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ABSTRACT
Laser-based powder bed fusion (L-PBF) has become the de facto choice for metal additive manu-
facturing (AM) processes. Even after considerable research investments, components manufactured
using L-PBF lack consistency in their quality. Realizing the crucial role of the melt pool in controlling
the final build quality, we predict themorphology of themelt pool directly from the build commands
in an L-PBF process. We leverage machine learning techniques to predict quantitative attributes
like the size as well as qualitative attributes like the shape of the melt pool. The area of the melt
pool is predicted using an LSTM network. The outlined LSTM-based approach estimates the area
with 90.7% accuracy. The shape is inferred by synthesising the images of the melt pool by using a
Melt Pool Generative Adversarial Network (MP-GAN). The synthetic images attain a structural simi-
larity score of 0.91. The precision and accuracy of the results showcase the efficacy of the outlined
approach and pave the way for real-time monitoring and control of the melt pool to build products
with consistently better quality.
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1. Introduction

Additive manufacturing (AM) has evolved as a novel
manufacturing paradigm because of its capability to offer
additional design flexibility (Gupta and Rai 2014; Zhang
et al. 2018) while reducing the supply chain (Kunovjanek
and Reiner 2020), material wastage, assembly operations
(Ghiasian et al. 2018) and tooling requirements. Laser-
based powder bed fusion (L-PBF), a class of AM tech-
nology that uses a laser beam as the source of energy
to selectively melt metallic powder in an inert cham-
ber, is at the forefront of AM of metallic components
(KhorramNiaki andNonino 2017). In L-PBF, a thin layer
of metallic powder is distributed over the build plate
or any previous layer. Then, the laser traverses a pre-
defined path while transmitting high-density energy to
the powder at the target spot, thereby melting it. The
moltenmetal locally coalesces and solidifies in horizontal
(track-wise) and vertical (layer-wise) directions to form
complex three-dimensional metallic components.

Several industries, including healthcare, aerospace,
consumer products, and automotive, are trying to har-
ness the promising potential of L-PBF AM processes.
However, even after decades of research, the lack of

CONTACT Rahul Rai rrai@clemson.edu Geometric Reasoning and Artificial Intelligence Lab (GRAIL), Clemson University International Center for
Automotive Research (CU-ICAR), Clemson, SC 29634-0002, USA

guarantee of consistent quality and repeatability hinders
the broader adoption of L-PBF. Additively manufactured
parts are known to be porous and accumulate residual
stresses (Khadilkar, Wang, and Rai 2019). Consequently,
they exhibit subpar or a significant variation in the final
mechanical properties. Undesired defects compromise
the structural integrity and durability of the compo-
nents, predominantly in biomedical and aerospace appli-
cations (Mower and Long 2016; Spierings, Starr, and
Wegener 2013). While attributes like dimensional toler-
ances and surface roughness can be mitigated by appro-
priate postprocessing techniques (Jaiswal and Rai 2019),
other attributes like porosity, spatter, balling, and resid-
ual stresses can only be minimised by monitoring and
controlling the process in real-time as they manifest dur-
ing the melting and solidification processes. Thus, AM
calls for stringent in-situ quality control in real-time
(Mani et al. 2017). Moreover, in-situ process monitor-
ing will enable certification of the components as they
are built. Consequently, in-situ process monitoring can
reduce post-process destructive and nondestructive test-
ing (Zhang et al. 2019) and material wastage (Ghiasian
et al. 2018) due to scrapping.

© 2023 Informa UK Limited, trading as Taylor & Francis Group
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The high-density energy supplied by the laser to the
metal powder in an L-PBF process creates a pool of
molten metal that coalesces and solidifies to form the
final product. The melt pool initiates nucleation and
microstructure formation and hence dictates the proper-
ties and performance of the built product. Thus, mon-
itoring the melt pool is crucial as it is a signature of
several underlying phenomena like the interaction of
laser with metal powder, flow and dynamics of the melt
pool, pool-powder interaction, and solidification. Most
approaches for online in-situ monitoring of melt pools
rely on thermographic or morphological information.
Our work focuses on the latter due to non-invasive imag-
ing techniques. The mechanical properties like strength
and residual stresses depend on the thermal history
during solidification, which in turn depends on the
microstructural characteristics like melt pool morphol-
ogy. Morphological features like the size, length, width,
depth, and shape of the melt pool are essential features
from which crucial information about the underlying
phenomena can be inferred. The anomalies in the pro-
cess (Yang and Rai 2019), and the onset of defects can
be identified. Melt pools of smaller size (under-melt)
increase the time of manufacturing. Smaller melt pools
hinder fusion, thereby triggering porosity and balling
phenomena. Melt pools with smaller widths can inhibit
overlapping between adjacent tracks. Whereas shallower
melt pools hinder inter-layer fusion, thereby contribut-
ing to porosity. Porosity is deterrent to tensile and fatigue
strength (Kruth et al. 2007). Although larger melt pools
(over-melt) can reduce the manufacturing time, they
tend to increase porosity by vaporising the substrate
(Kamath et al. 2014; Dilip et al. 2017). Hence, the area
(size) of the melt pool is the most sought-after morpho-
logical feature. Part of our research focuses on the size
of the melt pool. However, the melt pool with the same
area can have different shapes. For instance, a small cir-
cular melt pool and a narrow but elongatedmelt pool can
share the same area. The solid-liquid boundary in such
cases differs from each other. The solid-liquid interface
affects nucleation as well as grain growth. They, in turn,
can alter the final build quality. Thus, the other part of our
research targets the shape of themelt pool. The shape and
size together constitute the complete morphology of the
melt pool. Lastly, the repeated heating and cooling of each
layer during printing makes the part experience a heat
treatment. This thermal history affects the recrystalliza-
tion and grain transformation phenomena. The thermal
history is controlled by the path of the laser. Thus, we
consider the build commands (consisting of the power
and position of the laser) to monitor the shape and size
of the melt pool.

