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Spatial attribution of aircraft mass balance
experiment CO2 estimations for policy-relevant
boundaries: New York City

Jay M. Tomlin1,2 , Israel Lopez-Coto3,4, Kristian D. Hajny1,3, Joseph R. Pitt3,5,
Robert Kaeser1, Brian H. Stirm6, Thilina Jayarathne1,7, Cody R. Floerchinger8,9,
Róisı́n Commane10, and Paul B. Shepson1,3,*

To effectively address the unprecedented acceleration of climate change, cities across the United States are
leading efforts to reduce greenhouse gas emissions. Coherent, aggressive, and lasting mitigation policies in
controlling carbon emissions are beginning to be adopted to help strengthen climate resilience across different
sectors. However, evaluating the effectiveness of current climate legislation requires careful monitoring of
emissions through measurable and verifiable means to inform policy decisions. As a part of this effort, we
developed a new method to spatially allocate aircraft-based mass balance carbon dioxide (CO2) emissions. In
this work, we conducted 7 aircraft flights, performed downwind of New York City (NYC) to quantify CO2
emissions during the nongrowing seasons between 2018 and 2020. We used an ensemble of emission inventories
andtransportmodelsto calculate the fraction ofenhancements (F) produced bysources withinthe policy-relevant
boundaries of the 5 NYC boroughs and then applied that to the bulk emissions calculated using the mass balance
approach. We derived a campaign-averaged source-apportioned mass balance CO2 emission rate of (57 ± 24) (1s)
kmol/s for NYC.We evaluated the performanceofthis approach against othertop-down methods forNYC including
inventory scaling and inverse modeling, with our mean emissions estimate resulting in a 6.5% difference from the
average emission rate reported by the 2 complementary approaches. By combining mass balance and transport
model approaches, we improve upon traditional mass balance experiment methods to enable quantification of
emissions in complex emission environments. We conducted an assessment using an ensemble of emission
inventories and transport models to determine the sources of variability in the final calculated emission rates.
Our findings indicate that the choice of inventory accounted for 2.0% of the variability in the emission estimates
and that the atmospheric transport model contributed 3.9% at the campaign level. Additionally, on average, at the
dailyscale,thetransportmodelcontributed 7.6% andthe inventoryaccounted for14.1%.The dailyflight-to-flight
variability contributed a significant portion, at 42.1%. This approach provides a solution to the difficulty of
interpreting aircraft-based mass balance results in complex emission environments.

Keywords: Urban emissions, Carbon dioxide, Mass balance experiment, Source attribution, Airborne
greenhouse gas measurements, New York City

Introduction
A high proportion of the U.S. population (82.3%) resides
within Census-defined urban regions (US Census Bureau,

2022), projected to reach 89.2% by 2050 (United Nations,
2019). A recent study has shown that �44% of carbon
dioxide (CO2) emissions in the United States originate
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from the urban sector for 2015 (Gurney et al., 2020). U.S.
cities are currently employing ambitious climate mitiga-
tion strategies (Sharp et al., 2011; Sethi et al., 2020). For
example, the New York City (NYC) Council has passed the
Climate Mobilization Act, which is a series of legislations
with the aim to reduce greenhouse gas (GHG) emissions
and includes periodic energy audits for large commercial
buildings (New York City Council, 2019). As a result, it is
necessary for owners to consider potential carbon emis-
sions when reviewing real estate capital projects.

Assessing the progress of urban emission mitigation
policies requires accurate monitoring of GHG emissions.
Cities evaluate their policies by following protocols utiliz-
ing self-reported emission or “bottom-up” inventories
drawing on a range of fuel consumption and activity data.
This approach begins with emission estimates from statis-
tically analyzed activity data together with emission fac-
tors along politically defined boundaries. The
uncertainties of such an approach alone are difficult to
quantify and often result in inconsistent reporting when
compared to peer-reviewed works (Turnbull et al., 2015;
Quilcaille et al., 2018; Lauvaux et al., 2020; Gurney et al.,
2021). Urban emission determinations using top-down
approaches (based on atmospheric mole fraction measure-
ments) are particularly challenging due to the environ-
mental and meteorological complexities surrounding
cities, in addition to the large spatial distribution of emis-
sions stemming from multiple sources and sinks (Pataki
et al., 2006). For this reason, the Northeast Corridor (i.e.,
northeast metropolis area from Boston to Washington,
DC) is a region of interest to act as a test bed for the
assessment of urban emissions among major cities includ-
ing Boston (McKain et al., 2015; Sargent et al., 2018),
Baltimore/Washington, DC (Lopez-Coto et al., 2017; Muel-
ler et al., 2018; Ren et al., 2018; Ahn et al., 2020; Karion
et al., 2020; Lopez-Coto et al., 2020; Lopez-Coto et al.,
2022), Philadelphia (Anderson et al., 2021), and the New
York-Newark urban region (Plant et al., 2019; Floerchinger
et al., 2021; Hajny et al., 2022; Pitt et al., 2022).

Assessments must be performed through measurable
and verifiable means of GHG emission quantification. Sig-
nificant advancements in space-based retrievals of GHG
signatures have been achieved through the development
of high-resolution measurement satellites providing fine
spatial column averages with which to conduct long-term
monitoring of emission trends for megacities (Demetillo
et al., 2020; Kiel et al., 2021; Lauvaux et al., 2021; Plant
et al., 2022). However, most satellite instruments only
operate in the presence of sunlight and do not have the
ability to acquire data in regions with heavy cloud cover
and variable surface albedo. Therefore, satellite measure-
ments require complementary techniques to help support
space-based observations.

