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Abstract: A majority of ultracold atom experiments utilize resonant absorption imaging
techniques to obtain the atomic density. To make well-controlled quantitative measurements, the
optical intensity of the probe beam must be precisely calibrated in units of the atomic saturation
intensity Isat. In quantum gas experiments, the atomic sample is enclosed in an ultra-high vacuum
system that introduces loss and limits optical access; this precludes a direct determination of
the intensity. Here, we use quantum coherence to create a robust technique for measuring the
probe beam intensity in units of Isat via Ramsey interferometry. Our technique characterizes
the ac Stark shift of the atomic levels due to an off-resonant probe beam. Furthermore, this
technique gives access to the spatial variation of the probe intensity at the location of the atomic
cloud. By directly measuring the probe intensity just before the imaging sensor our method in
addition yields a direct calibration of imaging system losses as well as the quantum efficiency of
the sensor.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Ultracold atom experiments are now entering an era of precision quantum simulation; this poses
new challenges to the underlying measurement methodology. These systems are most commonly
measured with on- or near-resonant laser light; as such calibrating the optical intensity can be
important for obtaining accurate measurements. In particular for sufficiently intense light the
atomic transition becomes saturated and each atom achieves a maximum scattering rate. For
example, absorption imaging illuminates an atomic ensemble with a resonant probe laser and
measures the atoms’ shadow. In order to quantify the number of atoms from the absorbed light
the probe intensity in units of the saturation intensity Isat must be known. Because ultracold
atoms exist in an ultrahigh vacuum environment, it is difficult to calibrate the laser intensity at
their location, and losses from vacuum viewports make ex situ measurements inaccurate. This
paper describes a robust technique for determining the probe light intensity for ultracold atom
measurements using Ramsey interferometry (RI).

For resonant imaging techniques, the signal-to-noise ratio (SNR) typically reaches its maximum
with intensities I ≈ Isat. With modern low noise, high efficiency detectors, photon shot noise
is generally the leading noise source. As such, for I≪Isat the scattering rate is proportional to
I and the SNR scales like I1/2. By contrast for I ≫ Isat the scattering rate is independent of I
and the SNR scales like I−1/2 (see App. A for more detail). When I≪Isat the numerical value of
the probe intensity I drops out of the expressions for the atomic density, however, it contributes
significantly when I ≳ Isat.

Several techniques have been developed to overcome the difficulty of measuring the probe
laser in vacuo. The most straightforward technique [1] relies on simply measuring the reduction
in absorption for increasing intensity to estimate Isat. This quick, easy-to-implement method
serves to produce a measure of atomic density that is independent of probe intensity. However, as
a heuristic modeling approach there is no assurance of an accurate determination of Isat. A more
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recently developed method overcame this modeling limitation by using the acceleration from
radiation pressure to directly count the average number of scattered photons [2]. Although this is
a more direct technique, it adds technical complexity. Here, we describe a technically simple
approach that yields a spatially resolved map of the intensity across the atomic ensemble.

Rather than focusing on changes in absorbed light or radiation pressure, we consider the ac
Stark shift, derived from the dispersive part of the light-matter interaction. The ground state of a
two level atom undergoes an ac Stark shift [3] of

Vac
ℏ
=
Ω2

4δ
(1)

from a laser beam with resonant Rabi frequency Ω detuned δ from resonance; here ℏ is the
reduced Planck’s constant. The saturation intensity Isat is a useful parameter that relates the
intensity I to the natural linewidth Γ and the Rabi frequency via I/Isat = 2 |Ω/Γ |2 [3]. Combining
these expressions, we connect the ac Stark shift to the intensity with

Vac
ℏΓ
=

1
8
Γ

δ

I
Isat

. (2)

Our technique uses Ramsey interferometry (RI) to measure the phase shift

ϕ = −Vactm/ℏ (3)

that an atomic ground state acquires in a time tm. Because δ and tm are well known, our method
yields a primary calibration of the laser intensity in units of Isat.

This paper begins by formulating the basic principle of our measurement method via Ramsey
interferometry in Sec. 2. Next, in Sec. 3, we continue with a more detailed description of our
experimental setup and elaborate on the experimental implementation of our technique. In Sec.
4, we present our Ramsey interferometry measurements and extract the spatially averaged laser
intensity experienced by the atoms. Following, in Sec. 5, we utilize our Ramsey interferometry
method to spatially characterize the intensity inhomogeneity in the region of the atomic system.
In Sec. 6, we calibrate the the sensor using photo-electron shot noise; in conjunction with the Isat
calibration this directly gives the full-system optical loss.

2. Technique

Our experimental characterization of the ac Stark shift can be understood in terms of the
three-level configuration shown in Fig. 1(c), consisting of ground states |g1⟩ and |g2⟩ (with
energies Eg1 and Eg2) and excited state |e⟩ (with energy Ee); the probe laser couples |g2⟩ to |e⟩.
In this configuration |g1⟩ experiences no Stark shift [4] and we use RI to measure the phase shift
between the two ground states.

