attack scripts (under the standard threat model) to directly send the attack packets to the target machine.
After the attack packets were sent out, we used Wireshark to monitor/capture these packets. Every byte
in the packet is then converted to numbers, so that every packet is represented as a vector, which is also
a data sample to be fed into the detection model for classifcation.

The results are summarized in Table 1. The third column shows that 9 out of the 17 methods generated
one or more adversarial examples, and in total more than 500 adversarial examples were generated.

Table 1
General purpose adversarial example generation methods fail when launching the ARP poisoning attack.

Adv. Ex. Gen. methods Time (s) Number of generated
adversarial examples

Number of successful ARP poisoning attacks using
generated adversarial examples

FGSM [9] 0.02 0 0
BIM [37] 1.99 0 0
DeepFool [38] 0.73 98 0
JSMA [39] 0.51 0 0
VAT [40] 44.40 0 0
Carlini [41] 79.02 1 0
Inv. [42] 0.01 100 0
NewtonFool [43] 20.25 0 0
ZOO [44] 144.92 100 0
Boundary [45] 280.77 0 0
EAD [36] 369.10 89 0
PGD [46] 0.33 1 0
BBA [47] 33.44 0 0
DDNA [48] 0.57 5 0
Gen [49] 688.50 98 0
SLIDE [50] 0.33 0 0
HSJA [51] 2273.94 96 0

Unfortunately, the last column shows that none of the adversarial examples successfully compromised
the target machine.

Why the existing methods failed. One reason is that the network packets also need to follow cer-
tain network protocol constraints (e.g. requiring certain values in specifc felds). Another reason is that
the attacker may only have limited control over the target network, and he/she cannot modify packets
sent out from other machines. The existence of these two issues means that the adversarial attack pack-
ets can result in modifcations of only a portion of a data sample fed into the NN-based detector, and
the modifcations need to satisfy certain constraints. For example, we examined the adversarial attack
packets back-converted from the adversarial examples generated by the adversarial example generation
method proposed in [36]. We found that majority of these packets are not recognized as ARP packets,
because the value of the type feld in the data link layer has been perturbed and is not ARP (0x0806).
Although a small portion of the back-converted packets are correctly recognized as ARP packets (type
feld has value 0x0806), the values of the hardware type (HTYPE) feld, the protocol type (PTYPE) feld,
or the hardware length (HLEN) feld have been changed. However, in order to satisfy the ARP protocol
constraints, none of these values should be changed; otherwise, the corresponding packets may be aban-
doned by the recipient. This is an elementary mistake, and no sensible attacker would fall for this, but it
clearly shows that launching stealthy network attacks to evade NN-based detection is more than simply
adopting adversarial example generation methods.

3. Dataset and Detection Neural Networks

Before presenting our attack scheme, we will frst introduce the detection neural network and the
dataset on which the models are trained. In this work, we focus on the logic-faw-exploiting (LFE) net-
work attacks [6], which exploit the logic (security) faws of a few widely-deployed authentication pro-

Table 2
Dataset statistics.

Attacks Set Size Benign to malicious
ratio

ARP poisoning Training 9584 1.005:1
Test 2400 0.982:1

DNS Training 30928 1.003:1
cache poisoning Test 7732 0.988:1

tocols. Such attacks are very different from other attacks such as memory corruption for code reusing,
command and control (C&C) over HTTP/HTTPS, and (distributed) denial of service with/without bot-
net, etc. Memory corruption is more about the server program rather than the network protocol; C&C
over HTTP/HTTPS assume the HTTP/HTTPS protocol itself is running normally; and (distributed) de-
nial of service is usually accomplished by exhausting the server’s resources instead of exploiting a logic
faw within a protocol.

Two representative LFE network attacks are address resolution protocol (ARP) poisoning attacks and
domain name system (DNS) cache poisoning attacks. ARP poisoning works by spoofng ARP responses,
with which the attacker can trick the victim into falsifed mappings between IP addresses and MAC
addresses, and thus intervening the network communication. DNS poisoning works by spoofng DNS
responses, with which the attacker can trick the victim into falsifed mappings between domain names
and IP address, and thus redirecting the network communication. Both of these two attacks exploit the
lack of response verifcation in the corresponding protocol. As a result, the victims cannot verify whether
the packets come from a genuine host or attacker. Also, these two attacks are diffcult to be detected
with traditional detection methods (e.g. signatures, rules, anomaly detections, etc.) because spoofng is
applied (i.e. attacker packets are intentionally crafted to be indistinguishable from normal packets).

The detection neural networks and datasets are from another work [6], in which self-generated network
datasets are generated due to lack of public datasets on the two attacks. This dataset is generated by
adapting protocol fuzzing techniques, which can potentially generate new kinds of data not seen in
publicly available datasets. The collected data is randomly split into a training dataset and a test dataset
by ratio 4:1. Dataset statistics are shown in Table 2. The benign to malicious data sample ratio is kept at
about 1:1 intentionally. Though this is different from the real-world network traffc, where the majority
is benign traffc, the datasets for neural network training is balanced to avoid bias. That is, if the provided
training datasets majorly contain benign data samples, then the trained neural network tends to predict
data samples as benign. Balancing the benign to malicious ratio can mitigate such bias in neural network
training. The dataset size is not very large, but, because we train separate neural networks for different
network attacks, and that the neural network and data samples are not that complicated (details of which
are presented in prior work [6]), we believe that the dataset size is suffcient for neural network training.

For ARP poisoning detection, a multi-layer perceptron (MLP) neural network is used, as shown in
Fig. 1. Every data sample represents one network packet. 42 bytes are selected from each ARP packet.
Every byte is then treated as a number when constructing data samples. Hence, each data sample for
ARP poisoning is a 1D vector containing 42 integers.

For DNS cache poisoning detection, a convolutional neural network (CNN) is used, as shown in Fig. 2.
The CNN’s input is 3D matrices. Firstly, starting from a whole network log, we flter out the DNS packets
and chop them by sessions, resulting in multiple variate-length DNS sessions. Secondly, variate-length
DNS sessions are chopped into fxed-length slices by applying a sliding window of size 6. Thirdly, in
every DNS packet, 32 bytes from IP layer, UDP layer, and DNS layer are chosen. Each byte is converted

?×42

input InputLayer

Dense

kernel 42×35〈 〉
bias 35〈 〉

TanH

Dense

kernel 35×2〈 〉
bias 2〈 〉

Softmax

dense_39

Fig. 1. MLP neural network for ARP poisoning detection. Visualization by Netron1.

?×6×32×8

Input

Conv2D

kernel 2×2×8×64〈 〉
bias 64〈 〉

ReLU

MaxPooling2D

Conv2D

kernel 2×2×64×64〈 〉
bias 64〈 〉

ReLU

MaxPooling2D Flatten

Dense

kernel 1024×16〈 〉
bias 16〈 〉

ReLU

Dropout

Dense

kernel 16×2〈 〉
bias 2〈 〉

Softmax

Output

Fig. 2. CNN for DNS cache poisoning detection. Visualization by Netron1.

Table 3
Test set evaluation results.

Attack ARP poisoning DNS cache poisoning
Model architecture MLP CNN
Accuracy 99.75% 99.73%
F1 score 0.9975 0.9973
Detection rate 99.59% 99.53%
False positive rate 0.08% 0.08%

to 8 bits, and then treated as an integer (0 or 1). As a result, every data sample for DNS cache poisoning
is a 3D matrix of shape 6 ∗ 32 ∗ 8.

When the models are used for detection, they take in different network packets. Specifcally, ARP
poisoning detection takes in ARP packets, and DNS cache poisoning detection takes in DNS packets.
A packet sniffng process can be confgured to sniff for ARP packets only, which will be processed and
fed into the ARP poisoning detection model. The similar goes for DNS cache poisoning detection. The
two models’ performances when detecting real attacks are summarized in Table 3. (Please refer to the
original work for more details.) It can be inferred that, if the attacker takes no counter-measurements
about the neural network detection, the attack is very likely to get detected.

4. Problem Formulation

4.1. Protocol-Constraint-AWare Adversarial Examples

In this work, we frst present a simple scenario, in which ARP poisoning is used as a running example
for demonstration throughout the paper. The attack is completed with a single ARP packet, and the
detection is also based on individual ARP packets.

As defned in Section 1, the attacker’s goal is to launch stealthy network attacks, which are accom-
plished by Protocol-Constraint-AWare (PCAW) adversarial examples. PCAW adversarial examples
refer to the data samples that satisfy stealthy network attacks. PCAW adversarial examples have two
intrinsic aspects: they are protocol-constraint-aware, meaning that they follow the protocol constraints;

1https://github.com/lutzroeder/netron

https://github.com/lutzroeder/netron

and they are adversarial examples, meaning that neural network detection models misclassify them. In
ARP poisoning, they refer to data samples (generated from ARP packets) which can be used to launch
the ARP poisoning attack, and are also misclassifed by the detection model as benign.

A stealthy network attack contains at least two phases: 1) generating PCAW adversarial examples; 2)
launching the stealthy network attack with the data from generated PCAW adversarial examples. The
network packets that can lead to successful stealthy network attacks are called stealthy attack packets.

Constructing PCAW adversarial examples for attacks in phase 1 is much more challenging than con-
structing adversarial examples in computer vision: 1) Network communications must follow certain
protocols; 2) The attack packets must have certain bytes so that these packets are valid and can exploit
the vulnerability in the target machine/service.

Therefore, the following two challenges should be addressed:

A. How should the PCAW adversarial examples be generated for given neural network models?
B. How to launch stealthy network attacks with the help of generated PCAW adversarial examples?

For demonstration, we frst use ARP poisoning attack [6]. The ARP poisoning attack is selected be-
cause: 1) The attacks can be detected largely, if not solely, based on network logs. Thus, neural network
detection based on network logs is made possible. 2) The data samples of those detection neural net-
works present bytes from network packets, so the mapping between features in data samples and bytes
in packets is straightforward. 3) There are no distinctive signatures for detecting these attacks. Thus,
traditional detecting methods often fall short and deep learning can be applied. 4) The ARP poison-
ing attack represents single-packet network attacks, which is simpler than DNS cache poisoning, the
multi-packet network attacks. It should be noted that, as long as the criteria 1 and 2 above are satisfed,
our approach can also be applied to other network attacks, like Border Gateway Protocol (BGP) prefx
hijacking.

4.2. Unique Challenges in Multi-packet Stealthy Network Attacks

Extending the proposed stealthy attack packet generation method to the multi-packet network attack
scenario has some unique challenges.