Emission fluxes can be quantified using atmospheric
transport models to trace the magnitude and pattern of
the emitted species to the observing system (in situ or
remotely sensed column averages). This approach allows
for the calculation of simulated enhancements within
a region of interest given gridded emission map informa-
tion. Statistical estimators of emissions (i.e., inverse

modeling approaches) can then be employed to obtain
an improved estimate of the model emission map by
comparing against the observed signal. Ground-based
measurements from tower networks provide an effective
method to conduct long-term monitoring of measured
GHG mole fractions (Davis et al., 2017; Verhulst et al.,
2017; Huang et al., 2019; Lauvaux et al., 2020).

The aircraft-based mass balance experiment (MBE)
approach has also been used to measure and quantify
GHG emission from several cities (Cambaliza et al.,
2015; Heimburger et al., 2017; Ren et al., 2018; Pitt
et al., 2019; Ahn et al., 2020) and point sources (Lavoie
et al., 2015; Conley et al., 2016; Ryoo et al., 2019; Hajny
et al., 2023). This approach enables large spatial coverage,
albeit at the cost of limited temporal information. Typi-
cally, the aircraft follows a raster pattern directly down-
wind of the source plume and perpendicular to the mean
wind direction. A series of stacked horizontal transects are
performed resulting in a 2D sampling plane downwind of
the city. The mass flux through this 2D plane is calculated
from the measured enhancements above the background
mole fractions. The background mole fraction can be
acquired from the upwind sampling of the city or from
the downwind measurements along the plume edge
(Cambaliza et al., 2014; Heimburger et al., 2017; Mueller
et al., 2018; Pitt et al., 2019; Balashov et al., 2020). This
method is particularly effective for point sources and iso-
lated cities with negligible outside influence (Karion et al.,
2013; Cambaliza et al., 2015; Hajny et al., 2019). However,
it is more challenging to assess the background for cities
with complex surroundings (Pitt et al., 2019) due to mul-
tiple emission sources (e.g., cities along the Northeast
Corridor) and, thus, traditional aircraft-based MBE techni-
ques only provide bulk emissions that are difficult to
unambiguously attribute to a precisely defined spatial
area.

In this study, we developed a new methodology to
spatially allocate CO2 emissions estimated from MBEs to
policy-relevant boundaries and applied this approach to
NYC. We conducted a series of aircraft measurements
downwind of NYC during the nongrowing season and
employed the conventional MBE technique to estimate
the bulk downwind CO2 emissions. To accurately represent
emissions within the specific area of interest (AOI), we
employed an ensemble of CO2 emission inventories and
transport models to calculate the fraction of the MBE
emission rate that represents the NYC 5 boroughs (i.e., the
Bronx, Brooklyn, Manhattan, Queens, and Staten Island).

Experimental methods
Sampling platform and flight design

Flights were performed with a modified twin-engine
Beechcraft Duchess, Purdue University’s Airborne Labora-
tory for Atmospheric Research (ALAR) (Cambaliza et al.,
2014; Heimburger et al., 2017; ALAR, 2022). Details on
the design and structural configuration of the aircraft pay-
load can be found in the study of Cambaliza et al. (2014).
ALAR is equipped with a global positioning and inertial
navigation system (GPS/INS), and a 9-port pressure probe
(Best Air Turbulence, BAT) providing 3D winds at 50 Hz
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(Crawford and Dobosy, 1992; Garman et al., 2006; Garman
et al., 2008). A Picarro Cavity Ringdown Spectrometer
(CRDS) provided in situ measurements of CO2, methane
(CH4), and water vapor (H2Ov) mole fractions at 0.5 Hz;
however, this work only investigates CO2 observations. The
Picarro CRDS was calibrated with an in-flight 3-point cal-
ibration system using National Oceanic and Atmospheric
Administration certified standard cylinders for CO2 (ref.
scale: WMO-CO2-X2007) (Tans et al., 2017) and CH4 (ref.
scale: WMO-CH4-X2004A) (Dlugokencky et al., 2005) dur-
ing each flight mission. Additional details of instrument
calibrations are discussed in detail in our recent works
(Hajny et al., 2022; Pitt et al., 2022).

Figure 1a shows the compiled flight tracks from all
experiments discussed in this work and overlaid on a state
map with the AOIs highlighted, as the urban region

(i.e., Greater New York-New Jersey area, pink) and NYC
(teal). The aircraft was flown perpendicular to the wind
direction and performed a series of horizontal transects
downwind of NYC at varying altitudes extending to the
top of the planetary boundary layer (PBL), as illustrated in
Figure 1b. All flight experiments were conducted
between 11:00 and 16:00 (local time) allowing for a fully
developed and consistent PBL height during the sampling
period. The PBL height was identified from the vertical
profiles of trace gas species, H2Ov, potential temperature,
and variance in the vertical winds. Two sets of vertical
profiles were flown during the upwind and downwind
curtains whereby the aircraft follows an ascending/des-
cending spiral maneuver from the near-surface to
�3,000 m above ground level (a.g.l) into the free tropo-
sphere. Upwind transects were flown during most flights

Figure 1. Campaign flight track and sampling strategy for MBE approach to calculate bulk emission fluxes.
(a) Map of Airborne Laboratory for Atmospheric Research (ALAR) flight tracks across relevant sampling dates overlaid
on state map (US Census Bureau, 2022) with highlighted regions corresponding to the politically defined area of the
Greater New York-New Jersey urban region (pink) and NYC 5 boroughs (teal). (b) Three-dimensional plot of ALAR flight
track between the upwind and downwind curtains color-coded by CO2 mole fractions. Blue shaded regions are
identified as background influence while red shaded regions indicate downwind urban emission influence. (c)
Calculated CO2 fluxes (through the downwind plane) for the transect-only measurements. Here, we used the
plume edge to account for background influence. (d) Kriged CO2 fluxes through the downwind plane with the
calculated total surface emission rate from integrating the entire plane shown as an insert. Black lines indicate
aircraft path along the downwind curtain. The PBL height (red dashed line) for this flight (March 4, 2020) was
identified to be �1,900 m above ground level (a.g.l) based on vertical profile measurements. The grey areas
indicate all nondata regions within the downwind curtain.
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prior to performing the downwind passes, allowing for the
identification of the city plume due to elevated GHG mole
fractions. In addition, the downwind horizontal transects
were sampled beyond the horizontal extent of the
observed plume allowing for simultaneous measurement
of regional background mole fractions along the transect
edges and outside the influence of the direct urban emis-
sions. The 7 MBE flights downwind of NYC analyzed in this
work were conducted between November 2018 and March
2020 (all pre-COVID impacts) with all flights occurring in
the months of November, February, or March to minimize
the effects of CO2 exchange with the biosphere.