RI measures differential phase shift in a way analogous to a Mach–Zehnder interferometer,
and operates by creating an interference between amplitude in a path that experiences a desired
phase shift (here |g2⟩) and one that does not (here |g1⟩). In practice we achieve this with atoms
beginning in |g1⟩ and use an oscillatory microwave field with frequency ωµ = (Eg1 − Eg2 )/ℏ
[purple line in Fig. 1(a)] to couple to |g2⟩ with Rabi frequency ΩR. In this way, a π/2 pulse
creates a superposition state (|g1⟩ + |g2⟩)/

√
2 [Fig. 1(b)-i], and after a free evolution time T

[Fig. 1(b)-ii], a second π/2 pulse interferes the two paths [Fig. 1(b)-iii]. The final population in
states |g1⟩ and |g2⟩ gives access to the differential phase shift acquired during free evolution.

This process is described by a sequence of evolution operators

|ψf⟩ = R̂(θ)ÛR̂(0)|g1⟩, (4)

in which Û = |g2⟩⟨g2 |eiφ + |g1⟩⟨g1 | describes the free evolution period including the phase shift
ϕ from the probe pulse, and R̂(θ) =

[︁
Î + i

(︁
sin θ σ̂x − cos θ σ̂y

)︁ ]︁
/
√

2 describes a π/2 rotation
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Fig. 1. Principle of measurement. (a) A microwave pulse (wiggly purple curves) transforms
the system (blue) into a superposition state and subsequently the BEC is briefly illuminated
with far-detuned laser light (red). (b) Top: Bloch sphere representation of a Ramsey
interferometry sequence, where the dark blue arrows indicate the axes of rotation for each
microwave pulse; the purple arrows depict the associated trajectories; and the green circles
mark the state before (translucent) and after (solid) each step. The red arrow shows the
evolution from the ac Stark shift associated with the laser pulse. Bottom: Underlying time
sequence. (c) Left: Simplified level diagram. The resonant microwave field (purple) with
frequency ωµ , couples |g1⟩ and |g2⟩. The off-resonant laser light (red) of frequency ωge
couples |g2⟩ to |e⟩ and induces an ac Stark shift (blue) on |g2⟩. Right: Idealized Ramsey
signal without (black) and with (dashed red) the off-resonant laser light, showing the phase
shift resulting from the ac Stark shift.

about an axis residing in the ex-ey plane of the Bloch sphere, rotated by an angle θ from ey. In
experiment, we select this angle by phase-shifting the second π/2 microwave pulse by θ = δϕP
with respect to the first. Here, σ̂x,y,z are the Pauli operators in the ground state manifold and Î is
the identity. Following this sequence, the occupation probabilities f1,2 in |g1,2⟩ are measured.

We consider the simple case when Û = Î, i.e., no ac Stark shift, to elucidate the operation of
this process. In this case, the probability f2 = (1 + cos δϕP) /2, shown in black in Fig. 1(c), is an
oscillatory function of the phase shift δϕP. As shown by the red-dashed curve, any additional
phase shift ϕ acquired during the free-evolution time gives f2 = [1 + cos(δϕP − ϕ)] /2.

Experimentally, we fit such data to

f expt
2 =

1 + A cos(δϕP − ϕ)

2
+ b, (5)

and obtain the phase shift ϕ as well as the contrast A, and center shift b. Contrast reduction
can result from experimental imperfections as well as spontaneous scattering, as described in
terms of quantum back-action from a measurement perspective in Ref. [5]. The center shift
results from differential losses between |g1⟩ and |g2⟩; averaged across our whole data set we find
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b = −0.023(25), making it a small effect [6]. We then obtain the ac Stark shift Vac with high
accuracy by measuring the phase shift ϕ as a function of probe intensity I, detuning δ, and pulse
duration tm.

3. Experimental system

Figure 2(a) illustrates the fundamental challenge of calibrating the probe intensity at the location
of atomic ensemble. The red lines indicate our primary imaging path, with numerous optics
separating the in-vacuum atoms from the sensor. Optical losses in the imaging system render
light intensity measurements at the imaging sensor inaccurate, while limited access at the location
of the atoms due to the ultra-high vacuum system prevents direct in-vacuo measurements. Here,
we describe the experimental procedure used to acquire the ac Stark shift in RI measurements.
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Fig. 2. Realistic imaging system, level diagram, and experimental sequence. (a) Imaging
setup. Our atomic system is imaged both in situ (with the main imaging system) and after
TOF (with the auxiliary setup). The off-resonant probe beam (red) illuminates the BEC in
situ and the auxiliary imaging system uses a secondary laser beam (green). (b) Relevant
hyperfine structure. The purple arrow designates the microwave coupling; the red arrow
designates the probe beam coupling on the D2 cycling transition of 87Rb. The dashed lines
indicate the effect of the ac Stark shift. (c) RI time sequence. An initial π/2 microwave
pulse (purple) is followed by a 15 µs evolution period; then the off-resonant light pulse (red)
is applied, and after a 5 µs delay, a second π/2 pulse (purple) completes the RI sequence.
The ODT (orange dashed) is turned off immediately following the Ramsey sequence. A
Stern-Gerlach gradient (grey) is applied during TOF, and the atoms are detected using
standard absorption imaging (AI, green).

