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Abstract. Simulation is a useful and efective way to analyze and study 
complex, real-world systems. It allows researchers, practitioners, and de-
cision makers to make sense of the inner working of a system that in-
volves many factors often resulting in some sort of emergent behavior. 
The number of parameter value combinations grows exponentially and 
it quickly becomes infeasible to test them all or even to explore a suit-
able subset. How does one then efciently identify the parameter value 
combinations that matter for a particular simulation study? In addition, 
is it possible to train a machine learning model to predict the outcome 
of an agent-based model (ABM) with a systematically chosen small sub-
set of parameter value combinations? We explore these questions in this 
paper. We propose utilizing covering arrays to create t-way (t = 2, 3, 
etc.) combinations of parameter values to signifcantly reduce an ABM’s 
parameter value exploration space. In our prior work we showed that 
covering arrays are useful for systematically decreasing an ABM’s pa-
rameter space. We now build on that work by applying it to Wilensky’s 
Heat Bugs model and training a random forest machine learning model 
to predict simulation results by using the covering arrays to select our 
training and test data. Our results show that a 2-way covering array pro-
vides sufcient training data to train our random forest to predict three 
diferent simulation outcomes. Our process of using covering arrays to 
decrease parameter space to then predict ABM results using machine 
learning is successful. 

Keywords: agent-based modeling · machine learning · calibration 

1 Introduction 

Modeling and simulation is a useful and efective way to study complex, real 
world systems. Through modeling we can examine the inner working of an intri-
cate system, and ask questions about how a change to one aspect of the system 
afects other aspects or the system as a whole. Scenarios such as the spread of a 
pandemic, the operations of a self-driving car, or the fow of patients in an emer-
gency department can be studied with simulation models. Simulations allow us 
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to study these complex scenarios without building the physical system, which 
can be costly, dangerous, or simply infeasible. 

Agent-based modeling (ABM) is a popular modeling technique for studying 
these types of systems and phenomena through simulation. Agents are individ-
ual autonomous entities that make decisions about their actions and interactions 
within the environment. ABM can be a bottom-up approach, where the global 
behavior of a system emerges out of the individual decisions and actions of 
agents. A change to parameter values can afect model outcomes, sometimes in 
unexpected ways, as parameters afect the algorithms for how the agents make 
decisions, and how the system is updated over time or in response to those agent 
decisions. Thus it is important to understand what parameter values to use and 
explore while simulating and studying an agent based model. However, a typical 
ABM will include many parameters, each with a potentially very large set of pos-
sible values. The number of parameter value combinations grows exponentially 
with the addition of each parameter, quickly becoming infeasible to test all pa-
rameter combinations, or even to explore a suitable subset of them. This problem 
is not unique to ABM, and is present in any reasonably large system. How does 
one then efciently identify the parameter value combinations that matter for a 
particular simulation study, or are likely to infuence the output the most? These 
questions are crucial for developing a well-calibrated, valid simulation model. 

There are many approaches for calibrating, testing, and validating ABMs, 
most of which rely on choosing a suitable subset of parameter values to exam-
ine. In this paper, we explore using covering arrays from the software testing 
literature to systematically cover an efective subset of the parameter space to 
choose the parameter value to test. We have previously shown the usefulness 
of covering arrays for reducing the parameter value space of simulation models 
[16,18]. Building on that work, after using covering arrays to thoughtfully reduce 
the parameter space, we ask the question: can we use machine learning (ML) 
to train a model on data from running an agent-based model on a small subset 
of its parameter space, and then predict the results for a larger set of new pa-
rameter combinations? This approach could signifcantly decrease the number 
of simulation experiments required to fully understand the impact of parameter 
changes on a model. We also analyze the relationships between parameter value 
combinations and simulation outputs. As far as we can tell, we are the frst to 
explore this approach on simulation models. We test the approach by training 
random forest models on data from Wilensky’s Heatbugs Netlogo agent based 
model [20], and our results show that it is feasible to make these predictions. 