Emission rate calculation from MBE measurements

The aircraft-based MBE approach was used to estimate the
total CO2 flux through a perpendicular plane downwind of
NYC. This approach assumes a static PBL with consistent
emissions over the time frame of the experiments, no
horizontal flow divergence/convergence, and a constant
wind direction throughout the sampling period (Tadić
et al., 2017; Ryoo et al., 2019). The net GHG mass flow
(in kmol/s) along this crosswind plane is calculated fol-
lowing equation:

Emission rate ¼
ðz

0

ðþx

�x

U ⊥; ij � ðCij � CBG
ij Þ � Pij

Tij � R

" #
dxdz;

ð1Þ

where [0, z] is the PBL depth, �x and þx are the effective
horizontal boundaries within the plume, U ⊥;ij is the per-
pendicular component of the horizontal wind speed (in
m/s) at the downwind location (x, z), Pij is the measured
pressure (in atm), Tij is the measured temperature (in K),
and R is ideal gas constant (in atm�m3

mol�K ), Cij is the instanta-
neous measurement of the downwind dry air CO2 mole
fraction (in mmolCO2

mol dry air, or ppm), and lastly, CBG
ij is the back-

ground dry air CO2 mole fraction (in ppm) at the same
location (x, z) (Cambaliza et al., 2014; Heimburger et al.,
2017; Ren et al., 2018). Note that i and j correspond to
x and z dimension, respectively. Note that the downwind
transects were extended beyond the edges of the plume
such that the concentrations return to background levels.
Certainly, the choice of wind data and background can
impact the flux estimations (Cambaliza et al., 2014; Ryoo
et al., 2019). For example, Ryoo et al. (2019) have shown
that when utilizing the perpendicular wind component
for the flux calculation, the sensitivity of the emission
estimate to the selection of background was minimal
(<1%). In addition, if the substantial background mole
fractions of trace gas species like CO2 are not properly
considered, the measurement uncertainty of volume-inte-
grated horizontal wind divergence can result in significant
uncertainty in the estimation of flux. However, choosing
the minimum observed value as the background on each
vertical level resulted in significantly different calculated
fluxes at the urban scale (Ryoo et al., 2019). For this work,
we used the 10s rolling-averaged perpendicular wind
speed to derive the CO2 flux estimations consistent with
our previous works (Cambaliza et al., 2015; Heimburger
et al., 2017; Hajny et al., 2019). We also defined the

background as a linear fit anchored along the edges of
the urban plume for each transect as shown in Figure
S1. The bounds of the plume for each downwind transect
are defined as the CO2 mole fractions that were above the
lowest 5th percentile mole fraction on the negative and
positive distance side, respectively (dashed lines in Figure
S1b). The fluxes derived from the CO2 enhancements
(measurements after subtracting the background), and
perpendicular winds were then interpolated using a kri-
ging approach to fill in the spatial gaps between actual
measurements to generate a 2D gridded plane (Matlab-
based EasyKrig3.0) (Chu, 2004) as shown in Figure 1c
and d. The linear variogram model used for EasyKrig3.0
was chosen to fit the empirical semivariogram of the data,
determined through a visual examination of the experi-
mental variogram. Three key parameters were used to fit
the theoretical variogram including the nugget (the vari-
ance or variability at distances smaller than the minimum
separation distance between data points), sill (the maxi-
mum level of variability or variance that is observed as the
lag distance approaches infinity), and range (the distance
at which the dependence diminishes to a negligible level).
The quality of the interpolation was evaluated using the
Q1 (deviation distribution for the mean) and Q2 (deviation
distribution for the standard deviation) criteria (Chu,
2004). In addition, the kriging resolution of 10 m in the
vertical direction and 100 m in the horizontal direction
was used for all 7 flights. The calculated bulk emission rate
(kmol/s) is then obtained by integrating the net mass flow
of the trace species, which is proportional to the total
enhancements observed downwind (Equation 1). Addi-
tional details on the aircraft-based mass balance kriging
approach can be found in the study by Cambaliza et al.
(2014). In addition, we performed a sensitivity test using
the “gstat: Spatial and Spatio-Temporal Geostatistical Mod-
elling, Prediction and Simulation” (Pebesma, 2004; Gräler
et al., 2016) R package as an independent analysis tool,
using 4 variogram models “Sph” (Spherical), “Exp” (Expo-
nential), “Mat” (Matern), and “Ste” (Matern, M. Stein’s
parameterization) (Stein, 1999). Note that vertical profile
measurements along the downwind curtain were removed
prior to kriging analysis as it conflicts with the calculation
due to overlapping or closely adjacent data points as ver-
tical profile spirals are performed.