Several attempts have been made to identify and
understand the parameters affecting the melt pool
behaviour. The energy density, ordinarily expressed as a
ratio of laser power (P) and velocity (v), is one of the
most widely investigated factors affecting the melt pool
(Gordon et al. 2020). A low energy density, owing to low
laser power or high velocity, accounted for lack-of-fusion
defects. Gordon et al. have noticed keyhole porosity in
case of high energy density. While the ratio P/v expresses
linear energy density considering the hatch spacing (h)
and layer thickness (t) to be invariable, other forms like
surface energy density (P/vh) by considering variable
hatch spacing; and volumetric energy density (P/vht)
by varying both hatch spacing as well as layer thick-
ness have also been explored (Thijs et al. 2010). Higher
scanning speed creates a narrowermelt pool, thereby lim-
iting inter-track fusion. High scanning speed results in
porosity as well as higher surface roughness (Kempen
et al. 2011). On the other hand, low scan speeds result
in an unstable melt pool, which translates into higher
volumetric porosity in addition to poor surface rough-
ness and distortion (Kamath et al. 2014). High hatch
spacing and layer thickness hinder inter-track and inter-
layer fusion. Bertoli et al. recognised the limited capacity
of energy density to characterise melt pool and advo-
cated to include additional parameters like hatching and
material properties. Additionally, laser spot diameter and
material properties (Rubenchik, King, and Wu 2018),
powder feed rate and temperature of base plate (Ocylok
et al. 2014), preheating temperature (Mertens et al. 2018)
and nature of inert gas (Zhang, Dembinski, and Cod-
det 2013), scan pattern (Yang et al.“From Scan Strategy
to Melt Pool,” 2020) have also been known to affect the
melt pool geometry.

The primary driver behind modeling melt pool mor-
phology is to maintain a melt pool of constant size
despite the variation in the thermal history and the pro-
cess parameters. Prior work that attempted to model the
melt pool morphology in an L-PBF process mostly relied
either on physics or statistics. Physics-based models can
constitute simple models as in the Wilson-Rosenthal
solution (Ramos-Grez and Sen 2019); or multiscale finite
element analysis (FEA) models as in Pal et al. (2014);
or computational fluid dynamic models (CFD) as in
Zhang and Zhang (2019). Simpler physics models trade-
off accuracy in terms of computational expense. Con-
trarily, although CFD and FEAmodels are accurate, they
are computationally expensive to allow real-time moni-
toring (Cao et al. 2021). The mesh size in FEA models
are usually kept smaller than the beam radius to improve
accuracy.Moreover, mesh number increases highly as the
build size and the number of laser scan tracks increase.
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Adaptive mesh refinement is one of the techniques to
improve accuracy with optimal computational complex-
ity. Other high fidelity models can become intractable
as the melt pool geometry is directly/indirectly affected
by more than 130 parameters (Yadroitsau 2008). Thus,
we have chosen machine learning (ML) techniques to
facilitate real-time prediction of melt pool size as well
as shape. Employing ML models eliminates the need to
solve complex equations based on process understand-
ing (Liu et al. 2020). More importantly, as the melt pool
is monitored by capturing its images and deep learning
techniques have the best accuracy in image processing
(e.g. feature recognition Zhang, Jaiswal, and Rai 2018,
inspection Rai and Jaiswal 2021; Yang et al.“CNN-LSTM
DeepLearningArchitecture,” 2020), it is a prudent choice
to usemachine learning tomonitor themelt pool from its
images.