Assuming that one multi-packet attack session consists of eight packets S = [x1, x2, x3, x4, x5, x6, x7, x8],
where packets x3 and x7 are attacker’s packets. A common data processing technique to deal with this
kind of data is sliding window. Assuming that a sliding window of window size 6 and step size 1 is
applied, the session above is processed into three data samples denoted as s1 = [x1, x2, x3, x4, x5, x6],
s2 = [x2, x3, x4, x5, x6, x7], and s3 = [x3, x4, x5, x6, x7, x8]. All these data samples are generated from
the attack session and are therefore labeled as malicious. The session S will be detected as an attack
session if any of the data samples are classifed as malicious by the neural networks. Therefore, to evade
detection, all data samples should be misclassifed as benign. Hence, the ideal solution for attackers is
to modify x3 → x ′ and x7 → x7

′ , so that s ′ 1 = [x1, x2, x ′ 3, x4, x5, x6], s ′ 2 = [x2, x ′ 3, x4, x5, x6, x7
′], and3

s ′ 3 = [x ′ 3, x4, x5, x6, x7
′ , x8] can be misclassifed as benign, and meanwhile x3

′ and x7
′ can still lead to

′successful attacks. Consequently, S = [x1, x2, x ′ 3, x4, x5, x6, x7
′ , x8] will not be detected as an attack ses-

sion by the neural networks, although it is actually malicious. To align with our defnition, we call such
′attack sessions, S , as stealthy network attack sessions: they can compromise the network, similar to

any other network attacks, and also remain stealthy by evading the detection of neural network models.
Without compromising other machines, attackers have no control over packets sent by other ma-

chines. In another word, attackers can only modify their own attack packets, which usually results in

Step 1:
Prepare original
packets

Step 2:
Generate raw
data

Step 4:
PCAW adversarial
example
generation

Step 5:
Prepare candidate
stealthy attack
packets

Step 3:
Data processing

Step 6:
Real-world
stealthy attacks

Fig. 3. The work fow of launching stealthy network attacks.

a small portion of the data sample(s). As a result, generating PCAW adversarial examples will be dif-
fcult for such data sample(s) because only a small portion can be perturbed. In the example above,
s1 = [x1, x2, x3, x4, x5, x6] has only one attack packet (x3), which means the attacker can only modify
this x3 → x3

′ to make s ′ = [x1, x2, x ′ 3, x4, x5, x6] a PCAW adversarial example. Not surprisingly this 1
may have a low chance of success.

Apart from the diffculty of generating PCAW adversarial examples, stealthy multi-packet attacks
also have challenges that stem from the nature of sessions. In multi-packet attacks and detections, one
session usually corresponds to one or more data samples. In a malicious session, an attacker’s packet
may appear in one or more data samples from this session, depending on how the session is processed
into data samples. For example, in the aforementioned example, the attacker’s packet x3 in session S is
involved in three different data samples s1, s2, and s3. This creates some uncertainties for launching
stealthy network attacks:

(1) When generating adversarial examples from different data samples (e.g. s1, s2) that contain the
same packet (e.g. x3), information related to this packet might be modifed in different ways. It is
diffcult to accommodate and refect the different modifcations in just one packet.

(2) Some data samples, which belong to the same session, might fail to produce adversarial examples.
For example, s1 might generate an adversarial example, which can be converted reversely to net-
work packets including packet x ′ 3, but s2 might fail to generate adversarial examples, meaning no
packet x ′ 3 can make this data sample misclassifed.

(3) Even if an attack packet x3
′ can make all the three data samples misclassifed, this x ′ might only 3

work within this session S . Whether it is effective in other sessions is uncertain.

All these uncertainties should be mitigated after PCAW adversarial examples are generated, but before
attacks are launched in real world.

5. Proposed Stealthy Adversarial Attacks

5.1. Work Flow of Stealthy Network Attacks

The work fow (see Figure 3) of the proposed stealthy network attacks is as follows:

(1) Attackers prepare original packets.
(2) In private test bed, attackers use the prepared attack packets to launch network attacks and gather

network logs. Network logs contain packets from both normal users/servers and attackers, and are
sorted in the time order.

(3) Attackers process collected raw data into data samples.
(4) Attackers feed data samples to the PCAW adversarial example generation tool to generate PCAW

adversarial examples by only modifying changeable information in the attack packets.

-1 2 11-3 2

-1 2 010 2

Original
Perturbation

Mask

Masked
Perturbation

Changeable
Not

changeableChangeable Changeable Changeable
Not

changeable

Fig. 4. Mask illustration.

(5) From PCAW adversarial examples, attackers create candidate stealthy attack packets.
(6) Attackers launch real-world network attacks by replaying known stealthy attack packets.

For the sake of simplifcation, we assume the white-box threat model, in which attackers can have
full access to the target detection neural network. Attackers have different ways to accomplish this, like
accessing the model with traditional cyber-attacks without compromising machines [52], or surrogate
the target model [53, 54].

5.2. PCAW Adversarial Example Generation

One of the most important steps in the above fow is Step 4 - creating adversarial examples. To cre-
ate adversarial examples from the original data samples, feature-based perturbations are usually used.
Perturbation values are calculated based on the minimum component (feature) within the data sample,
indicating the direction of how changes should be made to alter the model output. For example, if the
perturbation for a feature is positive, increasing the value of this feature tends to change this data sample
into an adversarial example. A problem that needs to be considered in this process is the existence of
invariants, which are the packet features that should not be changed. To address this issue, we propose to
use mask after the original perturbation is generated, as illustrated in Figure 4. Mask is defned per mini-
mum component of one data sample. For ARP poisoning, every data sample is a sequence of 42 integers,
so the mask is also a sequence of 42 integers. The masks determine which values are changeable, and
which are not. A byte/bit with mask value 1 means it is changeable, and 0 means it is unchangeable. By
applying this mask, perturbations values corresponding to those unchangeable features will be reset to
0, which means no changes will be applied to these features. In this way, when the adversarial examples
are converted back to network packets, the invariants are not changed and the resulting network packets
are still valid.

To fnd out which felds in the packets are changeable, we refer to the protocol specifcations to rule out
felds related to the packet integrity, such as checksum and length felds. In addition, though some values
(such as certain reserved bits) are marked as unchangeable in the protocol specifcations, the servers may
just ignore them in practice, so it is still safe to change them during perturbation. We launched network
attacks in our test bed to fnd out such felds. For example, one changeable feld is the time-to-live (TTL)
in the IP layer. Though commonly set to 64, programs usually do not check the TTL value and simply

let packets pass regardless. Therefore, this feld is changeable for attackers: no matter how this value is
changed, this packet will still be accepted rather than abandoned. As for felds related to the packet’s
validity, such as checksum, they are decided after changes are made. In another word, we frst generate
the original attack packet, then change values in changeable felds, and fnally re-calculate validity felds.
Admittedly, after the checksum is re-calculated, the packet may not be adversarial. However, we do
not run PCAW adversarial generation again because checksum is not controllable in real attacks. For
example, the checksum feld in the IP layer takes the identifcation feld into calculation, and the value
of the identifcation feld changes very frequently. In our evaluations presented in Subsection 6.2, results
also show that a secondary PCAW adversarial example generation is not necessary.

After we have generated the mask, we apply it in two well-known adversarial example generation
methods, namely FGSM and ZOO.

Proposed Gradient-based Attack. FGSM is a well-known gradient-based evasion attack towards
neural networks. FGSM takes the inputs of one original data sample as the seed, and the original model
to extract gradients. The general workfow is as illustrated in Figure 5a: 1) Given the original data sample
and the target model, it calculates a perturbation specifc to that provided seed with back propagation. 2)
A perturbed data sample (X′) is generated by adding the original data sample (X) and the product of the
perturbation (J) and a magnitude parameter λ, denoted as X′ = X + λ ∗ J. 3) In the end, X′ is validated
using the target model. If X′ is misclassifed, then this X′ is an adversarial data sample; if not, then this
attempt fails. To fnd more adversarial data samples, attackers may change the magnitude parameter λ
or the original/seed data sample X, so that more different X′ could be tried.

We modify the original FGSM for application in network attacks, as illustrated in Figure 5b. Main
changes include two parts: 1) masks are applied when generating perturbations; 2) during generating
perturbed data samples, we confne and round all values to the valid range. Perturbations and the mag-
nitude parameter may introduce decimal fraction or make values out of the valid range. For example, in
ARP poisoning detection, every value should be integers within [0, 255]. In DNS cache poisoning, every
value is either 0 or 1. Hence, these values should be confned and rounded.

Proposed Score-based Attack. For score-based attack, we propose a method based on the Zeroth
Order Optimization (ZOO) [44]. Similar to FGSM, ZOO attack generates perturbations specifc to the
input data sample. Instead of calculating the gradient on the actual target model via back propagation, the
proposed score-based attack estimates the approximate gradient using a fnite difference method using
the probability score which is output by the target model. The untargeted ZOO attack uses a hinge-like
loss function f (x) to measure the gap between the confdence score F(x) of the original class label and
the confdence scores of the other classes. It applies a small perturbation on original samples xi1 = x+hei

and xi2 = x − hei, where ei is a standard basis vector and h is a small constant. Then it estimates the
∂ f (x)gradient gi =
∂xi

using symmetric difference quotient. With one more objective function evaluation,
the Hessian estimate hi can be obtained. After estimating the gradient and Hessian for xi, we can use any
frst or second order method to approximately fnd the best perturbation δ to evade the NN model.

The proposed score-based attack is illustrated in Algorithm 1. First, changeable felds are randomly
selected from the mask and a standard basis vector ei with only the i-th feld as 1 is applied to obtain
two symmetrical samples xi1 and xi2. Then, those modifed samples are fed to the target model F(·)
to retrieve predicted probabilities F(xi1) and F(xi2). Finally, Zeroth Order Stochastic Coordinate De-
scent with Coordinate-wise ADAM (ZOO-ADAM) is used to calculate the estimated gradient and the
corresponding perturbation. The perturbation is not directly added to the original sample. The fnal per-
turbation is normalized and rounded to the valid range, which is [0, 255] for ARP poisoning. Those steps

1010
1010

1010
1010

1010
1010

1010
1010

1010
1010

+
 λ

Correctly
classified

Misclassified

Original
data sample Perturbations

Perturbed
data sample

Adversarial
data sample

Failed
adversarial
data sample

(a) Original FGSM.

1010
1010

1010
1010

1010
1010

1010
1010

1010
1010

+

λ

Correctly
classified

Misclassified

Original
data sample Perturbations

Perturbed
data sample

Adversarial
data sample

Failed adversarial
data sample

Confine
and round

Mask

(b) Masked FGSM.

Fig. 5. Illustration for FGSM.

repeat until the niter iterations are completed, or the modifed data sample successfully evades the target
model.

5.3. Convert PCAW Adversarial Examples to Candidate Stealthy Attack Packets

As stated in Section 4, one of the reasons to choose ARP poisoning for demonstration is that, the
conversion between data samples and network packets is straightforward. Basically, the back-conversion
is a reverse process of data processing. In the case of ARP poisoning detection, each ARP packet is
processed into one data sample with no information loss. Every byte in the original packet is preserved
(except padding bytes) in the resulting data sample as a converted integer. Therefore, the back-conversion
is to convert integers back to bytes in the original order to form a packet, and add padding bytes if needed.
For more details, please refer to the data processing part in the work [6].

