
Predicting ABM Results with Covering Arrays
and Random Forests⋆

Megan Olsen1 , M S Raunak2 and D. Richard Kuhn2

1 Loyola University MD, Baltimore MD 21210, USA mmolsen@loyola.edu
2 NIST, Gaithersburg, MD 20899, USA {raunak, kuhn}@nist.gov

Abstract. Simulation is a useful and efective way to analyze and study
complex, real-world systems. It allows researchers, practitioners, and de-
cision makers to make sense of the inner working of a system that in-
volves many factors often resulting in some sort of emergent behavior.
The number of parameter value combinations grows exponentially and
it quickly becomes infeasible to test them all or even to explore a suit-
able subset. How does one then efciently identify the parameter value
combinations that matter for a particular simulation study? In addition,
is it possible to train a machine learning model to predict the outcome
of an agent-based model (ABM) with a systematically chosen small sub-
set of parameter value combinations? We explore these questions in this
paper. We propose utilizing covering arrays to create t-way (t = 2, 3,
etc.) combinations of parameter values to signifcantly reduce an ABM’s
parameter value exploration space. In our prior work we showed that
covering arrays are useful for systematically decreasing an ABM’s pa-
rameter space. We now build on that work by applying it to Wilensky’s
Heat Bugs model and training a random forest machine learning model
to predict simulation results by using the covering arrays to select our
training and test data. Our results show that a 2-way covering array pro-
vides sufcient training data to train our random forest to predict three
diferent simulation outcomes. Our process of using covering arrays to
decrease parameter space to then predict ABM results using machine
learning is successful.

Keywords: agent-based modeling · machine learning · calibration

1 Introduction

Modeling and simulation is a useful and efective way to study complex, real
world systems. Through modeling we can examine the inner working of an intri-
cate system, and ask questions about how a change to one aspect of the system
afects other aspects or the system as a whole. Scenarios such as the spread of a
pandemic, the operations of a self-driving car, or the fow of patients in an emer-
gency department can be studied with simulation models. Simulations allow us

⋆ Supported by NSF MRI grant 1626262.

mailto:kuhn}@nist.gov
mailto:mmolsen@loyola.edu

2 M. Olsen et al.

to study these complex scenarios without building the physical system, which
can be costly, dangerous, or simply infeasible.

Agent-based modeling (ABM) is a popular modeling technique for studying
these types of systems and phenomena through simulation. Agents are individ-
ual autonomous entities that make decisions about their actions and interactions
within the environment. ABM can be a bottom-up approach, where the global
behavior of a system emerges out of the individual decisions and actions of
agents. A change to parameter values can afect model outcomes, sometimes in
unexpected ways, as parameters afect the algorithms for how the agents make
decisions, and how the system is updated over time or in response to those agent
decisions. Thus it is important to understand what parameter values to use and
explore while simulating and studying an agent based model. However, a typical
ABM will include many parameters, each with a potentially very large set of pos-
sible values. The number of parameter value combinations grows exponentially
with the addition of each parameter, quickly becoming infeasible to test all pa-
rameter combinations, or even to explore a suitable subset of them. This problem
is not unique to ABM, and is present in any reasonably large system. How does
one then efciently identify the parameter value combinations that matter for a
particular simulation study, or are likely to infuence the output the most? These
questions are crucial for developing a well-calibrated, valid simulation model.

There are many approaches for calibrating, testing, and validating ABMs,
most of which rely on choosing a suitable subset of parameter values to exam-
ine. In this paper, we explore using covering arrays from the software testing
literature to systematically cover an efective subset of the parameter space to
choose the parameter value to test. We have previously shown the usefulness
of covering arrays for reducing the parameter value space of simulation models
[16,18]. Building on that work, after using covering arrays to thoughtfully reduce
the parameter space, we ask the question: can we use machine learning (ML)
to train a model on data from running an agent-based model on a small subset
of its parameter space, and then predict the results for a larger set of new pa-
rameter combinations? This approach could signifcantly decrease the number
of simulation experiments required to fully understand the impact of parameter
changes on a model. We also analyze the relationships between parameter value
combinations and simulation outputs. As far as we can tell, we are the frst to
explore this approach on simulation models. We test the approach by training
random forest models on data from Wilensky’s Heatbugs Netlogo agent based
model [20], and our results show that it is feasible to make these predictions.

