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ABSTRACT: This study elucidates per- and polyfluoroalkyl
substance (PFAS) fingerprints for specific PFAS source types.
Ninety-two samples were collected from aqueous film-forming
foam impacted groundwater (AFFF-GW), landfill leachate,
biosolids leachate, municipal wastewater treatment plant effluent
(WWTP), and wastewater effluent from the pulp and paper and
power generation industries. High-resolution mass spectrometry
operated with electrospray ionization in negative mode was used to
quantify up to 50 target PFASs and screen and semi-quantify up to
2,266 suspect PFASs in each sample. Machine learning classifiers
were used to identify PFASs that were diagnostic of each source
type. Four C5−C7 perfluoroalkyl acids and one suspect PFAS
(trihydrogen-substituted fluoroethernonanoic acid) were diagnos-
tic of AFFF-GW. Two target PFASs (5:3 and 6:2 fluorotelomer carboxylic acids) and two suspect PFASs (4:2 fluorotelomer-thia-
acetic acid and N-methylperfluoropropane sulfonamido acetic acid) were diagnostic of landfill leachate. Biosolids leachates were best
classified along with landfill leachates and N-methyl and N-ethyl perfluorooctane sulfonamido acetic acid assisted in that
classification. WWTP, pulp and paper, and power generation samples contained few target PFASs, but fipronil (a fluorinated
insecticide) was diagnostic of WWTP samples. Our results provide PFAS fingerprints for known sources and identify target and
suspect PFASs that can be used for source allocation.
KEYWORDS: PFAS forensics, source allocation, principal component analysis, hierarchical clustering, support vector classification,
logistic regression, random forest, multivariate analyses

■ INTRODUCTION
Per- and polyfluoroalkyl substances (PFASs) are a class of
chemicals used in mixtures in a variety of commercial and
industrial applications and are common environmental
contaminants.1 Environmental monitoring has revealed a
variety of PFAS point sources including fire-fighter training
sites impacted by aqueous film-forming foam (AFFF),2,3 land-
applied biosolids,4−6 municipal landfill leachate,7−12 municipal
wastewater treatment plant (WWTP) effluent,13−19 and the
pulp and paper industry.20,21 Industries including fluorochem-
ical manufacturing,22−26 electronics manufacturing,27 paper
manufacturing,20 and electroplating28 are also PFAS point
sources, but access to effluent samples is often limited or
restricted.
There is increasing interest in developing forensics tools to

enable source allocation of PFASs in the environment.29−32

Several features of PFASs make them ideal candidates for
environmental forensics including their persistence in the
environment and the expectation that specific PFASs are used
for certain commercial and industrial applications: these PFASs

could collectively define a PFAS “fingerprint” that is specific to
known sources.31,33 Such PFAS fingerprints, when viewed
through the lens of a conceptual site model and hydrogeologic
data for a particular site, could aid in identifying PFAS releases
potentially responsible for PFAS contamination. Recent studies
combined environmental sample analysis with multivariate
statistics34 and/or machine learning techniques30,35 to identify
PFAS sources across geographic scales. Despite the successes
of these studies, there are at least three major factors that limit
the potential application of these techniques for broad and
comprehensive source allocation or source tracking of PFASs.
First, most previous studies restricted the analysis to relatively
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few perfluoroalkyl carboxylates (PFCAs), perfluoroalkyl
sulfonates (PFSAs), and other PFASs included in widely
implemented analytical methods.30,34−37 However, differ-
entiating sources based on so few target PFASs is challenging
because these PFASs are common to many sources.38 Second,
analytical data reported from multiple laboratories is often
aggregated in an effort to generate datasets that are large
enough to be amenable to multivariate statistics and/or
machine learning techniques for the purposes of source
allocation.30,35 This approach can introduce biases to down-
stream analyses from differences in sample handling and
extraction, the PFASs measured, data quality, and reporting
limits. Third, results of previous studies are typically restricted
to inferences of sources based on the composition of PFASs
exhibiting highly correlated spatiotemporal variability in
occurrence and concentration.34,36,37 For example, samples
that contain high abundances of PFSAs are often inferred to be
impacted by AFFF sources whereas samples that contain high
abundances of PFCAs are often inferred to be impacted by
municipal landfill leachate discharges.39,40

The central hypothesis of this study is that the PFAS
composition of various source types is not random but is rather
structured by the types of PFASs used for certain industrial or
commercial applications and the biological, chemical, and
physical processes associated with each source type. If this
hypothesis is true, we predict that all source types are
probabilistically distinguishable using some subset of PFASs
and that a self-consistent and robust characterization of diverse
PFASs in samples from multiple source types can be integrated
with multivariate statistics and machine learning classifiers to
define PFAS fingerprints that are unique to specific source
types. To test this hypothesis, 92 samples were collected from
six different source types including AFFF-impacted ground-
water, landfill leachate, biosolids leachate, municipal WWTP
effluent, and wastewater effluent from the pulp and paper and
power generation industries. High-resolution mass spectrom-
etry operated with electrospray ionization in negative mode
was used to quantify up to 50 target PFASs, and the US
National Institute of Standards and Technology (NIST)
suspect PFAS list was used to screen and semi-quantify up
to 2,266 suspect PFASs in each sample.41 We included these
50 target PFASs to ensure that the study included a large
proportion of PFASs for which authentic standards are
commercially available as well as broad suspect screening to
supplement fingerprint identification in cases where target
PFASs alone might not be sufficient. The resulting data were
used to address three research objectives: (1) evaluate whether
the six source types exhibit characteristic PFAS fingerprints,
(2) identify the specific PFASs that are most diagnostic of each
source type, and (3) determine whether target PFASs alone are
sufficient to define PFAS fingerprints or if the addition of
suspect PFASs is needed to define a PFAS fingerprint for one
or more source types. Our results provide the first
comprehensive PFAS fingerprinting for multiple source types
and represent a new foundation for PFAS source allocation.