Common limitations of the aircraft-based MBE
approach are fuel, air traffic control, Federal Aviation
Administration regulations (minimum of 1,000 ft above
surface structures in urban environments), cloud cover,
and terrain restricting the number of downwind transects
within the PBL, and consequently, being unable to fully
capture the full vertical extent of the downwind enhance-
ments. Figure 1d illustrates the potential underestima-
tion of the total flux through the downwind curtain due
to these limitations. Previous works have attempted to
represent and include extrapolation of surface emission
below the lowest flight level using various near surface
concentrations and extrapolations to the surface (Gordon
et al., 2015; Ryoo et al., 2019). We employed 3 extrapola-
tion methods (Hajny et al., 2023) to fill in the spatial gaps
both near the surface level and the PBL height, as shown
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in Figure S2. Note that our flights took place under either
neutral or unstable conditions, and the aircraft transects
were carried out downwind of the primary sources. Gen-
erally, these transects spanned over 2 eddy turnovers from
the sources, allowing sufficient time for vertical mixing of
concentrations, at least until the lowest transect. The first
extrapolation method repeats the observed CO2 measure-
ments along the lowest and highest passes, at the bottom
and top of the boundary layer, respectively. In other words,
we assumed that the lowest altitude transect is the best
mathematical guess to represent ground level while the
highest altitude transect represented the mole fractions at
the PBL height (herein refer to as synthetic transects) (Fig-
ure S2b). The second method addresses these large gaps
without measurements by taking the average of the 2
passes at each extreme and assumes the data within those
gaps are constant with height (Figure S2c). Lastly, we cal-
culate the average flux across all transects and extrapolate
to the surface and PBL height (Figure S2d). Henceforth,
the average of the 3 extrapolation methods is used to
calculate the emission rate with an average relative stan-
dard deviation (s) of �10% (1s) among the 7 flights, that
represents the uncertainty resulting from these data gaps.
Note that �10% is referring to the mean of the standard
deviation across the 7 fights.

Spatial attribution of MBE emissions

In complex emission scenarios such as urban regions, the
AOI is surrounded by multiple sources that can obscure
the signal, making it difficult to quantify emissions
within policy-relevant boundaries. In this case, we wish
to estimate emissions from NYC. However, emission
sources outside the NYC boundary influence the CO2

mole fractions measured at both within-plume and back-
ground locations, thus impacting the derived MBE emis-
sion rate. In some cases, emission sources from within
the NYC boundary can also influence the measured back-
ground. Therefore, traditional MBE analysis cannot dis-
tinguish between emissions within NYC and emission
sources outside the AOI.

To better understand the situation and address this
issue with the MBE approach, we utilize a transport model
(using footprints and emission inventories). Figure 2a
shows the fluxes under the modeled footprints of the
entire downwind transect (left), as well as the fluxes under
the footprints of the plume edges used as background
(center and right), for the flight conducted on March 4,
2020. In a situation like this, where the transect is sensi-
tive to sources upwind and downwind of the AOI, the
mole fraction observed will reflect the superposition of
these sources. On the other hand, the non-zero fluxes at
the edges, larger in the southern part in this case, elevate
the mole fractions at the background points differently. A
linear interpolation between the edges of the transect will
provide a background that will account for some of the
superposition of sources (approach used in the MBE).
However, how this linear interpolation relates to the
“true” background (i.e., the mole fraction that would have
been measured at each location in the absence of NYC

emissions) depends on the relative strength of these 2
competing effects.

To quantify this impact, we define 2 tracers: (1) Total
CO2 (EnhTOT), which are the modeled enhancements pro-
duced by all CO2 sources in a large regional domain up to
�800 km upwind of the city, and (2) NYC only (EnhNYC),
which are the modeled enhancements produced by
sources only within the AOI, that is, the 5 boroughs of
NYC in this case. The left panel in Figure 2b shows (black
solid line) the total modeled enhancements (EnhTOT) for
the transect, which reflect the elevated mole fraction of
the south edge with respect to the north edge.We can now
mimic the background determination used in the MBE by
linearly interpolating between the edges (black dashed
line) and compared to the “true” background (red dashed
line), that is, the enhancements produced by all sources
outside of the AOI (EnhTOT – EnhNYC). In this particular
case, we can see how the linear background is accounting
for a large portion of enhancements produced elsewhere
(enhancements below the black dashed line). However, it
still fails to account for a portion of enhancements pro-
duced outside NYC (enhancements above the black
dashed line and below the red dashed line). The right
panel shows the enhancements after subtracting the lin-
ear background (EnhMBE ¼ EnhTOT – linearBG, black
dashed line) (hereafter referred to as the MBE-like mod-
eled enhancements) and the enhancements due to
sources only within NYC (EnhNYC, red dashed line) (here-
after referred to as NYC enhancements). From the curves,
it is clear that the integral enhancement produced by NYC
is smaller than the integral enhancement calculated using
the linear background approximation used in the MBE for
this transect. In fact, we can quantify the fraction (Fj) of
NYC integral enhancements to the integral MBE-like mod-
eled enhancements for this transect leg ( j) as in the fol-
lowing equation:

fraction�j ¼ Fj ¼
P

EnhNYCiP
ðEnhTOT�i � linearBG�iÞ

� �
j

: ð2Þ

This fraction (F) gives us a measure of the enhance-
ments that we are interested in measuring relative to the
enhancements we would infer from MBE by applying the
linear background. Note that j corresponds to the ensem-
ble member of inventory (3), transport (8) and transect
(29) within the boundary layer. This results in a total of
696 calculated modeled values of F derived across the 7
research flights. If the fraction is smaller than 1 (F < 1), as
in the example shown in Figure 2, the MBE-like modeled
enhancements carry contributions from sources inside
and outside of the AOI because the linear background is
underestimating the contribution from sources outside
the AOI. On the other hand, if the fraction is larger than
1 (F > 1), the MBE-like modeled enhancements are miss-
ing contributions from inside the AOI because the transect
edges are still sensitive to the AOI and thus the linear
background partially removes contributions from sources
inside the AOI (Figure S3). However, in some cases, the
fraction can be less than 0 (F < 0) due to poorly defined
MBE-like modeled enhancements along the transect
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(i.e., S(EnhTOT – linearBG) < 0). Note that 6 of the 696
calculated modeled fractions were found to have F <
0 and were excluded in the ensemble results.