2 Related Work

One of the objectives of modeling and simulation is to understand the behavior
of large, complex systems under diferent environmental conditions. Through the
selection of parameter values, it can also allow us to perform predictive analysis
of a system. For the predictions to be accurate and useful, the model has to reli-
ably represent the real system and robust against parameter value changes such

3 Predicting ABM Results with Covering Arrays and Random Forests

that it isn’t too sensitive, resulting in uncertain output swings. Thus the rate and
magnitude of changes in model output when the input parameter values change
is an important aspect of developing useful simulation models. Researchers and
practitioners perform uncertainty or risk analysis, i.e., estimation of output vari-
ance, parameter calibration, and sensitivity analysis of simulation models to gain
better understanding of model accuracy and robustness[3,5]. These analyses re-
quire running the model under many parameter value combinations.

Model calibration adjusts the initial model to a reference system by tuning
parameter values. Hofmann showed that for large, complex models as well as for
model federations with interdependent parameters, model calibration is an NP-
complete problem [7], and consequently is too costly in many cases. Researchers
are thus left to fnd more pragmatic approaches of exploring a small subset of
parameter values. Sensitivity analysis towards validation and optimization of the
model is another well studied area [9]. In his 2004 article Kleijnen commented,
“Few statisticians have studied random simulations. And only some simulation
analysts have focused on strategic issues, namely which scenarios to simulate,
and how to analyze the resulting I/O data.” [8] Kleijnen used his argument to
motivate the need for using a Design of Experiment (DOE) study of the meta-
models, using mathematical equations as a metamodel of computer simulation
models. Multiple research works have studied DOE for deterministic metamodels
such as the polynominal regression metamodel, Krigin models, and more [1,8].
None of these research studies, however, looked into systematically reducing the
parameter value space to tackle the challenge of dealing with an exponentially
large search space, especially on ABMs.

Covering arrays also have roots in DOE, and represent an approach to ef-
fectively cover the overall parameter value combination space [11]. These arrays
include all t-way combinations of parameter values (typically for small t, i.e., 2 to
6), and are efective in designing software testing solutions [13,11]. In our earlier
work, we showed that covering arrays can also be useful in focusing the param-
eter value space and in choosing a useful subset of values to test an ABM [16].
In this study we build on this approach by applying it on a diferent ABM, and
investigating the efectiveness of using a Random Forest ML model to predict
simulation outputs on unseen combinations of parameter values. In a similar
vein, Lanus et. al. used covering array based approaches to describe how two
diferent data sets used in training and testing of an ML model difer [15]. Their
study used combinatorial set diference metrics to identify which features are
most infuential as a determining factor of how successful an ML model is going
to be on a new data set. The objective and application of their study, however,
was diferent than our work presented here.

We are unaware of prior work that attempts to predict the outcome of an
ABM after training a machine learning model on a subset of that model’s possible
parameter combinations. Machine learning is instead used for processes such as
to de-feature (feature simplifcation, removal, etc.) CAD models for simulation
studies [6], or as part of building the model itself [21]. There are also numerous
approaches for trying to fnd optimal parameter combinations for a model, such

4 M. Olsen et al.

as genetic algorithms [17,4,19] and Robust Parameter Estimation [10]. However,
this work is not focused on determining optimal combinations, but instead in
making it easier to understand the type of behavior caused by any particular
set of parameter values, and how a specifc type of change to parameters would
change model output, without needing to run the ABM on those values.

3 Approach

Our goal is to explore the feasibility and usefulness of using a combination of
covering arrays and machine learning models for predicting results of an agent-
based simulation model (ABM) within the vast parameter value combination
space. The challenge is to select parameter values that are representative of
the model’s overall behavior, so that we can train the machine learning (ML)
model to be able to correctly predict behavior on previously untested areas of
the parameter space. We have chosen Wilensky’s Heatbugs ABM in NetLogo
[20] for our study. It is a simple model, amenable to quick data generation, with
a limited number of outputs to predict, and with emergent behavior. This model
therefore allows exploration of this new approach.

We utilize covering arrays to reduce the parameter value space systematically,
run the model for each parameter set in the 2-way and 3-way covering arrays,
train a random forest model on the 2-way data (33, 351 parameter combinations),
and test its ability to predict the outcome of the simulation on the signifcantly
larger 3-way data that was not seen during the training of the model (3, 971, 955
parameter combinations). This section provides details on each step.