■ MATERIALS AND METHODS
Reagents. Water (HPLC grade) (>99%, high purity,

Burdick and Jackson brand), hydrochloric acid (BDH
Chemicals), and ammonium acetate (regent grade, Macrom
Chemicals) were purchased from VWR (Radnor, PA). Ethyl
acetate (99.9%, reagent grade) and 2,2,2-trifluoroethanol
(99%, Fluka Analytical) were purchased from Sigma-Aldrich

(St. Louis, MO). Methanol (>99%, LC/MS grade) was
purchased from Fisher Scientific (Hampton, NH). Sodium
chloride was purchased from Mallinckrodt Chemical (>99%).
Authentic standards for 50 target PFASs and 28 isotope-
labeled surrogates and two additional stable isotope-labeled
internal standards (M2PFOA and M8PFOS) were purchased
from Wellington Laboratories (Guelph, ON, Canada). See
Table S1 of the Supporting Information for list of target
PFASs, their acronyms, and assigned surrogates.

Sample Collection. Ninety-two samples were collected
from six different source types including 15 archived samples
of AFFF-impacted groundwater (AFFF-GW) collected at the
site of former firefighter training areas on 15 separate military
bases, 19 archived samples of landfill leachate (LL), 15 samples
of laboratory-derived leachate from biosolids-amended soils
(BL), 19 samples of municipal WWTP effluent (WWTP), 16
samples of wastewater effluent from the pulp and paper
industry (PP), and 8 samples of wastewater effluent from the
power generation industry (PG). All sites were located
throughout the United States, and samples were collected
directly at the source. None of the sources are from the same
connected hydrologic unit. Samples were collected to represent
distinct source types, although it is possible that some sources
may be minor contributors to other sources. For example,
landfills may receive municipal biosolids and municipal
WWTPs may receive landfill leachate. Details on sample
dates, sampling, and handling procedures are provided in text
in the Supporting Information and Table S2.

Sample Preparation. Samples with lower ionic strength
and organic matter (i.e., those from AFFF-GW, WWTP, PP,
and PG sources) were extracted using liquid−liquid micro-
extraction as previously described2 and detailed in the
Supporting Information. Samples with higher ionic strength
and organic matter (i.e., those from LL and BL sources) were
treated separately with a separate method to minimize the
extraction of organic matter as previously described8 and
detailed in the Supporting Information.

Liquid Chromatography Quadrupole Time-of-Flight
Mass Spectrometry. Chromatographic separations were
achieved using an Agilent 1260 HPLC (Santa Clara, CA).
Aliquots of 100 μL were injected onto a Zorbax Eclipse XDB-
C8 (Agilent, 4.6 × 20 mm, 3.5 μm) guard column fitted with a
Zorbax Eclipse Plus analytical column (Agilent, 4.6 × 75 mm,
3.5 μm).2 The aqueous mobile phase (A) was 20 mM
ammonium acetate (Fisher Scientific) in 3% v/v HPLC-grade
methanol in HPLC-grade water, and the organic mobile phase
(B) was HPLC-grade methanol. A SCIEX X500R QTOF
system (Framingham, MA) was operated in negative electro-
spray ionization (ESI) mode. Data was collected using
SWATH data-independent acquisition for both TOF-MS and
MS/MS modes (except for PFBA and MPFBA, which were
analyzed in MRM HR mode to reduce background). Details
on the acquisition parameters, calibration curves, use of third-
party reference standards, and continuing calibration standards
can be found in the Supporting Information.

Suspect Screening and Semi-Quantification. Candi-
date suspect PFASs were required to have at least 100 area
counts and be at least three times that of the average of three
field blanks for all source matrices except BL, which only had a
process blank since they were generated under laboratory
conditions. The NIST “Suspect List of Possible Per- and
Polyfluoroalkyl Substances (PFAS)” version 1.511 was used for
identifying suspects. After removing suspect PFASs with a mass
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greater than 1250 Da, duplicates, and target PFASs, the list was
further sorted using an RDKit function to filter for
NumHDonors for PFASs detected in ESI− mode. The 2,266
imported molecular formula were screened as [M − H]−. Mass
spectral features were considered matches when associated
with a compound on the NIST list41 with <5 ppm mass error,
<10% isotope ratio difference, and >70% spectral library match
based on the SCIEX OS purity algorithm (or a higher library
score with only the precursor ion matching upon visual
inspection). Because MS/MS spectral matching gives higher
confidence in identification, library matches were allowed
greater tolerance for mass error and isotope ratio difference.
Thus, mass spectral features were considered library matches
when associated with a compound on the NIST list with <10
ppm mass error, <20% isotope ratio difference, and >70%
spectral library match, as well as visual confirmation of at least
one matching fragment. Details on assigning confidence to
suspect matching is provided in the Supporting Information.42