2 Related Work 

One of the objectives of modeling and simulation is to understand the behavior 
of large, complex systems under diferent environmental conditions. Through the 
selection of parameter values, it can also allow us to perform predictive analysis 
of a system. For the predictions to be accurate and useful, the model has to reli-
ably represent the real system and robust against parameter value changes such 
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that it isn’t too sensitive, resulting in uncertain output swings. Thus the rate and 
magnitude of changes in model output when the input parameter values change 
is an important aspect of developing useful simulation models. Researchers and 
practitioners perform uncertainty or risk analysis, i.e., estimation of output vari-
ance, parameter calibration, and sensitivity analysis of simulation models to gain 
better understanding of model accuracy and robustness[3,5]. These analyses re-
quire running the model under many parameter value combinations. 

Model calibration adjusts the initial model to a reference system by tuning 
parameter values. Hofmann showed that for large, complex models as well as for 
model federations with interdependent parameters, model calibration is an NP-
complete problem [7], and consequently is too costly in many cases. Researchers 
are thus left to fnd more pragmatic approaches of exploring a small subset of 
parameter values. Sensitivity analysis towards validation and optimization of the 
model is another well studied area [9]. In his 2004 article Kleijnen commented, 
“Few statisticians have studied random simulations. And only some simulation 
analysts have focused on strategic issues, namely which scenarios to simulate, 
and how to analyze the resulting I/O data.” [8] Kleijnen used his argument to 
motivate the need for using a Design of Experiment (DOE) study of the meta-
models, using mathematical equations as a metamodel of computer simulation 
models. Multiple research works have studied DOE for deterministic metamodels 
such as the polynominal regression metamodel, Krigin models, and more [1,8]. 
None of these research studies, however, looked into systematically reducing the 
parameter value space to tackle the challenge of dealing with an exponentially 
large search space, especially on ABMs. 

Covering arrays also have roots in DOE, and represent an approach to ef-
fectively cover the overall parameter value combination space [11]. These arrays 
include all t-way combinations of parameter values (typically for small t, i.e., 2 to 
6), and are efective in designing software testing solutions [13,11]. In our earlier 
work, we showed that covering arrays can also be useful in focusing the param-
eter value space and in choosing a useful subset of values to test an ABM [16]. 
In this study we build on this approach by applying it on a diferent ABM, and 
investigating the efectiveness of using a Random Forest ML model to predict 
simulation outputs on unseen combinations of parameter values. In a similar 
vein, Lanus et. al. used covering array based approaches to describe how two 
diferent data sets used in training and testing of an ML model difer [15]. Their 
study used combinatorial set diference metrics to identify which features are 
most infuential as a determining factor of how successful an ML model is going 
to be on a new data set. The objective and application of their study, however, 
was diferent than our work presented here. 

We are unaware of prior work that attempts to predict the outcome of an 
ABM after training a machine learning model on a subset of that model’s possible 
parameter combinations. Machine learning is instead used for processes such as 
to de-feature (feature simplifcation, removal, etc.) CAD models for simulation 
studies [6], or as part of building the model itself [21]. There are also numerous 
approaches for trying to fnd optimal parameter combinations for a model, such 
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as genetic algorithms [17,4,19] and Robust Parameter Estimation [10]. However, 
this work is not focused on determining optimal combinations, but instead in 
making it easier to understand the type of behavior caused by any particular 
set of parameter values, and how a specifc type of change to parameters would 
change model output, without needing to run the ABM on those values. 

3 Approach 

Our goal is to explore the feasibility and usefulness of using a combination of 
covering arrays and machine learning models for predicting results of an agent-
based simulation model (ABM) within the vast parameter value combination 
space. The challenge is to select parameter values that are representative of 
the model’s overall behavior, so that we can train the machine learning (ML) 
model to be able to correctly predict behavior on previously untested areas of 
the parameter space. We have chosen Wilensky’s Heatbugs ABM in NetLogo 
[20] for our study. It is a simple model, amenable to quick data generation, with 
a limited number of outputs to predict, and with emergent behavior. This model 
therefore allows exploration of this new approach. 