Several works leveraged machine learning techniques
in various facets of additive manufacturing (Sharma,
Zhang, and Rai 2021). They are not just limited to pro-
cess optimisation (Aoyagi et al. 2019), process moni-
toring (Shevchik et al. 2018), anomaly detection (Scime
and Beuth 2018b, 2018a), andmonitoring defect artifacts
like porosity (Zhang, Liu, and Shin 2019). A few prior
research works are related to the prediction of melt pool
morphology using machine learning. A shallow neural
network with only one hidden layer was used to pre-
dict the length and width of the melt pool by considering
laser power and speed along with empirical models of the
neighbourhood as input parameters (Zhang, Shapiro, and
Witherell 2020). A convolutional neural network (CNN)
was used to qualitatively classify melt pool images into
undermelt, overmelt and regular melt based on the area
of the melt pool (Yang et al. 2019). The average width
and continuity of the track in an L-PBF process were
monitored from videos using CNNs in a semi-supervised
setup (Yuan et al. 2019). Akbari et al. used multiple sim-
pler ML models to predict the length, width, and depth
from material properties and process parameters. Real-
time performance and shape of the melt pool have never
been a priority in any of their works.

In the current research endeavour, we adopt the novel
objective of predicting the morphology of the melt pool.
Unlike previous works (for instance Zhang, Shapiro, and
Witherell 2020), we do not limit ourselves to quantifiable
attributes of quality like length, width, and depth of the
melt pool. In addition to the area, we also synthesise the
image of the melt pool to predict the shape of the melt
pool. The shape is a crucial factor that reflects the solid-
liquid interface and consequently controls the solidifica-
tion process. Moreover, we are the first to leverage the
instantaneous variables of the process, specifically the
build commands (consisting of laser power and position),

to predict the size and shape of the melt pool. In doing
so, we digress from the existing research as they mainly
focused on predefined process parameters which remain
invariable during the process or are not monitored dur-
ing the process. One of our input parameters, the laser
position (in terms of x and y coordinates), is the param-
eter that offers the maximum variability due to interfer-
ence (e.g. vibrations) during the process (Stanisavljevic
et al. 2020). Incorporating laser position as a parameter
captures the spatial variables of the melting and solidifi-
cation process. Lastly, most of the prior work (like that by
Yang et al. 2019 or byZhang, Shapiro, andWitherell 2020)
starts from the images of themelt pool to characterise the
melt pool or for feature extraction. That does not sup-
port real-time monitoring of melt pool morphology. As
we start from the build commands to predict the mor-
phology of the melt pool, our work facilitates real-time
monitoring.

We showcase practicable results in predicting the size
and shape of the melt pool. We innovate in two aspects to
get effective results.

Firstly, We utilise state-of-the-art machine learn-
ing models to effectively capture the interdependencies
among the respective features of the data samples.We use
long short term memory (LSTM) networks to predict the
area of the melt pool. The architectures of prior work (for
example, the PI-LSTM by Singh et al. 2019) are known
to be effective at capturing the underlying dependencies
among the features of the sample data. The LSTM cells
have been used for our specific application to reiterate
the processing of the previous features while taking new
features as input. This ensures the conditional interde-
pendencies among the features of the data by invoking the
memory retention capabilities of the LSTM cell and their
recurrent processing ability. This aids the LSTMmodel to
thoroughly process the input features, such as the power,
velocity, and density, to predict the melt pool size, which
in itself is a function of the interdependencies among
these features. Secondly, we use a melt-pool monitoring
generative adversarial network (MP-GAN) to synthesise
the images of the melt pool to study their shape. This
MP-GAN is inspired by the Conditional GAN (cGAN)
architecture. To the best of our knowledge, we are the
first to predict the shape of the melt pool. Both pro-
posed networks show promising results on experimen-
tal data. Figure 1 illustrates our overall computational
framework.

The remainder of this paper is organised as follows.
Section 2 introduces the data collection, pre-processing
and management processes. Section 3 details the LSTM
architecture to predict melt pool size, and corresponding
results. Section 4 deliberates the melt pool GAN (MP-
GAN) for predicting the shape of the melt pool and its
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Figure 1. Overall framework for machine learning based prediction of the size and shape of the melt pool.

results. The results are analysed in Section 5. Section 6
ends with concluding remarks.

2. Experiment setup

2.1. Data collection

The experiment is conducted on the National Institute
of Standards and Technology (NIST) Additive Manufac-
turing Metrology Testbed (AMMT) (Lane et al. 2016).
TheNISTAMMT is a fully custom, open-platformL-BPF
system to advance the research on control, monitoring,
andmetrology. The in-house developedAM control soft-
ware (SAM) allows the creation of various scan strategies
from a simple combination of different scan paths and
laser power/speed control (Yeung et al. 2018). The melt
pool incandescent emission is diverted to a high-speed
camera by a dichroic mirror and filtered at a band-
width of (85 + / − 20) nm. The custom optics enable
1:1 magnification and an image resolution of 8µm. The
laser position triggers the camera so that the melt pool
monitoring (MP) image can be precisely mapped to its
location.