Suspect concentrations were estimated using an average PFAS
calibration curve constructed from the area of target PFASs
divided by the average area of the 22 surrogate areas versus
target concentration in units of nmoles/L.43 Suspect
concentrations were reported in ng/L after converting from
nmoles/L using the suspect molar mass. The LOQ for suspects
was 5 ng/L, the minimum LOQ for target PFASs. In this
manner, 1:1 matching was avoided given the number of
suspects detected and treated by a single common calibration
curve.43

Dimensional Reduction and Clustering Analyses.
Principal component analysis (PCA) and hierarchical cluster-
ing analysis (HCA) were performed to determine whether the
six source types exhibit characteristic PFAS fingerprints. The
ranked u-score method was applied to normalize the
concentration data and to address values reported as <LOQ
and <LOD as is recommended for implementation of censored
environmental data in multivariate association testing.44 PCA
and HCA were applied with the ranked u-score data using the
FactoMineR and hclust and pheatmap packages, respectively, of
the R working environment (R version 4.1.0) in R Studio (R
Studio version 1.4.1717). For HCA, the agglomerative
hierarchical clustering technique was applied using the
Euclidean distance metric and the average linkage method to
produce two-way HCA dendrograms coupled with a relative
concentration heatmap.

Machine Learning Classifiers. Linear support vector
classification (SVC), logistic regression (LR), and random
forest classification (RF) were performed to identify specific
PFASs that are diagnostic of each source type. These classifiers
were selected because they provide weighted coefficients that
can be used to define feature importance for the classification.
Concentration data for target PFASs and semi-concentration
data for suspect PFASs were used for classification because
classification takes advantage of differences in magnitude
between the different variables and normalization obstructs
subtle differences between the different variables. Values
reported as <LOQ and <LOD were substituted with one-half
of the LOQ or 0, respectively, as has been previously
described.45−48 A parallel analysis performed following a log
transformation of the concentration data resulted in nearly
identical classification performance; therefore, we report the
results of our classifiers for the untransformed dataset.
All three classifiers were run on Jupyter Notebook (v6.4.6)

using Python (v3.10.2) and were run in a one-versus-all

classification format (i.e., the classifiers were run to best
differentiate samples of a source type of interest from samples
of all other source types). SVC was run using the sklearn.svm
function, RF was run using the RandomForestClassif ier function
from sklearn.ensemble package, and LR was run using the
LogisticRegression function from the sklearn.linear_model pack-
age in scikit-learn.49 For each classifier, the dataset was split
into training, validation, and testing sets in a 70−20−10 ratio
as recommended for hyperparameter tuning for each of the
three classifiers.50−52 Relevant hyperparameters were tuned
using Grid Search coupled with stratified k-fold cross-validation
with 10 folds and 1000 repeats, which maintains the
proportion of samples of the source of interest from the
original dataset while defining the training, validation, and test
set of each fold. Grid Search evaluates every possible
combination of relevant hyperparameters for each classifier
on the training set to select the combination that gives the
highest balanced accuracy. The relevant hyperparameters for
each classifier were the SVC regularization parameter (C) for
SVC; the solver (newton-cg, lbfgs, liblinear), penalty term (l1,
l2), and C value for LR; and the number of estimators,
n_estimators (10, 100, 1000), and maximum number of
features, max_features (sqrt, log2), for RF. Including additional
hyperparameters for each classifier did not increase perform-
ance meaningfully, and more information on hyperparameters
and associated value selection is included in the Supporting
Information. Stratified k-fold cross-validation was then used to
apply the tuned classifiers to the validation and testing sets to
check for overfitting. Our tuned classifiers were run with the
combination of hyperparameters that yielded the best
performance on the training, validation, and testing sets that
minimized overfitting.
Once hyperparameters were selected, the tuned classifiers

were run over the entire dataset. Classifier performance for
each source type for all three classifiers was evaluated and
visualized by means of confusion matrices and measured
balanced accuracy. We used the population size of each source
class to define a balanced accuracy threshold (one false positive
and one false negative allowed on average across 100
iterations) that was used to identify well-performing classifiers.
Because each source type had a different number of samples,
this threshold definition leads to different balanced accuracy
thresholds for each source type. The most diagnostic PFASs
for each source type were defined for well-performing
classifiers as those PFASs, which had the highest positive
coefficient weights for SVC and LR and feature importance for
RF.
Because of the large number of target and suspect PFASs

included in our high-dimensional dataset, we used recursive
feature elimination (RFE) on each well-performing classifier to
overcome the curse of dimensionality. RFE is an iterative
method that can be used to determine the minimum number
of PFASs that must be included for successful classification
(i.e., highest balanced accuracy) of a sample of a particular
source type. RFE was run using the RFE function from the
sklearn.feature_selection package in Python and incorporated
the same workflow as described in the preceding paragraph for
hyperparameter optimization and cross-validation.