Our experiments commenced with highly elongated Bose-Einstein condensates (BECs) of
N = 0.70(15) × 105 atoms confined in a 50 mm × 50 mm glass cell. The BEC was trapped
in a crossed optical dipole trap (ODT) realized by two 1064 nm beams propagating along ex
and ey yielding trap frequencies (ωx,ωy,ωz) = 2π × [9.61(3), 113.9(3), 163.2(3)] Hz. Trapped
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atoms were prepared in the 52S1/2 electronic ground state in |g1⟩ ≡ |F = 1, mF = 1⟩ as shown in
Fig. 2(b). We implemented the RI π/2 pulses using a microwave magnetic field tuned to the
≈ 6.8 GHz ground state hyperfine splitting of 87Rb; our Rabi frequency was ≈ 7.5 kHz. This
formed the basis of our in situ RI probe intensity calibration technique.

Figure 2(c) shows our overall time sequence for RI. The first π/2 microwave pulse drive
transitions between |g1⟩ and |g2⟩ ≡ |F = 2, mF = 2⟩, creating the desired superposition state
along the x-axis of the Bloch sphere. Then, our far-detuned probe laser of wavelength λ ≈ 780 nm
couples |g2⟩ to the |e⟩ ≡ |F′ = 3, m′

F = 3⟩ electronic excited state on the cycling transition, and
weakly couples |g1⟩ to |e2⟩ ≡ |F′ = 2, m′

F = 2⟩ (giving Isat ≈ 1.67 mW/cm2 for σ+ polarization).
After brief 5 µs delay we applied the second π/2 microwave pulse with the δϕP phase shift,
closing the RI. Subsequently, we extinguished the ODT to initiate a 20 ms time of flight (TOF).
During the TOF period, we spatially separated the hyperfine components |g1⟩ and |g2⟩ using the
Stern-Gerlach effect.

We then measured the ground state populations N1 and N2 via resonant absorption imaging
following TOF, using our auxiliary imaging path [green lines in Fig. 2(a)]. We quantitatively
determine the atom number N1 and N2 in each state using bimodal fits to the TOF density
distributions as described in Ref. [7], and denote the fraction in |g2⟩ as f2 = N2/(N1 + N2). As a
function of the relative phase shift δϕP this fraction yields the characteristic cosinusoidal Ramsey
oscillation from which we extract the light-induced phase shift ϕ.

3.1. Experimental imaging setups

As illustrated in Fig. 2(a) we employ two imaging configurations: a primary in situ configuration
(red lines), and an auxiliary TOF configuration (green lines). Our technique calibrates the probe
for the primary imaging configuration using information obtained through the auxiliary setup.
Both imaging paths utilize an initial Keplerian microscope (with magnification ≈ 9), and the
shared objective lens (L1) sets the numerical aperture to be 0.32.

The auxiliary path is separated using a small mirror placed near the focus of atoms after TOF,
and concludes with a second “microscope” that reduces the magnification to 3.06(1). This path
utilized a PointGray Flea3 charge-coupled device (CCD) [8]. The primary imaging path uses a
second stage microscope that sets a total magnification of about 36, and includes a phase dot
positioned at the Fourier plane [as shown in Fig. 2(a)] to enable phase-contrast imaging. Our
primary imaging sensor is an Andor DU-888UU3 electron multiplying CCD (EMCCD) with a
1024 × 1024 array of 13 µm square pixels.

Each CCD pixel converts incoming photons to photoelectrons with an efficiency given by the
quantum efficiency QE. In this way N photons yield Npe = QE × N photoelectrons; in the case
of an EMCCD, the resulting charge is amplified by electron multiplication. In either case the
resulting signal is digitized, and reported as NADU [in units of analog to digital units (ADUs)].
NADU has no particular relation to photo-electrons, nor photons and certainly not intensity at the
location of the atoms. In Sects. 6 and 7, we derive these relations.

Even in the absence of direct illumination, our CCD accumulates photoelectrons; this results
from a combination of background light and dark current. To compensate this effect, for each
measurement we acquire a dark image Ndark

ADU with the beam off. The dark image was subtracted
from the bright-field images to remove dark counts and stray light [9].

