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Abstract 

The use of Modelica for simulating the dynamic 

behaviors of building heating, ventilation, and air 

conditioning (HVAC) systems has gained popularity. 

Calibration of a model that represents large and complex 

HVAC systems in Modelica involves the determination of 

hundreds of parameters using real-world operation data.  

Considering the coupling effects among various 

components, such a calibration process is complex and 

time-consuming. In this study, we propose a systematic 

framework to efficiently calibrate and validate a complex 

HVAC system model in Modelica. The framework 

includes strategies to solicit real-system operation data 

and to decouple the model. The goal of this calibration 

framework is to accurately and efficiently determine a set 

of Modelica model parameters that provide a good match 

between the simulated and real system behaviors. To 

demonstrate the validity of the framework, it was applied 

to calibrate the parameters of a Modelica model of the air 

loop subsystem of a real AHU-VAV system. The results 

show that the calibrated model can generate simulated 

results, including VAV air flow rate, outdoor air flow, and 

fan power consumption, that match well with the 

operational data of the real system. The coefficient of the 

variation of the root mean square error, CV(RMSE), of 

the air flow rate and power consumption are 14.6 % and 

11.5 %, respectively. The results prove that the 

framework is valid and effective, and it can be used to 

calibrate other complex HVAC system Modelica models 

in the future. 

Key innovations 

• A framework for calibrating and validating a HVAC 

system Modelica model in a decoupled way.  

• Component-level calibration of a fan model in 

Modelica. 

• Subsystem-level calibration of multiple damper 

pressure resistance models in Modelica. 

• Validation of an air loop subsystem in Modelica. 

Practical implications 

When calibrating a complex model for HVAC systems in 

Modelica, it is recommended to follow the presented 

framework for component-level and subsystem-level 

calibration and verification. 

Introduction 

Modelica HVAC system modelling 

Modeling of heating, ventilation, and air conditioning 

(HVAC) systems is a critical process when investigating 

different aspects of building HVAC systems, including 

system design, control strategies, and fault detection and 

diagnosis. Modelica is an open-source, object-oriented, 

equation-based language that can be used to model, 

simulate, and analyze complex dynamic systems 

including mechanical, electrical, electronic, hydraulic, 

thermal, control, and power systems [1]. Due to its 

potential for simulating dynamic systems, Modelica has 

also become a commonly-used tool for simulating 

dynamic HVAC systems [2, 3]. The HVAC systems 

modeled by Modelica can be used to simulate energy 

consumption, thermal comfort, and indoor air quality in 

buildings, and to optimize the performance of HVAC 

systems [4]. Modelica provides several libraries 

specifically for HVAC systems, such as the Modelica 

Building Library and the Modelica HVAC Library [5, 6]. 

These libraries provide pre-built HVAC system 

component models, such as air handling units, chillers, 

and heat exchangers. Due to the variation in performance 

parameters, pre-built HVAC models often fail to 

accurately reflect actual system performance. Therefore, 

model calibration is needed to minimize the gap between 

the simulated results and real system behaviors. 

Modelica model calibration 

There are a few publications in the literature that discuss 

how to calibrate specific HVAC system models in 

Modelica. For example, Giuliano [7] et al. showed the 

calibration and validation of a solar thermal system model 

in Modelica using a single week of monitoring data to 

adjust the performance parameters in the model. Bryan [8] 

et al. calibrated an air handling unit with variable air 

volume (AHU-VAV) system model containing 25 

adjustable parameters. Victor [9] and AnKush [10] used 

Bayesian optimization to simultaneously calibrate a 

Modelica model containing an HVAC system and 

building. Calle [11] et al. calibrated the heat exchanger 

model by using the Modelica Optimization Library. 

While many researchers mentioned Modelica model 

calibration in their studies, there is no systematic 

framework or methodology proposed in the literature. In 

practice, when calibrating a large and complex HVAC 

system model in Modelica, hundreds of parameters need 
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to be determined using real operational data. Such a 

calibration process is complex and time-consuming due to 

the coupling effects among different components. 

