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Abstract—Due to self-occlusions in 3D point clouds acquired
with line-of-sight sensors, an incomplete representation of an
object’s surface is used in fitting a CAD (computer-aided design)
model to the data. For certain types of object geometry, CAD
pose fitted using the Iterative Closest Point (ICP) procedure is
systematically misaligned, even when the selected initial pose is
very close to the expected, correct pose. We demonstrate on
experimental data obtained from manufacturing-relevant parts
that the final CAD alignment can be greatly improved if only
a part of the CAD surface is used in the ICP registration. The
resulting residual ICP error is then reduced by three to four
times.

Index Terms—3D point cloud, CAD fitting, ICP registration,
line-of-sight sensor, bin picking

I. INTRODUCTION

Accurate determination of six degrees of freedom (6DOF)
pose is a critical prerequisite for successful deployment of
vision systems in many manufacturing applications. When a
CAD model of a part is known, fitting a model to a 3D point
cloud of the part requires a minimization of a properly defined
error function. For a CAD model represented by a mesh, the
error function can be calculated as a root mean square (rms)
of point-to-point or point-to-surface distances. It is therefore
a common practice to gauge the quality of the fit by reporting
a residual value (in millimeters) of the error function, where
a small value is usually interpreted as an indication of a good
fit.

A metric used in CAD fitting may be misleading since the
residual error is affected by two different and independent
factors: 1) accuracy of the model selected for fitting, and 2) the
amount of noise and bias in the experimental data. In industrial
applications such as bin picking, the proper CAD model of the
part is known a priori. However, segmentation of a single part
in a point cloud representing an unstructured pile of parts is
a challenging task which is prone to the inclusion of outliers.
The presence of outliers, in turn, may lead to an inflated value
of the residual error, which may be interpreted as an indicator
of bad alignment. This may be at odds with a subjective
impression following a visual inspection. Such a situation is
illustrated in Fig. 1 which shows the same CAD model fitted to
two different point clouds acquired from the same part using
two different sensors. In spite of much cleaner 3D data in
Fig. 1b and a clearly smaller value of the residual error, visual
observation provides ambiguous impression. While none of
the CAD alignments in Fig. 1 is accurate, one may well

Fig. 1. Outcome of fitting the same CAD model to two different point clouds
(rows a and b), shown from two viewpoints (columns 1 and 2). Residual error:
a) 4.93 mm; b) 3.9 mm.

argue that the better fit is that of Fig. 1a. A similar ambiguity
was reported earlier: two different registration techniques of
the same datasets yielded very different residual error values
and yet, better alignment corresponded to the larger error, see
Fig. 7 in [1].

Data segmentation is the first step in pose determination
and it is natural to try to relate the outcome of the fitting
to the accuracy of the segmentation. In the research domain,
when simulated data are used, the quality of the segmentation
and the resulting object’s pose can be directly compared with
ground truth. For example, Intersection over Union (IoU),
which provides a percentage of segmented data overlapping
with the ground truth, was used to train Deep Learning (DL)
networks, such as PointNet [2], [3], [4] or SMA-Net, that are
capable of both part identification and CAD fitting [5]. This
approach was also adopted in Benchmark for 6D Object Pose
Estimation (BOP) Challenge [6]. The biggest problem with
such approaches is the realism of the simulated noise. For
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example, 3D point clouds collected by structured light systems
are notoriously contaminated by phantom points (data points
floating in empty small regions with no correspondence to the
physical objects in a scanned scene). Such points cannot be
easily simulated as traced rays, in a synthetic scene, that are
perturbed using some form of Gaussian noise [7].

When a ground truth is not available, an entropy-based
method could be used to evaluate a quality of segmentation.
Originally developed for Red Green Blue (RGB) images, it
could be applied to 3D data derived from depth images [9], but
the metric only provides a relative evaluation of two different
segmentations.

In another approach to gauge accuracy of fitting, simple
geometric primitives were extracted from more complex CAD
models and fitting accuracy was expressed as a difference
between the nominal, ground truth CAD parameters and the
fitted parameters (e.g., sphere radius, cone height, and apex
angle, etc.) [8]. However, this metric is limited to CAD models
in which such geometric primitives can be identified and it
gauges only a selected aspect of the fitting process. A similar
approach was used when an acquired point cloud and a priori
a CAD model of industrial pipelines were used to adjust CAD
parameters [10].