4. Ramsey interferometry measurements

We now turn to the result of our RI measurements with data acquired as described in Sec. 3.
Figure 3(a) plots measured RI oscillations (blue points) at three different beam powers with
detuning δ̄ = δ/Γ = 63.4 and probe pulse time tp = 20 µs. At low probe power [Fig. 3(a),
bottom] the phase shift is minimal, analogous to the black curve in Fig. 1(c). The RI phase shift
increases with increasing beam power [from middle to top in Fig. 3(a)]. The resulting leftward
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shift of the curves is indicated by the red diamonds at the minimum of each oscillation. The red
curves depict fits to Eq. (5), from which we determined the light-induced phase shift ϕ.
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Fig. 3. Ramsey interferometry. (a) RI oscillations with probe power increasing from
bottom to top, all at δ̄ = 63.4 and tp = 20 µs. Red diamonds provide a guide for the
optically-induced phase shift ϕ. (b) Phase shift ϕ as a function of probe intensity in units of
NADU, at tp = 20 µs for δ̄ = 63.4 (red) and δ̄ = 116.2 (green). (c) ϕ as a function of δ̄ at
tp = 20 µs and NADU = 5250(20). (d) ϕ as a function of tp at δ̄ = 63.4. The probe intensity
was set to give NADU = 3190(40) at tp = 20 µs. The vertical dashed line marks the time
δt0 = 1.6 µs at which the probe pulse began. (b-d) In all cases, same-color curves are fits to
Eq. (6) mod 2π. (e) Data plotted as a function of Vactm/ℏ using the calibrated Nsat value.
The dashed gray line plots the expected outcome, a sawtooth curve: a line with slope 1 mod
2π. Note that the vertical axes of (b)-(e) plot −ϕ for clarity.

Figure 3(b) shows [10] ϕ obtained using this procedure as a function of NADU for two detunings
δ̄. These data exhibit 2π phase jumps because RI measures phase modulo 2π. We obtained
NADU by imaging the probe beam without atoms on the primary imaging sensor for each RI
sequence, and define NADU as the counts averaged within the sensor region where atoms would
cast their shadow. With respect to these units, Nsat is the number of ADUs resulting from a
probe of intensity Isat illuminating the detector for 1 µs. In principle, Nsat can be obtained by
fitting Eqs. (2) and (3) to these data. To increase the robustness of calibration, we added RI
measurements with variable δ̄, constant tp and constant intensity [Fig. 3(c)]; and variable tp,
constant δ̄, and constant intensity [Fig. 3(d)].
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In Eq. (3), tm describes the true duration of the probe pulse. In our apparatus the control
hardware introduces a dead time δt0 [indicated by the vertical dashed line in Fig. 3(d)] prior to
applying the probe light. This reduces the pulse time to tm = tp − δt0. We perform a joint fit to
the full data set spanning Figs. 3(b)-(d) yielding Nsat = 27.2(4) counts/pix/µs.

In reality the model function is modified compared to Eq. (2) because |g1⟩ is also coupled to
|e2⟩. Although this transition is far-detuned compared to the cycling transition, its Stark shift
cannot be neglected. The total phase shift is

ϕ = −
Γ

8
tm

I
Isat

[︃
Γ

δ
−
Γ

2δ12

]︃
, (6)

where δ is the probe detuning from the |g2⟩ to |e⟩ transition, and δ12 = δ − ∆G + ∆E is the
detuning from the |g1⟩ to |e2⟩ transition, with ground state hyperfine splitting ∆G ≈ 6.8 GHz
and excited state hyperfine splitting ∆E ≈ 266 MHz. This does not increase the number of free
parameters.

In addition, these data are consistent with a small phase shift ϕ0 even for Vactm/ℏ = 0.
Experimentally we command Vac = 0 or tm = 0 by setting an analog signal to an acousto-optic
modulator (AOM) to zero; in practice this does not completely attenuate the AOM’s radio-
frequency drive, leading to a small amount of leakage light. We confirmed that ϕ0 = 0 when the
probe light is mechanically blocked. As a result, we include ϕ0 as a free parameter in our joint fit,
and added an auxiliary data set with Vac = 0 consisting of 8 RI fringes to yield ϕ0/(2π) = 0.06(2).

Figure 3(e) summarizes the result of our calibration by plotting the full data set as a function of
Vactm/ℏ. These data collapse onto a single saw-tooth curve. The dashed black curve in Fig. 3(e)
plots the expected phase shift ϕ, a line with slope 1 mod 2π. We observe good agreement
between the data and the expected ac Stark shift scaling. The two data points that deviate from
the expected value were taken at our highest intensity and relatively close to resonance.

5. Spatial variation of intensity

In this section, we apply the RI techniques described in Sec. 4 on a pixel-by-pixel basis to
characterize spatial variations in the probe intensity [11,12]. This analysis yields the Ramsey
phase shift as a function of the average intensity, from which we deduce the fractional intensity
difference throughout the atomic ensemble.

Figure 4(a) depicts a typical TOF image acquired in RI sequence with f2 ≈ 0.5. For each
repetition of the experiment the overall center positions of these clouds varied on the 10 µm scale,
although their relative positions did not. Therefore to correctly associate pixels between the |g1⟩
and |g2⟩ clouds, we center each cloud within a rectangle region of interest prior to computing f2
on a pixel-by-pixel basis; this gives an image f2. Our centering process relied on fits to the 2D
Thomas-Fermi (TF) profile to obtain center positions for both |g1⟩ and |g2⟩ clouds.