The experiment on AMMT builds four 3D parts
with the same geometry: 5mm × 9mm × 5mm. The
parts were built on a wrought nickel alloy 625 (IN625)
substrate cut to 100mm × 100mm × 12.5mm. AMMT
deploys a stripe pattern with overshooting strategy to
scan the entire part. This experiment collects two types
of data: command data and coaxial melt pool image. The
command data consists of the location of the laser (x, y),
and the power of the laser (P). The coaxial melt pool
images are grayscale images of 120 pixel × 120 pixel size.
Each pixel corresponds to an area of 8µm × 8µm.

As mentioned earlier, we have two tasks in this
research: (1)melt pool prediction and (2)melt pool gen-
eration. A total of 17,692 data samples are collected, out
of which 11742 samples are used for training, and 5950
for testing. The training samples are collected from three
parts, and testing samples are collected from an indi-
vidual part. Each data sample pair includes command

data and a coaxial melt pool image. In the melt pool
prediction task, the command data is served as the input,
and the output (melt pool size) is extracted from the melt
pool image. In the melt pool generation task, the melt
pool image is applied as real samples, and the command
data is regarded as the conditions of the generation net-
work. Before infusing the data into the model, the data is
preprocessed for noise removal.

2.2. Data preprocessing

2.2.1. Melt pool size extraction
The coaxial melt pool images are represented as a
grayscale ranging from0 to 255. The pixel value is directly
proportional to the temperature (Lane and Yeung 2020).
It must be noted that the grayscale saturates as the tem-
perature exceeds 2100 ◦C. In the experiment, some bad
data samples are removed which are caused by preheat-
ing of the camera. Then, a threshold method is applied
to extract the melt pools. This study chooses 80 as the
threshold value, which has been shown to make the
extracted melt pool size consistent with manual mea-
surement and has been verified in previous research
(Lane and Yeung 2020; Yeung, Yang, and Yan 2020;
Yang et al.“3D Build Melt Pool Predictive Modeling,”
2020).

Nonetheless, the noise observed in the melt pool
images of an L-PBF process is potentially a pernicious
phenomenon (Criales et al. 2017). When the laser beam
strikes the metallic powder, local evaporation ejects
minute melt pool particles and blows away surrounding
heated particles due to the strong local convective flow.
These ejected and blown particles induce spatter. Spat-
tering particles originate from the vicinity of the melt
pool. Therefore, they have high temperatures and thus
appear as bright clusters of pixels (Khairallah et al. 2016)
(as shown in Figure 2(a)). Besides, in some of the pre-
melted areas, the material’s temperature elevates rapidly,
which results in a bright region. Both cases will interfere
with the coaxial melt pool images, affecting the ground
truth estimation of the melt pool.
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Figure 2. Denoising of melt pool Image. (a) Spatter and (b) melt pool extraction.

Table 1. Encoded direction (vd) of the velocity vector.

Velocity Angle [− π
4 ,

π
4 ) [ π4 ,

3π
4 ) (− 3π

4 ,− π
4 ] [ 3π4 ,π ] or [−π ,− 3π

4 ]

vd 0 1 2 3

To mitigate the adversities mentioned above, we
employ a noise removal method to improve the accuracy
of the extracted size of the melt pool. Figure 2(b) shows
the melt pool extraction procedure. We use the thresh-
old of 80 to extract the high-temperature area. Then,
we separate all the connected areas by inspecting their
Moore Neighborhood (Weisstein 2005). Only the max-
imum connected area is selected as the melt pool. The
melt pool size is calculated by counting the pixels in that
area. Finally, the melt pool size (s) is converted to real
measurement by using S = s ∗ 6.4 e−5, where S is themelt
pool area in the real scale (mm2) and s is the melt pool
area in pixels (Lane et al. 2016).

2.2.2. Feature extraction
The build command data (x, y,P) is preprocessed to
extract more useful information to boost the perfor-
mance of our network. Prior research identified the sub-
stantial impact of laser velocity and power density on
melt pool formation. Yang et al.“From Scan Strategy to
Melt Pool,” (2020), Lu et al. (2018) and Thijs et al. (2010).
Therefore, we include the velocity of the laser (v) by cal-
culating it using the central difference method. Besides
themagnitude of the velocity, the direction of the velocity
vector is encoded into a discrete value (vd). It is repre-
sented by four classes (as shown in Table 1). The laser
power density is computed by using d = P/v. Finally, a
vector that includes (x, y, P, v, vd, d) at each step becomes
the inputs of the prediction network and the conditions
of the generation network.

2.3. Computational resources

All the training and testing procedures are executed using
Tensorflow on a server with Linux Centos 7.5.x opera-
tion system, Intel Xeon Gold 6230 processor (40 cores
@2.10GHz), 32GB RAM, and NVIDIA Tesla V100 GPU.