When it comes to registering two 3D point clouds, the
Iterative Closest Point (ICP) algorithm is the most common
procedure [11], [12]. It alternates between finding the cor-
responding points and finding a rigid body transformation
that minimizes the distances between them. ICP requires a
good starting pose to avoid being trapped in incorrect local
minima [13]. This restriction can be mitigated by redesigning
the minimization process to ensure that the global minimum
is reached [14], but these solutions suffer from long run times.
The residual value of the ICP error is then used to gauge the
quality of the final alignment.

To address the fact that a relation between the residual error
value and the error of the fitted 6DOF pose is not generally
known, a rigorous concept of certifiable registration was in-
troduced in [15] and tested in [17], [18]. Originally developed
for two datasets with established correspondences, it can also
handle a high ratio of outliers (99%) by decoupling scale,
translation, and orientation searches. Taking input parameters
characterizing noise, such as signal to noise or noise bounds,
the implemented TEASER++ procedure [16] could output
estimated pose together with some error bounds, without
explicit knowledge of the ground truth pose. In cases where a
simultaneous pose and correspondences must be determined,
the procedure may fail if there are not enough inliers to
identify a unique registration. Existence of symmetries in the
scanned scene may also be challenging as they make the
registration non-unique.

In this paper, we investigate a fitting of CAD model to 3D
point cloud acquired with the line-of-sight sensor. We show
that ICP can provide systematically inaccurate poses even as
the starting pose is very close to the expected, final pose. A
remedy for this deficiency is proposed which decreased the
residual error three to four times and shortened execution time

Fig. 2. Example of a part with a void cavity. Such parts are prone to erroneous
CAD fitting when scanned with a line-of-sight sensor.

four to nine times.

II. PERILS OF FITTING SOME TYPES OF SELF-OCCLUDED
SURFACES

In many industrial applications, line-of-sight sensors are
placed in a fixed pose within world coordinates. When 3D
point clouds are acquired with these types of sensors, the
resulting points are sampled only from the visible parts of
the object’s surface in the sensor’s field of view. For many
surfaces this limitation does not degrade the final output of
the CAD fitted to the point cloud. However, for some more
complex surfaces, portions of the surface may be convex and
others may be concave. If both portions are close to each
other and are located in such a manner that one can occlude
the other, then this may lead to incorrect alignment of the
CAD model to the surface when the point cloud is acquired
from only one direction. An example of such an object is
shown in Fig. 2. As can be seen, the head of the screw has
a cavity and a part of the inner surface defining its boundary
is shadowed by the external surface of the head. The use of
a line-of-sight sensor to acquire a point cloud for such object
can have negative impact on accuracy of fitted CAD pose. In
Fig. 3, the initial starting CAD pose (in red) together with the
acquired 3D point cloud (in black) are shown, and the resulting
fitted end pose is displayed in Fig. 1b. In spite of a relatively
good initial alignment, the ICP procedure was trapped in an
incorrect minimum. To demonstrate this problem, a series of
experiments described in the next section was conducted.

III. EXPERIMENT

Four different sized black-oxide socket head screws were
used, see Fig. 4. For each selected size, M = 16 screws were
placed in a random orientations on a flat table and scanned
with Zivid One+Small sensor1. An example screw placement
on a table is shown in Fig. 5. All adjustable parameters of the
sensor were set to their default values. Approximated distance
between sensor center and the center of table was 0.5 m.
For comparison, a bin filled with a pile of randomly placed
screws was also scanned with the same sensor. Additionally, a

1Certain commercial equipment, instruments, or software are identified in
this paper to foster understanding. Such identification does not imply recom-
mendation or endorsement by NIST, nor does it imply that the equipment or
software identified are necessarily the best available for the purpose.
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Fig. 3. Example of a 3D point cloud acquired with a line-of-sight sensor and
an initially aligned CAD pose.
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Fig. 4. Four sizes of screws used in experiment. Labels M indicate the bolt
diameter in millimeters.

single screw was placed on a turntable and scanned with Faro
Quantum S sensor mounted on 7DOF arm (Articulating Arm
Coordinate Measuring Machine - AACMM) which automat-
ically registered scans from different directions and output a
3D point cloud covering almost all of the part’s entire surface.
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Fig. 5. Example of a depth image of a random configuration of M8 screws
used in the experiment.

