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Abstract—In this work, we analyse in detail the weaknesses underlying the
Heartbleed vulnerability, CVE-2014-0160, and show why and how highly sensitive
information could be exposed via buffer over-read.

H eartbleed was a serious vulnerability in the
popular OpenSSL cryptographic software li-
brary [1]. The fatal bug was in the Heartbeat

Extension of the TLS (Transport Layer Security) proto-
col implementation. The vulnerability was disclosed in
April 2014 with the following Common Vulnerabilities
and Exposures (CVE) [2] entry.

CVE-2014-0160: “The (1) TLS and (2) DTLS im-
plementations in OpenSSL 1.0.1 before 1.0.1g do not
properly handle Heartbeat Extension packets, which
allows remote attackers to obtain sensitive information
from process memory via crafted packets that trigger
a buffer over-read, as demonstrated by reading private
keys, related to d1_both.c and t1_lib.c, aka the Heart-
bleed bug.” [3]

Attacks exploiting Heartbleed, can reveal highly
sensitive information – such as private keys, user login
credentials, and business or personal information – via
reads over the buffer bounds (i.e., buffer over-reads).
Heartbleed’s name literally means a server (or a client)
with a vulnerable Heartbeat Extension can “bleed” data
via heartbeat response messages. A small heartbeat
message with a large requested length can reveal
up to 64KB raw memory, and multiple requests can
accumulate huge amounts of data. [4]

For the lack of a more precise Common Weakness
Enumeration (CWE) [5] entry, the National Vulnerability

XXXX-XXX © 2023 IEEE
Digital Object Identifier 10.1109/XXX.0000.0000000
Date of current version xx March 2023.

Disclaimer: Certain equipment, instruments, software, or mate-
rials, commercial or non-commercial, are identified in this pa-
per in order to specify the experimental procedure adequately.
Such identification is not intended to imply recommendation
or endorsement of any product or service by NIST, nor is it
intended to imply that the materials or equipment identified
are necessarily the best available for the purpose.

Database (NVD) [6]) assigns to CVE-2014-0160 [7]
CWE-119 "Improper Restriction of Operations within
the Bounds of a Memory Buffer" [8], which covers both
underbounds and overbounds, and both reads and
writes to or from a buffer. However, we can describe
it precisely utilizing the National Institute of Standards
and Technology (NIST) Bugs Framework (BF) [9]. We
will use the BF Data Verification (DVR), Memory Ad-
dressing (MAD), and Memory Use (MUS) classes [9]
to describe Heartbleed at a level of detail allowing
clear understanding of its underlying bugs, chains of
weaknesses, and exploitable errors.

In this article, we analyze the Heartbleed code (see
Figure 1a) and clearly describe how Heartbleed leads
to buffer over-read. We also examine what else is
needed for such buffer over-reads to cause exposure
of sensitive information.

THE BUGS FRAMEWORK (BF)
We are developing the NIST Bugs Framework (BF)
[9] as a structured, complete, orthogonal classification
system of software security bugs and weaknesses,
which is also language and domain independent. BF
consists of a set of bug/weakness class taxonomies
and a formal language for describing software security
vulnerabilities.

A BF class is a taxonomic category of a weakness
type, defined by a set of operations – where such
bugs could happen, a set of causes – the possible
improper operations (bugs) and improper operands
(faults), a set of consequences – the possible errors
(that become faults for next weaknesses) and the
possible final errors (that become exploits), a matrix of
valid cause→operation→consequence relations, and a
set of attributes for the operations and the operands.