3. Melt pool size prediction

3.1. LSTM

LSTM (Hochreiter and Schmidhuber 1997), a kind of
Recurrent Neural Network, was designed to model the
dynamic systems’ temporal dependencies. In the past,
LSTMs have been successfully applied to sequential
data processing and time series forecasting. Besides, the
LSTMs are used for the tasks of speech recognition
(Petridis, Li, and Pantic 2017) and language modeling.
Herein, we used an LSTM-based data-driven model for
predicting the area (size) of the melt pool. Inspired by
one of our previous works (Singh et al. 2019), we inno-
vatively use the sensor data by exploiting the memory
retention capabilities and recurrent processing power of
the LSTM units. As opposed to simply depending on the
time-series reliance of the datasets, similar to the conven-
tional approach, we feed the dataset features to different
timesteps of the LSTMunit. In the process, we put an end
to the dependency of LSTM cells on sequential data. Our
model, as shown in Figure 3(a), has LSTM cells with six
(same as the number of features in the training data) time
(or recurrent processing) steps. The network’s input is X
that contains (x, y,P, v, vd, d), and the outputYr is the size
of the melt pool area. The approach, as mentioned above,
makes sure that we invoke the rigorous data processing
power of the memory cells.

Figure 3(b)) demonstrates the working of the individ-
ual LSTM cell. xt is the input feature at time step t, and
at is the hidden activation at time step t, represented by
Equation (3). The internal state ct is determined using
Equation (2). c∼t , determined using Equation (1), works
as a placeholder for ct . At time step t, ct is obtained using
ct−1 and c∼t .

c∼t = tanh(Wc
aa

t−1 + Wc
xxt) (1)

ct = f t
⊗

ct−1 + ut
⊗

c∼t (2)

at = ot
⊗

tanh(ct). (3)

Here, Wi
j denotes the weight matrices. f t , ut , and ot are

the forget gate, update gate, and output gate, respectively
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Figure 3. LSTM Network. (a) LSTM Network Architecture and (b) LSTM Cell.

and are calculated as follows:

f t = σ(Wf
aat−1 + Wf

xxt) (4)

ut = σ(Wu
aa

t−1 + Wu
x xt) (5)

ot = σ(Wo
aa

t−1 + Wo
xxt) (6)

where, σ is the logistic sigmoid function. at is the infor-
mation accumulated, till time step t, due to the recurrent
processing of previous time steps. The final output, which
is the melt pool size, is determined using at .

3.2. Hyperparameter tuning

The process alludes to choosing a bunch of ideal param-
eters during the training process, which yields an opti-
mally fitting model for a given dataset (Claesen and
De Moor 2015). Typical examples of hyperparameters
include layer size, filter size, total layers, batch size, and
learning rate. In this paper, we obtain the optimal model
configuration by evaluating various combinations of the
chosen hyperparameters. The selected hyperparameters
are the number of neurons in the LSTM layer, type of
optimiser, number of training epochs, and batch size. The
algorithm used a grid search over a parameter grid of 72
candidate combinations, with five-fold cross-validation,
resulting in 360 fits of the entire training dataset. The best
hyperparameter combination culminated into a model
that uses a batch size of 100, deploys Adam as the prin-
cipal optimiser, incorporates five neurons in the LSTM
layer, and runs over 200 epochs of training.

3.3. Results and analysis

The devised model registers a mean average error of
0.0024mm2 over the testing set. Also, we define the
model accuracy as the ratio of the absolute error between
the predicted melt pool size and the observed value to
the observedmelt pool size. Besides, owing to its efficient
data handling, themodel exhibits amean accuracy of 90.7
percent on the testing data. To evaluate the impact of the

Table 2. Model comparison.

Model DNN GRU LSTM

Trainable Parameters 651 826 146
Number of Layers 3 2 2
Optimizer RMSprop Adam Adam
Batch Size 200 50 100
Training Epoch 500 100 200
MAE (mm2) 0.0030 0.0033 0.0024
Accuracy (%) 89.9 88 90.7

melt pool over the whole part, the contour plot and 3D
surface plot are generated (as shown in Figure 8). The
value of the z-axis in the 3D surface plot (the colour in
the contour plot) represents the size of themelt pool area;
the x and y-axis are the coordinates of the laser point.
The closed square is the manufactured part. As depicted
from Figure 8, the overall distribution of ground truth
and the predicted melt pool size are similar. Moreover,
the largemelt pools in the predicted results are accurately
captured, which can help to optimise the manufacturing
procedure. We compared various deep learning architec-
tures for predicting the melt pool size, and the results are
enumerated in Table 2. It is patent from the tabular data
that the LSTM outperforms the other two types of model
architectures to predict the melt pool area.