3.1 Heatbugs Model

In Wilensky’s Heatbugs ABM [20], agents move in a 2D grid in an attempt to fnd
a location with their ideal temperature. Only one agent can exist in each location,
and they have a random chance of moving at any given time step. Agents give
of heat to the local environment, which is then difused to neighboring squares.
The heat also dissipates from each square at a given rate. The result is a level of
unhappiness for each agent (|ideal temp − current temp|), with the goal of low
unhappiness for all agents. The behavior of the agents and their environment
are defned by the eight parameters in Table 1.

3.2 Choosing Parameters via Covering Arrays

As seen in Table 1, there are 5.6386e15 valid combinations for this model. If
we hold the number of agents steady, we reduce this number to approximately
11 trillion parameter value combinations (1.1277e13). If we needed to test every
combination this is the minimum number of times the model would need to run;
however, it is infeasible to test more than a tiny fraction of these combinations.

An efcient approach for reducing the parameter space is to use covering
arrays. A t-way covering array is a matrix of values that includes all t-way

5 Predicting ABM Results with Covering Arrays and Random Forests

Parameter Min Value Max Value Increment
Agent Number
Min Ideal Temp
Max Ideal Temp
Min Output Heat
Max Output Heat
Evaporation Rate
Difusion Rate
Random Move Chance

1
0
0
0
0

0.01
0
0

500
200
200
100
100
1
1

100

1
1
1
1
1

0.01
0.1
1

Table 1: Heatbugs model parameters and their valid values. There are 2.28939e16
potential combinations. Given that each pair of min/max parameters must have
the relationship min < max, there are 5.6386e15 valid combinations.

Fig. 1: Example of converting a simple 27 combination parameter space to a 2-
way covering array of 9 combinations (each column is a combination).

combinations of parameter values. Suppose we have three parameters A, B,
and C, and each of these parameters can take three values. Figure 1 shows the
parameter values and a 2-way covering array constructed from those values. A
2-way covering array [11] as shown in the fgure, includes every pair of parameter
values at least once. As a larger example, if we instead have 10 binary parameters,
there are 210 = 1024 possible value combinations one can use to run the model.
However, all 3-way interactions of parameter values are included in a covering
array of only 13 rows. Those 13 rows include every possible 3-way combination of
parameter values, substantially reducing the search space. From the perspective
of a simulation model study, that covering array allows systematic exploration
of the parameter value space with only 13 simulation runs instead of 1024 runs.

We use the ACTS tool [2] to generate covering arrays of 2-way and 3-way
combinations of parameter values to signifcantly reduce the parameter value ex-
ploration space while ensuring broad coverage of possible parameter interactions.
When agent count is held steady for the Heatbugs model, there are 1.1277e13
valid parameter value combinations across the seven remaining parameter val-
ues. This number is reduced to 33,551 parameter value combinations where every
possible 2-way interactions of the parameter values are present. Similarly, all 3-
way interactions are captured by 3,972,000 value combinations.

Both 2-way and 3-way covering arrays reduce the parameter value space while
maintaining good coverage of parameter interactions. We ensure that none of the
2-way rows are present in the 3-way data. Figure 2 shows the frequency of each
parameter’s values in the 2-way covering array. The difusion and evaporation
rates are evenly distributed across all potential values, while the pairs of ideal

6 M. Olsen et al.

(a) ideal temp (b) output heat (c) difusion rate (d) evaporation rate

Fig. 2: Histograms of the feature values as they exist in the 2-way covering array.

temperature and output heat parameters have higher rates on the lower and
higher ends of their scales. This uneven application of values is expected due to
the relationship between min and max for each pair, making the lower values of
min and the higher values of max more likely to be compatible with values of
the related variable.

3.3 Machine Learning

We learn random forest models to attempt to predict the outcome of the ABM.
Random forests are a decision tree ensemble method. A decision tree is a su-
pervised learning method that at each node branches based on the value of a
particular feature, such as whether or not difusion rate is less than 0.2. Each
branch takes you closer to a prediction, and how many levels the tree needs will
depend on the data. For a random forest, essentially multiple decision tree mod-
els are learned, and then the prediction that is most common among all learned
trees is the prediction of the overall ensemble. This ensemble method is more
likely to correctly predict outcomes than a single decision tree. Details of our
implementation are in Section 4.

4 Experimental Setup

4.1 Data Gathering and Preparation

We run the simulation for each parameter combination in the 2-way and 3-
way covering arrays four times, for 25,000 simulation steps. We run with four
diferent random number seeds due to the stochasticity in the model, to make
it more likely that the overall results produced are due to parameters instead of
randomness. After each simulation ends we calculate the following metrics3:

– avg: the average unhappiness of the heat bugs
– avgF : the average unhappiness across the fnal 500 time steps
– stdF : standard deviation of unhappiness across the fnal 500 time steps
– minF and maxF : minimum and maximum unhappiness of all agents across the

fnal 500 time steps.