The magnetic field gradient used in the Stern-Gerlach separation of the atomic hyperfine
components is created from a coil-pair in an anti-Helmholtz configuration. As a result, the
gradient field also induces a harmonic potential—which is trapping for |g2⟩ and anti-trapping for
|g1⟩—during TOF. This could potentially induce differential changes in the |g1⟩ and |g2⟩ cloud
profiles. Such an effect would cause the |g1⟩ cloud to be stretched along ex and |g2⟩ cloud to be
compressed along ex (with no effect along ey). The widths from the 2D TF fits indicated that
stretching effects were insignificant.

During TOF, repulsive interactions cause the atomic clouds to expand predominately along ey
(and ez, which is not imaged) altering the aspect ratio. We account for this effect by applying the
Castin-Dum scaling theory [13] to TOF images, transforming from TOF to in situ coordinates. In
what follows the vertical axis is scaled, yielding the in situ distributions, for example the fractions
f2 shown in Fig. 4(b). In these data we minimize the noise contribution from pixels with no
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Fig. 4. Pixel-by-pixel probe calibration. (a) Raw TOF image showing |g1⟩ and |g2⟩
clouds in TOF (in nonscaled pixel units), following the RI sequence. In the remaining
panels (b-d), the vertical axis is scaled from TOF to in situ coordinates as described in the
text. (b) f2 evaluated at five different values of δϕP at δ̄ = 63.4, tp = 20 µs and averaged
NADU = 1630(40). The bottom image results from the data in (a). (c) φ at five values
of NADU, increasing from bottom to top. The ensemble of f2 sampled in (b) leads to the
bottom panel. (d) Fractional intensity difference derived from the set of φ in (c). The dashed
magenta ellipse signifies the region occupied by the BEC.

atoms by replacing data outside the range f2 ∈ [−0.1, 1.1] with f2 = 0.5 (in such pixels, f2 is the
ratio of two random numbers centered at zero and is essentially unbounded).

Furthermore, the raw data in (a) exhibit periodic density modulations. This is a well known
effect in quasi-1D BECs [14] and is not related to our intensity calibrations [15]. We remove these
“stripes” by applying a Fourier space filter (a 2D elliptical Tukey window) to f2 that excludes only
the specific frequency components associated with these stripes. This ensures that the remaining
structure in the data result only from the probe beam. The displayed fractions in Fig. 4(b) were
measured for five different values of δϕP at δ̄ = 63.4, and tp = 20 µs. This is the same data
presented in Fig. 3(b) for which we obtained NADU = 1320(30) averaged over the whole cloud.

After this preliminary analysis, we determine the phase shift φ by fitting f2(δϕP) to Eq. (5)
for each pixel. Analogous to the procedure in Sec. 4, this yields φ versus the averaged NADU;
five examples are shown in Fig. 4(c). In the final step, we fit the model function Eq. (6) on a
pixel-by-pixel basis to φ, yielding the fractional intensity difference [Nsat − Nsat]/Nsat shown in
Fig. 4(d). Within the region of the atomic ensemble (marked by the magenta dashed ellipse), our
probe intensity is largest for negative x and decreases for increasing x.

6. Sensor calibration via shot noise

For any given camera, the relation between ADUs and photoelectrons is at best poorly documented
but usually just unknown. Here we connect these quantities by taking advantage of the “shot noise”
of the photoelectrons whereby the variance of a signal with on average Npe photoelectrons is also
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Npe, i.e., with uncertainty ∆Npe =
√︁

Npe. In addition, Ref. [16] showed that the stochastic EM
process increases the noise ∆Npe by a factor of

√
2; we account for this by setting ∆Npe =

√︁
2Npe.

Therefore comparing the observed ADU signal NADU with its variance ∆N2
ADU allows us to

obtain a direct conversion
NADU = C × Npe, (7)

between NADU and Npe, with scale factor C. In principle, to extract C we would simply illuminate
the sensor with a uniform probe beam and measure the variance as a function of intensity. In
reality the probe beam pictured in Fig. 5(a) is inhomogeneous, with a fringe pattern that changes
on the ≈ 1 ms time scale. This necessitates the more complex analysis procedure described
below.

Fig. 5. Sensor calibration via shot noise. (a) Raw probe image with inhomogeneities on
many length scales. The red dashed ellipse signifies the typical location of the BEC’s shadow
(no atoms are present in these data). The black square indicates the relatively homogeneous
region of interest used in the noise analysis. (b) Expanded view of the region of interest.
(c) Noise signal after subtracting the PCs from the probe image. (d) Background signal:
difference between (b) and (c). (e) Variance and average intensity in units of ADUs. The
black curve is the quadratic fit to the data. (f) Variance and average intensity in units
of photoelectrons computed using the conversion factor C. The green curve, with slope
a = 2.00(3) is the linear contribution of a quadratic fit.