Goal of the study 

In this study, we propose a systematic framework to 

efficiently calibrate and validate complex HVAC system 

models. The goal of this calibration framework is to 

accurately and efficiently determine a set of Modelica 

model parameters that provide a good match between the 

simulated and real system behaviors. This framework 

includes strategies to: 1) decouple the HVAC system 

models; 2) solicit real-system operational data; 3) 

calibrate single component models that are weakly 

coupled with the rest of the system; 4) determine the 

performance parameters of the components/subsystems 

that are strongly coupled using an optimization method; 

and 5) validate the calibration results of the entire system. 

The calibration-validation framework can be used with 

different building simulation platforms. Modelica is used 

in this study because of its flexibility to connect with the 

external optimizer for optimization purposes. To 

demonstrate its effectiveness, the framework was used to 

calibrate the performance parameters of the air loop 

subsystem of an Air Handing Unit (AHU)-Vairable Air 

Volume (VAV) system model in Modelica, which 

represents the real system in the Intelligent Building 

Agents Laboratory (IBAL) at the National Institute of 

Standards and Technology (NIST) [12].  

The rest of this article is organized as follows: the 

methodology section offers a thorough explanation of the 

proposed calibration and validation framework; the case 

study section demonstrates the application of the 

proposed framework to a real HVAC system to verify its 

effectiveness; the discussion section provides an analysis 

of the results; finally, the conclusion section provides a 

summary of this paper. 

Methodology 

Overview of the calibration and validation method  

This study aims to develop and demonstrate a framework 

for calibrating a HVAC system model in Modelica. 

Depending on the purpose of the model, such as energy 

forecasting or occupant-centric control, its model 

calibration might have slightly different emphasis.  

However, generally speaking, calibration of most HVAC 

system models should focus on the accuracy of the system 

energy consumption and zone environmental condition. 

This requires that the calibrated model accurately 

simulates the conditions of the fluids passing through the 

system, such as the fluid flow rate, temperature, and 

humidity. 

For a complex and large HVAC system model in 

Modelica, it is difficult to calibrate hundreds of 

parameters in the model simultaneously (global strategy). 

On the other hand, calibrating each component separately 

(independent strategy) requires component-level real 

system measurements with enough granularity, which 

often are not avaiable. For example, the pressure drop 

between the inlet and outlet of a damper is typically not 

known and can be difficult to measure accurately. In this 

paper, the proposed framework strives for a balance 

between the global and independent approaches. The 

flowchart of the framework is shown as Figure 1. 

First, decoupling system means that the entire system is 

divided into subsystems that are weakly coupled with 

each other based on expert knowledge so that they can be 

calibrated independently. Each subsystem is further 

decoupled into components and second-level for 

calibration and validation.  

After that, data corresponding to the decoupled 

subsystems and components, which are needed for the 

calibration and validation process, are prepared from the 

real system operational data.  

Following that, component-level calibration and 

validation are generally conducted first. The components 

included in this step are those that are weakly coupled 

with the rest of the subsystem, and hence can be isolated 

from other components for calibration. This is possible 

because the performance of such components are 

primarily influenced by their own performance 

parameters and not by external conditions.  

After the component-level calibration and validation are 

completed, subsystem-level calibration and validation are 

performed. Due to the strong coupling relationship with 

other components and/or a lack of detailed boundary data, 

some components can only be calibrated and validated at 

the subsystem level. In a subsystem-level calibration, 

optimization methods are needed to simultaneously 

calibrate multiple performance parameters. After 

finalizing the component-level and the subsystem-level 

calibration, a system-level validation will be performed to 

ensure that the calibrated components and sub-systems 

can achieve desired system-level performance.  