■ RESULTS AND DISCUSSION
Target and Suspect Screening. To harmonize the

approach to target quantification, surrogates of target PFASs
that were significantly suppressed (>20%) by high concen-

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.3c03770
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

C

https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c03770/suppl_file/es3c03770_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c03770/suppl_file/es3c03770_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c03770/suppl_file/es3c03770_si_001.pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.3c03770?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


trations of target PFASs in some sources (e.g., AFFF-GW and
LL) were not used for any targets other than their matched
target in all sources (Table S1). Thus, a constant quantification
strategy for targets was applied across samples from all source
types. Details on method accuracy and precision for all sample
types are provided in the companion text in the Supporting
Information and in Tables S3−S6.
Thirty-four of the 50 target PFASs were quantified above the

LOQ in at least one of the 92 samples. A total of 188 suspect
PFASs from the NIST list were identified with a confidence of
Level 4 or higher42 and semi-quantified43 in at least one of the
92 samples. PFAS occurrence and concentration data from
AFFF-GW, LL, BL, and WWTP samples have been previously
reported from sites around the world. We therefore provide
key details on the sample analysis from these source types here
and refer the reader to the Supporting Information for a more
complete discussion. A summary of the homologue range,
highest frequency of detection, and concentration range for
selected target and suspect PFASs is provided in Table S7, and
the complete data set is provided as Table S12 and is appended
to the back of the Supporting Information document. For
suspect PFASs identified with a confidence of Level 3 or Level
4 that had alternate matches in the NIST list, we provide the
structures of the alternate structural assignments in Table S12.
The AFFF-GW samples contained the greatest number of

target and suspect PFASs at the highest concentrations (Table
S12). All 15 AFFF-GW samples contained measurable
concentrations of target PFASs. The total number of target
and suspect PFASs in the AFFF-GW samples ranged from 19

to 77 depending on the source of the AFFF-GW sample.
Although many suspect PFASs were detected, most were
identified with a confidence of Level 4 and confirmation of the
PFAS structures provided in Table S12 was outside the scope
of this study.
The major classes of PFASs observed in landfill leachate

(LL) samples were similar to those identified in previous
studies including PFCAs (C4−C10), PFSAs (C3−C8), n:3
and n:2 saturated fluorotelomer acids, and N-methyl and N-
ethyl perfluoroalkyl sulfonamides (Table S12).7−12,53,54

Suspect PFASs in LL samples included homologues within
classes containing targets (Level 2), four homologous series
that contained two to three suspect PFASs that share a
common residual (e.g., as defined by the NIST list as “the
residual mass after removing the CF2 repeating units”),41 and
many single Level 4 suspect PFASs not in homologous series
(e.g., do not share a common residual). These suspect classes
included substituted and unsubstituted perfluoroalkyl sulfona-
mides, perfluorosulfonamido acetic acids, and perfluoroalkyl
sulfinates, which have been previously reported in suspect
screening11,55 and extended target screening8 of LL samples.
Across the biosolids-amended soil leachate (BL) samples, 22

of 50 target PFASs were quantified (Table S12). Every BL
sample contained at least three target PFASs, with a maximum
of 14 target PFASs present in one BL sample. Both
perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic
acid (PFOS) were found in 100% of the BL samples. The six
target PFAS classes detected included PFCAs, PFSAs,
perfluoroalkyl sulfonamides, perfluorosulfonamido acetic acid

Figure 1. (a) PCA score plot along PC1 and PC2 among samples in the target dataset (n = 92 samples; n = 34 PFAS that were detected in at least
one sample). The different source types are identified by the different symbols. The center point of each source type is identified by a larger
datapoint than the surrounding points. The ellipses show the 95% confidence interval around the mean of each source type. The plot shows three
major clusters: AFFF-GW, LL and BL, and the three WWTPs. (b) PCA score plot along PC1 and PC2 among samples in the target + suspect
dataset (n = 92 samples; n = 222 PFASs). The plot shows six distinct clusters for each source type, (c) 3D-PCA score plot among samples in the
target dataset. There is greater separation between BL and LL samples along PC3, (d) 3D-PCA score plot among samples in the target + suspect
dataset. There is separation between PP, PG, WWTP, and BL samples along PC3.
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precursors, 6:2 fluorotelomer sulfonate (6:2 FTS), and both
saturated and unsaturated fluorotelomer carboxylates. The
PFCAs and PFSAs in BL samples were consistent with
previous findings for biosolids-amended soil leachate12 and
water bodies impacted by nearby biosolids application.56

Among the 19 WWTP samples, only 10 target PFASs were
observed with concentrations ranging from 8.0 to 1200 ng/L
(Table S12). The quantified target PFASs included PFCAs,
PFSAs, 5:3 FTCA, and 6:2 FTS. Further, all of the PFASs
observed in WWTP samples were also observed in AFFF-GW
samples but at lower concentrations in the WWTP
samples.13−16,18,19,57,58 Both 5:3 FTCA59,60 and 6:2
FTS15,18,61−63 have been previously reported in WWTP
effluent.

To the best of our knowledge, this study marks the first
report of PFASs in power generation (PG) effluent. This study
also adds additional context to the limited investigation of
PFASs in pulp and paper (PP) effluent.20,64 A total of 10 target
PFASs from four classes were detected in the PG or PP
samples, including five PFCAs, three PFSAs, one FTS, and one
FTCA (Table S12). Detection frequencies of PFASs and
concentrations were generally higher in the PP effluents. Of the
10 PFASs, four PFCAs (C4−C6, C8), PFOS, and 6:2 FTS
were common between both sample groups and PFOA was the
most frequently detected PFAS (present in 100% of samples).
5:3 FTCA is reported for the first time in PP effluents. The
suspect PFASs identified in PP and PG samples were identified
with a confidence of Level 4, and confirmation of the PFAS

Figure 2. Two-way HCA dendrogram with heatmap. The top dendrogram shows PFAS groupings, and the left dendrogram shows sample
groupings. The heatmap is color-coded based on ranked u-scores of the different samples for each PFAS. The dendrogram shows three major
clusters along the left axis: AFFF-GW, LL and BL, and the three WWTPs, showing agreement with the PCA score plot. Note that the n:3 and n:2
fluorotelomers have their acronyms revered (e.g., FTCA_6:2 instead of 6:2 FTCA) because the package used to create the dendrogram requires
labels to begin with a letter.
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structures provided in Table S12 was outside the scope of this
study.