We utilize covering arrays to reduce the parameter value space systematically, 
run the model for each parameter set in the 2-way and 3-way covering arrays, 
train a random forest model on the 2-way data (33, 351 parameter combinations), 
and test its ability to predict the outcome of the simulation on the signifcantly 
larger 3-way data that was not seen during the training of the model (3, 971, 955 
parameter combinations). This section provides details on each step. 

3.1 Heatbugs Model 

In Wilensky’s Heatbugs ABM [20], agents move in a 2D grid in an attempt to fnd 
a location with their ideal temperature. Only one agent can exist in each location, 
and they have a random chance of moving at any given time step. Agents give 
of heat to the local environment, which is then difused to neighboring squares. 
The heat also dissipates from each square at a given rate. The result is a level of 
unhappiness for each agent (|ideal temp − current temp|), with the goal of low 
unhappiness for all agents. The behavior of the agents and their environment 
are defned by the eight parameters in Table 1. 

3.2 Choosing Parameters via Covering Arrays 

As seen in Table 1, there are 5.6386e15 valid combinations for this model. If 
we hold the number of agents steady, we reduce this number to approximately 
11 trillion parameter value combinations (1.1277e13). If we needed to test every 
combination this is the minimum number of times the model would need to run; 
however, it is infeasible to test more than a tiny fraction of these combinations. 

An efcient approach for reducing the parameter space is to use covering 
arrays. A t-way covering array is a matrix of values that includes all t-way 
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Parameter Min Value Max Value Increment 
Agent Number 
Min Ideal Temp 
Max Ideal Temp 
Min Output Heat 
Max Output Heat 
Evaporation Rate 
Difusion Rate 
Random Move Chance 

1 
0 
0 
0 
0 

0.01 
0 
0 

500 
200 
200 
100 
100 
1 
1 

100 

1 
1 
1 
1 
1 

0.01 
0.1 
1 

Table 1: Heatbugs model parameters and their valid values. There are 2.28939e16 
potential combinations. Given that each pair of min/max parameters must have 
the relationship min < max, there are 5.6386e15 valid combinations. 

Fig. 1: Example of converting a simple 27 combination parameter space to a 2-
way covering array of 9 combinations (each column is a combination). 

combinations of parameter values. Suppose we have three parameters A, B, 
and C, and each of these parameters can take three values. Figure 1 shows the 
parameter values and a 2-way covering array constructed from those values. A 
2-way covering array [11] as shown in the fgure, includes every pair of parameter 
values at least once. As a larger example, if we instead have 10 binary parameters, 
there are 210 = 1024 possible value combinations one can use to run the model. 
However, all 3-way interactions of parameter values are included in a covering 
array of only 13 rows. Those 13 rows include every possible 3-way combination of 
parameter values, substantially reducing the search space. From the perspective 
of a simulation model study, that covering array allows systematic exploration 
of the parameter value space with only 13 simulation runs instead of 1024 runs. 

We use the ACTS tool [2] to generate covering arrays of 2-way and 3-way 
combinations of parameter values to signifcantly reduce the parameter value ex-
ploration space while ensuring broad coverage of possible parameter interactions. 
When agent count is held steady for the Heatbugs model, there are 1.1277e13 
valid parameter value combinations across the seven remaining parameter val-
ues. This number is reduced to 33,551 parameter value combinations where every 
possible 2-way interactions of the parameter values are present. Similarly, all 3-
way interactions are captured by 3,972,000 value combinations. 