While the notion of component- and system-level 

calibration and validation is well-trodden, the literature 

often presents a piecemeal approach rather than a unified 

framework to guide users through the calibration process. 

This paper addresses this gap by introducing a systematic 

framework to decide how to implement component- or 

system-level calibration. The details of this framework 

will be elaborated in the subsequent sections. 

Figure 1 The flowchart of the calibration and validation 

for an HVAC system model in Modelica 

                                                                                                                                             

 

 

Proceedings of the 18th IBPSA Conference                                                                                                                     

Shanghai, China, Sept. 4-6, 2023                                                                 

 

 

0808
https://doi.org/10.26868/25222708.2023.1265



 

 

Component-level calibration and validation 

Whether the component should be calibrated at the 

component level depends on: 1) whether the performance 

of the component is primarily dependent on its own 

performance parameters; 2) whether there is data 

available to support component-level calibration; and 3) 

whether the calibration of the component involves 

multiple or complicated performance parameters. A fan 

model, which is a common component in an HVAC 

system, is used as an example to explain these three 

requirements. The performance of the fan depends 

primarily on its own fan curves, including the pressure 

curve and the power curve [13]. In contrast to other 

Modelica components that may require calibration for 

only a few performance parameters, the Modelica fan 

model requires two fan curves to be calibrated. These fan 

curves are typically composed of multiple data points that 

contain information such as flow, differential pressure, 

and power. As a result, the number of parameters that 

need to be calibrated for the fan model is much greater 

than for other components. The fan curves can be obtained 

by measuring the flow rate, power, and differential 

pressure of the fan in an experiment. Therefore, fan 

models are usually calibrated and validated at the 

component level. For a HVAC system model in Modelica, 

component-level calibration is also generally appropriate 

for pumps, chillers, coils, etc. 

The performance parameters that need to be calibrated, 

and the performance indicators that are used to evaluate 

the calibration result, are dependant on the type of a 

component model in Modelica. Still using the fan as an 

example, the Modelica fan model requires fan curves of 

pressure and power during calibration. After calibration, 

validation of the Modelica fan model can also be done at 

the component level. Using a calibrated fan model, the air 

flow through the fan is the input of the model which can 

be adjusted to obtain the corresponding differential 

pressure and power of the fan. The simulation results from 

the calibrated fan model can be compared with 

measurements from those in the real system. As another 

example, the calibration of the Modelica coil model 

requires the nominal flow rate and differential pressure on 

the air and water sides, and the thermal conductance. For 

validation, the temperature and flow rate on the air and 

water sides can be compared between the simulated 

values from a calibrated Modelica model and the real 

measurements.   

Subsystem-level calibration and validation 

In addition to the isolatable components, a subsystem is 

made up of components that cannot be further divided 

because of the strong coupling between them. Such 

subsystems will need to be considered as a whole for 

calibration and validation. If the subsystem contains 

components that can be calibrated at the component level, 

those components should be calibrated first. After the 

component level calibration is completed, the entire 

subsystem, including the calibrated components, is 

calibrated (for those parameters in other non-calibrated 

components) and validated as a whole. For example, in an 

air loop model in Modelica, there are components such as 

fans, air ducts, and dampers. The goal of the calibration 

for the airloop model would be to simulate the air flow 

rates that pass through the subsystem accurately. As 

mentioned before, the fan would usually be calibrated at 

the component-level. But the pressure resistances of the 

remaining components, such as dampers and ducts, need 

to be determined.  Due to the lack of measurements from 

a typical airloop system that would provide enough 

granularity for component level calibration for ducts and 

dampers, these components need to be calibrated as a 

subsystem. 