Algorithm 1: Proposed score-based attack.
input : F(·), which is the target model.
input : x, an original (seed) data sample.
input : niter, a control parameter to limit the max number of iterations.
input : MAS K, the mask which indicates changeable felds.
output: ex
i ← 0;
while i < niter do

Randomly select a changeable feld i from MAS K;
Apply symmetrical perturbations on the selected feld xi1 = x + ei and xi2 = x − ei;
Retrieve the predicted probability F(xi1) and F(xi2);
Calculate the loss function f (x) = max{log(F(x))t0 − maxi ̸ log(F(x))i};=t0

f (xi1)− f (xi2) f (xi1)+ f (xi2)−2 f (x)Estimate the gradient gi ≈ 2 and the Hessian estimate hi ≈ h2 ;
Use ZOO-ADAM algorithm to calculate the perturbation δ;
δ ← round(Pδ n

i δ
) ;

Update xi ← xi + δ;
Round xi to the valid range;
if Successfully evade the target model then

return Adversarial sample ex = x;
end
i ← i + 1;

end

5.4. Mitigate Uncertainties for Multi-packet Attacks

In subsection 5.2, we ensure the packet’s validity by using mechanisms such as masks, value confne
and round, but these mechanisms do not ensure the session’s validity. This subsection demonstrates how
to use PCAW adversarial examples to launch stealthy multi-packet network attacks.

In Figure 6, we present the threat model for stealthy multi-packet network attacks using DNS cache
poisoning as an example:

(1) Attackers prepare original attack packets.
(2) In their own test bed, attackers use the prepared attack packets to launch network attacks, and gather

network logs at the same time. Network logs contain packets from both normal users/servers and
attackers, and are sorted in the time order.

(3) Attackers truncate network logs into truncated packet sequences, which are in turn processed into
data samples. Meanwhile, attack packets’ orders in data samples are recorded, to be used later.

(4) Attackers feed data samples to the PCAW adversarial example generation tool to generate PCAW
adversarial examples by only modifying changeable information in the attack packets, as the attack
packets are the only ones that can be controlled by attackers.

(5) From PCAW adversarial examples, attackers pick out the bytes related to attack packets (using the
order information from before) if needed.

(6) From session-specifc attack packets, attackers select bytes for changeable felds to form adversarial
value sets.

...

Truncated packet
sequences

: User/Server packets : Attacker packetsNetwork packets

Sequence of network
packets from one

session

Data samples

PCAW adversarial example generation

PCAW adversarial
examples

Session-specific
stealthy attack packets

... ...

... ...

U11, U12, U13, … , U1N

A11, A12, A13, … , A1N

U21, U22, U23, … , U2N

U31, U32, U33, … , U3N

U41, U42, U43, … , U4N

A21, A22, A23, … , A2N

U11, U12, U13, … , U1N

A11, A12, A13, … , A1N

U21, U22, U23, … , U2N

U31, U32, U33, … , U3N

U41, U42, U43, … , U4N

A21, A22, A23, … , A2N

1 2 3 4 5 6 7 8

Step 1:
Prepare
packets

Step 2:
Generate
raw data

Step 3:
Data
processing

Step 4:
PCAW adversarial
example
generation

Step 5:
Pick out attack-
related data

Launch attacks in test bed to generate stealthy attack sessions

Step 6:
Pick out bytes for
changeable fieldsAdversarial value sets

Replay known stealthy attack sessions in real-world attacks

Step 7:
Mitigate
uncertainties

Step 8:
Real-world
stealthy attack

Fig. 6. The threat model for stealthy multi-packet network attacks.

(7) To mitigate the uncertainties discussed earlier, attackers use adversarial value sets to simulate the
network attacks in his/her own test bed. Any successful stealthy attack sessions will be recorded in
the adversarial value set database.

(8) Attackers launch real-world network attacks by replaying known stealthy attack sessions from
his/her simulations.

In a DNS cache poisoning attack, packet 1 corresponds to DNS query sent by the user, packet 2
corresponds to DNS query sent by the local DNS server, packet 3 corresponds to attacker’s spoofed DNS
response, and packet 4 corresponds to global DNS server’s DNS response. Packets 5 and 6 correspond
to the remaining steps or other DNS packets, and packets 7 and 8 stand for dummy attack packets, the

impact of which will be discussed in subsection 6.2. In the data samples, we use U to stand for bytes from
user/server packets, and A to stand for bytes from attacker packets. The subscripts stand for position of
bytes in the packets. For example, A12 stands for the second selected byte from the frst attacker packet.

For step 5 and step 6, we extract values of the changeable felds from generated PCA adversarial
examples to create multiple “adversarial value sets”, each set corresponds to one original attack packet
in one data sample. Step 6 and 7 are only needed for multi-packet attacks. Step 6 is necessary for DNS
because the attack packets have to be crafted based on the user/server packets, and session-specifc attack
packets cannot be directly used in future attacks. That is why adversarial value sets are extracted: they are
expected to carry the adversarial effects to evade neural networks. Step 7 is to mitigate the uncertainties
by generating stealthy attack sessions in attackers’ own test bed. Those stealthy attack sessions can be
used to build an adversarial value set database, to which attackers can refer in later real-world attacks.
With this database, a patient and cautious attacker can persist in the LAN while sniffng packets. Only
when a perfect attack chance appears will the attacker take action, trying to replay the stealthy attack
session the attacker already knows. In this way, the three problems raised earlier are bypassed.

To generate stealthy attack sessions, the following factors can be used to reduce detection rates (DR)
and possibly generate more stealthy attack sessions.

Dummy Attacker Packets. For DNS cache poisoning, since the detection is based on several con-
tinuous network packets, a natural choice of attackers is to send packets more diligently so that more
attacker packets will be included in data samples, and therefore these samples will more likely be mis-
classifed as benign. We call these packets sent by attackers as dummy attacker packets. To maximize
the chances of blending dummy attacker packets into data samples, these dummy packets should be as
similar to the real packets as possible, because attackers have no information about the way in which the
defenders will flter and process network logs.

Attacker Packet Index. As discussed in Section 3, the data sample for DNS cache poisoning is a 3D
matrix of shape 6∗32∗8, where 6 means that the data sample contains information of 6 network packets.
Attacker packet index refers to how many attacker packets present in the data sample and where they
are located inside the data sample. It is another factor that is out of attackers’ control. When network
logs are processed into data samples, we divide them into different sessions and use a sliding window.
All those processing is carried out at the defender’s side. Therefore, attackers have no idea where those
attacker packets are located in the data samples. The number of attacker packets that get into the data
samples can be indirectly affected by utilizing dummy attacker packets, but the index of attacker packets
in data samples cannot be controlled by attackers in any way. As a result, attackers can only get the
expected detection rates with respect to indices. Therefore, choosing a promising attacker packet index
distribution is important for attackers.

After attackers have got stealthy attack sessions in their own test bed, they can build a database struc-
tured as in Figure 7. The database consists of entry keys and sub-tables of key-value pairs. Each key is a
hash value, each sub-table, marked by one specifc entry key, represents a known stealthy attack session,
and the values are the adversarial value sets. Each hash value is calculated based on the selected bytes
from previous (up to 5, because the windows size is 6) packets in the session. Hash values are used as
keys instead of directly comparing raw data for the sake of performance, because DNS cache poison-
ing attack requires quick response at the attackers’ side. If the entry key is matched, the corresponding
stealthy attack session is selected to be replayed.

For example, in the DNS cache poisoning example, one session contains eight packets S =
[x1, x2, x3, x4, x5, x6, x7, x8], of which x3 and x7 are attacker packets. Let’s assume that this session is a
stealthy attack session. The entry key is calculated with [x1, x2], and the sub-table following this entry

Adversarial value set database

Entry key 1 Entry key 2

Keys &
values

Keys &
values

Entry key n

Keys &
values

Fig. 7. Adversarial value set database structure.

key has two rows: key hash([x1, x2]) corresponding to x3, and key hash([x2, x3, x4, x5, x6]) correspond-
ing to x7.

After the adversarial value set database is built, we use it to simulate a patient and cautious attacker.
Such attacker will always wait for a perfect chance to take action. That is, this attacker will only send out
attacker packets when the observed packets’ hash has a perfect match in the database. Even if the entry
key is matched, as long as the observed packets at a later time does not match hashes in the sub-table,
the attacker stops at once and let go of the current session. Taking the earlier example, the attacker will
frst wait for [x1, x2], and then send out x3. Only if this session is followed by [x4, x5, x6], the attacker
will send out x7, completing the replay of a known stealthy attack session. If not, the attacker stops at
once and gets back to sniff for [x1, x2].

Adversarial Value Set Selection. Subsection 5.1 mentioned that the changeable felds of attacker
packets will be replaced with a chosen adversarial value set to generate the stealthy attack packets. The
selection of adversarial value set may affect the detection rate of neural networks. The attack packet is
a direct response to the local DNS server’s query packet, so the selection of adversarial value set in the
stealthy attack packet should be based on that query packet.

Therefore, we propose to build a dictionary that can be used to effectively search for the proper ad-
versarial value sets. The dictionary consists of multiple entries; and each entry contains a key and one
or more values. The keys in the dictionary are the DNS query packets sent out by the local DNS server.
The values are the adversarial value sets. This dictionary can be created in the following way:

(1) Map local DNS server’s query packet to the attack packet. This map is one-to-one.
(2) Map the attack packet to the adversarial value set. This map is one-to-one or one-to-none, because

not all data samples can be used to generate PCAW adversarial examples.
(3) With the two steps above, establish the mapping between local DNS server’s query packet (as key)

and the adversarial value set (as value).

(4) Merge key-value pairs that have the same key.

When use the dictionary, we need to choose the adversarial value sets based on the keys. However,
in actual attacks, we cannot guarantee that there is always an exactly matching key for the local DNS
server’s query packet. Therefore, the distances between the query packet and the keys can be measured
to fnd out the closest key. Depending on how the distance is defned, one observed local DNS query
packet may refer to different entries. If the chosen entry holds multiple adversarial value sets (because
of merging key-value pairs), one of them is randomly chosen. Assuming xi represents a byte in the
local DNS server’s query packet, and xi

′ represents a byte at the same position in the key, there are four
commonly used distance measuring methods:

• L0 = count(xi ̸= xi
′).P

• L1 = i |xi − x ′ i|.pP
• L2 = i (xi − xi

′)2.
• Lin f = max(|xi − xi

′ |).

With the distance measuring method, the closest key is selected for each observed local DNS server
query packet, and the corresponding entry is also determined. Please note that such distance measuring
introduces additional processing time at the attacker’s side. However, for DNS cache poisoning to suc-
ceed, attacker’s packet has to arrive earlier than the global DNS server’s packet. To rule out the impact
of the additional distance measuring time on the attack success, in our experiments, we manually insert
time lags between the local DNS server and the global DNS server’s communications, so that attack
packets always arrive earlier.

6. Evaluations

In this section, we will evaluate the effectiveness and effciency of our proposed methods. Specifcally,
we want to answer the following evaluation questions:

• Q1: How effective are our proposed stealthy network attack against ARP poisoning detection?
• Q2: How effective are our proposed stealthy network attack against DNS cache poisoning detection?
• Q3: How costly are our proposed methods?

All experiments are performed using a Windows machine equipped with an Intel Core i9-9900KS CPU
and Nvidia RTX 3090 for accelerating computations. For software, we use Python 3.8.5, TensorFlow
2.4.1 with GPU support, ART 1.6.1 [55], and FoolBox 3.3.1 [56, 57]. All data samples and trained
detection models are retrieved from another work [6].