Since in the MBE calculation, the emission rate is pro-
portional to the integral enhancements (emission rate �
S(DC)), the ratio between integral enhancements (i.e., frac-
tion, F) is also the ratio between emission rates. Thus, we
can relate the mass balance bulk emission rate (MBEbulk;
using the linear background) calculated using the observa-
tions with the source-apportioned mass balance emission
rate for the city (MBEC) using the model-derived enhance-
ment fraction (F) as shown in the following equation:

MBEC:j ¼ Fj �MBEbulk: ð3Þ

Since this approach is dependent on the spatial distri-
bution of sources and the atmospheric transport, we used
an ensemble of 3 prior emission inventories and 8 trans-
port models. We used as prior CO2 emissions the annual
mean of ACES v2.0 (Gately and Hutyra, 2017), Vulcan v3.0
(Gurney et al., 2020), and EDGAR v5.0 (Crippa et al., 2019;
European Commission, 2019). In order to account for

biogenic CO2 emissions into the modeled enhancements,
we used the vegetation photosynthesis and respiration
model (VPRM) (Mahadevan et al., 2008; Gourdji et al.,
2022). VPRM estimates the net ecosystem exchange,
which encompasses both respiration and photosynthesis,
by considering various factors such as the enhanced veg-
etation index, land surface water index, temperature, and
carbon uptake from photosynthesis. We use the Gourdji
(2021) and Gourdji et al. (2022) version that includes
a reformulation of the respiration equation functional
form that helps correct a respiration low bias in the orig-
inal version. Also, model parameters were specifically opti-
mized for the Northeast U.S. Enhancements simulated
using these biogenic fluxes were then combined with
(added to) the anthropogenic enhancements to calculate
the total enhancements. Furthermore, the sensitivity of
measurements to surface fluxes (gridded footprints) along
the sampling trajectory of the aircraft was calculated using
the Hybrid Single Particle Lagrangian Integrated Trajec-
tory (HYSPLIT) model v5.0.0 (Stein et al., 2015; Loughner
et al., 2021) which incorporates features from the

Figure 2. Modeled footprint along a single downwind transect and comparison of modeled EnhTOT, EnhNYC,
and linear background subtracted EnhTOT. (a) Modeled footprint along a single downwind transect (March 4,
2020) overlaid within the CO2 flux prior maps of the region of interest (i.e., NYC 5 boroughs). Middle and right panels
correspond to the modeled footprints along the plume edge. Black lines show the aircraft trajectory. The red solid line
represents the horizontal extent of the footprint, while the red dashed and dotted lines represent the footprints of the
north and south edges used as background, respectively, also shown in the middle and right panels. (b) Modeled
enhancements along a single downwind transect. The red dashed line is the modeled enhancements excluding all
sources within NYC and represents the modeled “true” background for NYC. Black dashed lines on the left panel are
the linear regression fit along the single downwind transect, which is representative of the background definition
applied in the MBE analysis. The right panel illustrates the integrated background subtracted enhancements of
a single downwind transect. The insert value in the right panel of (b) is the fraction (F) of the modeled NYC
signal as discussed in Equation 2.
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Stochastic Time-Inverted Lagrangian Transport (STILT)
model (Lin et al., 2003; Fasoli et al., 2018). The HYSPLIT
gridded footprints were calculated using 4 different
input meteorological (MET) models for 2 domains,
a coarser, regional domain at 0.8� resolution (bounds
34.4�N 44.4�N, 83.7�W, and 69.7�W) and a higher res-
olution domain at 0.02� resolution (bounds 39.2�N
42.0�N, 75.7�W, and 72.1�W). The enhancement calcu-
lation used both nested domains. The input MET models
used for this work include (1) the Global Forecast Sys-
tem (GFS) model, (2) the European Centre for Medium
Range Weather Forecasts Fifth Reanalysis (ERA5), (3) the
North American Mesoscale Forecast System (NAMS)
model, and (4) the High-Resolution Rapid Refresh
(HRRR) model. In addition, 2 mixing parameterizations
were employed: kblt2 (Kantha and Clayson, 2000) and
kblt5 (Hanna, 1982), yielding 8 different transport mod-
els to generate the calculated footprints, from which to
assess the variability derived from the model uncer-
tainty. Note that by applying our model-derived frac-
tions to the MBE results, we are incorporating
transport model information into the MBEC calculations
Additional details of model parameters are shown in
Table S1 and discussed in our other works including Pitt
et al. (2022) and Hajny et al. (2022).

Results and discussion
Mass balance CO2 emission estimates

The observed measurements are influenced by CO2 emis-
sions from all sources including point sources such as
fossil fuel power plants and incinerators; mobile combus-
tion sources within and around NYC; and fossil fuel com-
bustion attributed to commercial and residential
buildings. Therefore, the aircraft-based MBE approach esti-
mates the bulk CO2 emissions rate representing the net
emission from all sources along the background-
subtracted downwind footprint.