We began by focusing our attention on a small, relatively homogeneous portion of the sensor
[black square in Fig. 5(a)] within the region where our BEC casts its image (red dashed ellipse).
Then we use a principle component analysis (PCA) technique to distinguish between noise and
overall changes in the probe profile. At each desired intensity we acquire an ensemble of probe
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images, and compute an orthonormal PCA basis. The orthonormal components of the PCA basis
are ordered by their relative contribution to the dataset; the first few components reflect structure
in the probe and the remaining components reflect shot noise.

In our experiment, we obtained an ensemble of n = 35 probe images {Ni}
35
i=1 (in ADU units)

for a given intensity with average ⟨N⟩. We then implement the following PCA based variance
analysis procedure:

1. For each element of this ensemble Ni, we construct a features matrix Xi from the ensemble
excluding Ni. The features matrix has dimensions (m, n − 1), where m is the sensor area in
pixels.

2. We compute the covariance matrix from Xi, diagonalize the covariance matrix and obtain
its eigenvectors and eigenvalues [17]. These orthonormal “principal” components (PCs)
are ordered by their relative contribution to the dataset (quantified by their eigenvalues).
This procedure yields a set of PCs, {PCi,k}

n−1
k=1 for each Ni.

3. We sum the contribution of each PC in {PCi,k}
n−1
k=1 to the image Ni to obtain the “averaged”

intensity ⟨Ni⟩. By excluding Ni from the features matrix, this average lacks the pattern of
shot noise unique to this image. Hence, this also gives the noise ∆Ni = Ni − ⟨Ni⟩.

Figures 5(c) and (d) depict the resulting noise and average intensity, respectively, from the raw
data in (b). We then repeat this procedure for a range of nominal intensities.

Figure 5(e) plots the variance as a function of the average ADU counts, ⟨NADU⟩. We expect this
curve to be linear with a vertical intercept giving the sensor’s read noise. In addition, imperfections
in the background removal process introduce a quadratic contribution. We therefore fit this data
to a quadratic function [black curve in (e)], and the linear term leads to the conversion factor
C = 7.65(2) for our primary CCD. At our largest intensity with ⟨NADU⟩ ≈ 8000, the quadratic
term is only a 12 % effect, and the read noise (in ADU) ∆Nread = 32(19) is negligible.

Before developing our PCA based analysis, we implemented a simple-minded high-pass filter
on the probe to remove the long-wavelength probe structure. This straightforward approach
lead to a significant quadratic component in the fits described above. As such, the PCA-based
algorithm was accepted as a superior tool for sensor calibration.

Figure 5(f) cross-checks our calibration by plotting the variance and the mean in units of
photoelectrons. An ideal calibration would yield a line with a slope of 2. We cross-check
these scaled data by fitting to the parabolic function described above and find a = 2.00(3) as
expected. We plot only the linear contribution (green line); the deviation of this line from the
data graphically indicates the scale of the quadratic contribution from imperfect background
subtraction.

7. Quantum efficiency and optical attenuation

Manufacturers of scientific cameras provide QE curves as a function of wavelength, and in some
cases at different sensor temperatures. However, large differences between the specified and
measured QE values have been reported in the literature [18]. We conclude this study with a
determination of the QE of our EMCCD.

The experimental procedure for QE factor measurement proceeds as follows. We illuminate
the EMCCD with a clean collimated Gaussian beam from an optical fiber and calibrate the beam
power P on a photodiode. There are no optical elements between the fiber collimation package
and the EMCCD sensor or the photodiode. We then image the beam on the EMCCD and relate
the integrated NADU to the number of photons in a pulse of duration tp. We designed the beam to
be appreciably smaller than the sensor, thus directly giving the conversion from photons to ADU.
Comparing this conversion to the established conversion between NADU and Npe yields the QE.
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The inset to Fig. 6 shows a typical detected Gaussian beam. We limited the probe power to
ensure that no pixels were saturated compromising the fidelity of the image. We then fit a 2D
Gaussian

G(x, y) = Ag exp

[︄
−2

∑︂
i=x,y

(︃
xi − bi

σi

)︃2
]︄
+ d, (8)

to the data, where Ag is the amplitude, σx,y are the widths, bx,y are center positions, and d is a
small offset. The integrated NADU = πσxσyAg/2 is then determined from a direct integral of the
fit.
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Fig. 6. QE factor of Andor DU-888UU3 with −60 C sensor temperature. Dashed black line
indicates the average QE. Inset: the near-perfect beam profile on the sensor, imaged with
beam power P = 13.05(2) µW.