6.1. Q1: Stealthy ARP Poisoning

Phase 1: PCAW adversarial example generation. We studied the performance of different PCAW
adversarial example generation methods for ARP poisoning attack, including masked FGSM and masked
ZOO. Table 4 shows results. We also added a category of “masked random” as the baseline, in which
we only randomly changes the changeable portions regardless of gradients. For each method tried, we
randomly select 100 data samples as the seeds to feed into PCAW adversarial example generation. The
results show that masked FGSM is not effective, but is very fast; on the contrary, masked ZOO is slow,
but generates more PCAW adversarial examples. The reason that masked FGSM fails to generate any

Table 4
Proposed PCAW adversarial example generation methods’ performances towards ARP poisoning detection.

Proposed methods Time (s) PCAWAE 1 Memory (MB) Suc. ARP Atk 3 Average losses
L0 L1 L2 Lin f

Masked Random 2 154.03 0 714.35 0
NA

Masked FGSM 0.03 0 687.22 0
Masked ZOO 602.90 36 33.57 23 11 1214.17 418.43 210.67
1 PCAWAE: Number of PCAW adversarial examples generated.
2 Masked random: Randomly changes the changeable portions regardless of gradients. This serves as a baseline.
3 Suc. ARP Atk: Number of successful stealthy ARP poisoning attacks.

PCAWAE is because we implement them differently. Masked FGSM changes multiple features in the
data samples at a time, but masked ZOO changes one feature at a time. Therefore, masked ZOO works
on a smaller granularity and can potentially fnd more PCAWAE. As a result, in Table 4, though masked
ZOO fnds 36 PCAWAEs, masked FGSM fnds none.
Phase 2: Launching stealthy ARP poisoning attacks. As shown in Table 4, masked FGSM produces
0 PCAW adversarial examples, which corresponds to 0 candidate stealthy attack packet, while masked
ZOO produces 36 PCAW adversarial examples and 36 corresponding candidate stealthy attack packets.
The 36 candidate stealthy attack packets are then used to launch 36 ARP poisoning attacks. Results show
that 23 of those are actual stealthy attack packets that can lead to successful stealthy attacks.

We inspect the remaining 13 failed candidate stealthy attack packets that lead to failed ARP poisoning
attacks, and fnd out that the IP addresses in those packets are modifed to an invalid address, such
as 192.168.100.0. This is because when the mask for ARP poisoning is created, the whole last byte
(corresponds to the “0” in the IP) in the IP address feld is marked as changeable. The masked ZOO
algorithm can thus change it to any integer in [0, 255]. However, addresses like 192.168.100.0 are usually
reserved for broadcasting, and are not mapped to any particular machine in this LAN. That is why ARP
poisoning attack attempts using such IP addresses fail.

Since 23 of the candidate stealthy attack packets are actual stealthy attack packets, the overall stealthy
attack success rate of the masked ZOO approach is 23/36 ≈ 63.8%.

6.2. Q2: Stealthy DNS Cache Poisoning

Phase 1: PCAW adversarial example generation.
As discussed earlier, more attack packets in the data sample give attackers more chances to modify the

data sample, and thus more PCAW adversarial examples can likely be generated. Therefore, we inspect
all data samples to fnd out how many attack packets each data sample contains. The majority of all data
samples contains only one attack packets, so we randomly choose 100 of them to generate the PCAW
adversarial examples. For the other 89 data samples (less than 1% of all data samples) that contain two
attack packets, we use all of them. The PCAW adversarial example generation results are presented in
Table 5. It is generally more diffcult to generate PCAW adversarial examples for DNS cache poisoning
than for ARP poisoning. This is not surprising because: 1) The DNS cache poisoning detection neural
network is more accurate than that of ARP poisoning, as shown in Section 2; 2) The ratio of changeable
portions in data samples is smaller than that of ARP poisoning. The attack packets are only 1/6 or 1/3 of
a data sample, and only part of the attack packet are changeable. Despite the diffculties, our proposed
methods still succeed in generating PCAW adversarial examples, as shown in Table 5. The table also

192.168.100.0
192.168.100.0

Table 5
Proposed PCAW adversarial example generation methods’ performances towards DNS cache poisoning detection.

Proposed Data samples representing one attack packet1 Data samples representing two attack packets1

methods Time (s) Seed 2 PCAWAE 3 Memory 5 Time (s) Seed2 PCAWAE 3 Memory 5

Masked random 4 234.47 100 0 2.41 231.39 89 0 2.15
Masked FGSM 0.03 100 0 138.96 0.16 89 3 41.52
Masked ZOO 2148.92 100 0 39.22 1768.66 89 5 26.02
1 There are no data samples representing three or more attack packets.
2 Seed: Number of original data samples fed to the generation methods.
3 PCAWAE: PCAW adversarial examples.
4 Masked random: Randomly changes the changeable portions regardless of gradients. This serves as a baseline.
5 Memory: The memory taken in MB.

Table 6
DNS cache poisoning with/without dummy attacker packets.

Dummy
packet
interval1(s)

None 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Total 2 10745 13846 14609 14792 15462 16126 17068 18202 20941 25120 36150
Mis. 3 66 176 232 251 268 274 421 671 1472 5489 16181
DR 4 99.39% 98.73% 98.41% 98.30% 98.27% 98.30% 97.53% 96.31% 92.97% 78.15% 55.24%
Rep. 5 1.06 1.25 1.26 1.30 1.35 1.40 1.49 1.60 1.79 2.26 3.36
1 Dummy interval: The time interval to send out dummy attacker packets. “None” means no dummy attacker packets are

sent out.
2 Total number of data samples.
3 Number of misclassifed data samples.
4 DR: Detection rate.
5 Average number of attack packets represented in the data samples.

shows that, if there are two attack packets in the data sample, PCAW adversarial example generation is
easier than if there is only one.
Phase 2: Uncertainties mitigation.

After PCAW adversarial examples are generated, attackers extract adversarial value sets and use them
to launch DNS cache poisoning attacks in the test bed in order to generate stealthy attack sessions which
the attackers can replay in real-world attacks. There are several factors that can help attackers to decrease
DR on the data sample level and lead to more stealthy attack sessions: dummy attack packets, adversarial
value set selection, and attacker packet index.

Impact of Dummy Attack Packets. To evaluate the impact of dummy attack packets, the attacker ma-
chine not only sends out attack packets as usual when an attack chance appears, but also sends out
dummy attack packets periodically, regardless of whether there is an attack chance or not.

The results are shown in Table 6. Our observation is that the DRs of neural networks decrease as the
numbers of dummy packets in a data sample increase. In another word, more dummy packets lead to
lower DRs. When there is no dummy attack packets, or dummy attack packets are sent less frequently
than every 0.3 second, the average DRs on the data sample level are above 90%. (There are less than 2
attack packets in every data sample, on average. The less frequently dummy attack packets are sent, the
less attack packets get into data samples.) When the time interval drops to 0.2 second, DR drops to about
78%. (There are more than 2 attack packets in every data sample, on average.) When the time interval

Table 7
Statistics and detection results with respect to dummy interval on session level.

Data samples per session* Sessions
Min Max Avg Total Detected

No dummy 1 16 4.04 2872 2872
Dummy 1s 1 15 4.83 3051 3051
Dummy 0.9s 1 46 5.16 3021 3021
Dummy 0.8s 1 211 5.27 3011 3011
Dummy 0.7s 1 221 5.37 3060 3060
Dummy 0.6s 1 16 5.58 3025 3025
Dummy 0.5s 1 68 6.02 3022 3021
Dummy 0.4s 2 218 6.32 3021 3021
Dummy 0.3s 2 19 7.07 3049 3048
Dummy 0.2s 3 30 8.56 3019 3019
Dummy 0.1s 1 26 12.19 3026 3026
* The number of data samples in sessions.

further drops to 0.1 second, DR drastically drops to about 55%. (There are more than 3 attack packets in
every data sample, on average.) However, a careful examination of all the DNS cache poisoning attack
sessions reveals that out of the 33177 attack sessions in total, only 2 of them are stealthy attack sessions,
as shown in Table 7. This means, though dummy attack packets help lower DRs, using it alone may not
be effcient enough for attackers to generate stealthy attack sessions.

Detection Rates with respect to Attacker Packet Indices. We have conducted statistics and fnd that
detection rates corresponding to different attacker packet indices are very polarized. Full results are
shown in Figure 8. Indices are shown with numbers. For example, [0, 1, 2, 3, 4, 5] means that all 6 packets
represented in the data sample are all attacker packets, and [2, 3, 4, 5] means that the third, forth, ffth
and sixth packets represented in the data samples are attacker packets. The majority of detection rates
are above 90%; some are about 70%; and others are below 5%. None of them are between 5% to 65%.

Generally speaking, less frequent dummy attack packets result in the high detection rates. For example,
when dummy packets are sent out every 0.1s, one-third (of 3 attacker packet indices or pies) of the data
samples have DRs close to 0%; when the time interval is 0.2s, the rate drops to about 10% (of just 1
attacker packet index or pie); when the time interval becomes greater than 0.2s, the most common ten
attacker packet indices all have high detection rate. In a word, the distribution of attacker packet indices
is not a uniform distribution, different attacker packet indices have different DRs, and how frequently
dummy attack packets are sent have a big infuence on attacker packet index distribution.

Impact of Adversarial Value Set Selection. To build the dictionary that helps to select the suitable
adversarial value set, we have conducted additional DNS cache poisoning attacks to collect data and
generate PCAW adversarial examples with masked FGSM (Masked ZOO is too time-consuming, so it
is not used here.) After launching the DNS cache poisoning attack for 60000 times with dummy attack
packets, a total of 244340 data samples are generated, which result in a dictionary with 148 keys holding
202 adversarial value sets.

We tried all the distance measuring methods mentioned in subsection 5.4, and experiment results are
summarized in Table 8. Each row shows results for one method (with 5000 attack sessions conducted for
each method respectively), and each column shows the detection rates with respect to the number of at-
tack packets represented in one data sample. The last column shows the average numbers of represented
attack packets and the average detection rates. Similar to Table 6, the more attack packets represented in

(a) Dummy packets every 0.1s. (b) Dummy packets every 0.2s. (c) Dummy packets every 0.3s.

(d) Dummy packets every 0.4s. (e) Dummy packets every 0.5s. (f) Dummy packets every 0.6s.

(g) Dummy packets every 0.7s. (h) Dummy packets every 0.8s. (i) Dummy packets every 0.9s.

(j) Dummy packets every 1s. (k) No dummy packets. (l) Overall distribution.

Fig. 8. Attacker packet index distributions and corresponding detection rates.

Table 8
Detection rates with respect to the number of different distance measuring methods.