Subsystem-level calibration involves the calibration of 

several performance parameters. This can be achieved by 

formulating it as an optimization problem [9, 10], i.e. by 

continuously adjusting the performance parameters in the 

subsystem Modelica model to minimize the error between 

the subsystem model outputs and the real system 

measurements. A typical flowchart of the calibration of a 

subsystem model in Modelica using the optimization 

method is proposed in this paper, as shown in Figure 2. In 

addition to data preparation, the steps include: 1) The 

conversion of the Modelica model to a Functional Mock-

up Unit (FMU). This step allows Modelica to be imported 

to other simulation programs (such as Simulink) for 

optimization. The input of the FMU is the control signal 

of the subsystem, and the output is the simulation results 

for the objects of interest in the calibrations. By using this 

struture, optimization can be implemented using the same 

control signals as the real system and the simulation 

results can be compared directly to the measurements. 2) 

The calculation of the objective function. Taking the 

subsystem-level calibration of an air loop Modelica model 

as an example, the goal is to minimize the error of the flow 

rate in the air loop between the Modelica model and the 

real system. During optimization, the error of the flow rate 

should be considered in the objective function. 3) 

Updating the parameters in the Modelica model by 

optimization. During calibration, the optimization process 

produces new parameter sets. These sets are used to 

update the Modelica model, which is then converted into 

a new FMU. This loop continues until the optimization 

meets its stopping criteria. This is a multivariate global 

optimization problem and the common optimization 

algorithms used to solve it include genetic algorithm, 

particle swarm optimization, and harmony search [14]. 

 

Figure 2 The optimization process for calibrating a 

subsystem model in Modelica 
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After the subsystem-level calibration, the calibrated 

Modelica model is validated at the subsystem-level. 

Similar to the optimization calibration, during the 

validation, the Modelica model uses the same control 

signals as the real system in an attempt to replicate the 

behavior of the real system. The validation dataset usually 

contains a diverse range of data so that the scalability of 

the calibrated model can be fully verified. When 

validating at the subsystem level, the behavior of the 

system, such as energy consumption, fluid flow rate, and 

fluid temperature within the components, is considered. 

Continuing with the example of subsystem-level 

calibration of the air loop, during validation the air flow 

rate of each component is checked first. If the air loop 

contains a component that consumes energy, such as a fan, 

then the energy consumption of that component should be 

checked. If the air loop contains a component with a heat 

exchanger, such as a cooling or heating coil, then the inlet 

and outlet fluid temperature of that component should be 

checked. 

Case study 

Description of the case study 

To demonstrate the proposed framework, it was applied 

to an AHU-VAV system model in Modelica that 

represents the real system in the IBAL. The IBAL is 

designed to emulate a small commercial building. The air 

loop in the IBAL contains zones and equipment including 

coils, fans, dampers, and ducts. In the IBAL, there are two 

AHU air loops; each AHU is connected to two VAV 

boxes, and each VAV box serves one zone. The air loop 

diagram is shown in Figure 3. The data used for the 

calibration and validation in this study were obtained 

from two sources: the operational data of a hardware-in-

the-loop flexibility load study [15], and additional 

experimental tests conducted to supplement the existing 

data. The operational data include: 1) the system control 

signals of the fans and dampers. 2) measurements of the 

fan power, the air flow rate in the air loop, and the static 

pressure after the AHU with one-minute data resolution. 

 

Figure 3 IBAL air loop diagram 

A typical AHU-VAV system can be divided into an air 

loop subsystem, a water loop subsystem, and a thermal 

subsystem. This case study focuses on the calibration and 

validation of the air loop subsystem to illustrate the 

proposed framework and demonstrate its effectiveness. 

The calibration of the air loop subsystem can be divided 

into two parts: fan component-level calibration and 

subsystem-level air loop pressure resistance calibration. 

After finalizing the calibration at the component level and 

subsystem level, the system level performance is 

evaluated for the entire air loop model. 

To provide a clear illustration of the calibration and 

validation process for the IBAL system, it will be 

presented using the AHU1 loop as an example, as the two 

air loops are weakly coupled with each other. The 

overview of the results for the AHU2 loop will be 

presented, but the details are very similar to those of the 

AHU1 loop and will not be shown. 