3 The processed data used in this paper can be found at https://data.nist.gov/

https://data.nist.gov/

7 Predicting ABM Results with Covering Arrays and Random Forests

After all data are gathered, we prepare it for machine learning. Each set of
four rows, one for each model run of the same parameters but diferent random
number seeds, is combined into a single row of data and labeled based on whether
that set of parameter values appears to achieve the outcome to be predicted.
Each of our experiments prepare the data for a diferent type of prediction:

A) the model reaches low unhappiness with low variation of unhappiness across
agents and time;

B) the model reaches a steady state; and
C) the average fnal unhappiness level of the agents.

In all experiments, each parameter combination appears once in the prepared
data. We determine the thresholds for creating the class labels based on the
2-way (training) data, and then apply those thresholds to the 3-way (test) data.
Each threshold creates a set of data with a diferent level of imbalance between
the classes, so that we can test how imbalance afects predictive ability. In each
experiment a threshold has been included that leads to balanced class labels on
the 2-way data. In experiments A and B we predict a binary class, e.g. Class 1
represents meeting the criteria, and Class 0 represents not meeting that criteria.
Experiment C is instead a multi-class classifcation problem.

Experiment A: Low Unhappiness and Low Variation: Experiment A
attempts to predict if the model reaches low overall unhappiness with a low
variation of unhappiness across agents during the fnal 500 time steps. In these
experiments, the class of the parameter set is determined by stdF < threshold
for a particular percentage of the four simulations run for a particular parameter
set. Class 1 label is applied to data below the threshold, as it represents low
variation in standard deviation, which also correlates to relatively low overall
unhappiness level for this ABM. We test our predictive ability on thresholds of
0.1, 0.15, 0.2, 0.5, 0.75, 1. For each threshold we test two approaches for combining
the four simulations of the same parameter combination: either 50% or 100% of
the four simulation runs must meet the threshold criteria to be Class 1; otherwise,
the parameter set is labeled as Class 0.

Experiment B: Steady State: Experiment B attempts to predict if the un-
happiness level in the Heatbugs model reaches a steady state by the end of the
simulation. We defne steady state as stdF/avgF < threshold. The standard
deviation on its own is insufcient as the overall averages vary widely, between 0
to 45,000, from run to run. The high average values are due to certain parameter
combinations leading to overwhelming heat in the system well above the bugs’
ideal temperature; low values occur when the situation keeps heat from building
up too high. When the average is high, a relatively small standard deviation
could still be in the hundreds; whereas when average is low, it would be single
digits at most. Thus we found that the value of standard deviation can be mis-
leading for this model. By dividing the standard deviation by the average, we can
observe how much the unhappiness level is varying in terms of the overall aver-
age at that point in the simulation. We test our predictive ability on thresholds

8 M. Olsen et al.

of 0.001, 0.002, 0.005, 0.0075, 0.01. For each threshold we test three approaches
for combining the four simulations of the same parameter combination: either
50%, 75%, or 100% of the four simulation runs must meet the threshold criteria
for the parameter set to be labeled Class 1; otherwise, it is labeled Class 0.

Experiment C: Average Unhappiness: Experiment C attempts to predict
the overall average unhappiness during the fnal 500 time steps, avgF . We create
classes defned by quantiles of the avgF column of the 2-way data:

1. 4 quantiles: < 30.91, < 74.08, < 125.19, >= 125.195
2. 6 quantiles: < 12.27, < 38.45, < 74.08, < 113.84, < 164.66, >= 164.66
3. 10 quantiles: < 12.27, < 24.24, < 38.45, < 55.60, < 74.08, < 92.76, < 113.84,

< 137.98, < 164.66, >= 164.66

In this experiment we determine if it is possible to predict the general region
of the average unhappiness for agents in the model. Although quantiles do not
need to be used, it is a natural way to defne the categories. To ensure a proper
machine learning process is followed, we do not analyze quantiles of the 3-way
data but apply the thresholds developed on the 2-way data to the 3-way data.