Type
Number of attack packets represented in each data samples

Average
1 2 3 4 5 6

DR DR DR DR DR DR DR
Random 1 99.99% 100.00% - 99.99%
Random 1with dummy 2 99.72% 98.87% 90.33% 39.51% 18.72% 8.80% 79.84%
L0 99.99% 100.00% - 99.99%
L0 with dummy 2 99.73% 95.58% 58.37% 4.73% 0.24% 0.28% 66.02%
L1 100.00% 100.00% - 100.00%
L1 with dummy 2 99.77% 98.73% 82.54% 46.63% 39.23% 26.27% 81.30%
L2 100.00% 100.00% - 100.00%
L2 with dummy 2 99.80% 98.91% 81.77% 47.50% 38.16% 28.80% 80.69%
Lin f 100.00% 100.00% - 100.00%
Lin f with dummy 2 99.78% 98.13% 72.19% 9.63% 0.12% 0.00% 69.12%
1 “Random” means the dictionary is not used and adversarial value sets are selected totally randomly. The two

“random” cases serve as the baselines.
2 Dummy attack packets, if used, are sent out every 0.1s.

one data sample, the less likely the attack can be detected. When no dummy attack packets are sent out,
DRs are almost 100%. When dummy attack packets are used, 1) L1 and L2 distance measuring methods
fail to decrease detection rates, while L0 and Lin f succeed in decreasing detection rates; 2) L0 distance
measuring achieves the lowest detection rates. Comparing to “random with dummy”, the detection rate
drops from 79.84% to 66.02%.

In addition to the data sample level, we have also inspected the collected data on the session level.
To our surprise, the results show that none of the sessions in the ten cases shown in Table 8 are stealthy
attack sessions, which probably means they can all be detected. This indicates that though adversarial
value set selection can effectively lower the DRs at data sample level on general, it is not effective at
the session level. A closer look at the sessions and the data samples also shows that, it is usually the
frst several data samples in the session that cannot get misclassifed. Such data samples have only 1 or
2 attack packets inside. The reason is that the local DNS server, on receiving the user machine’s query
packet, will send out several packets successively: query the IP address of the desired domain name,
query the authoritative DNS server, query the IP addresses of root DNS servers, etc. As a result, every
session is certain to have data samples that have very few attack packets, and the DR on the session level
cannot be effectively lowered.
Phase 3: Launching stealthy DNS cache poisoning attacks.

We build an adversarial value set database with the two stealthy attack sessions we found, and use it to
simulate a patient and cautious attacker. If the attacker takes no action in a DNS session, it is referred as a
“no-attack session”; if the attacker takes some action(s), but aborts before the attack is fnished and does
not fully replay the template session, it is referred as an “aborted session”; if the attacker fully replays the
template session, it is referred as a “replayed session”. In our experiment, it takes about four days with
46545 DNS sessions, to get a perfect attack chance. The 46545 DNS sessions contains 46541 no-attack
sessions, 3 aborted sessions, and the last one replayed session. We have also verifed that none of the
no-attack sessions are reported as false positive; all aborted sessions are correctly detected as malicious
(stealthy attack session is not fully replayed, so aborted sessions cannot guarantee to be stealthy); for the
one replayed session, it is not detected, and the attack succeeds.

Though it seems that a perfect chance is hard to wait, considering that attackers can even wait for
months to take actions in APT campaigns, we believe several days is realistic and acceptable for at-
tackers. To provide an estimation of the waiting time, we have the following observation: 1) in a large-
scale enterprise network, a typical local DNS server’s network throughput is about 6 Mbps, namely
6 ∗ 1024 ∗ 1024/8 bytes per second. 2) Half of all the local DNS server’s network traffc is DNS traffc.
3) An average DNS packet is 170 bytes in length. 4) A DNS session, if the entry is already cached (no
attack chance), can be as short as 2 packets; if the entry is not cached (potential attack chance) and
attackers are not involved, the session can contain at least 4 packets; or, if the attacker launched the
DNS cache poisoning attack, the session can be even longer (not to mention if dummy attack packets
are used). In the worst case, we assume that every DNS session, on average, contains 12 packets, which
means 6∗1024∗1024/8/2/170/12 ≈ 193 sessions per second. Therefore, even if there are as few as one
potential attack chance out of 1000 DNS sessions, every 1000/386 ≈ 5.181 seconds, there will be one at-
tack chance. Considering the results in the previous paragraph, every 5.181seconds ∗ 46545 ≈ 67hours,
attackers can expect one successful stealthy DNS cache poisoning attack. Also, our results are achieved
with a database containing two stealthy attack sessions. If the attacker invests more time and efforts for
preparations, and builds the database with more stealthy attack sessions, the estimated waiting time can
be further shortened.

6.3. Q3: Costs of the Proposed Methods

Time and Memory Consumption. When generating PCAW adversarial examples, we also monitor the
time and memory consumption. Memory consumption is measured by computing the memory usage
increase caused by the PCAW adversarial example generation. From Table 4, it can be observed that
masked FGSM needs exceptionally less time, but tends to have more memory consumption than masked
ZOO. Masked random uses the most time and memory, because it is designed to loop until an adversarial
example is found, or the algorithm reaches the maximum iterations. Compared to FGSM and ZOO, the
random method does not have any guideline to generate perturbations, so it becomes the most ineffcient
approach.
PCAW Adversarial Examples’ Losses. In the area of adversarial learning, losses measure the distance
of adversarial examples to their seed data samples, which indicate to what extent a data sample has to be
modifed so that it becomes an adversarial example. Assuming xi j represents a feature in the seed data
sample, and xi j

′ represents a feature in the adversarial example, we use the similar distance measuring
methods L0, L1, L2, and Lin f mentioned earlier. We have measured the average losses of our generated
PCAW adversarial examples. For ARP poisoning, no PCAW adversarial examples are generated with
masked FGSM, so losses are only calculated for those generated by masked ZOO. The L0 average
loss is 11, L1 is 1214.17, L2 is 418.43, and Lin f is 210.67. It means that about 11 bytes (L0) in the
ARP packets need to be modifed, and the values (Lin f) may be changed by 210.67. For DNS cache
poisoning, depending on how many attack packets are represented in the data sample, how large the
changeable portion varies, so they are listed separately. If there is only one attack packet represented, no
PCAW adversarial examples are generated, so losses cannot be calculated. If there are two attack packets
represented, masked FGSM can generate PCAW adversarial examples with relatively few modifcations.
The L0 average loss is 18.33, L1 is 18.33, L2 is 4.26, and Lin f is 1. Because every feature for data samples
of DNS poisoning detection is either 0 or 1, L0 == L1, and Lin f can only be 0 or 1.

Table 9
PCAW adversarial examples’ average losses.

Attack Measurements Masked FGSM Masked ZOO
ARP L0

L1

L2

Lin f

* -

11
1214.17
418.43
210.67

DNS
(one attack
packet in
data sample)

L0

L1

L2

Lin f

* -

DNS
(two attack
packets in
data sample)

L0 18.33 23.83
L1 18.33 23.83
L2 4.26 4.87
Lin f 1 1

* Some results cannot be presented because there are no PCAW ad-
versarial examples in those cases, and losses cannot be calculated.

7. Discussion

7.1. Limitations

Attack success rates and stealthiness are usually the top concerns of attackers, especially for the ones
conducting Advanced Persistent Threats (APTs).

We have proposed new evasion methods to generate malicious adversarial examples, so that attack
success rate and stealthiness are both preserved. However, as shown in section 6, they are not very eff-
cient. For network attacks that need multiple network packets to launch and detect, such as DNS cache
poisoning, sending dummy attacker packets is an effective way to substantially decrease the chances of
being detected by neural networks. Nevertheless, dummy packets can also increase the attackers’ risks of
being noticed due to the abnormal packet contents and the increased interaction with the target machines
or servers.

Therefore, it is very challenging for attackers to fnd a perfect solution that can preserve network
attack success rate, stealthiness, and effciency all at once. Attackers will need to make trade-offs among
these aspects. PCAW adversarial examples can be pre-generated, so that the attacker can quickly refer
to them and send out attack packets when launching real attacks. Nevertheless, the attacker still needs
to invest lots of time and effort to gather data and generate PCAW adversarial examples (and to mitigate
uncertainties for multi-packet network attacks). We identify those as necessary costs to the attacker. As
for defenders, it is recommended to combine multiple detection approaches rather than just using one,
such as outlier detectors.

7.2. Counter Measures

The previous sections presented a novel attack type with PCAWAEs. This attack is stealthier than
traditional network attacks and can still result in the malicious impact. What is more, because attackers
modify the contents of the packets, network fow-based IDS may not be effective detecting this attack.
However, because the PCAWAE generation is still based on observed adversarial example generation
methods, PCAWAE may be rejected if adversarial learning techniques are applied.

This paper focuses on the attacking aspect, so we will only briefy discuss the counter measures. Gen-
erally speaking, adversarial learning techniques can be categorized based on the time point of deploy-
ment [58]: before or after the original model is produced. Some common adversarial learning techniques
include adversarial training [9], where adversarial examples are augmented into the training data to train
a robust model, defensive distillation [59], where a separate model is learned based on the output of a
previous model, and data compression [60], where the original data samples are compressed to mitigate
the effect of attacker perturbations. However, adversarial training needs a lot of adversarial examples. In
our case, they should be PCAWAEs, which are not easy to generate. Defensive distillation does not need
adversarial examples as input, but it is not effective against some advanced attacks [41, 61]. Unlike im-
ages, data compression may break some intrinsic patterns within network packet data. Therefore, instead
of the above-mentioned common techniques, we select DeepCloak [62], which adds a mask layer just
before the output layer of the detection model, so that extracted features that are affected by adversarial
examples most will be fltered out.

We applied DeepCloak to the ARP poisoning detection neural network. As shown in Figure 1, the out-
put layer contains 2 units for binary classifcation, and there are 35 extracted features from the previous
layer. Our experiment results show that, when 1 extracted feature is fltered out, out of the 36 PCAWAEs
generated by masked ZOO, 33 of them are now correctly predicted as malicious, and changes to the
evaluation metrics (accuracy, recall, precision, and F1 score) on the original dataset is about 0.0001.
We continue to increase the number of fltered out extracted features, and fnd out that the maximum
number of reverted PCAWAEs is 34. When the number of fltered out extracted features is nearing half
of all extracted features, the model’s evaluation metrics will decrease drastically. In conclusion, though
DeepCloak may not be able to revert all PCAWAEs’ predicted labels to the correct labels, it is still an
effective defense approach because it can revert about 90% of the PCAWAEs’ predicted labels.

8. Related Work

In the domain of network security, all the existing work on generating adversarial examples are under
the data manipulation threat model. In particular, we break them down into two groups.

Packet content manipulation. In [11] and [12], the authors show how a NN-based detector which
works on network fow data can be evaded. In [11], the original malicious network traffc is mutated
to transfer its features to the closest adversarial ones, and the authors used a special distance metric
between two feature vectors to help solve the corresponding bi-level optimization problem. However,
because no network/protocol constraint is considered in solving the optimization problem, the generated
adversarial examples are not protocol-constraint-aware.

In [12], the authors conducted systematic experiments to evaluate whether the generated adversarial
examples can evade the NN-based detectors. However, since the data manipulation threat model is as-
sumed in this study, the authors did not propose any method for using the generated adversarial examples
to generate the adversarial attack packets. Without these adversarial attack packets, the authors did not
launch any real network attacks in their experiments. Another main difference between [12] and our work
is as follows: the network constraints considered in [11, 12] focus on transport layer protocols (e.g., TCP
and UDP); in contrast, because we aim to launch real network attacks under the standard threat model,
the protocol constraints considered in our work are specifc to individual attacks. For example, for the
DNS cache poisoning attack, we focus on the constraints specifc to the DNS protocol.