Component-level: Fan calibration and validation 

As previously described, fans can be calibrated and 

validated at the component level. The fan model used in 

Modelica is controlled by normalized speed [16]. The 

pressure rise and energy consumption of the fan vary with 

the fan speed control signal and air flow rate.  

Calibration of the Modelica fan model requires the 

complete full-speed fan curves (the curve between 

volume flow rate and pressure rise and the curve between 

volume flow rate and power), which were obtained by an 

additional experiment using the real system. The required 

fan curves are in a format with a series of monotonically 

increasing or decreasing operation points. The calibration 

of the Modelica fan model is therefore a process of fitting 

the fan curves and selecting the points to assign to the 

model. A second-order polynomial fit for the pressure rise 

vs flow and a first-order polynomial fit for the power vs 

flow are generated from experimental data to obtain the 

complete full-speed fan curves [16, 17]. After curve 

fitting, the points were selected from the fitted curves as 

performance parameters used by the Modelica fan model 

to complete the calibration. The calibration and validation 

results of the AHU1 fan are shown in Figure 4 and Figure 

5 for the fan curves of pressure drop and power, 

respectively. In the plots, the blue hollow points are 

measurement data; the green line is the second-order fit to 

the pressure drop fan curve (R2=0.999) and the first-order 

fit to the power fan curve (R2=0.996); the solid green 

points are selected from the fitted curves and used by the 

Modelica fan model to represent the calibrated fan curves. 

 

Figure 4 Pressure-drop fan curve in component-level 

calibration 
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Figure 5 Power fan curve in component-level calibration 

The Modelica fan model is also validated at the 

component level. A simple air loop model is developed in 

Modelica, which includes the calibrated fan model and 

pre-built damper and ducts. By keeping the fan running at 

full speed and adjusting the damper opening fraction, 

pressure rises, energy consumption, and flow rates can be 

obtained. The calibrated fan model is validated by 

comparing the Modelica model simulation results with the 

curve fitted from the experimental data mentioned before. 

The red points in Figure 4 and Figure 5 are the validation 

results of the calibrated Modelica fan model. The red 

points are completely on the green fitted curve, which 

indicates that the calibrated fan model matches the 

performance of the fan in the real system. 

For the fan in AHU2, the pressure drop fan curve is fitted 

with R2=0.999 and the power fan curve is fitted with 

R2=0.998. The validation results are the same as the fan 

in AHU1, in which the simulated fan model output agree 

well with the measurements. 

Subsystem-level: Air loop pressure resistance 

calibration and validation 

The air loop of the IBAL AHU-VAV system is comprised 

of dampers, ducts, tees, coils, and other components in 

addition to the fan. The remaining components were 

calibrated at the subsystem level due to the strong 

coupling effects among them. Preliminary testing data 

shows that the pressure resistance in the air loop primarily 

comes from the dampers. Therefore, the pressure 

resistance of the dampers is considered in this study. The 

dampers in the air loop of the IBAL include an outdoor 

air (OA) damper, a recirculating air (RA) damper, an 

exhaust air (EA) damper, and two VAV dampers. Figure 

6 shows the IBAL AHU air loop model in Modelica. Air 

damper models with exponential opening characteristics 

are used in Modelica [18].  

 

Figure 6 Modelica model of one of the AHU air loops  

Calibration of the air loop pressure resistance requires 

determination of the damper performance parameters 

including the nominal mass flow rate, nominal pressure 

drop, and damper coefficients. The air loop pressure 

resistance is calibrated using the optimization method 

mentioned in Figure 2. This method is used to find a set 

of damper parameters that minimizes the errors between 

the Modelica model simulation and the calibration 

operational data for the air flow rates in VAV1 and VAV2, 

and the outdoor air flow at the OA damper. The specific 

steps of the calibration method include: 

1. Data preparation: Based on the zone supply air flow 

rate, the operational data were divided into stable 60-

minute low-, medium-, and high-flow datasets using 

the MATLAB functions “findchangepts” [19] and 

“kmeans” [20]. To ensure that the calibration dataset 

is representative and covers a wide range of scenarios, 

a total of five datasets (i.e., datasets with extreme 

low/high and typical low/medium/high flow rate) 

were selected as calibration datasets. 