4. Melt pool image generation

4.1. MP-GAN

In the previous section, we predicted the size of the melt
pool by using an LSTM network. However, focusing only
on themelt pool size does not offer any information about
the geometry of the melt pool. The geometry, in terms of
the shape of the melt pool, can provide additional insight
into the manufacturing process. For instance, the melt
pool can develop a long tail if the velocity is high. The
high velocity may not melt the powder particles prop-
erly and thus could be detrimental to the fusion process.
That will create lack-of-fusion pores. On the other hand,
a melt pool with a uniform but large shape can arise due
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to a relatively slower velocity. This case is favourable for
keyhole porosity. Hence, realising the gravity of the shape
of the melt pool, we propose a melt pool GAN (MP-
GAN) to generate the melt pool images to obtain more
comprehensive information about the melt pool. Our
MP-GAN is inspired by conditional Generative Adver-
sarial Network (cGAN) (Mirza and Osindero 2014). The
proposed model consists of two networks: a generator
G(z, cc, cd; θg) and a discriminator D(s, cc, cd; θd), where
z is the input noise vector, s is either the ground truth
or synthetic melt pool image, cc is the continuous con-
ditional vector, cd is the discrete conditional vector, and
θg and θd are the training parameters within generator
and discriminator respectively. For the melt pool genera-
tion problem, the continuous condition vector cc includes
laser position (x, y), power (P), power density (d) and
magnitude of velocity (v). The discrete conditional vector
cd only contains direction of the velocity vector (vd).

4.1.1. Network architecture
• Generator: Our purpose is to generate melt pool

images based on the previously generated feature vec-
tor. A generator that can learn the combining dis-
tribution of feature vectors and given real melt pool
images is needed. Therefore, we constructed a gen-
erator based on a deconvolution network. As shown
in Figure 4, the inputs to the generator are the noise
vector z and the conditional vector c. As we discussed
previously, we have two types of conditional vectors:
continuous condition cc and discrete condition cd.
Two conditional inputs are embedded into the shape
of 10 × 10 × 1, and noise input is embedded into 10 ×
10 × 128 before concatenating together. Thus, z and
c are embedded as joint hidden representation h in a
high dimensional space. Finally, a three-layer decon-
volution neural network is utilised to generate themelt
pool image from the hidden vector h. The detail of the
architecture is described in Table 3.

• Discriminator: To evaluate the quality of the syn-
thetic image, we design a CNN to perform the clas-
sification task. Similar to the generator, the two con-
ditional inputs of the discriminator are embedded
into a shape of 120 × 120 × 1 individually, and they
are concatenated with the input images (120 × 120 ×
1). The embedded vector is then infused into the
two-layered CNN to perform a ‘Real/Fake’ classifi-
cation. The architecture parameters can be found in
Table 3.

4.1.2. Loss function
The objective of the original GAN can be regarded as
a minimax assignment where the generator (G) tries
to minimise this objective while the discriminator (D)

attempts to maximise it according to the following
expression:

min
G

max
D

L(D,G)

= Ex∼pd(x) logD(x) + Ez∼pz(z) log(1 − D(G(z)))
(7)

where G builds a mapping relation from the noise dis-
tribution pz(z) to the distribution pd(x) and D evaluates
the probability that a sample originates from the distribu-
tion pd(x) rather than from the generator G (Mirza and
Osindero 2014; Liao et al. 2019). In our MP-GAN, the
conditional information cc and cd are added to G and D
so that G can capture the data distribution based on con-
ditions. Besides, D also takes conditional information to
make sure the generated images are able to follow the dis-
tribution. Thus, the objective function of MP-GAN is as
follows:

min
G

max
D

L(D,G)

= Ex∼pd(x) logD(x, cc, cd)

+ Ez∼pz(z) log(1 − D(G(z, cc, cd))) (8)

4.2. Results and analysis

4.2.1. Training procedure
The procedure of training the proposed MP-GAN is
shown in Algorithm 1. To prevent saturation, we update
the discriminator three times in every iteration (k = 3).
Besides, we also apply dropout in D after flattening to
avoid overfitting. Based on our computational resources,
theminibatch size (m) is set to 150. In addition, theAdam
optimiser, with a learning rate of 0.0002, is utilised to
optimise the Binary Cross Entropy loss for training both
G and D. The total training time is 7 h 16min for 50
epochs.

4.2.2. Qualitative evaluation
We train our MP-GAN for 50 epochs. The evolution
of the generator’s result is shown in Figure 5. Several
combinations of conditional parameters are selected as
inputs. After each epoch, the generator synthesises the
corresponding images. As depicted in Figure 5, first, the
generator tries to learn the melt pool position. Then
the generator learns to generate the smooth boundary
of the melt pool. Finally, after sufficient epochs of train-
ing, the generator is able to capture the intricate details
of the melt pool. By comparing the synthetic results with
ground truth (GT), it is evident that the generator is able
to synthesise the melt pool images with high precision
and accuracy.
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Figure 4. MP-GAN architecture.