4.2 Machine Learning in All Experiments

We use the simulation results from the 2-way covering array data to generate
training and validation data for each random forest model, then use the results
from the 3-way covering array to test each model. This setup allows us to see if we
can train a random forest model on a very small subset of the overall parameter
space (3.3551e4 combinations), and then predict results for a signifcantly larger
amount of new parameter combinations (3.972e6). In each case, the test data is
processed in the same way as the equivalent training data. Each combination of
thresholds and approaches to combining results of the same parameters results
in a new set of data and a random forest model.

We use scikit-learn’s implementation of random forests, and learn using a ran-
domized grid search. A randomized grid search takes all of the various hyperpa-
rameter (e.g. parameters to the random forest) options and randomly chooses a
subset of all possible hyperparameter combinations to search for the best model.
We use 10 fold cross validation, with balanced accuracy as the scoring function
on 100 hyperparameter combinations. Cross validation is the standard best prac-
tice to help reduce the chance of overftting on the training data, with 10 folds
being the generally agreed upon best choice. Balanced accuracy is used as our
datasets are mostly imbalanced, which can afect how well the model learns.

We test the following hyperparameters: number of decision trees in ensemble
(200, 288, 377, 466, 555, 644, 733, 822, 911, 1000); maximum number of features
to consider at a branching (2, 7); maximum depth of learned trees (10, 20, 30,
40, 50, 60, 70, 80, 90, 100, 110); minimum samples required to branch (2, 5, 10);
minimum samples required at a leaf node, e.g. at the point at which the decision
tree is making a prediction, how many rows from the data should be represented

9 Predicting ABM Results with Covering Arrays and Random Forests

(a) Experiment A (b) Experiment B

Fig. 3: The classes are generally unbalanced, with the most balanced data occur-
ring when the cutof threshold is 0.15 for Exp. A and 0.002 for Exp. B.

by the prior branch in this direction (1, 2, 4); Gini impurity to determine quality
of split; and bootstrapping either on or of. The grid search tests 100 randomly
chosen combinations of these hyperparameters. After completing the search, it
determines the best hyperparameters and generates a fnal random forest model
using those hyperparameters. The 3-way data is tested on that model.

5 Results

We analyze balanced accuracy, precision, and recall as they are standard ML
metrics that are particularly useful for unbalanced data. Unlike regular accu-
racy that only determines what percentage of predictions are correct, balanced
accuracy is the sum of the number correct in each class divided by the number
of classes. Balanced accuracy is thus more accurate when a large number of ex-
amples are from one class. As can be seen in Figure 3, our classes are imbalanced
in most of our training data, which is to be expected. The recall and precision
helps us to understand how that imbalance afects the predictions for each class.
The recall tells us how likely we are to predict a given class if it actually is that
class; so recall for Class 1 in Experiment B is how likely we are to predict that
a simulation run with a specifc set of parameter values will be steady when it
actually is steady. Precision tells us how often a prediction is correct; so a high
precision on Class 1 means that if we predict Class 1 then it is likely to actually
be Class 1. As a reminder, in all scenarios, 2-way data trained the model; the
results are from using that learned model to predict the 3-way results. High ac-
curacy, precision, and recall implies that our overall process works for training
a random forest to predict the reults of an agent-based model by only running
a small percentage of potential parameter combinations.

5.1 Experiment A: Low Unhappiness and Low Variation

In Experiment A we predict whether the standard deviation over the last 500
time steps (stdF) crosses a given threshold. Class 1 represents situations where it
is below the threshold, e.g. is steady and the overall unhappiness values are likely
small. As can be seen in Figure 4, balanced accuracy varies between 95% and
97% on the 3-way data, with accuracy decreasing as we become more imbalanced

10 M. Olsen et al.

(a) Balanced Accuracy (b) Recall (c) Precision

Fig. 4: Recall and Precision from Experiment A. The solid line is for Class 1 (e.g.
below threshold), and the dotted line is Class 0 (e.g. at or above threshold). The
colors denote what percentage of the four runs needed to be below the threshold
for the parameter combination to be labeled as Class 1.

(a) Balanced Accuracy (b) Recall (c) Precision

Fig. 5: Recall and Precision from Experiment B. The solid line is for Class 1 (e.g.
below threshold), and the dotted line is Class 0 (e.g. at or above threshold). The
colors denote what percentage of the four runs needed to be below the threshold
for the parameter combination to be labeled as Class 1.

with a higher percentage of the data in Class 1. Our recall for both classes is
actually quite good in all versions of the problem, meaning that we are getting
most examples correct. The precision for Class 0 is closer to 80% for the more
imbalanced situations, meaning that when we predict Class 0 we are less likely
to be correct than when we predict Class 1. Overall, many values for standard
deviation cutof are predictable, even when the training data has signifcantly
fewer examples in one class. It is feasible to predict if standard deviation will
be low in the simulation by training on a small subset of the parameter space,
although best results occur in a relatively balanced training set. How the four
results from each parameter set are combined does not afect the result.