2. Conversion of the Modelica model to FMU: In this 

case study, the optimization process is implemented in 

the MATLAB & Simulink environment, so the air 

loop Modelica model is converted into an FMU to 

interact in this environment. The inputs of the FMU 

are the control signals for the fan and dampers, and the 

outputs are the VAV supply air flow rates and outdoor 

air flow rate. 

3. Modelica model simulation: In the MATLAB & 

Simulink environment, the converted FMU ran with 

the control signal from the calibration datasets and 

simulated the air flow rate in the air loop. 

4. Objective function formulation: Objective function 

used for the subsystem-level calibration aims to match 

the air flow rate at three critical locations in the 

subsystem, i.e., VAV1, VAV2, and outdoor air. In the 

objective function, J(x), the Coefficient of Variation 

Root Mean Squared Error, CV(RMSE), a typical and 

commonly used error metric [21], was used to 

calculate the error between the Modelica simulation 

result and the measurement. The objective function is 

shown below, where 𝑥 is the adjustable parameter set 

of the dampers; #𝐶𝑎𝑙𝑖𝐷𝑎𝑡𝑎  is the total number of 

calibration datasets, which is 5 in this case study; 

#𝐴𝑖𝑟_𝑚  is the number of the air mass flow rate 

considered in the objective function, which is 3 (the 

air in VAV1, VAV2, and outdoor air) in this study. 

The mean CV(RMSE) was calculated based on the air 

flow rate in the VAVs and the OA dampers in the five 

calibration cases.  

𝐽(𝑥) =
∑ ∑ 𝐶𝑉(𝑅𝑀𝑆𝐸)(𝑆𝑖𝑚𝑥,𝑖𝑗, 𝑀𝑒𝑎𝑖𝑗)

 #𝐴𝑖𝑟_𝑚
𝑖=1

#𝐶𝑎𝑙𝑖𝐷𝑎𝑡𝑎
𝑗=1

#𝐶𝑎𝑙𝑖𝐷𝑎𝑡𝑎 × #𝐴𝑖𝑟_𝑚
 

5. Optimizing model parameters: A genetic algorithm, 

specifically the MATLAB function "ga" [22], is used 

to determine the optimal parameter sets of the dampers 

in the air loop model in Modelica. Each damper in the 

Modelica model has eight performance parameters 
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that need to be calibrated, including m, dp, a, b, k1, L, 

yL, and yU. The values of each parameter were 

constrainted by the ranges listed in Table 1, which 

were determined based on reasonable assumptions. 

Note that m and dp together determine the resistance 

of a damper, therefore, only one of them needs to vary 

in the calibration. Of these two parameters, m, the 

maximum air flow rate when the damper fully opening, 

can be obtained from the operational data. By 

continuously adjusting the parameter set of the 

dampers and calculating the objective function, the 

genetic algorithm minimized the error between 

simulation and measurement. 

Table 1 The bounds of the adjustable parameters of the 

dampers in air loop subsystem-level calibration 

Damper OA RA EA VAV1 VAV 2 

m [kg/s] 0.6 0.88 0.36 0.55 0.5 

dp [Pa] [1, 100] 

a [-3.02, 0] 

b [0, 0.21] 

K1 [0, 0.9] 

L [0, 0.0002] 

yL 15 

yU 55 or 65 

Note: The parameter m represents the maximum flow rate 

when the damper fully opening. The parameter dp represents 

the pressure drop at the maximum flow rate when the damper 

fully opening.  The parameters a, b, k1, and L are all damper 

coefficients. The parameters yL and yU represent the lower 

and upper values for the damper curve [18]. 