Both 2-way and 3-way covering arrays reduce the parameter value space while 
maintaining good coverage of parameter interactions. We ensure that none of the 
2-way rows are present in the 3-way data. Figure 2 shows the frequency of each 
parameter’s values in the 2-way covering array. The difusion and evaporation 
rates are evenly distributed across all potential values, while the pairs of ideal 
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(a) ideal temp (b) output heat (c) difusion rate (d) evaporation rate 

Fig. 2: Histograms of the feature values as they exist in the 2-way covering array. 

temperature and output heat parameters have higher rates on the lower and 
higher ends of their scales. This uneven application of values is expected due to 
the relationship between min and max for each pair, making the lower values of 
min and the higher values of max more likely to be compatible with values of 
the related variable. 

3.3 Machine Learning 

We learn random forest models to attempt to predict the outcome of the ABM. 
Random forests are a decision tree ensemble method. A decision tree is a su-
pervised learning method that at each node branches based on the value of a 
particular feature, such as whether or not difusion rate is less than 0.2. Each 
branch takes you closer to a prediction, and how many levels the tree needs will 
depend on the data. For a random forest, essentially multiple decision tree mod-
els are learned, and then the prediction that is most common among all learned 
trees is the prediction of the overall ensemble. This ensemble method is more 
likely to correctly predict outcomes than a single decision tree. Details of our 
implementation are in Section 4. 

4 Experimental Setup 

4.1 Data Gathering and Preparation 

We run the simulation for each parameter combination in the 2-way and 3-
way covering arrays four times, for 25,000 simulation steps. We run with four 
diferent random number seeds due to the stochasticity in the model, to make 
it more likely that the overall results produced are due to parameters instead of 
randomness. After each simulation ends we calculate the following metrics3: 

– avg: the average unhappiness of the heat bugs 
– avgF : the average unhappiness across the fnal 500 time steps 
– stdF : standard deviation of unhappiness across the fnal 500 time steps 
– minF and maxF : minimum and maximum unhappiness of all agents across the 

fnal 500 time steps. 

3 The processed data used in this paper can be found at https://data.nist.gov/ 

https://data.nist.gov/
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After all data are gathered, we prepare it for machine learning. Each set of 
four rows, one for each model run of the same parameters but diferent random 
number seeds, is combined into a single row of data and labeled based on whether 
that set of parameter values appears to achieve the outcome to be predicted. 
Each of our experiments prepare the data for a diferent type of prediction: 

A) the model reaches low unhappiness with low variation of unhappiness across 
agents and time; 

B) the model reaches a steady state; and 
C) the average fnal unhappiness level of the agents. 

In all experiments, each parameter combination appears once in the prepared 
data. We determine the thresholds for creating the class labels based on the 
2-way (training) data, and then apply those thresholds to the 3-way (test) data. 
Each threshold creates a set of data with a diferent level of imbalance between 
the classes, so that we can test how imbalance afects predictive ability. In each 
experiment a threshold has been included that leads to balanced class labels on 
the 2-way data. In experiments A and B we predict a binary class, e.g. Class 1 
represents meeting the criteria, and Class 0 represents not meeting that criteria. 
Experiment C is instead a multi-class classifcation problem. 

Experiment A: Low Unhappiness and Low Variation: Experiment A 
attempts to predict if the model reaches low overall unhappiness with a low 
variation of unhappiness across agents during the fnal 500 time steps. In these 
experiments, the class of the parameter set is determined by stdF < threshold 
for a particular percentage of the four simulations run for a particular parameter 
set. Class 1 label is applied to data below the threshold, as it represents low 
variation in standard deviation, which also correlates to relatively low overall 
unhappiness level for this ABM. We test our predictive ability on thresholds of 
0.1, 0.15, 0.2, 0.5, 0.75, 1. For each threshold we test two approaches for combining 
the four simulations of the same parameter combination: either 50% or 100% of 
the four simulation runs must meet the threshold criteria to be Class 1; otherwise, 
the parameter set is labeled as Class 0. 