Dimensional Reduction and Clustering Analyses:
Target PFASs. PCA and HCA were used to determine
whether the six source types exhibit characteristic PFAS
fingerprints. These analyses initially focused on only the target
PFASs to identify characteristic fingerprints among the most
commonly measured PFASs that could be quantified with high
accuracy and sensitivity. The PCA score plot is provided as
Figure 1a, and the 3D-PCA score plot is provided as Figure 1c.
The PCA was primarily used for descriptive purposes so only
the first three PCs (which contained 80.7% of the variation)
were retained, and scree plot analysis shown in Figure S1a
further supports the retention of only the first three PCs.
Samples from the six source types clustered into three major
clusters consisting of AFFF-GW samples, LL and BL samples,
and all wastewater samples (Figure 1a). The clustering of
samples suggests that the LL and BL and WWTP, PP, and PG
samples contain similar types and relative abundances of target
PFASs. The 3D-PCA score plot shows that there is separation
between BL and LL samples along the PC3 direction,
indicating that the PFASs that have high loadings in that PC
must be driving the separation of these source types.
Examination of the PCA loadings suggest that a group of
PFASs dominated by PFCAs and PFSAs drive the separation
of the GW samples and that a group of PFASs dominated by
n:3 and n:2 saturated and unsaturated fluorotelomer acids and
N-methyl and N-ethyl perfluorooctane sulfonamides drive the
separation of the LL and BL samples. The separation of BL
and LL samples along PC3 is driven by C10−C12 PFCAs and

fluorotelomer sulfonates (BL) and n:2 saturated and
unsaturated fluorotelomer acids (LL). No target PFASs have
significant PCA loadings in the direction of the WWTP
samples, and this is expected because only few PFASs at
relatively low concentrations were measured in the WWTP
samples. Together, the PCA analysis demonstrates that
characteristic PFAS fingerprints exist for at least three distinct
groups of the six source types.
The HCA dendrogram and heatmap are provided as Figure

2. The three clusters along the left side (labeled 1−3) describe
relationships among the sources, the seven clusters along the
top (labeled i−vii) describe relationships among the 34 target
PFASs that were detected in at least one sample, and the
heatmap colors describe the relative concentrations of the
PFASs across the samples. In examining the labels along the
left side of Figure 2, it is noted that the sources cluster together
similar to the way they clustered in the PCA score plot (Figure
1a). All of the AFFF-GW samples are contained in cluster 3.
The LL and BL samples cluster together, with most of the LL
samples at the top of cluster 2 (the exceptions are LL2, LL6,
LL7, and LL19) and all of the BL samples at the bottom of
cluster 2. This supports the 3D-PCA score plot results that
indicate that BL and LL are similar but do contain differences
in the inherent composition of their PFASs driven by the
PFASs that have high loadings along PC3. The WWTP
samples cluster together in cluster 1, and there is some
separation into subclusters based on the type of WWTP, but
samples from all types of WWTPs are spread throughout
cluster 1. This more refined observation from the HCA
supports the clustering of the WWTPs in the PCA score plot

Figure 3. Performance of the tuned and cross-validated classification models for the target dataset for (a) case 1 and (b) case 2 and for the target +
suspect dataset for (c) case 3 and (d) case 4. SVC = support vector classification, LR = logistic regression, RF = random forest. The threshold is
defined as the balanced accuracy that results in one false negative and one false positive misclassification on average across the cross-validation.

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.3c03770
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

F

https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c03770/suppl_file/es3c03770_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c03770/suppl_file/es3c03770_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c03770?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c03770?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c03770?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c03770?fig=fig3&ref=pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.3c03770?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(Figure 1a). A broad view of the heatmap reveals that there are
low relative concentrations of most PFASs in the WWTP
samples, moderate relative concentrations of most PFASs in
the LL and BL samples, and high relative concentrations of
about half of the PFASs in the AFFF-GW samples.
In examining the labels along the bottom of Figure 2,

relationships among the target PFASs can also be identified.
First, clusters i (PFPeS), iv (PFNA), and v (6:2 FTS) each
contain only a single PFAS, reflecting distinctive relative
abundance patterns for these PFASs among the samples.
PFPeS was measured in all AFFF-GW samples and sporadi-
cally in LL and BL samples. However, the different LOQs for
PFPeS in the WWTP samples and the LL and BL samples
result in different ranked u-scores for censored data in those
source types leading to the unique clustering. PFNA and 6:2
FTS are both characterized as exhibiting high relative
concentrations in AFFF-GW samples, lower relative concen-
trations in LL samples, and sporadic and lower relative
concentrations in WWTP and PP samples. These unique
relative abundance patterns drive their clustering in the HCA
dendrogram. The remaining clusters are more informative with
respect to assessing PFAS fingerprints. For example, clusters vi
and vii contain twelve and two PFASs, respectively, that are
present at high relative concentrations in the AFFF-GW
samples. These clusters include the C3−C4 and C6−C8
PFSAs, the C4−C8 PFCAs, the C4, C6, and C8 perfluoroalkyl
sulfonamides, and perfluoroethylcyclohexane sulfonate
(PFEtCHxS). Cluster ii contains three PFASs that are present
at high relative concentrations in the LL samples and includes
6:2 FTCA, 8:2 FTCA, and 8:2 UFTCA. Finally, cluster iii
contains 14 PFASs that are present at high relative
concentrations in the LL and BL samples and includes the
C9 PFSA, the C10−C12 PFCAs, 4:2, 8:2, and 10:2 FTSs,
along with the other FTCAs, UFTCAs, and perfluoroalkyl
sulfonamide acetic acids. These are also the PFASs with high
loadings along PC3 that help separate BL from LL samples.
The HCA provides additional support that characteristic