Figure 3 shows the kriged CO2 flux distribution within
the PBL and along the downwind curtain for the 7
research flights conducted on the following days: (1)
November 9, 2018, (2) March 1, 2019, (3) March 27,
2019, (4) November 10, 2019, (5) November 15, 2019,
(6) February 16, 2020, and (7) March 4, 2020. For visual
purposes, data in Figure 3 are plotted to only include
positive fluxes. However, the calculated MBEbulk emission
rate includes negative flux values, which can be consid-
ered as a component of background noise (especially at
city scales) and has been a standard procedure in similar
works (Cambaliza et al., 2014; Heimburger et al., 2017).
Henceforth, the reported MBEbulk emission rate is calcu-
lated from the average of all 3 kriged extrapolation

Figure 3. Kriged CO2 flux distribution as a function of height above ground and horizontal distance for all
relevant fights in this work calculated using EasyKrig3.0. (a) November 9, 2018, (b) March 1, 2019, (c) March 27,
2019, (d) November 10, 2019, (e) November 15, 2019, (f) February 16, 2020, (g) March 4, 2020. Black lines indicate
aircraft path along the downwind curtain. The inserts correspond to the calculated emission rate from the average of
all 3 kriged extrapolation methods as discussed in the Methods section.
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approaches as discussed in the Methods section. Large
spatial gaps between the measurement transects is a lim-
iting factor when performing kriging analysis for aircraft-
based MBEs resulting in additional uncertainty in the cal-
culations. An extreme case of this can be observed for
March 1, 2019 having an insufficient number of down-
wind transects to accommodate measurements up to the
PBL height. In this case, the original extrapolation to the
PBL top as described in the Method section provided an
emission rate of 151 kmol/s. Since most of it was derived
from the extrapolation, we used the vertical profile mea-
surements to estimate the remaining CO2 values between
the highest transect at 400 m and PBL height at 1,050 m,
instead of relying on a well-mixed assumption. This was
performed for the March 1, 2019 research flight as shown
in Figure S4 to account for the limited number of down-
wind transects. The values of CO2 along the synthetic
transects were then estimated and scaled based on a fit
applied to the vertical profile measurements, as shown in
Figure S4b. Prior to the addition of synthetic transects, the
total emission rate for March 1, 2019 research flight was
calculated to be 52.4 kmol/s compared to 112 kmol/s
when estimating for the CO2 mole fractions within the
whole PBL based on the CO2 vertical profile.

The mean MBEbulk for CO2 emissions for the 7 research
flights was calculated to be 68 ± 31 (1s) kmol/s. The
significant variability in MBEbulk (44%) can be attributed
to the day-to-day variability of emissions, the sampling
footprint, and methodological uncertainties. Cambaliza
et al. (2014) examined sources of uncertainty for the air-
craft-based MBE approach and found that the largest
uncertainty was attributed to the variability in the back-
ground mole fraction of CO2, and the PBL height. In addi-
tion, the authors estimated that the interpolation of flux
measurements throughout the downwind curtain
amounted to between 8% and 12% uncertainty. However,
improvements in precision of campaign mean aircraft-
based MBE can be achieved through repeated measure-
ments and averaging (Heimburger et al., 2017).

As discussed, the bulk CO2 emissions were calculated
from the interpolation of the CO2 flux by kriging the
downwind measurements using the Matlab-based Easy-
Krig3.0 program package (Chu, 2004) using a linear var-
iogram model. The sensitivity test using the gstat
(Pebesma, 2004; Gräler et al., 2016) based kriging (R-Krig)
using the synthetic transects case is illustrated in Figure
S5 where the best-performing variogram model (out of
the 4 tested) was selected separately for each flight. A
detailed description of the variogram modeling scheme
is discussed in the study of Pebesma et al. (2004). We then
compared the total CO2 emission rates derived from Easy-
Krig3.0 to the total emission rate calculated from R-Krig,
as shown in Figure S6. Among the 4 variogram models
tested in R-Krig, the calculations yielded an average differ-
ence of 0.7%. Similarly, the calculated emission rates from
R-Krig and the emission rate derived from EasyKrig3.0,
which uses a linear variogram model, were different by
only 1.2% on average, with a maximum difference of 6.2%
for November 10, 2019. Lastly, a linear regression between

both sets of results indicated that both methods are sta-
tistically indistinguishable (Figure S6b).

Spatially allocating mass balance CO2 emissions

via modeling

Figure 4 shows the distribution of fractions (F) for each
research flight using the ensemble of transport models
and prior fluxes. Note that separate F values were calcu-
lated for each transect sampling the plume (i.e., the box-
plots consist of individual values representing a single
transect-model-prior combination). As discussed earlier,
F of less than 1 implies that the bulk MBE estimate
includes sources outside NYC in addition to those within
the city. On the other hand, F greater than 1 indicates that
the MBEbulk estimate is smaller than the total emissions
produced in NYC as the background incorporates NYC
emissions. In general, for 5 out of 7 flights the average
F was less than 1, ranging between 0.52 and 0.93.
Research flights November 9, 2018 and March 27, 2019
had a fraction greater than 1, with an average F value of
1.2 and 2.3, respectively. Values of F >1 are due to the
sensitivity of the plume edges to NYC itself. We can then
relate this F value of modeled enhancement to the ratio
of emission rates from MBE calculations to obtain
a source-apportioned mass balance CO2 emission rate for
NYC, MBEC, as described in Equation 3.