The number of photons in the optical pulse

Nph =
Ptm
hc/λ

, (9)

directly leads to the quantum efficiency QE = Npe/Nph = NADU/(C×Nph). For example, a power
of 13.05(2) µW leads to Nph = 9.5× 108 and NADU = 2.9× 109, giving QE = 40.1(8)%. Figure 6
shows that the QE measured in this way is independent of the P, thereby further validating the
method. The variation in QE seen in Fig. 6 of 2.9 % is consistent with our statistical uncertainty
estimate and leads to the average value QE = 40(2).

This measured QE is consistent with an independently measured value for our EMCCD [18].
This value is only 61 % of manufacturer’s claimed QE for our operating temperature −60◦C.

7.1. Optical attenuation

In addition to the effective loss from the QE (and the noise added from the EM gain stage), the
many optical elements in our imaging system [Fig. 2(a)] attenuate the probe. Our measurement
of Nsat along with the conversion from NADU to Npe allows us to obtain the transfer efficiency T
of our imaging system.
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The relationship between NADU and intensity at the object plane is

I =
[︃

1
C × QE × T

1
A × tm

hc
λ

]︃
NADU, (10)

where A = (13 µm/M)2 is the area of a single CCD pixel (as demagnified to the object plane); tm
is the pulse time; and h is Planck’s constant. This expression can be inverted to give the total
system efficiency

QE × T =
[︃

1
C

1
A × 1 µs

hc
λ

]︃
Nsat
Isat

≲ 0.4 (11)

where we used tm = 1 µs in accordance with our definition of Nsat.

8. Conclusion and outlook

Here, we presented a new technique for determining the saturation intensity for cold-atom
experiments and explored its applications. These measurements show that even a carefully
designed imaging system can have significant losses; in our case the full system efficiency is
below 40 %. For many applications, such as absorption imaging, this can be acceptable, however,
in experiments targeting quantum back-action limited weak measurements, high system efficiency
can be a priority. For example, in quantum gas experiments, losses—as well as the added EM
noise—have deleterious effects on dispersive weak measurement protocols where detected photon
shot noise correlates with quantum backaction on the atomic system.

Common to all existing methods determining Isat, our technique is sensitive to the polarization
of the probe. For example, in our case the light shift is maximized for σ+ polarization. We
estimate our polarization purity—optimized by maximizing both absorption and phase contrast
imaging signals—to be ≳ 95 %. Indeed polarization effects can be quite significant because the
ratio of the matrix elements squared for σ+ versus σ− transitions is 15, meaning for example
Isat ≈ 25.5 mW/cm2 for σ− polarization. Thus a fractional polarization error ϵ scales the effective
saturation intensity by (1 − 14ϵ/15)−1. This polarization dependence prevents our method from
being a primary measure of intensity, however, extensions to the method that measure the light
shift for different orientations of the magnetic field could overcome this limit.

Appendix A: Signal-to-noise ratio

In this appendix, we derive the signal-to-noise ratio for resonant absorption imaging. The
absorption of resonant laser light propagating along ez traversing an atomic cloud with 3D number
density ρ derives from

dI(z)
dz
= −σ0ρ(z)

I(z)
1 + I(z)/Isat

, (12)

where σ0 = 3λ2/(2π) is the resonant scattering cross-section expressed in terms of the laser
wavelength λ. For Isat → ∞ the above expression reduces to the Beer-Lambert law. Integrating
Eq. (12) along z, yields the 2D column density

σ0ρ2D = σ0

∫
ρ(z)dz = −ln

(︃
I+
I−

)︃
−

I+−I−
Isat

≡ ODcorr, (13)

where I− is the intensity just prior to the atomic ensemble and I+ is the intensity just following
the atomic ensemble. The dimensionless column density is given by the optical depth OD =
−ln (I+/I−) combined with a correction term accounting for Isat. For convenience we define the
combination to be a corrected optical depth ODcorr.

As detailed in Sec. 3.1, in our experiments we measure the probe laser’s intensity on a CCD
or an EMCCD. In each experimental shot we acquire three images: (1) NA, the probe field with
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the atoms present; (2) NP, the probe without the atoms; and (3) ND, a dark image with the probe
beam off. Each of these are taken to be in units of photoelectron counts. In order to eliminate
any baseline from stray light and CCD dark counts, we subtract ND from NA and NP to obtain

N± =

(︃
QE × T × A × tm

λ

hc

)︃
I±, (14)

having used Eq. (10) (scale factor C omitted) to relate photoelectron counts to intensity.
As noted in Sec. 1, the prevalent source of noise in bright-field measurements is the shot

noise of the photoelectrons. Accordingly, we describe each photoelectron counts measurement
N = ⟨N⟩ + δN as the sum of an ensemble average ⟨N⟩ and measurement noise δN. We model δN
as a classical random process with zero mean ⟨δN⟩ = 0 and variance ⟨δN2⟩ = ⟨N⟩.