The BF formal language adheres to our BF vulnera-
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1448 dtls1_process_heartbeat(SSL *s)
1449 {
1450 unsigned char *p = &s->s3->rrec.data[0], *pl;
1451 unsigned short hbtype;
1452 unsigned int payload;
1453 unsigned int padding = 16; /* Use minimum padding */
1454
1455 /* Read type and payload length first */
1456 hbtype = *p++;
1457 n2s(p, payload);
1458 pl = p;
...
1465 if (hbtype == TLS1_HB_REQUEST)
1466 {
1467 unsigned char *buffer, *bp;
...
1470 /* Allocate memory for the response, size is 1 byte
1471 * message type, plus 2 bytes payload, plus
1472 * payload, plus padding
1473 */
1474 buffer = OPENSSL_malloc(1 + 2 + payload + padding);
1475 bp = buffer;
1476
1477 /* Enter response type, length and copy payload */
1478 *bp++ = TLS1_HB_RESPONSE;
1479 s2n(payload, bp);
1480 memcpy(bp, pl, payload);

(a) The Heartbeat buggy C code in ssl\d1_both.c [10].

/* Naive implementation of memcpy
void *memcpy (void *dst, const void *src, size_t n)
{

size_t i;
for (i=0; i<n; i++)

*(char *) dst++ = *(char *) src++;
return dst;

} plbp

payload

(b) A naive C implementation of the memcpy() function.

FIGURE 1: Analysis of Heartbleed.

bility model, according to which a vulnerability descrip-
tion is a chain of underlying weaknesses leading to a
security failure. [11]

In this work, we describe the Heartbleed vulnera-
bility utilizing the taxonomies of the BF DVR [12], MAD
[13], and MUS [13] classes1. DVR relates to how input
data semantics is checked or corrected. MAD relates
to how an object pointer is initialized, repositioned, or
reassigned. MUS relates to how an object is initialized,
read, written, or cleared.

1The most current BF taxonomies are accessible from BF
website [9].

HEARTBLEED ANALYSIS
A vulnerability can be described precisely as a se-
quence of improper states of software execution
phases. An improper state is represented by an
(operation, operand1, · · · , operandn) tuple, where
at least one element is improper. The error from the
last state is the exploitable one. In some cases, more
than one vulnerability may need to be present for an
exploit to be harmful. [11]

The buggy OpenSSL Heartbeat [10] C code that
caused Heartbleed and wreaked havoc across the
world was both in the d1_both.c and t1_lib.c files.
Figure 1a presents its first occurrence. Let’s examine
in detail and determine the improper states.
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Final State – ends with a Final
Error, which becomes an Exploit

…

FIGURE 2: Heartbleed’s improper states. Two software security vulnerabilities converge at their Buffer Over-Read
and Not Cleared Object final errors to cause an Information Exposure (IEX) security failure.

The very first problem is in the data verification
phase, where the semantics of the input should be
checked and corrected. The variable payload is de-
clared as an unsigned integer and can be a huge
number (see line 1452, Figure 1a). It is input data,
that hold the payload length, but that length is not
checked towards an upper limit (see line 1457, Figure
1a). Its value is not verified! This improper state is
an instance of the BF Data Verification (DVR) class
[12], represented by the (Verify, Data) tuple, where
the first element is improper. The operation Verify is
missing (see the first state in Figure 2).

Then, memcpy reads payload number of bytes
from the object pointed by pl and copies them to
the object pointed by bp (see line 1480, Figure 1a).
Following the naive C implementation of memcpy in
Figure 1b, bp and pl are passed by reference via
dst and src, and the huge payload length is passed
via the argument n. First, one byte is read from pl

and copied to bp; then, until the huge payload length
is reached, both pointers move one byte up, and the
newly pointed by pl byte is read and copied. However,
while bp is allocated large enough (see line 1475,
Figure 1a), pl points to an array with reasonable size
(see line 1458, Figure 1a). As the content of this array

is read and copied to bp, so, too, is a huge amount of
data from over its bounds.