Figure 5 breaks down the source-apportioned MBEC
emission rate across the different ensemble prior invento-
ries (top panel), transport models (middle panel), and
research flights (bottom panel). The average NYC appor-
tioned MBEC emission rate for CO2 was (57 ± 24) (1s)
kmol/s with 1s representing 1 standard deviation from
the mean MBEC emission rate among the 7 research
flights. The variability among the daily ensemble mean
values (i.e., daily variability) of 42.1% is caused by both
emissions variability and methodological uncertainties
and is similar to the calculated 44% variability shown by
the MBEbulk estimates. The significant day-to-day variabil-
ity is the consequence of the irregular spatiotemporal
sampling of temporally and spatially varying emissions
(aliasing of emission sampling) due to changing meteoro-
logical conditions between days, and thus flight plan
orientations, as has been discussed in related works (Hajny
et al., 2022; Pitt et al., 2022), as well as other methodo-
logical uncertainties. As shown in Figure 5a and b, the
campaign-level variability, that is, the comparison of the
campaign means as a function of the different ensemble
components, induced by the priors and transport models
was only 2.0% and 3.9%, respectively. However, the vari-
ability is larger for each individual flight or transect, as
illustrated in Figure S7. As such, we calculated the mean
variability, which refers to the prior, transport, and tran-
sect variability calculated for each day, averaged across
days. This is, for each day, we calculate the variability
induced by the transport (or the prior) and then we aver-
age this variability for all days in the campaign with the
aim of quantifying the expected uncertainty in a single
day estimation, on average. The mean variability across the
7 days were calculated to be 7.6%, 14.1%, and 19.1% for
prior, transport, and transect, respectively. We note that
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the transect variability stems from applying the spatial
allocation F calculated by transect to the bulk MBE esti-
mation calculated using kriging, which uses all transects at
once. The MBEC is consistently greater (�3.8%) when
using kblt2 (Kantha and Clayson, 2000) vertical mixing
parameterization rather than kblt5 (Hanna, 1982), indicat-
ing that kblt2 is systematically more dispersive than kblt5,
as also shown by Pitt et al. (2022) and Hajny et al. (2022).
It is worth highlighting that we rely on the ensemble of
several latest generation models to quantify the uncer-
tainty introduced by the transport model. Relying on the
mean of a plausible group of transport models mitigates
potential errors in any one particular transport model
while also allowing us to estimate the contribution of
transport uncertainty, which is quantified as the spread
in the posterior emission rate across the transport models,
to the overall posterior emission rate uncertainty.

Finally, biogenic emissions were accounted for using
VPRM to allow for an appropriate comparison between
the measured and modeled enhancements. In general,
the emissions modeled with VPRM during these flights
tend to be small. The nearly identical emission rates
calculated using only anthropogenic simulated enhance-
ments and total simulated enhancements (i.e., anthro-
pogenic þ biogenic) (Figure S8) indicate that the
simulated biogenic fluxes exhibited a certain level of
spatial homogeneity during the flights. Consequently,
their impact on the background was found to be mini-
mal for this set of flights. However, it is important to
note that the emission rate calculated for the AOI
remains to be the total emission rate as it includes bio-
genic fluxes within the AOI. Nevertheless, these fluxes
make only a negligible contribution for these set of
flights, as argued by Pitt et al. (2022). In addition,

Figure 4. Box and whisker plot of calculated fraction (F) obtained from the ensemble of meteorological
(MET) model and prior for each transect on all relevant flight days. The boxplots represent the spread of
individual values that represent a unique combination of prior, transport, and transect. Boxes correspond to the 25th
and 75th percentile while the whiskers extend to the 1.5 interquartile range (IQR). Markers outside of the boxplots
indicate data points beyond the bounds of 1.5 IQR (i.e., outliers). The dashed line indicates the F of 1.0 representing
an EnhNYC that is equivalent to the linear background subtracted EnhTOT along the transect.
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a recent work has shown that the biosphere influence
has a <10% impact for MBE style experiments con-
ducted outside of summer and that utilize the down-
wind edges to account for background influence (Lal
and Kort, 2023).

Comparison to complementary approaches in

estimating CO2 emissions in NYC

To evaluate the performance of the MBE source apportion-
ment approach, we compared the same flights with com-
plementary approaches in quantifying GHG emissions for

Figure 5. Evaluating the source of variability among modeled enhancements. Source-apportioned mass balance
emission rate for NYC plotted as a box and whisker for prior (top panel), MET (middle panel), and flight day (bottom
panel). The boxplots represent the spread of individual values that represent a unique combination of prior, transport,
and transect. The red solid lines correspond to average value while the red dashed lines represent the ±1s across the
means of each box in each specific panel. The GF, ER, NA, and HR are abbreviations for the following METmodels GFS,
ERA5, NAMS, and HRRR, respectively. The turbulence parameterization kblt2 and kblt5 are abbreviated as 2 and 5
after the MET labels.
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the NYC area. This includes a nested Bayesian inversion
(IV) framework (Pitt et al., 2022) and a spatially explicit
scaling factor (SF) approach (Hajny et al., 2022).

Figure 6 shows the results from the 7 research flights
comparing traditional MBE approach kriging emission
rate values and MBEC derived in this work along with the
posterior emission rates calculated from SF and IV
approaches, for comparison. It is important to note that
both Hajny et al. (2022) and Pitt et al. (2022) analyzed 2
additional research flights (e.g., March 26, 2019 and
March 7, 2020) that were not investigated in this work

due to a limited number of downwind transects resulting
in highly variable kriging outputs. As mentioned earlier,
our approach uses the same transport models and prior
emissions as the SF and IV approaches allowing for a direct
comparison of the calculated CO2 emission rate between
the different estimation schemes. The percent difference
in emission rates with respect to the average SF and IV
improved from 24.5% using the MBEbulk kriging to 6.5%
with the source apportioned MBEC. As shown in Figure 6,
a significant improvement in the campaign average CO2