In experimental practice, we determine N− (from the probe beam without the atoms) by
averaging over an ensemble of such measurements, making its noise contribution negligible.
Then, following Eq. (13) we obtain

ODcorr = −ln
(︃
N++δN+

N−

)︃
−

N++δN+−N−

Nsat
. (15)

Defining the ideal optical density without noise as OD(0)
corr, allows us to recast this expression

ODcorr = OD(0)
corr − ln

(︃
1 +

δN+
N+

)︃
−
δN+
Nsat

. (16)

We assume that the noise term is small compared to N+, and Taylor expand the second term to
first order obtaining

ODcorr = OD(0)
corr − δN+

(︃
1

N+
+

1
Nsat

)︃
, (17)

where noise contributions are isolated from the ideal optical density signal. The noise in the
detected optical density is then

δODcorr =
1

√
N+

(︃
1 +

N+
Nsat

)︃
. (18)

Equation 15 can be simplified to

ODcorr ≈ − ln
(︃
N+
N−

)︃
, and ODcorr ≈

N−

Nsat

(︃
1 −

N+
N−

)︃
(19)

in the limits of N−≪Nsat and N− ≫ Nsat respectively. In addition, the latter limit implies that
N+/N− ≈ 1. From these expressions, we arrive at the simple results

SNR ≈
√︁

N−e−ODcorr/2ODcorr, and SNR ≈
Nsat
√

N−

ODcorr (20)

for the SNR in the respective limits. These expressions enunciate the extreme limits considered
in the main text: (1) for I≪Isat noise is proportional to 1/

√
I and the SNR scales like

√
I and (2)

for I ≫ Isat noise is proportional to
√

I and the SNR scales like 1/
√

I. On the other hand, in the
regime I ≈ Isat, noise has the minimum possible value with SNR reaching to its maximum.
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Appendix B: Microwave pulse phase shift

This appendix outlines our microwave control setup and how the δϕP phase shift is implemented.
We generate the microwave carrier using a Stanford Research Systems SG384 signal generator.
Next, this signal is mixed with an ≈ 100 MHz signal from a Novatech 409B direct digital
synthesizer using a Marki IRW0618 single sideband mixer, enabling dynamical control of
the microwave frequency. The signal’s amplitude is then controlled with a voltage-controlled
attenuator (General Microwave Herley D1956); a high power microwave amplifier (Microwave
Amplifiers AM53) increases the amplitude to enable ≈ 10 kHz Rabi frequencies. The high
power signal passes though a microwave circulator-isolator (MCLI CS-57) that prevents back
reflections from damaging the amplifier. Any reflected signal is diverted to the circulator’s
rejection port where it is attenuated and monitored with a power detector (Minicircuits 42
ZX47-40-S+). Following the circulator, the main signal is impedance matched with a stub tuner
(Maury Microwave 1819C) and delivered to the atoms using the microwave horn illustrated in
Fig. 2(a).

RI depends on the phase difference between the two microwave pulses (but not the absolute
phase of the first pulse). We implement this requirement by commanding a radio frequency (RF)
phase of zero prior to the first microwave pulse, and then commanding ϕcmd to the Novatech 409B
between the two microwave pulses. The astute reader might believe that δϕP = ϕcmd, however,
hardware limitations thwart this expectation.

We employ the synchronous aligned phase update mode of Novatech to control the timing of the
phase update at ≈ 10 ns level. In this mode, the oscillation waveform is ∝ sin[2πf (t − t0)+ ϕcmd],
where t0 is the time at which the Novatech updates. As such jitter in the update time manifests as
unwanted phase shifts. Figure 7 shows four RF time traces with this jitter present.
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Fig. 7. Phase difference determination. Blue curves are raw oscilloscope traces. The red
dashed curves fit Eq. (21) to the signal before and well-after the phase update. The vertical
dashed line marks the time at which the first π/2 microwave pulse ends. (a,b) commanded
phase shift of δϕcmd/(2π) = 0.8. (c,d) commanded phase shift of δϕcmd/(2π) = 0.5.
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Rather than upgrading the hardware to overcome this jitter, we directly measure the phase shift
δϕp for every experimental shot by fitting sinusoids

g(t) = A sin(2πft + πϕe) + g0, (21)

to the RF waveform just before and just after the novatech update (red dashed curves). Here A is
the amplitude, f is the Novatech frequency, ϕe is the phase, and g0 is an offset. Since f is known,
the fit constraints f value be within 0.002 MHz of this value (we allow f to vary to obtain an
uncertainty estimate). We thereby extract ϕ(±)e and find their difference δϕP = ϕ

(+)
e − ϕ

(−)
e .

The scope traces in Fig. 7 illustrate two types of timing defects. First Fig. 7(a) and (b) show
that the RF phase prior to the update pulse can be different from shot-to-shot (resulting from
up-stream timing differences in different experiments). Indeed the scope-fits confirm that the
true phase differences differ from what was commanded to the Novatech. Secondly, Fig. 7(c)
and (d) show that even for equal initial phases, the observed phase difference can differ from the
command. This results from the trigger timing jitter apparent in the figure. Notwithstanding, the
fit procedure yields the exact phase shift as is required for high quality RI measurements.
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