Table 3. MP-GAN hyper architecture.

Layer Filter Size Number Filters Stride Padding Activation Output Shape

G Deconv1 4 × 4 128 (3, 3) ‘Same’ LeakyReLU (30, 30,128)
Deconv2 3 × 3 128 (2, 2) ‘Same’ LeakyReLU (60, 60, 128)
Deconv3 2 × 2 128 (2, 2) ‘Same’ LeakyReLU (120,120,128)

D Conv1 4 × 4 128 (2, 2) ‘Same’ LeakyReLU (60, 60, 128)
Conv2 3 × 3 128 (2, 2) ‘Same’ LeakyReLU (30,30,128)
Flatten – – – (115200,1)

After comparing all synthetic images and ground truth
images, we observed a few exceptional cases. As shown
in Figure 6, we can notice some spatters and abnormal
melt pools in the ground truth images. However, the syn-
thesised images are not able to obtain these abnormal
behaviours. Since the neural network is robust to the
noise, the spatter and abnormal regions vanish during
training.

4.2.3. Quantitative evaluation
• Melt pool size: After getting the synthetic melt pool

images, we first verified if the synthetic melt pool
images could provide an accurate estimate of the melt
pool size. By applying thresholding and pixel count-
ing methods discussed in Section 2.2, we compared
the size of the melt pool in synthetic images with
those of ground truth images. Themean absolute error

Algorithm 1Minibatch stochastic gradient descent training of MP-GAN (Goodfellow et al. 2014).
Require: The number of steps applied to the discriminator k; the parameters of generator and discriminator θg and

θd; the batch sizem and the number of training iterations n.
1: for n do
2: for k steps do
3: Sample a minibatch ofm noise samples from the noise prior pg(z).
4: Sample minibatch ofm examples from training melt pool images x.
5: Extract the corresponding conditional parameters from cc and cd.
6: Update the discriminator by ascending its stochastic gradient:

∇θd

1
m

m∑
i=1

[
logD

(
x(i), c(i)c , c(i)d

)
+ log

(
1 − D

(
G

(
z(i), c(i)c , c(i)d

)))]

7: end for
8: Sample a minibatch ofm noise samples from noise prior pg(z).
9: Update the generator by descending its stochastic gradient:

∇θg

1
m

m∑
i=1

log
(
1 − D

(
G

(
z(i), c(i)c , c(i)d

)))

10: end for
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Figure 5. Examples of MP-GAN training procedure through training epochs. GT is Ground Truth.

(MAE) of melt pool size is 0.0029mm2, and the accu-
racy is 88.7%. We also looked into the global per-
formance of the melt pool size, shown in Figure 8.
The contour plot and 3D surface of the melt pool size
illustrate that the synthetic melt pool images follow
the overall distribution of ground truth. While MP-
GAN is less accurate than the melt pool prediction
network, MP-GAN still achieves a satisfactory perfor-
mance. The additional error mainly arises from two
factors. (1) GANs themselves are not stable enough
to perform regression problems. (2) The raw image is
directly used to train the generator. Presence of spatter
and plume in the ground truth data accounts for this
error.

• Melt pool shape: Generating synthetic images of the
melt pool offers more flexibility in analysing the prop-
erties of the melt pool than only predicting its size.
Hence, we also investigated if the shapes of generated
melt pool images follow those of the ground truth

images. Since the melt pool’s shape resembles an
ellipse, a least-square ellipse regression method is
applied to find the bounding ellipses (Gander, Golub,
and Strebel 1994). Additionally, similar to melt pool
size calculation, we use 80 as a threshold to extract the
melt pool boundary at the beginning of the process-
ing. The processing steps are illustrated in Figure 7.
As shown in the figure, the blue contour is the melt
pool boundary after the thresholdmethod, and the red
contour is the ellipse extracted by regression. Finally,
the length of the ellipse’s major and minor axes and
rotation angle are considered as the characteristics to
evaluate the synthetic images. The results (displayed in
Table 4) demonstrate that prediction accuracy is satis-
factory. However, it is lower than that of the melt pool
size due to the error in the ellipse regression method.

• SSIM: Structural similarity (SSIM) is used for measur-
ing the similarity between two images. SSIM is based
on three comparison metrics between the ground
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Figure 6. Abnormal results.

truth image x and synthetic image y: luminance
l(x, y), contrast c(x, y) and structure s(x, y) (Wang,
Simoncelli, and Bovik 2003). They are expressed as:

l(x, y) = 2μxμy + c1
μ2
x + μ2

y + c1
(9)

c(x, y) = 2σxσy + c2
σ 2
x + σ 2

y + c2
(10)

s(x, y) = σxy + c3
σxσy + c3

(11)

where μx,μy, σx, σy, σxy are average, variance and
covariance respect to xandy; ci is constant. The SSIM
can be calculated by:

SSIM(x, y) = l(x, y)c(x, y)s(x, y)

=
(
2μxμy + c1

) (
2σxy + c2

)
(
μ2
x + μ2

y + c1
) (

σ 2
x + σ 2

y + c2
)
(12)

The SSIM value of our test set is 0.91, indicating that
the synthetic images are indeed close to the ground
truth.