There are two improper states here: when pl gets
repositioned over its upper bound, and when data are
read from there. The former is an instance of the
BF Memory Addressing (MAD) class [13], represented
by the (Reposition, Data,Type, Address, Size)
tuple, where the second element is improper (see the
second state in Figure 2). There is no bug in the
repositioning itself, however, a value that is inconsistent
with the size of the pl object is used. The latter is
an instance of the BF Memory Use (MUS) class [13],
represented by the (Read, Data, Type, Address,
Size) tuple, where the fourth element is improper (see
the third state in Figure 2). Again, there is no bug in
the Read operation itself, but, because pl points over
bounds, the software reads data that should not be
read – aka buffer over-read.

This chain of three BF states (see the upper row in
Figure 2) shows there is read over the buffer bounds,
however, it does not show how an exploit could reach
sensitive data, such as private keys. The vulnerability
triggered by the missing size verification bug is not
enough to get access to sensitive information.

To describe the bug in this parallel vulnerability, we
use again the BF MUS class [13]. The improper state
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FIGURE 3: The Heartbleed fix in Heartbeat – see the C code in lines 1468 and 1469 in the green area [14].

is represented by the (Clear, Data, Type, Address,
Size) tuple, where the first element is improper, but
this time the operation Clear is missing (see the second
chain in Figure 2). Converging the final errors from both
chains – buffer over-read and not cleared object – the
buggy software can now reach and expose sensitive
information.

The fix of the bug in the main Heartbleed chain is
as trivial as the bug itself (see the C code in Figure 3).
[14]. An input data value check is added, so that, if the
requested and the actual lengths (sizes) are different
(see line 1468, Figure 3), the heartbeat message is
silently ignored (see line 1469, Figure 3).

Our code analysis reveals the causal relationships
between the weaknesses underlying Heartbleed. Miss-
ing input data verification leads to use of inconsistent
size for a buffer, allowing a pointer reposition over
bounds, which converging with missing clear, allows
remote reads of sensitive information and its exposure.

BF DESCRIPTION OF HEARTBLEED
A BF vulnerability description [11] uses causal re-
lations to form a chain of underlying weaknesses,
leading to a failure. Each weakness is an instance
of a weakness type with a particular bug or fault
as a cause and an error as a consequence. It
is represented by a (bug, operation, error)

or (fault, operation, error) triple, which el-
ements adhere to the BF class taxonomies [9]. The
error is the result of an operation over its operands.
It establishes the transition to another weakness or
a failure. A BF vulnerability description also uses at-
tributes to explain what, how, and where went wrong.
They help us understand the severity of the bug or the
fault causing the weakness.

Our precise BF description of Heartbleed is de-
picted in Figure 4 (machine readable versions are
accessible from the BF website [9]). Using the
BF taxonomy of the involved weaknesses, first is
the Data Verification (DVR) weakness, represented
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BF Descrip�on of CVE-2014-0160 -- Heartbleed
in OpenSSL1.0.1 before 1.0.1g

Chain 1

Data Verification (DVR) Weakness
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Execution Space
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Data State
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Memory Addressing (MAD) Weakness

Data Fault Operation Address Error

Wrong Size
(for s→s3→rrec.data[0])

Reposition Over Bounds Pointer

Mechanism
Sequential

Source Code
Third-Party (library
d1_both.c and t1_lib.c)

Execution Space
Userland

Address State
Heap

Size Kind
Value

Memory Use (MUS) Weakness

Address Fault Operation Memory Disclosure Final Error

Over Bounds Pointer
(for s→s3→rrec.data[0])

Read Buffer Over-Read

Mechanism
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Third-Party (library
d1_both.c and t1_lib.c)
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Userland

Address Kind
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Address State
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Bug Fault / Error Final Error Operation / Operand

Memory Use (MUS) Weakness

Code Defect Bug Operation Memory DisclosureFinal Error

Missing Code Clear Not Cleared Object
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Address State
Heap

IEX

Failure
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FIGURE 4: The BF description of Heartbleed, CVE-2014-0160. Comprises two vulnerability chains of underlying
weaknesses, which converge to cause information exposure (IEX) security failure. Machine readable versions of
this description are accessible from the BF website [9].