Another work [63] proposes to modify packets themselves, but it only pads the packets with redundant
bits, making the packets in question easy to be fltered out and noticed by security operators.

Timing manipulation and packet injection. The work conducted in [64] assumes that attackers can
split large Transmission Control Protocol (TCP) data (to be sent) into multiple smaller packets, and
generates adversarial examples by maliciously (a) manipulating the timing for sending out packets and
(b) injecting fake packets. Note that our approach neither manipulates timing information, nor injects
any fake packets.

9. Conclusion

With deep-learning-based detection systems being increasingly deployed in enterprise networks, if the
adversary continues to launch network attacks (as usual) without any adjustment, their APT campaigns
would become signifcantly less stealthy. Noticing that none of the existing adversarial example genera-
tion methods could generate malicious packets that can simultaneously compromise the target machine
and evade the neural network detection model, we introduced a practical way for launching stealthy net-
work attacks, and proposed the approach of implementing this type of attack. We used ARP poisoning
and DNS cache poisoning attacks as the case study to demonstrate the effectiveness of the proposed
method.

Disclaimer

This paper is not subject to copyright in the United States. Commercial products are identifed in order
to adequately specify certain procedures. In no case does such identifcation imply recommendation or
endorsement by the National Institute of Standards and Technology, nor does it imply that the identifed
products are necessarily the best available for the purpose.

Acknowledgment

This work was supported by NIST 60NANB22D144. Xiaoyan Sun is supported by NSF DGE-
2105801.

References

[1] Snort - Network Intrusion Detection & Prevention System, 2021, [Online; accessed 15. Jun. 2021]. https://www.snort.
org.

[2] The Zeek Network Security Monitor, 2023, [Online; accessed 21. Feb. 2023]. https://zeek.org.
[3] Y. Mirsky, T. Doitshman, Y. Elovici and A. Shabtai, Kitsune: An Ensemble of Autoencoders for Online Network Intru-

sion Detection (2018), arXiv:1802.09089 [cs]. doi:10.48550/arXiv.1802.09089. http://arxiv.org/abs/1802.09089.
[4] Y. Zhang, X. Chen, D. Guo, M. Song, Y. Teng and X. Wang, PCCN: Parallel Cross Convolutional Neural Network for

Abnormal Network Traffc Flows Detection in Multi-class imbalanced Network Traffc Flows, IEEE Access (2019), 1–1.
https://ieeexplore.ieee.org/abstract/document/8787567/.

[5] M.D. Hossain, H. Ochiai, D. Fall and Y. Kadobayashi, LSTM-based Network Attack Detection: Performance Com-
parison by Hyper-parameter Values Tuning, in: 2020 7th IEEE International Conference on Cyber Security and Cloud
Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom),
IEEE, 2020, pp. 62–69.

[6] Q. Zou, A. Singhal, X. Sun and P. Liu, Deep learning for detecting logic-faw-exploiting network attacks: An end-to-end
approach, Journal of Computer Security (2021), 1–30.

https://www.snort.org
https://www.snort.org
https://zeek.org
http://arxiv.org/abs/1802.09089
https://ieeexplore.ieee.org/abstract/document/8787567/

[7] Artifcial Intelligence (AI) for Cybersecurity | IBM, 2023, [Online; accessed 27. Jun. 2023]. https://www.ibm.com/
security/artifcial-intelligence?utm_content=SRCWW&p1=Search&p4=43700074604519875&p5=p&gclsrc=aw.ds.

[8] V. Jakkal, Introducing Microsoft Security Copilot: Empowering defenders at the speed of AI - The Offcial
Microsoft Blog, Offcial Microsoft Blog (2023). https://blogs.microsoft.com/blog/2023/03/28/introducing-microsoft-
security-copilot-empowering-defenders-at-the-speed-of-ai.

[9] I.J. Goodfellow, J. Shlens and C. Szegedy, Explaining and harnessing adversarial examples, arXiv preprint
arXiv:1412.6572 (2014).

[10] X. Yuan, P. He, Q. Zhu and X. Li, Adversarial examples: Attacks and defenses for deep learning, IEEE transactions on
neural networks and learning systems 30(9) (2019), 2805–2824.

[11] D. Han, Z. Wang, Y. Zhong, W. Chen, J. Yang, S. Lu, X. Shi and X. Yin, Evaluating and improving adversarial robust-
ness of machine learning-based network intrusion detectors, IEEE Journal on Selected Areas in Communications 39(8)
(2021), 2632–2647.

[12] R. Sheatsley, N. Papernot, M.J. Weisman, G. Verma and P. McDaniel, Adversarial examples for network intrusion de-
tection systems, Journal of Computer Security 30(5) (2022), 727–752. doi:10.3233/JCS-210094.

[13] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z.B. Celik and A. Swami, The limitations of deep learning in adversarial
settings, in: Proc. IEEE European Symposium on Security and Privacy, 2016.

[14] F. Pierazzi, F. Pendlebury, J. Cortellazzi and L. Cavallaro, Intriguing Properties of Adversarial ML Attacks
in the Problem Space, in: 2020 IEEE Symposium on Security and Privacy (SP), 2020, pp. 1332–1349.
doi:10.1109/SP40000.2020.00073.

[15] G. Apruzzese, M. Andreolini, L. Ferretti, M. Marchetti and M. Colajanni, Modeling Realistic Adversarial Attacks against
Network Intrusion Detection Systems, Digital Threats 3(3) (2022). doi:10.1145/3469659.

[16] G. Apruzzese, R. Vladimirov, A. Tastemirova and P. Laskov, Wild Networks: Exposure of 5G Network Infrastruc-
tures to Adversarial Examples, IEEE Transactions on Network and Service Management 19(4) (2022), 5312–5332.
doi:10.1109/TNSM.2022.3188930.

[17] D. Han, Z. Wang, Y. Zhong, W. Chen, J. Yang, S. Lu, X. Shi and X. Yin, Evaluating and Improving Adversarial Ro-
bustness of Machine Learning-Based Network Intrusion Detectors, IEEE Journal on Selected Areas in Communications
39(8) (2021), 2632–2647. doi:10.1109/JSAC.2021.3087242.

[18] R. Sheatsley, B. Hoak, E. Pauley, Y. Beugin, M.J. Weisman and P. McDaniel, On the Robustness of Domain
Constraints, in: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’21, Association for Computing Machinery, New York, NY, USA, 2021, pp. 495–515. ISBN 9781450384544.
doi:10.1145/3460120.3484570.

[19] D. Wu, B. Fang, J. Wang, Q. Liu and X. Cui, Evading Machine Learning Botnet Detection Models via Deep Rein-
forcement Learning, in: ICC 2019 - 2019 IEEE International Conference on Communications (ICC), 2019, pp. 1–6.
doi:10.1109/ICC.2019.8761337.

[20] G. Apruzzese, M. Colajanni and M. Marchetti, Evaluating the effectiveness of Adversarial Attacks against Botnet De-
tectors, in: 2019 IEEE 18th International Symposium on Network Computing and Applications (NCA), 2019, pp. 1–8.
ISSN 2643-7929. doi:10.1109/NCA.2019.8935039.

[21] Home - Suricata, 2021, [Online; accessed 15. Jun. 2021]. https://suricata.io.
[22] infosecdr, spade, 2021, [Online; accessed 15. Jun. 2021]. https://github.com/infosecdr/spade.
[23] C.F. Pontes, M.M. De Souza, J.J. Gondim, M. Bishop and M.A. Marotta, A new method for fow-based network intrusion

detection using the inverse Potts model, IEEE Transactions on Network and Service Management 18(2) (2021), 1125–
1136.

[24] M.V. Kotpalliwar and R. Wajgi, Classifcation of attacks using support vector machine (svm) on kddcup’99 ids database,
in: 2015 Fifth International Conference on Communication Systems and Network Technologies, IEEE, 2015, pp. 987–
990.

[25] R. Kokila, S.T. Selvi and K. Govindarajan, DDoS detection and analysis in SDN-based environment using support vector
machine classifer, in: 2014 sixth international conference on advanced computing (ICoAC), IEEE, 2014, pp. 205–210.

[26] B.B. Rao and K. Swathi, Fast kNN classifers for network intrusion detection system, Indian Journal of Science and
Technology 10(14) (2017), 1–10.

[27] A.M. Sharif, S.K. Amirgholipour and A. Pourebrahimi, Intrusion detection based on joint of k-means and knn, Journal
of Convergence Information Technology 10(5) (2015), 42.

[28] B. Ingre, A. Yadav and A.K. Soni, Decision tree based intrusion detection system for NSL-KDD dataset, in: Information
and Communication Technology for Intelligent Systems (ICTIS 2017)-Volume 2 2, Springer, 2018, pp. 207–218.

[29] A.J. Malik and F.A. Khan, A hybrid technique using binary particle swarm optimization and decision tree pruning for
network intrusion detection, Cluster Computing 21 (2018), 667–680.

[30] M. Tavallaee, E. Bagheri, W. Lu and A.A. Ghorbani, A detailed analysis of the KDD CUP 99 data set, in: 2009 IEEE
symposium on computational intelligence for security and defense applications, Ieee, 2009, pp. 1–6.

https://www.ibm.com/security/artificial-intelligence?utm_content=SRCWW&p1=Search&p4=43700074604519875&p5=p&gclsrc=aw.ds
https://www.ibm.com/security/artificial-intelligence?utm_content=SRCWW&p1=Search&p4=43700074604519875&p5=p&gclsrc=aw.ds
https://blogs.microsoft.com/blog/2023/03/28/introducing-microsoft-security-copilot-empowering-defenders-at-the-speed-of-ai
https://blogs.microsoft.com/blog/2023/03/28/introducing-microsoft-security-copilot-empowering-defenders-at-the-speed-of-ai
https://suricata.io
https://github.com/infosecdr/spade

[31] S. Revathi and A. Malathi, A detailed analysis on NSL-KDD dataset using various machine learning techniques for
intrusion detection, International Journal of Engineering Research & Technology (IJERT) 2(12) (2013), 1848–1853.

[32] X. Yuan, C. Li and X. Li, DeepDefense: Identifying DDoS Attack via Deep Learning, in: 2017 IEEE International
Conference on Smart Computing, SMARTCOMP 2017, 2017. https://ieeexplore.ieee.org/abstract/document/7946998/.

[33] Splunk and Tensorfow for Security: Catching the Fraudster with Behavior Biometrics, 2017, [Online; accessed
15. Jun. 2021]. https://www.splunk.com/en_us/blog/security/deep-learning-with-splunk-and-tensorfow-for-security-
catching-the-fraudster-in-neural-networks-with-behavioral-biometrics.html.

[34] Training Transformers for Cyber Security Tasks: A Case Study on, 2021, [Online; accessed 15. Jun. 2021].
https://www.freeye.com/blog/threat-research/2021/01/training-transformers-for-cyber-security-tasks-malicious-url-
prediction.html.