emission rate was observed when comparing the emission

Figure 6. Comparing modeled source-apportioned MBEC to complementary methods. Mass balance estimation
for the city (MBEC) shown as boxplots with the mean for each flight (across inventories and transport models) shown
as black circles. The diamond markers are outliers, defined as data points outside the 1.5 IQR of the box. The MBEC
distribution is compared against the bulk MBE emissions (blue markers) reported in this work, the Bayesian Inversion
modeling (IV) approach from Pitt et al. (2022) (red markers), and scaling factor (SF) approach from Hajny et al. (2022)
(green markers). The blue line is the average for the MBEbulk method. The purple line corresponds to the average
reported ER from the IV and SF approaches among the 7 flights used in this work. The black line corresponds to the
average source-apportioned emission rate in NYC, MBEC.
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rate derived from only kriging (blue line) and the NYC-
specific source apportionment MBEC approach (black
line) to the average posterior emission rate reported
between SF and IV schemes (purple line). We also com-
pared the standard deviation among methods, and the
correlation between the MBEC daily emission rates and
those from the IV and SF, as summarized in Table 1. First,
we compared the performance of traditional MBE kriging
and source-apportioned MBEC to the reported emission
rate from SF and IV. The source-apportioned MBEC con-
sistently shows a lower root mean squared error (RMSE
relative to the emission rates from SF and IV, respec-
tively) compared to traditional MBE kriging suggesting
better agreement of the daily means and temporal vari-
ability with the complementary approaches. In fact, the
coefficient of determination (R2) between the daily esti-
mates also shows a large improvement; from 0.50 to 0.58
when comparing the source-apportioned MBEC to the SF
approach and from 0.39 to 0.73, when comparing the
source-apportioned MBEC to the IV approach. Consider-
ing all these statistical evaluations between the tradi-
tional MBE kriging and the source-apportioned MBEC,
and comparing to the independent methods, we con-
clude that the source apportionment method can be
used to apply MBE estimates to a specific AOI, and with
less variability in results.

The aircraft mass balance method has been used in
several studies at different scales and sampling patterns
(Kalthoff et al., 2002; Mays et al., 2009; Karion et al., 2013;
Cambaliza et al., 2014; Gioli et al., 2014; Karion et al.,
2015; Heimburger et al., 2017; Tadić et al., 2017; Hajny
et al., 2019; Pitt et al., 2019; Ryoo et al., 2019) due to its
simple execution that does not require atmospheric trans-
port modeling efforts. However, the traditional MBE
method is limited and impacted by complex regional
emissions and by the chosen background definition, and
the spatial representativeness of the observed MBEbulk is
difficult to define. The source apportionment MBE

approach discussed in this work account for the
challenges in determining an appropriate background def-
inition by scaling the MBE results based on the model-
derived fractions to estimate a spatially allocated emission
rate allowing us to consistently compare mass balance
estimations with spatially explicit modeling results from
both the Bayesian inversion (i.e., probabilistic emission
estimates) and the SF approach (i.e., scaling up the inven-
tory based on the model measure comparison). This
enables the observed emission enhancements from the
MBE to be isolated for a defined area and provides a solu-
tion to interpret MBEbulk calculations for specific AOIs in
complex emissions scenarios.

The proposed method here introduces a unique aspect
by incorporating atmospheric transport information into
the mass balance technique, which offers a conceptually
different approach of estimating emissions and calculat-
ing the background. While the 3 methods are using mea-
sured enhancements as the basis for their estimation, both
IV and SF methods utilize simulated enhancements to
estimate the emissions based on the model-data mis-
match. On the other hand, the source-apportioned MBEC
approach uses an integral approach based on the mass
conservation equation in steady state to estimate the
emissions. After the emissions are estimated, we then use
the model to estimate the fraction of emissions originat-
ing in the AOI. In this approach, model-data mismatch is
not used as the basis of the emissions estimation.

Conclusions
The top-down aircraft-based MBE method is an effective
way to quantify urban emissions due to the efficiency at
capturing the entire plume of a large/area emission
source within hourly timescales. However, this approach
assumes negligible influence from emission sources out-
side of the AOI, and therefore it is a challenge to attribute
the estimated emissions to a particular area under com-
plex emission environments.

Table 1. Comparison of calculated emission rates to complementary approaches

Method Average (kmol/s) Standard Deviation, ±1s (kmol/s)
Mean Error
(kmol/s)

Traditional MBEbulk 68.2 30.5 15.0

SF (Hajny et al., 2022) 57.7 16.4 4.5

IV (Pitt et al., 2022) 48.8 18.4 4.5

Source-apportioned MBE approach, MBEC (this work) 56.8 24.0 3.5

Comparison RMSE (kmol/s) R2 P value

MBEbulk versus SF 23.0 0.50 0.070

MBEbulk versus IV 29.4 0.39 0.132

MBEC versus SF 14.4 0.58 0.047

MBEC versus IV 14.0 0.74 0.024

Mean error is calculated as the difference to the average between the IV and SF approaches. IV ¼ Inverse modeling; RMSE ¼ Root
mean squared error; SF ¼ Scaling factor.
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In this work, we developed a new methodology to
spatially allocate CO2 bulk emissions estimated using
the MBE method to a specific AOI in a complex emis-
sions scenario, using the 5 boroughs of NYC as a highly
relevant example. A campaign-average emission rate of
(57 ± 24) (1s) kmol/s from 7 flights between 2018 and
2020 was calculated using this source apportionment
MBE approach. The results obtained using the method
proposed in this work were comparable to the NYC 5
boroughs emission rates derived from ACES ([45 ± 9 ]
kmol/s) and Vulcan ([52 ± 10] kmol/s) bottom-up
inventories for a timeframe representative of our
flights, as well as to other top-down estimation methods
including the SF (Hajny et al., 2022) and IV schemes
(Pitt et al., 2022), reducing the difference from 24.5%
when utilizing the conventional MBE approach to 6.5%.
In contrast to the traditional MBE, this source appor-
tionment MBE approach can be used for cities sur-
rounded by multiple and spatially complex emission
sources. However, the method inherently relies on prior
emission and transport and dispersion modeling, result-
ing here in a transport model uncertainty of 14.1% and
a prior uncertainty of 7.6%, on average at a daily scale.
In addition, the daily flight-to-flight variability
accounted for 42.1%. Therefore, it is recommended to
accompany this method with an ensemble of prior and
transport models (as performed here) rather than a sin-
gle model run to partially mitigate dependency on par-
ticular modeling choices and to enable assessment of
the variability in the results caused by transport model
and inventory uncertainties.
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