PFAS fingerprints exist for at least three distinct groups of the
six source types. The HCA also provides additional insights on
the PFASs within those PFAS fingerprints, which agree with
the loadings from the PCA. Further, the clustering derived
from these unsupervised techniques aligns with the source
types, supporting the hypothesis that different PFAS sources
have probabilistically distinguishable fingerprints.

Machine Learning Classifiers: Target PFASs. Machine
learning classifiers were used to identify the specific target
PFASs whose presence are most diagnostic of each source
type. We reasoned that the weighted coefficients or feature
importance from well-performing SVC, LR, and RF classifiers
would allow us to identify the target PFASs that are most
diagnostic of each source type. Because the PCA and HCA
analyses revealed that the six source types separate into three
major clusters, we evaluated the performance of each classifier
for two cases. In case 1, we considered all six source classes
(GW, LL, BL, WWTP, PP, and PG), and in case 2, we used the
results of the PCA and HCA to define three source classes as
AFFF-GW, leachates (LL and BL samples), and WWTPs
(WWTP, PP, and PG samples). There was no evidence of
overfitting of any classifier as the balanced accuracy ratio of the
training set was not significantly higher than that of the testing
set during cross-validation (Tables S8 and S9). The perform-
ance of the tuned and cross-validated classifiers for case 1 is
described in the confusion matrices provided as Figures S2−

S4. The results of the performance analyses for case 1 and case
2 are presented in Figure 3a,b, respectively, with the balanced
accuracy thresholds to identify well-performing classifiers
provided as black bars. The data in Figure 3a show that the
balanced accuracies for all of the classifiers in case 1 (six source
classes) ranged between 70.0 and 98.5%. The well-performing
classifiers for case 1 include SVC for AFFF-GW and LL
samples and RF for AFFF-GW and WWTP samples. The data
in Figure 3b show that the balanced accuracies for all of the
classifiers in case 2 (three source classes) ranged between 90.0
and 99.8%. The well-performing classifiers for case 2 include
SVC for AFFF-GW samples and RF for leachates and WWTPs
samples.
The weighted coefficients or feature importance for each of

the target PFASs in each of the well-performing classifiers were
used to identify target PFASs that are most diagnostic of each
source class. There are five PFASs in common among the top
seven PFASs with the highest weighted coefficients or feature
importance in the well-performing SVC and RF classifiers for
AFFF-GW samples. These include PFHxA, FHxSA, PFPeS,
PFHxS, and FBSA. All five of these PFASs were also contained
in clusters vi and vii of the HCA dendrogram (Figure 2), which
included PFASs that exhibited high relative concentrations in
AFFF-GW samples. The four PFASs with the top weighted
coefficients from the SVC classifier for LL samples include 6:2
FTCA, 5:3 FTCA, PFHpA, and PFBA. The FTCAs were
contained in clusters ii and iii of the HCA dendrogram (Figure
2), which included PFASs that exhibited high relative
concentrations in LL samples, but PFHpA and PFBA were
not, which makes their inclusion here somewhat unexpected. It
is worth noting that coefficient weights of PFHpA and PFBA
were also high in LR and RF (not well-performing classifiers in
this case) so their importance as diagnostic PFASs for
classification of LL samples seems to be robust. Finally,
PFBA, PFOA, PFNA, and PFOS had the largest RF feature
importance for WWTP samples. These ubiquitous PFCAs and
PFSA are present in samples from nearly all source classes, and
their selection as diagnostic PFASs for WWTP samples in
particular is likewise unexpected. In examining the HCA in
Figure 2, PFNA seems to have the most potential to be
uniquely present in WWTP samples, but the presence of all
four of these PFASs simultaneously may indeed be diagnostic
of the WWTP source class.
There were no well-performing classifiers for BL, PP, and

PG samples in case 1, which is not surprising considering the
results of the PCA and HCA (Figures 1a and 2). Therefore, we
considered case 2 in an effort to identify diagnostic PFASs for
the combined source classes. The unique well-performing
classifiers for case 2 include RF for leachates and WWTPs
samples. Six of the nine PFASs with the top feature importance
from the RF classifier for leachate samples were 3:3 FTCA, 5:3
FTCA, 6:2 FTCA, 7:3 FTCA, EtFOSAA, and MeFOSAA. This
result suggests that FTCAs and perfluoroalkyl sulfonamido-
acetic acids are diagnostic of LL and BL samples together.
Finally, PFOA and PFOS have the highest feature importance
in the well-performing RF classifier for the WWTPs source
class. Whereas PFBA and PFNA were identified as diagnostic
of the WWTP source class in case 1, these two PFASs are not
among the 10 PFASs with the highest weighted coefficients for
the WWTPs source class for case 2. The data from case 1 and
case 2 suggest that the presence of these specific PFCAs and
PFSAs (along with the absence of PFASs diagnostic of the
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AFFF-GW and LL source classes) is diagnostic of the WWTPs
source class.