Fig. 6. Example of oriented 3D bounding box and properly oriented local
coordinate frame shown with color arrows.

IV. DATA PROCESSING

All calculations and graphic visualizations were performed
in Matlab using its Image Processing Toolbox. For each
acquired 3D point cloud of the screws on the table, such
as in Fig. 5, individual screws were manually segmented
and the 3D oriented bounding box was calculated using
the minboundbox () procedure [19] for each screw. In order
to initially align a CAD model with its segmented point
cloud, a properly defined orientation matrix Rinit was derived
from the corners of the 3D bounding box and some features
characterizing the CAD model. This step was necessary since
eight corners of the bounding box output by minboundbox ()
do not resolve ambiguity caused by the definition of the local
CAD coordinate frame (for example, if axis of symmetry is
parallel to ẑ, the head of the screw may be oriented up or
down). An example of a calculated oriented 3D bounding box
with properly defined local unit vectors is shown in Fig. 6.
CAD vertices were rotated using Rinit and the point-to-point
version of the ICP procedure pcregistericp() was used to
finalize a CAD alignment with the segmented part of the 3D
point cloud. The residual error of the fitting was recorded. This
procedure of using all CAD vertices in the ICP registration will
hereafter be referred to as Method A.

A. Improving CAD alignment

Due to the peculiar geometrical feature of the screw de-
scribed in Section II, the final CAD alignment with the 3D
point cloud is not very good, as can be seen in Fig. 1b. Since
line-of-sight sensors acquire data from only a portion of an
object’s surface, it is reasonable to use only the subset of CAD
vertices that are visible in the initial orientation Rinit in the
ICP minimization. For good initial alignment, such a strategy
eliminates the risk that the ICP minimization will try to match
the occluded part of the CAD surface with experimental 3D
points. Such risks exists when a ray originating from the
sensor’s center passes through an object’s surface in two
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Fig. 7. 3D point cloud and: a) visible part of CAD surface from Fig. 3; b)
full surface of CAD fitted with Method B.

close points which have local normals pointing in opposite
directions. Visible CAD vertices are obtained using the Hidden
Point Removal (HPR) procedure [20] with a viewpoint set at
(0, 0, 0) (the origin of sensor’s coordinate frame). In Fig. 7a,
the same 3D point cloud and the visible part of the CAD
surface, in the same orientation as in Fig. 3, are shown.
The visible portion of the CAD vertices is then fed into the
pcregistericp() procedure and the resulting CAD alignment
with the 3D point cloud is shown in Fig. 7b. This should
be compared with Fig. 1b, which shows the outcome of the
registration when all CAD vertices were used. This procedure
of using only a subset of the CAD vertices visible in the initial
orientation Rinit for the ICP registration is hereafter referred
to as Method B.

V. RESULTS

More examples of fitting to three sizes of screws are plotted
in Fig. 8: top row is for M6 screws, the middle row for M12
screws, and the bottom row is for M16 screws. The left column
in Fig. 8 shows the 3D point clouds and the visible CAD
surface in the pose determined from the 3D oriented bounding
box, as described in Section IV. This pose serves as an initial,
starting pose for the ICP registration. The middle column in
Fig. 8b shows the outcomes of Method A and the right column
shows the outcomes of Method B. In Fig. 9 and Fig. 10 the

residual ICP errors are shown for all M = 16 poses and two
screw sizes: M16 and M12, respectively. For each part index,
n, the CAD starting pose was the same for both methods A
and B.

The longest triangle side in the mesh representing the CAD
model was restricted to be shorter than 0.2 mm for screw sizes
M16, M12, and M8, and to 0.1 mm for the M6 screws.

For all four screw sizes, each individual screw was manually
segmented from the 3D point cloud. This careful and labor-
intensive operation resulted in very clean subsets of 3D points.
The average number of points N in the segmented subsets
depends on the screw size and varies between 2,000 and
14,000 points.

Central Processing Unit (CPU) times, TA and TB , for
running the pcregistericp() procedure were recorded for both
methods A and B, respectively. Recorded times vary greatly
for different screw sizes as they depend on the number of
segmented points N and the number of vertices in the CAD
model. A smaller variation in CPU times was also observed
for all M = 16 screws of the same size. On average, the
ratio TA/TB varied between 4 and 9. The extra time needed
to execute the HPR procedure took less than 1% of TA.

Fig. 11 shows the example of fitting a CAD model to a 3D
point cloud that covers the majority of a part’s surface (data
acquired with AACMM).