Experiment B: Steady State: Experiment B attempts to predict if the un-
happiness level in the Heatbugs model reaches a steady state by the end of the 
simulation. We defne steady state as stdF/avgF < threshold. The standard 
deviation on its own is insufcient as the overall averages vary widely, between 0 
to 45,000, from run to run. The high average values are due to certain parameter 
combinations leading to overwhelming heat in the system well above the bugs’ 
ideal temperature; low values occur when the situation keeps heat from building 
up too high. When the average is high, a relatively small standard deviation 
could still be in the hundreds; whereas when average is low, it would be single 
digits at most. Thus we found that the value of standard deviation can be mis-
leading for this model. By dividing the standard deviation by the average, we can 
observe how much the unhappiness level is varying in terms of the overall aver-
age at that point in the simulation. We test our predictive ability on thresholds 
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of 0.001, 0.002, 0.005, 0.0075, 0.01. For each threshold we test three approaches 
for combining the four simulations of the same parameter combination: either 
50%, 75%, or 100% of the four simulation runs must meet the threshold criteria 
for the parameter set to be labeled Class 1; otherwise, it is labeled Class 0. 

Experiment C: Average Unhappiness: Experiment C attempts to predict 
the overall average unhappiness during the fnal 500 time steps, avgF . We create 
classes defned by quantiles of the avgF column of the 2-way data: 

1. 4 quantiles: < 30.91, < 74.08, < 125.19, >= 125.195 
2. 6 quantiles: < 12.27, < 38.45, < 74.08, < 113.84, < 164.66, >= 164.66 
3. 10 quantiles: < 12.27, < 24.24, < 38.45, < 55.60, < 74.08, < 92.76, < 113.84, 

< 137.98, < 164.66, >= 164.66 

In this experiment we determine if it is possible to predict the general region 
of the average unhappiness for agents in the model. Although quantiles do not 
need to be used, it is a natural way to defne the categories. To ensure a proper 
machine learning process is followed, we do not analyze quantiles of the 3-way 
data but apply the thresholds developed on the 2-way data to the 3-way data. 

4.2 Machine Learning in All Experiments 

We use the simulation results from the 2-way covering array data to generate 
training and validation data for each random forest model, then use the results 
from the 3-way covering array to test each model. This setup allows us to see if we 
can train a random forest model on a very small subset of the overall parameter 
space (3.3551e4 combinations), and then predict results for a signifcantly larger 
amount of new parameter combinations (3.972e6). In each case, the test data is 
processed in the same way as the equivalent training data. Each combination of 
thresholds and approaches to combining results of the same parameters results 
in a new set of data and a random forest model. 

We use scikit-learn’s implementation of random forests, and learn using a ran-
domized grid search. A randomized grid search takes all of the various hyperpa-
rameter (e.g. parameters to the random forest) options and randomly chooses a 
subset of all possible hyperparameter combinations to search for the best model. 
We use 10 fold cross validation, with balanced accuracy as the scoring function 
on 100 hyperparameter combinations. Cross validation is the standard best prac-
tice to help reduce the chance of overftting on the training data, with 10 folds 
being the generally agreed upon best choice. Balanced accuracy is used as our 
datasets are mostly imbalanced, which can afect how well the model learns. 

We test the following hyperparameters: number of decision trees in ensemble 
(200, 288, 377, 466, 555, 644, 733, 822, 911, 1000); maximum number of features 
to consider at a branching (2, 7); maximum depth of learned trees (10, 20, 30, 
40, 50, 60, 70, 80, 90, 100, 110); minimum samples required to branch (2, 5, 10); 
minimum samples required at a leaf node, e.g. at the point at which the decision 
tree is making a prediction, how many rows from the data should be represented 
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(a) Experiment A (b) Experiment B 

Fig. 3: The classes are generally unbalanced, with the most balanced data occur-
ring when the cutof threshold is 0.15 for Exp. A and 0.002 for Exp. B. 

by the prior branch in this direction (1, 2, 4); Gini impurity to determine quality 
of split; and bootstrapping either on or of. The grid search tests 100 randomly 
chosen combinations of these hyperparameters. After completing the search, it 
determines the best hyperparameters and generates a fnal random forest model 
using those hyperparameters. The 3-way data is tested on that model. 