[35] Fortinet Introduces Self-Learning Artifcial Intelligence Appliance for Sub-Second Threat Detection, 2021, [Online;
accessed 15. Jun. 2021]. https://www.fortinet.com/corporate/about-us/newsroom/press-releases/2020/introduces-self-
learning-artifcial-intelligence-appliance-for-sub-2nd-threat-detection.

[36] P.-Y. Chen, Y. Sharma, H. Zhang, J. Yi and C.-J. Hsieh, EAD: Elastic-Net Attacks to Deep Neural Networks via Adver-
sarial Examples, Proceedings of the AAAI Conference on Artifcial Intelligence 32(11) (2018). https://ojs.aaai.org/index.
php/AAAI/article/view/11302.

[37] A. Kurakin, I. Goodfellow and S. Bengio, Adversarial examples in the physical world, arXiv:1607.02533 [cs, stat]
(2017), arXiv: 1607.02533. http://arxiv.org/abs/1607.02533.

[38] S.-M. Moosavi-Dezfooli, A. Fawzi and P. Frossard, Deepfool: a simple and accurate method to fool deep neural networks,
in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2574–2582.

[39] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z.B. Celik and A. Swami, The Limitations of Deep Learning in
Adversarial Settings, in: 2016 IEEE European Symposium on Security and Privacy (EuroS P), 2016, pp. 372–387–.
doi:10.1109/EuroSP.2016.36.

[40] T. Miyato, S.-i. Maeda, M. Koyama, K. Nakae and S. Ishii, Distributional Smoothing with Virtual Adversarial Training,
arXiv:1507.00677 [cs, stat] (2016), arXiv: 1507.00677. http://arxiv.org/abs/1507.00677.

[41] N. Carlini and D. Wagner, Towards Evaluating the Robustness of Neural Networks, in: 2017 IEEE Symposium on Secu-
rity and Privacy (SP), 2017, pp. 39–57. ISSN 2375-1207. doi:10.1109/SP.2017.49.

[42] H. Hosseini, B. Xiao, M. Jaiswal and R. Poovendran, On the Limitation of Convolutional Neural Networks in Recog-
nizing Negative Images, in: 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA),
2017, pp. 352–358–. doi:10.1109/ICMLA.2017.0-136.

[43] U. Jang, X. Wu and S. Jha, Objective Metrics and Gradient Descent Algorithms for Adversarial Examples in Machine
Learning, in: Proceedings of the 33rd Annual Computer Security Applications Conference, ACSAC 2017, Association
for Computing Machinery, 2017, pp. 262–277–. ISBN 978-1-4503-5345-8. doi:10.1145/3134600.3134635.

[44] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi and C.-J. Hsieh, ZOO: Zeroth Order Optimization Based Black-box Attacks
to Deep Neural Networks without Training Substitute Models, in: Proceedings of the 10th ACM Workshop on Artifcial
Intelligence and Security, AISec ’17, Association for Computing Machinery, 2017, pp. 15–26–. ISBN 978-1-4503-5202-
4. doi:10.1145/3128572.3140448.

[45] W. Brendel, J. Rauber and M. Bethge, Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Ma-
chine Learning Models, arXiv:1712.04248 [cs, stat] (2018), arXiv: 1712.04248. http://arxiv.org/abs/1712.04248.

[46] A. Madry, A. Makelov, L. Schmidt, D. Tsipras and A. Vladu, Towards deep learning models resistant to adversarial
attacks, arXiv preprint arXiv:1706.06083 (2017).

[47] W. Brendel, J. Rauber, M. Kümmerer, I. Ustyuzhaninov and M. Bethge, Accurate, reliable and fast robustness evaluation,
arXiv:1907.01003 [cs, stat] (2019), arXiv: 1907.01003. http://arxiv.org/abs/1907.01003.

[48] J. Rony, L.G. Hafemann, L.S. Oliveira, I.B. Ayed, R. Sabourin and E. Granger, Decoupling Direction and Norm for
Effcient Gradient-Based L2 Adversarial Attacks and Defenses, arXiv:1811.09600 [cs] (2019), arXiv: 1811.09600. http:
//arxiv.org/abs/1811.09600.

[49] M. Alzantot, Y. Sharma, S. Chakraborty, H. Zhang, C.-J. Hsieh and M. Srivastava, GenAttack: Practical Black-box
Attacks with Gradient-Free Optimization, arXiv:1805.11090 [cs] (2019), arXiv: 1805.11090. http://arxiv.org/abs/1805.
11090.

[50] F. Tramèr and D. Boneh, Adversarial Training and Robustness for Multiple Perturbations, arXiv:1904.13000 [cs, stat]
(2019), arXiv: 1904.13000. http://arxiv.org/abs/1904.13000.

[51] J. Chen, M.I. Jordan and M.J. Wainwright, HopSkipJumpAttack: A Query-Effcient Decision-Based At-
tack, in: 2020 IEEE Symposium on Security and Privacy (SP), 2020, pp. 1277–1294–. ISSN 2375-1207.
doi:10.1109/SP40000.2020.00045.

[52] K. Townsend, SaaS Ransomware Attack Hit Sharepoint Online Without Using a Compromised Endpoint, SecurityWeek
(2023). https://www.securityweek.com/saas-ransomware-attack-hit-sharepoint-online-without-using-a-compromised-
endpoint.

https://ieeexplore.ieee.org/abstract/document/7946998/
https://www.splunk.com/en_us/blog/security/deep-learning-with-splunk-and-tensorflow-for-security-catching-the-fraudster-in-neural-networks-with-behavioral-biometrics.html
https://www.splunk.com/en_us/blog/security/deep-learning-with-splunk-and-tensorflow-for-security-catching-the-fraudster-in-neural-networks-with-behavioral-biometrics.html
https://www.fireeye.com/blog/threat-research/2021/01/training-transformers-for-cyber-security-tasks-malicious-url-prediction.html
https://www.fireeye.com/blog/threat-research/2021/01/training-transformers-for-cyber-security-tasks-malicious-url-prediction.html
https://www.fortinet.com/corporate/about-us/newsroom/press-releases/2020/introduces-self-learning-artificial-intelligence-appliance-for-sub-2nd-threat-detection
https://www.fortinet.com/corporate/about-us/newsroom/press-releases/2020/introduces-self-learning-artificial-intelligence-appliance-for-sub-2nd-threat-detection
https://ojs.aaai.org/index.php/AAAI/article/view/11302
https://ojs.aaai.org/index.php/AAAI/article/view/11302
http://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1507.00677
http://arxiv.org/abs/1712.04248
http://arxiv.org/abs/1907.01003
http://arxiv.org/abs/1811.09600
http://arxiv.org/abs/1811.09600
http://arxiv.org/abs/1805.11090
http://arxiv.org/abs/1805.11090
http://arxiv.org/abs/1904.13000
https://www.securityweek.com/saas-ransomware-attack-hit-sharepoint-online-without-using-a-compromised-endpoint
https://www.securityweek.com/saas-ransomware-attack-hit-sharepoint-online-without-using-a-compromised-endpoint
https://doi:10.1109/SP.2017.49
https://doi:10.1109/EuroSP.2016.36

[53] N. Papernot, P. McDaniel and I. Goodfellow, Transferability in machine learning: from phenomena to black-box attacks
using adversarial samples, arXiv preprint arXiv:1605.07277 (2016).

[54] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z.B. Celik and A. Swami, Practical black-box attacks against machine
learning, in: Proceedings of the 2017 ACM on Asia conference on computer and communications security, 2017, pp. 506–
519.

[55] M.-I. Nicolae, M. Sinn, M.N. Tran, B. Buesser, A. Rawat, M. Wistuba, V. Zantedeschi, N. Baracaldo, B. Chen,
H. Ludwig, I. Molloy and B. Edwards, Adversarial Robustness Toolbox v1.2.0, CoRR 1807.01069 (2018). https:
//arxiv.org/pdf/1807.01069.

[56] J. Rauber, W. Brendel and M. Bethge, Foolbox: A Python toolbox to benchmark the robustness of machine learning
models, in: Reliable Machine Learning in the Wild Workshop, 34th International Conference on Machine Learning,
2017. http://arxiv.org/abs/1707.04131.

[57] J. Rauber, R. Zimmermann, M. Bethge and W. Brendel, Foolbox Native: Fast adversarial attacks to benchmark the
robustness of machine learning models in PyTorch, TensorFlow, and JAX, Journal of Open Source Software 5(53) (2020),
2607. doi:10.21105/joss.02607.

[58] X. Wang, J. Li, X. Kuang, Y.-a. Tan and J. Li, The security of machine learning in an adversarial setting: A survey,
Journal of Parallel and Distributed Computing 130 (2019), 12–23. doi:10.1016/j.jpdc.2019.03.003.

[59] N. Papernot, P. McDaniel, X. Wu, S. Jha and A. Swami, Distillation as a defense to adversarial perturbations against
deep neural networks, in: 2016 IEEE symposium on security and privacy (SP), IEEE, 2016, pp. 582–597.

[60] G.K. Dziugaite, Z. Ghahramani and D.M. Roy, A study of the effect of jpg compression on adversarial images, arXiv
preprint arXiv:1608.00853 (2016).

[61] N. Carlini and D. Wagner, Defensive distillation is not robust to adversarial examples, arXiv preprint arXiv:1607.04311
(2016).

[62] J. Gao, B. Wang, Z. Lin, W. Xu and Y. Qi, DeepCloak: Masking Deep Neural Network Models for Robustness Against
Adversarial Samples (2017), arXiv:1702.06763 [cs]. doi:10.48550/arXiv.1702.06763. http://arxiv.org/abs/1702.06763.

[63] H. Qiu, T. Dong, T. Zhang, J. Lu, G. Memmi and M. Qiu, Adversarial Attacks Against Network Intrusion Detection in
IoT Systems, IEEE Internet of Things Journal 8(13) (2021), 10327–10335. doi:10.1109/JIOT.2020.3048038.

[64] M.J. Hashemi, G. Cusack and E. Keller, Towards Evaluation of NIDSs in Adversarial Setting, in Big-DAMA
’19, Association for Computing Machinery, New York, NY, USA, 2019, pp. 14–21. ISBN 978-1-4503-6999-2.
doi:10.1145/3359992.3366642.

[65] Use Alternate Authentication Material: Pass the Hash, Sub-technique T1550.002 - Enterprise | MITRE ATT&CK®,
2023, [Online; accessed 28. Jun. 2023]. https://attack.mitre.org/versions/v8/techniques/T1550/002.

[66] A. Shafahi, W.R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras and T. Goldstein, Poison frogs! targeted clean-label
poisoning attacks on neural networks, in: NIPS, 2018.

[67] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang and X. Zhang, Trojaning attack on neural networks, in: NDSS,
2002.

[68] Y. Vorobeychik and M. Kantarcioglu, Adversarial machine learning, Synthesis Lectures on Artifcial Intelligence and
Machine Learning 12(3) (2018), 1–169.

[69] A. Serban, E. Poll and J. Visser, Adversarial Examples on Object Recognition: A Comprehensive Survey, ACM Com-
puting Surveys 53(3) (2020), 66:1–66:38. doi:10.1145/3398394.

[70] C. Xiao, J.-Y. Zhu, B. Li, W. He, M. Liu and D. Song, Spatially Transformed Adversarial Examples, arXiv:1801.02612
[cs, stat] (2018), arXiv: 1801.02612. http://arxiv.org/abs/1801.02612.