6. Optimization termination The default options of the 

MATLAB “ga” function were used in this study, 

except function tolerance, which was set to 10-4 as a 

stopping criteria based on observations. When the 

stopping criteria was met, the opitimization 

calibration stopped, and the calibrated air loop 

Modelica model was obtained.  

The subsystem-level calibration of the air loop pressure 

resistance was performed following the steps above using 

an  Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20 GHz. The 

progress of the optimization is shown in Figure 7. After 

running 149 generations, which took about 60 hours, the 

optimization was terminated by reaching the function 

tolerance. The optimization program output the minimum 

value of the objective function and the associated 

parameter set of the dampers. The minimum value of the 

objective function is 16.04 %, which is the mean 

CV(RMSE) of the air flow rate in VAV1 and VAV2 and 

the OA dampers in the five calibrations cases.  Table 2 

shows the calibrated parameter sets of the five dampers in 

the AHU1 air loop. As for AHU2 air loop calibration, the 

optimization stopped at 158 generations with a minimum 

mean CV(RMSE) of 19.16 %.  

To validate the subsystem-level calibration results, three 

datasets, representing low, medium, and high thermal 

loads were selected from the operational data as 

validation datasets. The control signals for the fan and 

dampers in the validation data are input to the calibrated 

Modelica model. Then the simulated fan power and the 

air flow rate in VAV1, VAV2, and OA dampers are 

compared to the measurements. The model simulation 

accuracy is validated by calculating the corresponding 

CV(RMSE) and RMSE values [23]. The typical thermal 

load validation case in AHU1 (as shown in Figure 8) is 

used as an example to demonstrate the validation result. 

In general, the calibrated model captures the performance 

of the real IBAL system. The results of the three 

validation cases for the AHU1 air loops are summarized 

in Table 3. The results will be discussed in the next section. 

 

Figure 7 The minimum objective function value for each 

generation during optimization with GA 

Table 2 The calibrated parameters in the AHU1 loop 

Damper OA RA EA VAV1 VAV 2 

m [kg/s] 0.39 0.77 0.36 0.55 0.50 

dp [Pa] 34 21 38 35 83 

a -0.60 -0.24 -1.90 -0.54 -1.17 

b 0.117 0.051 0.089 0.08 0.101 

K1 0.51 0.25 0.49 0.72 0.33 

L 0.5*10-4 1.1*10-4 1.4*10-4 0.7*10-4 0.9*10-4 

yL 15 15 15 15 15 

yU 55 55 55 65 65 

Table 3 The error in validation of the AHU1 air loop 

 VAV1_m VAV2_m OA_m Fan1_Power 

Low 

thermal 

load 

CV(RMSE) [%] 

16.34 16.23 16.12 12.38 

RMSE [kg/s for m, W for power] 

0.019 0.036 0.033 37 

Medium 

thermal 

load 

CV(RMSE) [%] 

14.56 11.32 15.10 10.05 

RMSE [kg/s for m, W for power] 

0.017 0.029 0.030 47 

High 

thermal 

load 

CV(RMSE) [%] 

13.86 8.12 14.10 11.14 

RMSE [kg/s for m, W for power] 

0.019 0.025 0.025 53 
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Figure 8 The validation result of the AHU1 air loop 

using typical thermal load case data 

Discussion  

Analysis of the validation results 

In terms of air flow rate in the VAVs and outdoor air flow 

for the two AHU air loops, the maximum CV(RMSE) is 

22.06 % and the maximum RMSE is 0.036 kg/s. 

Differences in the average air flow rate of the dampers can 

result in a situation where a large CV(RMSE) does not 

always correspond to a large RMSE, and vice versa. 