Fig. 12 shows a fragment of an unstructured pile of screws
in a bin with the CAD fitted to one of them using Method A
and B.

VI. DISCUSSION

The initial CAD pose for the ICP registration derived from
the 3D oriented bounding box, such as that shown in Fig. 6,
resulted in a good alignment with 3D point cloud. The average
angle of relative rotations between the initial and the final
CAD orientations, such as shown in the left and the right
columns of Fig. 8, was about 3.7◦. However, in spite of a
relatively good initial alignment, the final CAD pose fitted to
an experimental point cloud using all CAD vertices (Method
A) is clearly incorrect, as can be seen in Fig. 1b and Fig. 8b.
On the other hand, using only the subset of CAD vertices
visible in the initial pose for the ICP registration (Method B),
such as that shown in Fig. 7 and Fig. 8a, greatly improved the
final CAD alignment. The improvement can be quantified by a
reduction in the ICP residual error for Method B vs. Method
A, as shown in Fig. 9 and Fig. 10. The outlier in Fig. 9b
indicates the only case where a use of only the visible portion
of the CAD vertices failed to reduce the ICP residual error.
For all other cases, the reduction was between three to four
times.

Use of visible only CAD vertices in Method B eliminates
existence of undesired, local minimum caused by closeness of
convex and concave regions on object’s surface.

Residual error for Method A in Fig. 12a is 2.00 mm and
0.57 mm for Method B in Fig. 12b. This indicates that Method
B is superior over Method A not only for the particular
configuration, such as in Fig. 5, where all screws are placed
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Fig. 8. Examples of CAD (red) and segmented 3D point clouds (black) for three screw sizes: M6, M12 and M16 (top to bottom). Left to right column:
visible only part of CAD in the initial pose used by ICP; final CAD alignment using Method A; final CAD alignment using Method B. The right column
shows clearly better alignment of CAD with 3D data than the results in the middle column.
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Fig. 9. Residual ICP error for: a) Method A; b) Method B. Plotted results
are for M16 screws.
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Fig. 10. Residual ICP error for: a) Method A; b) Method B. Plotted results
are for M12 screws.
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Fig. 11. Fitting CAD with Method A to 3D data covering most of part’s
surface (black points): a) CAD in starting pose; b) aligned final CAD pose,
plane fitted to the table plotted in blue. Plotted results are for M16 screws.

on a flat surface and are clearly separated from each other.
Automated segmentation of a single part from an unstructured
pile of parts is much more challenging and may include
more outliers than manually segmented parts distributed in
the special configuration shown in Fig. 5. Thus, one may
expect a persistent problem with 3D data acquired by line-of-
sight sensors from certain objects and Method B to generally
yield smaller values of the residual errors for such cases.
While the described phenomenon was demonstrated only on
screws, other parts with convex and concave surfaces (such
as bushings, spacers, shaft collars, etc.) are expected to reveal
the same pattern when scanned with line-of-sight sensors.

The problem shown in Fig. 8b did not occur when the CAD
models were fitted to the point clouds covering the majority of
the part’s surface and acquired with the AACMM sensor. Even
when the starting CAD model pose for the ICP registration was
very poorly aligned with the 3D data, as in Fig. 11a, Method
A yielded a very good final result. As discussed earlier, a
proximity of convex and concave regions on screw’s surface
caused ICP to be trapped in incorrect local minimum when
line-of-sight sensor was used. While there are no many points
from the inner wall of the cavity in the point cloud acquired

Fig. 12. Fitting CAD (shown in red) to the segmented points (blue) selected
from a 3D point cloud (black) acquired from an unstructured pile of parts and
using: a) Method A; b) Method B. Plotted results are for M8 screws.

by AACMM, majority of part’s external surface was sampled
with AACMM and this was sufficient for ICP to converge to
the right pose.

VII. CONCLUSIONS

In vision guided robotic applications such as bin picking,
a decision to accept or reject a part’s pose is based on the
residual error of the CAD fitting. Use of only the visible subset
of the CAD model’s vertices in the ICP registration (Method
B) can greatly improve the alignment between certain types
of CAD models with point clouds acquired by line-of-sight
sensors. Even for solid objects with geometries not affected
by the problem described in this paper, it may be beneficial
to use Method B as it substantially reduces execution time of
the ICP procedure.
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