Evaluation of Target + Suspect PFASs Together. The
preceding PCA and machine learning classifier analyses were
repeated with the combined target + suspect PFASs to
determine whether suspect PFASs facilitate the discovery of
PFAS fingerprints for one or more source types. This is
particularly relevant for the source types that contain relatively
few target PFASs at low relative concentrations (e.g., WWTP,
PP, PG). For this analysis, we used the concentrations of the
34 target PFASs and the semi-quantified concentrations of 188
suspect PFASs. The PCA score plot for each source type
against PC1 and PC2 is provided as Figure 1b, and the 3D-
PCA score plot is provided as Figure 1d. The six source types
separate more clearly because most of the suspect PFASs were
identified in only one source type, making that source type
more compositionally distinct. However, the WWTP, PP, and
PG samples still cluster closely with each other and the BL
samples cluster closer to the WWTP, PP, and PG samples than
the LL samples (as previously observed in Figure 1a).
The results of the PCA score plot indicate that the

combined dataset is suitable for undergoing classification.
Because the PCA analysis can be interpreted to conclude that
each of the six source types separates into distinct clusters or
that the WWTP, PP, and PG samples are close enough to be
considered a single cluster, we again evaluated the performance
of each classifier for two cases. In case 3, we considered all six
source classes (AFFF-GW, LL, BL, WWTP, PP, and PG), and
in case 4, we defined four source classes as AFFF-GW, LL, BL,
and WWTPs (WWTP, PP, and PG samples combined). There
was no evidence of overfitting of any classifier through the
stratified cross-validation results (Tables S10 and S11). The
performance of the tuned and cross-validated classifiers for
case 3 is described in the confusion matrices provided as
Figures S5−S7. The data in Figure 3c show that the balanced
accuracies for all of the classifiers in case 3 (six source classes)
ranged between 66.0 and 99.5%. The well-performing
classifiers for case 3 include SVC for AFFF-GW and LL
samples, LR for LL samples, and RF for LL and WWTP
samples. The balanced accuracies for all of the classifiers in
case 4 (four source classes) ranged between 85.5 and 99.5%
(Figure 3d). The well-performing classifiers for case 4 include
SVC for AFFF-GW and LL samples and LR and RF for LL
samples. There were no well-performing classifiers for the BL
or WWTPs source classes.
The six PFASs with the highest weighted coefficients in the

well-performing SVC classifier for AFFF-GW samples include
PFHxA, FHxSA, trihydrogen-substituted fluoroethernonanoic
acid (3H-PFENA, NIST ID 4072), PFPeS, PFHxS, and FBSA.
Five of these PFASs were also selected as diagnostic of AFFF-
GW samples from the target dataset and one (3H-PFENA) is a
Level 4 suspect PFAS. This result suggests that a few target
PFASs may be sufficient to classify AFFF-GW samples in a
one-versus-all classification. For the LL samples, 5:3 FTCA,
6:2 FTCA, 4:2 FTThA (NIST ID 3393, Level 4), MeFPrSAA
(NIST ID 3343, Level 3d), and MeFBSAA (NIST ID 3344,
Level 3d) were among the PFASs with the highest weighted
coefficients or importance score for all three well-performing
classifiers. The FTCAs are target PFASs and were selected in
the previous classification, but the others are suspect PFASs
and are clearly diagnostic of LL samples given their higher
weighted coefficients or importance score compared to those
of the target PFASs. The WWTP source class had one suspect

PFAS that was statistically more diagnostic than target PFASs
for classifying samples: the organofluorine-containing and
broad-use insecticide fipronil (NIST ID 4820, Level 2b). It is
not surprising that fipronil is measured in WWTP samples, as it
has been reported as a micropollutant in wastewater effluents
around the world.65−67 Like the target analysis, PFBA, PFOA,
and PFNA were also identified as diagnostic of WWTP
samples, but their importance scores were lower than that of
fipronil. There were no well-performing classifiers for the
WWTPs source class that included WWTP, PP, and PG
samples (case 4), but the RF classifier had a balanced accuracy
of 97.5% and fipronil was again selected as the suspect PFAS
with the highest importance score followed by PFBA, PFOA,
and PFNA. The analysis of the data from case 4 further
suggests that WWTP, PP, and PG samples can be best
classified as a combined source class.

Recursive Feature Elimination (RFE). Finally, RFE
analysis was used to determine the minimum number of
PFASs that must be included for successful classification (i.e.,
the highest balanced accuracy) of a sample of a particular
source type. This analysis was done to inform the development
of a PFAS analytical method that could be used for source
allocation of certain source types (Table 1). The RFE analysis
demonstrates that classification of AFFF-GW can be achieved
with 99.1% balanced accuracy when only including PFHxA,
FHxSA, 3H-PFENA, PFPeS, and PFHxS (SVC classifier). If
we only consider target PFASs (because 3H-PFENA is a Level
4 suspect PFAS), classification of AFFF-GW can be achieved
with 98.9% balanced accuracy when only including PFPeS,
PFHxA, PFHpS, and FHxSA (RF classifier). Classification of
LL can be achieved with 99.7% balanced accuracy when only
including 4:2 FTThA, MeFPrSAA, 6:2 FTCA, and 5:3 FTCA
(LR classifier). No well-performing classifiers were identified
for BL samples, but classification of the combined leachates
class can be achieved with 95.1% balanced accuracy when
including 4:2 FTThA, MeFPrSAA, MeFBSAA, 6:2 FTCA, 3:3
FTCA, and 5:3 FTCA along with MeFOSAA and EtFOSAA
(RF classifier). Classification of the WWTP and the combined
WWTPs classes can be achieved with 98.5 and 97.8% balanced
accuracy when only including fipronil along with six and eight
relatively ubiquitous perfluoroalkyl acids, respectively (RF
classifier). The RFE results demonstrate that each source type
can be accurately classified by each well-performing classifier
using some combinations of relatively few target and suspect
PFASs. This shows that a future monitoring study would only
need to measure the PFASs identified in Table 1 to gain insight
on the potential PFAS sources. We also observed that for the
WWTP source type, the predictors with the most negative
coefficient weights or feature importance were those that were
picked as important predictors for the AFFF-GW and LL
source types. This further shows that while indeed source
allocation of a given sample must contain detections of the
PFASs defined in Table 1 for a given source type, in some
cases it must also not include detections of important
predictors for other source types.