5.2 Experiment B: Steady Unhappiness

In this experiment we predict how steady the unhappiness level is across agents
during the last 500 time steps. We defned steadiness as standard deviation di-
vided by average, to take into account that some average unhappiness levels are
orders of magnitude higher than others. As seen in Figure 5, the balanced accu-
racy score is high across all situations tested, always at least 95%. The precision

11 Predicting ABM Results with Covering Arrays and Random Forests

(a) Four Quantiles (b) Six Quantiles (c) Ten Quantiles

Fig. 6: Recall and Precision from Experiment C for each class in each experiment.

and recall is always at least 90% as well, which is better than in Experiment A.
We are very likely to get each class correct, although in the more imbalanced data
we again see a dip in precision for Class 0 meaning that predictions for Class 0
are less trustworthy than predictions for Class 1. However, even for imbalanced
data our models’ predictions are generally accurate. Overall we seem able to
predict steadiness of unhappiness level, with minimal impact by how steadiness
is defned or how the four runs from each parameter set are combined.

5.3 Experiment C: Average Unhappiness

In experiment C we predict the overall average unhappiness level in categories
defned by quantiles. Our balanced accuracy for four quantiles is 91.6%, for six
quantiles is 87.8%, and for ten quantiles is 76.7%. We can see from balanced
accuracy that the more fne grained our categories, the harder it is to predict.
This result is not surprising, but is a confrmation of what may be most difcult
to predict via machine learning. Figure 6 confrms that our prediction ability
is high in the four quantile scenario, and steadily decreases as we increase the
number of quantiles. As the number of quantiles increases we are increasing the
difculty of the prediction, as fewer categories means more precision on average.
For ten quantiles, the random forest is not able to adequately predict any classes
other than the smallest and largest categories. In all quantile experiments the
highest average values are the most likely to be accurately predicted, meaning
that it’s easiest to determine if a high average unhappiness level will occur.

5.4 Feature Importance

One of the benefts of learning a random forest model is that the model can
readily tell us how much infuence each parameter had on the fnal result. Feature
importance is a useful piece of information, as a goal in this process is to be able
to better understand the parameter space and how those parameters afect the
fnal outcomes in the simulation. We use the feature importance feature of scikit-
learn’s implementation of Random Forests to compute this result.

In Figure 7 we see importance of each feature for determining which class a
set of parameter combinations predict. A feature (e.g. parameter) importance of
1 would imply that the single feature alone can predict the results. As expected,

12 M. Olsen et al.

(a) Exp A 50% (b) Exp A 100% (c) Exp B 50%

(d) Exp B 75% (e) Exp B 100% (f) Exp C

Fig. 7: Feature Importance. In Experiments A and B, evaporation rate has the
strongest infuence on classifcation. For all quartiles in Experiment C, the min
and max ideal temp play the strongest role in determining classifcation. Neither
percent nor threshold heavily infuence this ranking.

no feature has that high an impact, nor does any pair of features. However, in
each experiment a single feature has a majority importance. For Experiments A
and B, evaporation rate is the most important feature and is signifcantly more
important than all of the other features with an importance over 0.5 (Figure
7). For Experiment C where we are predicting the averages, the minimum and
maximum ideal temperature parameters have the most infuence on the results,
and are almost equally important with each other with an importance of at least
0.25 in each scenario (Figure 7f). The thresholds for determining the class label
do not afect which feature is most important for making correct predictions;
the feature importance seems tied instead to what we are trying to predict.

For a closer look at the importance of features, we can consider 2-way and
3-way combinations of feature values in the covering arrays, without machine
learning. The notion of combination frequency diferences (CFD) [14] identifes
combinations of feature values that are more strongly associated with one class
than another, an approach useful in explainable AI [13] and vulnerability analysis
for physically unclonable functions [12]. The CFD value for a single attribute
value combination is the diference between the rate of occurrence of a particular
value combination in one class versus another class. For example, a particular
combination of fur and eye color may occur in 75% of one dog breed as compared
with 10% of another breed, for a diference of 0.65. Diferences are computed for� �

t nall attribute value combinations, for v t-way combinations of n attributes t
with v values each. Graphing these diferences for every value combination in a
data set produces a graph such as shown in Figure 8a, which shows a machine
learning data set for clinical values related to diabetes. The graph shows the
diference for all 3-way combinations in this data set. As can be seen in Figure

13 Predicting ABM Results with Covering Arrays and Random Forests

(a) Diabetes combination frequency diferences [14], for comparison

(b) Heatbugs 2-way combination frequency diferences

Fig. 8: Combination frequency diferences to identify combinations of features
values that are more strongly associated with one class versus another. In (a)
we see a comparison graph where some feature combinations strongly afect
the outcome. In (b) we see that that no parameter combinations are strongly
associated with the outcome for our 2-way data.