5 Results 

We analyze balanced accuracy, precision, and recall as they are standard ML 
metrics that are particularly useful for unbalanced data. Unlike regular accu-
racy that only determines what percentage of predictions are correct, balanced 
accuracy is the sum of the number correct in each class divided by the number 
of classes. Balanced accuracy is thus more accurate when a large number of ex-
amples are from one class. As can be seen in Figure 3, our classes are imbalanced 
in most of our training data, which is to be expected. The recall and precision 
helps us to understand how that imbalance afects the predictions for each class. 
The recall tells us how likely we are to predict a given class if it actually is that 
class; so recall for Class 1 in Experiment B is how likely we are to predict that 
a simulation run with a specifc set of parameter values will be steady when it 
actually is steady. Precision tells us how often a prediction is correct; so a high 
precision on Class 1 means that if we predict Class 1 then it is likely to actually 
be Class 1. As a reminder, in all scenarios, 2-way data trained the model; the 
results are from using that learned model to predict the 3-way results. High ac-
curacy, precision, and recall implies that our overall process works for training 
a random forest to predict the reults of an agent-based model by only running 
a small percentage of potential parameter combinations. 

5.1 Experiment A: Low Unhappiness and Low Variation 

In Experiment A we predict whether the standard deviation over the last 500 
time steps (stdF ) crosses a given threshold. Class 1 represents situations where it 
is below the threshold, e.g. is steady and the overall unhappiness values are likely 
small. As can be seen in Figure 4, balanced accuracy varies between 95% and 
97% on the 3-way data, with accuracy decreasing as we become more imbalanced 
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(a) Balanced Accuracy (b) Recall (c) Precision 

Fig. 4: Recall and Precision from Experiment A. The solid line is for Class 1 (e.g. 
below threshold), and the dotted line is Class 0 (e.g. at or above threshold). The 
colors denote what percentage of the four runs needed to be below the threshold 
for the parameter combination to be labeled as Class 1. 

(a) Balanced Accuracy (b) Recall (c) Precision 

Fig. 5: Recall and Precision from Experiment B. The solid line is for Class 1 (e.g. 
below threshold), and the dotted line is Class 0 (e.g. at or above threshold). The 
colors denote what percentage of the four runs needed to be below the threshold 
for the parameter combination to be labeled as Class 1. 

with a higher percentage of the data in Class 1. Our recall for both classes is 
actually quite good in all versions of the problem, meaning that we are getting 
most examples correct. The precision for Class 0 is closer to 80% for the more 
imbalanced situations, meaning that when we predict Class 0 we are less likely 
to be correct than when we predict Class 1. Overall, many values for standard 
deviation cutof are predictable, even when the training data has signifcantly 
fewer examples in one class. It is feasible to predict if standard deviation will 
be low in the simulation by training on a small subset of the parameter space, 
although best results occur in a relatively balanced training set. How the four 
results from each parameter set are combined does not afect the result. 

5.2 Experiment B: Steady Unhappiness 

In this experiment we predict how steady the unhappiness level is across agents 
during the last 500 time steps. We defned steadiness as standard deviation di-
vided by average, to take into account that some average unhappiness levels are 
orders of magnitude higher than others. As seen in Figure 5, the balanced accu-
racy score is high across all situations tested, always at least 95%. The precision 
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(a) Four Quantiles (b) Six Quantiles (c) Ten Quantiles 

Fig. 6: Recall and Precision from Experiment C for each class in each experiment. 

and recall is always at least 90% as well, which is better than in Experiment A. 
We are very likely to get each class correct, although in the more imbalanced data 
we again see a dip in precision for Class 0 meaning that predictions for Class 0 
are less trustworthy than predictions for Class 1. However, even for imbalanced 
data our models’ predictions are generally accurate. Overall we seem able to 
predict steadiness of unhappiness level, with minimal impact by how steadiness 
is defned or how the four runs from each parameter set are combined. 