[71] J. Su, D.V. Vargas and K. Sakurai, One Pixel Attack for Fooling Deep Neural Networks, IEEE Transactions on Evolu-
tionary Computation 23(5) (2019), 828–841–. doi:10.1109/TEVC.2019.2890858.

[72] C. Guo, J.R. Gardner, Y. You, A.G. Wilson and K.Q. Weinberger, Simple Black-box Adversarial Attacks,
arXiv:1905.07121 [cs, stat] (2019), arXiv: 1905.07121. http://arxiv.org/abs/1905.07121.

[73] E. Wong, F.R. Schmidt and J.Z. Kolter, Wasserstein Adversarial Examples via Projected Sinkhorn Iterations,
arXiv:1902.07906 [cs, stat] (2020), arXiv: 1902.07906. http://arxiv.org/abs/1902.07906.

[74] S. Kotyan and D.V. Vargas, Adversarial Robustness Assessment: Why both L0 and L∞ Attacks Are Necessary,
arXiv:1906.06026 [cs, stat] (2020), arXiv: 1906.06026. http://arxiv.org/abs/1906.06026.

[75] K. Grosse, D. Pfaff, M.T. Smith and M. Backes, The Limitations of Model Uncertainty in Adversarial Settings,
arXiv:1812.02606 [cs] (2019), arXiv: 1812.02606. http://arxiv.org/abs/1812.02606.

[76] Y. Qin, N. Carlini, G. Cottrell, I. Goodfellow and C. Raffel, Imperceptible, Robust, and Targeted Adversarial Examples
for Automatic Speech Recognition, in: International Conference on Machine Learning, PMLR, 2019, pp. 5231–5240–.
ISSN 2640-3498. http://proceedings.mlr.press/v97/qin19a.html.

[77] X. Ji, Y. Cheng, Y. Zhang, K. Wang, C. Yan, W. Xu and K. Fu, Poltergeist: Acoustic Adversarial Machine Learn-
ing against Cameras and Computer Vision, IEEE Computer Society, 2021, pp. 1573–1588–. ISSN 2375-1207.
ISBN 978-1-72818-934-5. doi:10.1109/SP40001.2021.00091. https://www.computer.org/csdl/proceedings-article/sp/
2021/893400b573/1t0x9rMmOze.

https://arxiv.org/pdf/1807.01069
https://arxiv.org/pdf/1807.01069
http://arxiv.org/abs/1707.04131
http://arxiv.org/abs/1702.06763
https://attack.mitre.org/versions/v8/techniques/T1550/002
http://arxiv.org/abs/1801.02612
http://arxiv.org/abs/1905.07121
http://arxiv.org/abs/1902.07906
http://arxiv.org/abs/1906.06026
http://arxiv.org/abs/1812.02606
http://proceedings.mlr.press/v97/qin19a.html
https://www.computer.org/csdl/proceedings-article/sp/2021/893400b573/1t0x9rMmOze
https://www.computer.org/csdl/proceedings-article/sp/2021/893400b573/1t0x9rMmOze

[78] X. Liu, H. Yang, Z. Liu, L. Song, H. Li and Y. Chen, DPatch: An Adversarial Patch Attack on Object Detectors,
arXiv:1806.02299 [cs] (2019), arXiv: 1806.02299. http://arxiv.org/abs/1806.02299.

[79] S.M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar and V.N. Venkatakrishnan, HOLMES: Real-time APT Detection
through Correlationof Suspicious Information Flows, in: 2019 IEEE Symposium on Security and Privacy (SP), IEEE,
2019, pp. 1137–1152–.

[80] Q. Zou, X. Sun, P. Liu and A. Singhal, An Approach for Detection of Advanced Persistent Threat Attacks, IEEE Com-
puter Magazine 53(12) (2020), 92–96.

[81] C. Taylor, W. Harrison, A. Krings, N. Hanebutte and M. McQueen, Low-Level network attack recognition: a signature-
based approach, IEEE Proc. PDCS’2001 (2001), 570–574.

[82] S. Kaur and M. Singh, Automatic attack signature generation systems: A review, IEEE Security & Privacy 11(6) (2013),
54–61.

[83] J. Choi, C. Choi, B. Ko and P. Kim, A method of DDoS attack detection using HTTP packet pattern and rule engine in
cloud computing environment, Soft Computing 18(9) (2014), 1697–1703.

[84] M. Amini, R. Jalili and H.R. Shahriari, RT-UNNID: A practical solution to real-time network-based intrusion detection
using unsupervised neural networks, computers & security 25(6) (2006), 459–468.

[85] O. Faker and E. Dogdu, Intrusion detection using big data and deep learning techniques, in: ACMSE 2019 - Proceedings
of the 2019 ACM Southeast Conference, 2019, pp. 86–93. https://dl.acm.org/citation.cfm?id=3314439.

[86] K. Millar, A. Cheng, H.G. Chew and C.C. Lim, Deep learning for classifying malicious network traffc, in: Lecture Notes
in Computer Science (including subseries Lecture Notes in Artifcial Intelligence and Lecture Notes in Bioinformatics),
Vol. 11154 LNAI, 2018, pp. 156–161. http://link.springer.com/10.1007/978-3-030-04503-6_15.

[87] C. Yin, Y. Zhu, J. Fei and X. He, A Deep Learning Approach for Intrusion Detection Using Recurrent Neural Networks,
IEEE Access 5 (2017), 21954–21961. https://ieeexplore.ieee.org/abstract/document/8066291/.

[88] P. Mishra, V. Varadharajan, U. Tupakula and E.S. Pilli, A Detailed Investigation and Analysis of Using Machine
Learning Techniques for Intrusion Detection, IEEE Communications Surveys Tutorials 21(1) (2019), 686–728–.
doi:10.1109/COMST.2018.2847722.

[89] H. Zhang, Y. Li, Z. Lv, A.K. Sangaiah and T. Huang, A real-time and ubiquitous network attack detection based on deep
belief network and support vector machine, IEEE/CAA Journal of Automatica Sinica 7(3) (2020), 790–799–.

[90] H. Huang, J. Mu, N.Z. Gong, Q. Li, B. Liu and M. Xu, Data Poisoning Attacks to Deep Learning Based Recom-
mender Systems, Proceedings 2021 Network and Distributed System Security Symposium (2021), arXiv: 2101.02644.
doi:10.14722/ndss.2021.24525. http://arxiv.org/abs/2101.02644.

[91] X. Chen, C. Liu, B. Li, K. Lu and D. Song, Targeted backdoor attacks on deep learning systems using data poisoning,
arXiv preprint arXiv:1712.05526 (2017).

[92] L. Muñoz-González, B. Biggio, A. Demontis, A. Paudice, V. Wongrassamee, E.C. Lupu and F. Roli, Towards poisoning
of deep learning algorithms with back-gradient optimization, in: Proceedings of the 10th ACM Workshop on Artifcial
Intelligence and Security, 2017, pp. 27–38–.

[93] Abusing cloud services to fy under the radar, 2021, [Online; accessed 11. Nov. 2021]. https://research.nccgroup.com/
2021/01/12/abusing-cloud-services-to-fy-under-the-radar.

[94] H.-Y. Lin and B. Biggio, Adversarial Machine Learning: Attacks From Laboratories to the Real World, Computer 54(5)
(2021), 56–60.

[95] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay and D. Mukhopadhyay, Adversarial Attacks and Defences: A
Survey, arXiv:1810.00069 [cs, stat] (2018), arXiv: 1810.00069. http://arxiv.org/abs/1810.00069.

[96] Q. Cheng, S. Zhou, Y. Shen, D. Kong and C. Wu, Packet-Level Adversarial Network Traffc Crafting using Sequence
Generative Adversarial Networks, arXiv:2103.04794 [cs] (2021), arXiv: 2103.04794. http://arxiv.org/abs/2103.04794.

[97] O. Ibitoye, O. Shafq and A. Matrawy, Analyzing adversarial attacks against deep learning for intrusion detection in IoT
networks, in: 2019 IEEE global communications conference (GLOBECOM), IEEE, 2019, pp. 1–6.

[98] J. Li, Y. Liu, T. Chen, Z. Xiao, Z. Li and J. Wang, Adversarial attacks and defenses on cyber-physical systems: A survey,
IEEE Internet of Things Journal 7(6) (2020), 5103–5115.

[99] JasonGerend, Set-DnsServerCache (DnsServer), 2022, [Online; accessed 21. Mar. 2022]. https://docs.microsoft.com/en-
us/powershell/module/dnsserver/set-dnsservercache?view=windowsserver2022-ps.

[100] F. Pierazzi, F. Pendlebury, J. Cortellazzi and L. Cavallaro, Intriguing Properties of Adversarial ML Attacks in the
Problem Space, in: 2020 IEEE Symposium on Security and Privacy (SP), 2020, pp. 1332–1349. ISSN 2375-1207.
doi:10.1109/SP40000.2020.00073.

[101] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T. Kohno and D. Song, Robust physical-
world attacks on deep learning visual classifcation, in: Proceedings of the IEEE conference on computer vision and
pattern recognition, 2018, pp. 1625–1634.

[102] M. Sharif, S. Bhagavatula, L. Bauer and M.K. Reiter, A general framework for adversarial examples with objectives,
ACM Transactions on Privacy and Security (TOPS) 22(3) (2019), 1–30.

http://arxiv.org/abs/1806.02299
https://dl.acm.org/citation.cfm?id=3314439
http://link.springer.com/10.1007/978-3-030-04503-6_15
https://ieeexplore.ieee.org/abstract/document/8066291/
http://arxiv.org/abs/2101.02644
https://research.nccgroup.com/2021/01/12/abusing-cloud-services-to-fly-under-the-radar
https://research.nccgroup.com/2021/01/12/abusing-cloud-services-to-fly-under-the-radar
http://arxiv.org/abs/1810.00069
http://arxiv.org/abs/2103.04794
https://docs.microsoft.com/en-us/powershell/module/dnsserver/set-dnsservercache?view=windowsserver2022-ps
https://docs.microsoft.com/en-us/powershell/module/dnsserver/set-dnsservercache?view=windowsserver2022-ps

	Introduction
	Background and Motivation
	Network Attacks and NIDS
	ML-based Network Attack Detectors
	Adversarial examples for DNNs
	Why the adversarial examples generated by existing methods fail under the standard threat model

	Dataset and Detection Neural Networks
	Problem Formulation
	Protocol-Constraint-AWare Adversarial Examples
	Unique Challenges in Multi-packet Stealthy Network Attacks

	Proposed Stealthy Adversarial Attacks
	Work Flow of Stealthy Network Attacks
	PCAW Adversarial Example Generation
	Convert PCAW Adversarial Examples to Candidate Stealthy Attack Packets
	Mitigate Uncertainties for Multi-packet Attacks

	Evaluations
	Q1: Stealthy ARP Poisoning
	Q2: Stealthy DNS Cache Poisoning
	Q3: Costs of the Proposed Methods

	Discussion
	Limitations
	Counter Measures

	Related Work
	Conclusion
	Disclaimer
	Acknowledgment
	References