8a, three combinations occur in 100% of the positive cases (above center line),
indicating a strong association with these combinations of clinical values [14].

Applying this method to the Heatbugs 2-way covering array for Experiment
A produces a graph as shown in Figure 8b. A separate report (not shown due to
space limitations) shows that, consistent with the random forest model, evapora-
tion rate is the single most important attribute. However, the 2-way combination
frequency analysis also shows that low values of minimum ideal temp in combi-
nation with evaporation rate are also strongly associated with class predictions.
Similarly, a few other combinations are also found to be signifcant. This addi-
tional useful information is not apparent from the random forest model. Also
note that the range of diference values is much narrower in Fig. 8b than in Fig.
8a, indicating that the Heatbugs problem is in some sense “harder” for machine
learning than the diabetes prediction problem (which has > 99% accuracy), as
there are no combinations that clearly indicate a particular class on their own.We
plan to investigate this CFD approach further in future work, to determine how
well it can aid in determining the impact of parameters on model results, and/or
how likely a model is to be predictable via machine learning.

Both the ML feature importance results and the combination frequency dif-
ference results confrm that the ABM outcomes cannot be fully explained by
2-way combinations alone, reconfrming that training our ML model on 2-way
data to predict 3-way data does mean we are able to predict situations previously
unseen in the training (2-way) data. Pairs of variables are not enough to fully
defne the model’s behaviors, although the 2-way data does allow us to train a
model to predict a broader set of behavior than was already seen.

14 M. Olsen et al.

6 Conclusions

We propose a new process to systematically explore the parameter space of an
ABM and predict outcomes of simulations using machine learning (ML) and com-
binatorial analysis. This process uses covering arrays to signifcantly reduce the
parameter space from ∼11 trillion to 3.3551e4 parameter combinations, allowing
us to systematically explore, learn, and predict simulation outputs for almost 4
million unseen parameter combinations for the Heatbugs ABM. We train three
diferent sets of random forest ML models using 2-way covering arrays of the
parameter values, to predict three diferent types of outcomes of the simulation.
We test the efectiveness of this approach on the 3-way covering array, which
represents signifcantly more parameter combinations than the training data, to
see if it is possible to train the model on a small part of the parameter space
and then predict the results on a much larger part of the parameter space. We
perform combinatorial analysis and feature importance analysis for insights into
simulation output predictability, and the role of parameters in the predictions.

Overall our results show that this process works. All three experiments on
Heatbugs had high success in predicting a) if the standard deviation of the aver-
age unhappiness level will be low, b) if the standard deviation of unhappiness will
be low in relation to the average unhappiness, and c) the average unhappiness.
We tested many diferent thresholds for our categories, all with high success.
Our best success was when our classes were most balanced, although learning
was still successful even with unbalanced data. These results indicate that the
process could be efective on other ABMs as well, and that further work should
be done on the predictability of ABM results.

In future studies we plan to explore what types of predictions can be made
about ABMs, if the process will work on all types of models or only on models
with specifc properties, and if a diferent ML algorithm will garner better results.
Random forests were a good ft for this model’s data and our goals, but another
ML algorithm may better ft other models. We also plan to further explore the
use of CFD in analyzing results from the covering arrays in determine parameter
importance in results prediction. We plan to continue this research to further
defne how and when our approach can be successfully applied, so that eventually
one could use our process to explore a parameter space more efectively on many
ABMs. Disclaimer: Commercial products may be identifed in this document, but such
identifcation does not imply recommendation or endorsement by NIST, nor that the
products identifed are necessarily the best available for the purpose.