5.3 Experiment C: Average Unhappiness 

In experiment C we predict the overall average unhappiness level in categories 
defned by quantiles. Our balanced accuracy for four quantiles is 91.6%, for six 
quantiles is 87.8%, and for ten quantiles is 76.7%. We can see from balanced 
accuracy that the more fne grained our categories, the harder it is to predict. 
This result is not surprising, but is a confrmation of what may be most difcult 
to predict via machine learning. Figure 6 confrms that our prediction ability 
is high in the four quantile scenario, and steadily decreases as we increase the 
number of quantiles. As the number of quantiles increases we are increasing the 
difculty of the prediction, as fewer categories means more precision on average. 
For ten quantiles, the random forest is not able to adequately predict any classes 
other than the smallest and largest categories. In all quantile experiments the 
highest average values are the most likely to be accurately predicted, meaning 
that it’s easiest to determine if a high average unhappiness level will occur. 

5.4 Feature Importance 

One of the benefts of learning a random forest model is that the model can 
readily tell us how much infuence each parameter had on the fnal result. Feature 
importance is a useful piece of information, as a goal in this process is to be able 
to better understand the parameter space and how those parameters afect the 
fnal outcomes in the simulation. We use the feature importance feature of scikit-
learn’s implementation of Random Forests to compute this result. 

In Figure 7 we see importance of each feature for determining which class a 
set of parameter combinations predict. A feature (e.g. parameter) importance of 
1 would imply that the single feature alone can predict the results. As expected, 
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(a) Exp A 50% (b) Exp A 100% (c) Exp B 50% 

(d) Exp B 75% (e) Exp B 100% (f) Exp C 

Fig. 7: Feature Importance. In Experiments A and B, evaporation rate has the 
strongest infuence on classifcation. For all quartiles in Experiment C, the min 
and max ideal temp play the strongest role in determining classifcation. Neither 
percent nor threshold heavily infuence this ranking. 

no feature has that high an impact, nor does any pair of features. However, in 
each experiment a single feature has a majority importance. For Experiments A 
and B, evaporation rate is the most important feature and is signifcantly more 
important than all of the other features with an importance over 0.5 (Figure 
7). For Experiment C where we are predicting the averages, the minimum and 
maximum ideal temperature parameters have the most infuence on the results, 
and are almost equally important with each other with an importance of at least 
0.25 in each scenario (Figure 7f). The thresholds for determining the class label 
do not afect which feature is most important for making correct predictions; 
the feature importance seems tied instead to what we are trying to predict. 

For a closer look at the importance of features, we can consider 2-way and 
3-way combinations of feature values in the covering arrays, without machine 
learning. The notion of combination frequency diferences (CFD) [14] identifes 
combinations of feature values that are more strongly associated with one class 
than another, an approach useful in explainable AI [13] and vulnerability analysis 
for physically unclonable functions [12]. The CFD value for a single attribute 
value combination is the diference between the rate of occurrence of a particular 
value combination in one class versus another class. For example, a particular 
combination of fur and eye color may occur in 75% of one dog breed as compared 
with 10% of another breed, for a diference of 0.65. Diferences are computed for� � 

t nall attribute value combinations, for v t-way combinations of n attributes t 
with v values each. Graphing these diferences for every value combination in a 
data set produces a graph such as shown in Figure 8a, which shows a machine 
learning data set for clinical values related to diabetes. The graph shows the 
diference for all 3-way combinations in this data set. As can be seen in Figure 
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(a) Diabetes combination frequency diferences [14], for comparison 

(b) Heatbugs 2-way combination frequency diferences 

Fig. 8: Combination frequency diferences to identify combinations of features 
values that are more strongly associated with one class versus another. In (a) 
we see a comparison graph where some feature combinations strongly afect 
the outcome. In (b) we see that that no parameter combinations are strongly 
associated with the outcome for our 2-way data. 