by the (Missing Code, Verify, Inconsistent

Value) cause-operation-consequence triple (see the
first group in Chain 1, Figure 4). The missing input data
verification (semantics check) code defect bug2 leads
to a data error – a data value that is inconsistent with

2A bug always causes the first weakness in a chain of
weaknesses; it is the code or specification defect, that has
to be fixed to resolve the vulnerability [11]

(not corresponding to) the size of the buffer. The Mech-
anism, Source Code, and Execution Space attributes
are about the Verify operation. The Data State attribute
is about the Data operand. Mechanism shows the
missing verification should have been check against
size (length). Source Code shows the buggy code is
in codebase – the d1_both.c and t1_lib.c source
files. Execution Space shows with what privilege level
the buggy code is running – it is in an environment
with local user (limited) permissions. Data State shows
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where the data come from – they are transferred via a
network.

Next is the Memory Addressing (MAD)
weakness, represented by the (Wrong Size,

Reposition, Over Bounds Pointer) cause-
operation-consequence triple (see the second group
in Chain 1, Figure 4). The wrong size data fault3 at
repositioning leads to a pointer pointing overbounds
address error. The Mechanism attribute here shows
how the repositioning is done – it is sequential,
iterating over the buffer elements. The Address State
attribute shows where the buffer is laid out – it is
dynamically allocated in the heap. The Size Kind
attribute shows what the limit for iteration over object’s
elements is – it is a requested value.

Last in this chain is the Memory Use (MUS)
weakness, represented by the (Over Bounds

Pointer, Read, Buffer Over-Read) cause-
operation-consequence triple (see the third group in
Chain 1, Figure 4). The over bounds pointer address
fault results in a buffer over-read memory disclosure
final error4. The Address Kind attribute shows what
the accessed outside object’s bounds memory is – it
is huge, up to 64KB of memory.

Coming from another chain is again a MUS
weakness, represented by the (Missing Code,

Clear, Not Cleared Object) cause-operation-
consequence triple (see Chain 2, Figure 4). The
missing clear (change to non-meaningful value – e.g.,
via zeroization) code defect bug leads to an object
with not cleared data memory disclosure final error
(see the one-group chain in Figure 4). The attributes
are the same as for the MUS weakness in the first
chain, however, this is a different vulnerability and the
source code is in different software.

The memory disclosure final errors buffer over-read
and not cleared object, combined, cause information
exposure (IEX) security failure. Either the missing ver-
ification bug or the missing clear bug has to be fixed
to avoid this security failure.

DISCUSSION
The OpenSSL cryptographic software library is used by
Internet servers – including Hypertext Transfer Protocol
Secure (HTTPS) websites – to secure network com-
munications against eavesdropping or to identify com-
municating parties. It is widely popular and deployed

3A fault, corresponding to the error from a previous weak-
ness, causes each intermediate weakness. [11]

4The last weakness always ends with a final error (unde-
fined or exploitable system behavior). [11]

on servers worldwide. However, it is still software and
may have bugs, leading to security vulnerabilities.

Heartbleed was introduced in the OpenSSL TLS
Heartbeat Extension in 2012 [1] and when discovered
in 2014 was already on hundreds of thousands of web
servers. It was so severe that for increased aware-
ness became the first vulnerability with its own logo
and name [1], and catalyzed formal methods research
towards security vulnerabilities [15].

Once identified, the bug in the TLS implementation
of the Heartbeat Extension [10] was easy to fix [14] and
a patch for the OpenSSL cryptographic software library
was distributed. Nevertheless, in 2019 – five years later
– the Heartbleed vulnerability was still present on 77K
devices worldwide, including over 18K Apache httpd
servers [4]. In 2020, attacks against Heartbleed were
still ongoing [16] and there might still be thousands
of unpatched, and thus vulnerable to Heartbleed sys-
tems, that we are accessing unaware of the risks.