Limitations. This study aimed to discover PFAS finger-
prints for specific PFAS source types. Although successful in
this endeavor, this study is limited in some ways with respect
to the analytical methods and application of the machine
learning classifiers. First, the dataset included in this study was
acquired exclusively from LC-TOF-MS operated with ESI in
negative mode. On the one hand, this approach generated a
unified dataset in which all samples were prepared and
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measured in the same way. However, this approach excludes
cationic and zwitterionic PFASs68−70 and volatile PFASs and
the sample preparation and analysis may be biased for more
hydrophobic PFASs71 and biased against ether-based PFASs
(due to the acquisition source temperature).65−67 Second,
although we are confident in the semi-quantification approach
applied to generate the suspect PFASs, we acknowledge that
the semi-quantified suspect data has more uncertainty than the
target data. Third, successful classification relies on sufficiently
large datasets with a minimum amount of censored data. Our
sample set was limited to 92 samples, and the PG source type
contained only 8 samples. It is possible that more samples
would have facilitated a more robust classification. Our dataset
also contained a large number of censored data, and best
practices (e.g., u-score normalization) were implemented to
address censored data prior to data analysis and classification.
Nevertheless, censored data and outliers can bias the results of
classification.72 Additionally, the specific classifiers that we
selected assume that the data are linearly separable, which
might not always be the case. For instance, SVC with a
nonlinear kernel might work better to separate some source
types but coefficient weights necessary to discover diagnostic

PFASs are only available for the linear kernel. Finally, the
classifiers were developed and applied on real environmental
water samples derived from six different source types to define
characteristic PFAS fingerprints. We acknowledge that there
are other potential sources of PFASs to environmental waters
that may contribute to the fingerprints defined in this study.
The classifiers have not been tested on external environmental
water samples from sources other than the six types described
in this study.

Environmental Implications. Developing forensics tools
will better enable source allocation of PFASs measured in the
environment. In this study, we integrate a unified analytical
method to characterize target and suspect PFASs in samples
from a variety of source types with multivariate statistics and
machine learning classifiers to more accurately define PFAS
fingerprints that are diagnostic of specific source types (Table
1). Despite the fact that the AFFF-GW samples were collected
from sites that varied in space and time, they contain the same
diagnostic PFASs and our classifiers could define accurate
PFAS fingerprints of both target PFASs and combined target
and suspect PFASs. This indicates that these diagnostic PFASs
are persistent in AFFF-GW samples over spatially and
temporally distributed sites. It is important to note that
FHxSA and 6:2 FTCA are target PFASs that were identified as
diagnostic of certain sources but are rarely measured and are
not included in the EPA Draft Method 1633. Further,
authentic standards for the diagnostic suspect PFASs 3H-
PFENA, 4:2 FTThA, and MeFPrSAA should be synthesized to
confirm their occurrence in environmental samples and
included in analytical methods. The discovery of fipronil as
diagnostic of WWTP samples demonstrates how substances
used more commonly in other sectors (and potentially non-
PFASs) can be useful in source allocation of PFASs. Additional
work is underway with this dataset to determine if other trace
organic chemicals would similarly assist in classification
between the different WWTP source types (WWTP, PP, and
PG). Finally, the PFAS fingerprints identified in this study
represent PFAS fingerprints at these specific sources. Our
present study does not address how PFAS fingerprints
attenuate as a function of time or distance from a source.
Our ongoing work aims to address this question.
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Table 1. Summary of PFASs Identified as Diagnostic of
Different Source Classes in the RFE Analysis

Diagnostic PFASs

Source
Target
PFASs

Suspect
PFASs

AFFF-GW (target + suspect PFASs) PFHxA 3H-PFENA
FHxSA
PFPeS
PFHxS

AFFF-GW (target PFASs only) PFPeS
PFHxA
PFHpS
FHxSA

LL (target + suspect PFASs) 6:2 FTCA 4:2 FTThA
5:3 FTCA MeFPrSAA

Leachates (LL + BL, target + suspect PFASs) 6:2 FTCA 4:2 FTThA
3:3 FTCA MeFPrSAA
5:3 FTCA MeFBSAA
MeFOSAA
EtFOSAA

WWTP (target + suspect PFASs) PFNA fipronil
PFHxS
PFPeA
PFOA
PFBA
PFOS

WWTPs (WWTP + PP + PG, target + suspect
PFASs)

PFBA fipronil
PFNA
PFOA
PFHpA
PFOS
FOSA
PFHxS
PFPeA
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