• PSNR: The peak signal-to-noise ratio (PSNR) is
widely used to measure the quality of generation
(Salomon 2004;Wolterink et al. 2017). It is an approx-
imation to human perception of the quality of image
generation. The first step is to find the mean square
error (MSE) between two images x and y:

MSEx,y = 1
mn

m−1∑
i=0

n−1∑
j=0

[x(i, j) − y(i, j)]2 (13)

Then the PSNR value of x and y can be represented as:

PSNRx,y = 10 log10

(
MAX2

x
MSEx,y

)
(14)

in which,MAXx is the maximum possible pixel inten-
sity (= 255). The PSNR value of the synthesised

Table 4. Melt pool shape evaluation.

Major Axis Minor Axis Rotation Angle
(mm) (mm) (degree)

MAE 0.026 0.008 2.79
Accuracy 92.0% 86.9% –

images of the test data is 32.34 dB, which reflects our
model’s promising performance.

5. Discussion

A closer look at the contour plots of the area of the
melt pool reveals that the contours generated by the
LSTM (Figure 8(e)) and the MP-GAN (Figure 8(f))
are strikingly similar to that of the ground truth data
(Figure 8(d)). The> 90% accuracy of the LSTM network
and the 0.91 similarity score of theMP-GANadvocate for
their usage in real applications. A higher melt pool area
obtained from the LSTM network reflects high energy
density. It should be lowered proportionately to avoid
overmelting and the consequent keyhole porosity. Con-
trarily, in the case of a low melt pool area that indicates
low energy density, the energy density shall be increased
to avoid lack-of-fusion pores.

The images generated by the MP-GAN can reduce
the reliance on expensive high-speed cameras used to
capture the melt pool images during the process. The
generated images can offer deeper insights into process
control. For instance, the generated images capture the
shape of the melt pool in two dimensions. Thus, the melt
pool’s length and width (major and minor axes) can be
inferred from those images. The length of the melt pool
can help in controlling the scan velocity. The scan veloc-
ity can be lowered if the length is high and vice-versa.
Correlating the inferred width with hatch spacing can
help in controlling inter-track fusion. If the melt pool
width is lower than the hatch spacing, it will hinder
fusion between adjacent tracks. The condition becomes
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Figure 7. Ellipse regression processing.

Figure 8. Contour and 3D surface comparison. (a) 3D surface of ground truth. (b) 3D surface of LSTM model. (c) 3D surface of MP-GAN
model. (d) Contour plot of ground truth. (e) Contour plot of LSTMmodel and (f ) Contour plot of MP-GANmodel.

favourable for balling and lack-of-fusion pores. A higher
area and amelt pool width higher than the optimal width
signifies high energy density. Increasing the scan veloc-
ity or decreasing the laser power can balance the energy
density.

The images of the melt pool do not offer any infor-
mation about the depth of the melt pool. A volumet-
ric rendering of the melt pool can offer significantly
more information about the morphology of the melt
pool. It can support monitoring of the inter-layer fusion
behaviour. Additionally, this research work solicits fur-
ther investigation to capture the synthesis and disappear-
ance of spatter.

6. Conclusion and future work

In the current research endeavour, the melt pool mor-
phology in a laser-based powder bed fusion additive

manufacturing process is predicted from build com-
mands. Two components of the morphology, size and
shape, are predicted using machine learning. The area
(size) of the melt pool is predicted using an LSTM net-
work. The shape is inferred by synthesising the images
of the melt pool using amelt pool GAN (MP-GAN). The
LSTM network achieved an accuracy of 90.7% in esti-
mating the area of the melt pool. The MP-GAN could
generate the melt pool images with satisfactory preci-
sion and accuracy. A structural similarity score of 0.91
of the synthesised images on the test data demonstrates
the efficacy of our approach. Our method can enable
real-time monitoring and feedback control at the layer
level, thereby improving final build quality. Additionally,
the high-frequency melt pool image synthesis can reduce
the reliance on sophisticated instrumentation. The AM
process can also be optimised by simulating it prior to
execution.
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The investigation can be further advanced in multi-
ple directions, including the manufacturing process as
well as modeling. Parts with complex geometry and vari-
ations in process parameters can be promising avenues
for future research. The models can also be improved
using different architectures and physics-guided neural
networks.
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