The most frequent memory corruption exploits re-
late to buffer overflow (i.e., buffer over-write), which is
also second to injection in severity [17]. However, as
demonstrated by Heartbleed, buffer over-read although
not so frequent can also be very dangerous, as ex-
posure of sensitive information is at stake. It is key
to acknowledge though that there would be no infor-
mation exposure failure if sensitive data were always
protected or at least always cleared from memory after
being used.

Developers of applications could prevent the dam-
age from buffer over-reads if they understood clearly
how the failure emerges. As we point, there are two
contributing chains of weaknesses and the information
exposure failure can be prevented by fixing the bug in
only one of these chains (see Figures 2 and 4). The
Heartbleed vulnerability bug from the first chain would
not cause any harm if the missing clear bug of the
second chain is not present or fixed. If unused sensitive
data are always promptly removed from memory, even
a severe vulnerability such as Heartbleed would be
much harder to exploit.

One may argue that the Heartbleed vulnerability
could be used to expose sensitive data while they are
in use. For example, an ingenious attacker could hit the
SSL/TLS certificate private key when it is in the system
memory and being used. Even though this attack is
extremely hard [18], clarifying that BF descriptions are
context-sensitive is crucial.

The context of other software or hardware, inter-
acting with the vulnerable software, may inflict modifi-
cations in the detailed BF description of a particular
vulnerability. The provided in this article description
of Heartbleed considers only the OpenSSL Heartbeat
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Extension and the sensitive data left in memory by
other software. For example, no trusted execution en-
vironment (TEE) [19] is taken into consideration.

In the context of strong memory access control
(such as hardware-based protection), the second chain
of the BF Heartbleed description would be different.
We would use the BF Authentication (ATN) class to
describe Heartbleed for a server where private keys
could be protected by a TEE but they are not, allowing
an attacker to use Heartbleed to reach these keys
outside the secure memory.

All this brings us to the realization that more context
aware efforts and research are needed towards under-
standable and formalizable vulnerability descriptions.
The former – to assure clear communication about
bugs, weaknesses, and vulnerabilities among Infor-
mation Technology (IT) executives and professionals.
The latter – to empower development of tools for
vulnerability detection, prediction, and prevention. The
precise detailed description of Heartbleed in this article
is a demonstration of our efforts towards these goals.

CONCLUSION
Software security vulnerabilities open the door for at-
tacks towards Cyberspace and the critical infrastruc-
ture. Heartbleed was one of the most severe and
damaging vulnerabilities in the Web history. Because
the OpenSSL cryptographic software library is used for
secure communication over SSL/TLS and Datagram
Transport Layer Security (DTLS), the easy Heartbleed
exploits can reveal highly sensitive information, such
as private keys, login credentials, and business or
personal information from all over the Internet.

In this article, we identify and clearly describe
the two chains of weaknesses that underlie Heart-
bleed and that converge to cause the information
exposure failure regularly blamed only on buffer over-
read. We explain the causal relations between the
improper states in the buggy C code. Then we de-
tail the (bug, operation, error) or (fault,

operation, error) triples for each involved weak-
ness. Finally, we provide the full BF description of
Heartbleed, clearly showing the bugs starting the two
chains, of which at least one must be fixed to avoid the
information exposure security failure.

The OpenSSL team fixed the main bug and dis-
tributed the patch almost immediately after Heartbleed
was disclosed in April 2014. However, even now –
nine years later – we have no guarantee sensitive
information would not be exposed from the system
memory of a server (or a client) running a vulnerable
version of OpenSSL.

As demonstrated by Heartbleed, information expo-
sure failure could be reached by exploiting a vulnera-
bility that enables remote access to uncleared objects
with sensitive data. Given the intricacy of software
stacks in real-world applications, it is improbable such
vulnerabilities to be entirely eradicated. Therefore, we
urge software developers to promptly clean memory
from unused – and especially unencrypted – sensitive
data. [20]
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