References

1. A methodology for ftting and validating metamodels in simulation. European
Journal of Operational Research 120(1), 14–29 (2000)

2. Borazjany, M., Lei, Y., Kacker, R., Kuhn, R.: Combinatorial testing of acts: A case
study. In: First Intl Workshop on Combinatorial Testing, IEEE Fifth Intl Conf on
Software Testing, Verifcation and Validation (ICST 2012. pp. 591–600 (2012)

3. Cacuci, D., Ionescu-Bujor, M., Navon, I.M.: Sensitivity and Uncertainty Analysis:
Applications to Large-Scale Systems. Taylor Francis Group, CRC Press (2005)

Predicting ABM Results with Covering Arrays and Random Forests 15

4. Calvez, B., Hutzler, G.: Automatic tuning of agent-based models using genetic
algorithms. In: International Workshop on Multi-Agent Systems and Agent-Based
Simulation. pp. 41–57. Springer (2005)

5. Calvez, B., Hutzler, G., et al.: Adaptative dichotomic optimization: A new method
for the calibration of agent-based models. In: Proceedings of the 2007 European
Simulation and Modelling Conference (ESM’07). pp. 415–419 (2007)

6. Danglade, F., Pernot, J.P., Véron, P.: On the use of machine learning to defeature
cad models for simulation. Computer-aided Design and Applications 11, 358–368
(2014)

7. Hofmann, M.: On the complexity of parameter calibration in simulation models.
The Journal of Defense Modeling and Simulation 2(4), 217–226 (2005)

8. Kleijnen, J.: An overview of the design and analysis of simulation experiments for
sensitivity analysis. European Journal of Operational Research 164(2), 287–300
(2005)

9. Kleijnen, J.: Sensitivity analysis of simulation models: an overview. In: 6th Inter-
national Conference on Sensitivity Analysis of Model Output (2010)

10. Krauße, T., Cullmann, J.: Towards a more representative parametrisation of hy-
drologic models via synthesizing the strengths of particle swarm optimisation and
robust parameter estimation. Hydrol. Earth Syst. Sci. 16, 603—-629 (2012)

11. Kuhn, D.R., Kacker, R., Lei, Y.: Introduction to Combinatorial Testing. Chapman
Hall / CRC (2013)

12. Kuhn, D.R., Raunak, M., Prado, C., Patil, V.C., Kacker, R.N.: Combination fre-
quency diferencing for identifying design weaknesses in physical unclonable func-
tions. In: 2022 IEEE IEEE Intl Conf on Software Testing, Verifcation and Valida-
tion Workshops (ICSTW). pp. 110–117. IEEE (2022)

13. Kuhn, D., Kacker, R., Lei, Y.: Advanced combinatorial test methods for system
reliability. Tech. rep., 2010, IEEE Reliability Society (January 2011)

14. Kuhn, D., Raunak, M.S., Kacker, R.: Combination frequency diferencing. Tech.
rep., National Institute of Standards and Technology (December 2021), https:
//nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.12062021-draft.pdf

15. Lanus, E., Freeman, L.J., Richard Kuhn, D., Kacker, R.N.: Combinatorial test-
ing metrics for machine learning. In: 2021 IEEE Intl Conf on Software Testing,
Verifcation and Validation Workshops (ICSTW). pp. 81–84 (2021)

16. Maalouf, C., Olsen, M., Raunak, M.S.: Combinatorial testing for parameter ealua-
tion. In: Proceedings of the 2019 Winter Simulation Conference (WSC19). Society
for Computer Simulation International (December 2019)

17. Olsen, M., Laspesa, J., Taylor-D’Ambrosio, T.: On genetic algorithm efective-
ness for fnding behaviors in agent-based predator prey models. In: Proceedings of
the Summer Simulation Multi-Conference (SummerSim’18). Society for Computer
Simulation International, Bordeaux, France (July 2018)

18. Olsen, M., Raunak, M.S.: Efcient parameter exploration of simulation studies. In:
2022 IEEE 29th Software Technology Conf. pp. 190–191 (2022)

19. Stonedahl, F.: Genetic Algorithms for the Exploration of Parameter Spaces in
Agent Based Models. Ph.D. thesis, Northwestern University (2011)

20. Wilensky: Netlogo heatbugs model. http://ccl.northwestern.edu/netlogo/models/Heatbugs
(2004)

21. Zhang, W., Valencia, A., Chang, N.B.: Synergistic integration between machine
learning and agent-based modeling: A multidisciplinary review. IEEE Transactions
on Neural Networks and Learning Systems pp. 1–21 (2021)

https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.12062021-draft.pdf
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.12062021-draft.pdf
http://ccl.northwestern.edu/netlogo/models/Heatbugs

	Predicting ABM Results with Covering Arrays and Random Forests