8a, three combinations occur in 100% of the positive cases (above center line), 
indicating a strong association with these combinations of clinical values [14]. 

Applying this method to the Heatbugs 2-way covering array for Experiment 
A produces a graph as shown in Figure 8b. A separate report (not shown due to 
space limitations) shows that, consistent with the random forest model, evapora-
tion rate is the single most important attribute. However, the 2-way combination 
frequency analysis also shows that low values of minimum ideal temp in combi-
nation with evaporation rate are also strongly associated with class predictions. 
Similarly, a few other combinations are also found to be signifcant. This addi-
tional useful information is not apparent from the random forest model. Also 
note that the range of diference values is much narrower in Fig. 8b than in Fig. 
8a, indicating that the Heatbugs problem is in some sense “harder” for machine 
learning than the diabetes prediction problem (which has > 99% accuracy), as 
there are no combinations that clearly indicate a particular class on their own.We 
plan to investigate this CFD approach further in future work, to determine how 
well it can aid in determining the impact of parameters on model results, and/or 
how likely a model is to be predictable via machine learning. 

Both the ML feature importance results and the combination frequency dif-
ference results confrm that the ABM outcomes cannot be fully explained by 
2-way combinations alone, reconfrming that training our ML model on 2-way 
data to predict 3-way data does mean we are able to predict situations previously 
unseen in the training (2-way) data. Pairs of variables are not enough to fully 
defne the model’s behaviors, although the 2-way data does allow us to train a 
model to predict a broader set of behavior than was already seen. 



14 M. Olsen et al. 

6 Conclusions 

We propose a new process to systematically explore the parameter space of an 
ABM and predict outcomes of simulations using machine learning (ML) and com-
binatorial analysis. This process uses covering arrays to signifcantly reduce the 
parameter space from ∼11 trillion to 3.3551e4 parameter combinations, allowing 
us to systematically explore, learn, and predict simulation outputs for almost 4 
million unseen parameter combinations for the Heatbugs ABM. We train three 
diferent sets of random forest ML models using 2-way covering arrays of the 
parameter values, to predict three diferent types of outcomes of the simulation. 
We test the efectiveness of this approach on the 3-way covering array, which 
represents signifcantly more parameter combinations than the training data, to 
see if it is possible to train the model on a small part of the parameter space 
and then predict the results on a much larger part of the parameter space. We 
perform combinatorial analysis and feature importance analysis for insights into 
simulation output predictability, and the role of parameters in the predictions. 

Overall our results show that this process works. All three experiments on 
Heatbugs had high success in predicting a) if the standard deviation of the aver-
age unhappiness level will be low, b) if the standard deviation of unhappiness will 
be low in relation to the average unhappiness, and c) the average unhappiness. 
We tested many diferent thresholds for our categories, all with high success. 
Our best success was when our classes were most balanced, although learning 
was still successful even with unbalanced data. These results indicate that the 
process could be efective on other ABMs as well, and that further work should 
be done on the predictability of ABM results. 

In future studies we plan to explore what types of predictions can be made 
about ABMs, if the process will work on all types of models or only on models 
with specifc properties, and if a diferent ML algorithm will garner better results. 
Random forests were a good ft for this model’s data and our goals, but another 
ML algorithm may better ft other models. We also plan to further explore the 
use of CFD in analyzing results from the covering arrays in determine parameter 
importance in results prediction. We plan to continue this research to further 
defne how and when our approach can be successfully applied, so that eventually 
one could use our process to explore a parameter space more efectively on many 
ABMs. Disclaimer: Commercial products may be identifed in this document, but such 
identifcation does not imply recommendation or endorsement by NIST, nor that the 
products identifed are necessarily the best available for the purpose. 
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