Although the CV(RMSE), as a typical error metric, was 

used in the objective function to optimize the parameter 

set of the dampers in the pressure resistance calibration, 

considering the different average flow rates of the various 

dampers in the air loop, the RMSE is a better metric to 

evaluate the accuracy of the calibrated model.  An RMSE 

of 100 CFM (0.059 kg/s) is used as the criteria for 

validating the model because the impact on system energy 

consumption and occupant's comfort is acceptable at this 

level. The criteria is in accordance with the value 

recommended by the American Society of Heating, 

Refrigerating and Air-Conditioning Engineers (ASHRAE) 

and the International Performance Measurement and 

Verification Protocol (IPMVP) [24]. Based on the 

validation criteria, the calibrated model is acceptable for 

the air flow distribution in the air loop.  

In terms of energy consumption, the CV(RMSE) is below 

14 % and the RMSE is below 53 W in the overall air loop 

validation. The energy consumption of the Modelica fan 

model has been validated at the component level. It can 

be inferred that the error in fan energy consumption is 

mainly due to the error in the simulated air flow through 

the fan. As supplementary information, the average 

energy consumption of the entire IBAL system is around 

10 kW. Considering that the energy consumption of the 

air loop only accounts for around 10 % of the whole 

system total energy consumption, the CV(RMSE) of 14 % 

or the RMSE of 53 W in the air loop energy consumption 

is an acceptable error. 

In conclusion, the calibrated Modelica air loop model can 

accurately simulate the dynamic behavior of the real 

IBAL system under different operating conditions. 

Recommendations for optimization  

In this case study, CV(RMSE) was used in the objective 

function, as recommended in the literature [21]. However, 

due to the different air flow rates of the components in the 

air loop, relying solely on the CV(RMSE) to assess error 

may not accurately capture the air flow distribution within 

the loop. In this context, RMSE might be a better metric. 

In future studies, the use of mean or maximum values, 

CV(RMSE) or RMSE in the objective function needs to 

be carefully considered to assess the error in the air flow 

distribution in the air loop.  

In the calibration of pressure resistance, this paper focuses 

on introducing an optimization process and does not 

explore which optimizer to use or how quickly the 

optimization can be achieved. In this study, using the 

MATLAB GA optimizer (GA) with its default function 

tolerance of 10-6, the optimization ran for 80 hours 

without finishing. Even with a relaxed tolerance of 10-4, it 

still required about 60 hours to complete the optimization. 

The optimization settings and other optimization 

algorithms should be explored to improve the efficiency 

of this calibration framework. Other global optimization 

algorithms, such as Particle Swarm Optimization and 

Harmony Search, and different GA parameters may be 

investigated in the future. In addition, parallel computing 

may be considered to further improve the speed of 

optimization. 

Conclusions 

This paper presents a systematic framework for 

calibrating and validating HVAC system models in 

Modelica. The framework consists of decoupling strategy 

for a complex system, and calibrating/validating 

approaches for each de-coupled subsystem, using real 

system measurements. To demonstrate the effectiveness 

of the proposed framework, a case study showing the 

calibration process of an AHU-VAV system air loop 

model in Modelica was presented. The calibration of this 

air loop system was decoupled into the calibration of the 

AHU fan at the component-level and the calibration of the 

pressure resistance of other components at the subsystem-

level. A multivariate optimization method was 

demonstrated in the pressure resistance calibration 

process. After calibrating the fan component and the air 

loop pressure resistances, the air loop system was 

validated as a whole for fan energy consumption and air 

flow rate in the air loop. The study demonstrates the 

feasibility of using the proposed framework to calibrate 

and validate a complex HVAC system in Modelica. In this 

study, we only completed the calibration of the air loop 

subsystem of an AHU-VAV system. Further calibration 

of the remaining subsystems, including the water loop 

subsystem and the thermal system, will be performed 

using the same proposed framework in the future. This 

will further demonstrate the scalability of the framework.  
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