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Abstract—Miniaturized wearable or implantable medical
sensors (or actuators) are often used in the Internet of Things
(IoT) technologies in healthcare applications. However, their
limited source of power is becoming a bottleneck for the per-
vasive use of these devices, especially, as their functionality
increases. Kinetic-based micro-energy harvesters can generate
power through the natural human body motion. Therefore, they
can be an attractive solution to supplement the source of power
in medical wearables or implants. The architecture based on
the Coulomb force parametric generator (CFPG) is the most
viable micro-harvester solution for generating power from human
motion. This article proposes three methods: a linear estimation
approach, a multi-armed bandit algorithm, and a min–max-based
approach to adaptively estimate the desirable electrostatic force
in a CFPG using the input acceleration waveform. Through
extensive simulations, the performance of the proposed meth-
ods in maximizing the output power of the micro-harvester is
evaluated.

Index Terms—Coulomb force parametric generator (CFPG),
Internet of Things (IoT) in healthcare, low power wearable
sensors, micro-energy harvesting, online optimization.

I. INTRODUCTION

ENERGY harvesting (EH) is the process of capturing
energy from the ambient environment and converting

it into electrical energy. Different sources for EH include
solar, wind, thermal, and kinetic energy. Micro-energy har-
vesters refer to a class of miniaturized EH devices that
can generate electrical power for small-scale and low-power
sensors and actuators [1], [2]. These, typically low-power,
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Fig. 1. Conceptual diagram of integrated micro-energy harvester and low-
power wearable/implant sensor.

devices are critical components of the Internet of Things
(IoT) technology. As interface elements with physical objects,
low-power sensors and actuators often rely on small batter-
ies to operate and reliably exchange information between the
object and the Internet. By reducing the frequency of bat-
tery replacement or recharge, micro-energy harvester offers a
prolonged operational lifetime or possibly self-sustainability
for the IoT sensors and actuators. Integration and co-design
of micro-energy harvesters with the sensor architecture (con-
ceptually shown in Fig. 1) has the potential to accelerate the
development of green technology that positively impacts the
environment. Therefore, micro-energy harvester is regarded as
one of the key enabling technologies that can empower further
development and expansion of IoT in smart homes and appli-
ances, electric vehicles, and, in particular, wearable sensors
and implants, which are the main focus of this work.

Kinetic-based micro-energy harvester is considered to be
a promising technology for small wearable or implantable
devices [2], [3], [4], [10], [11], [12], [13]. As the nature of
their applications necessitates, these small devices are typi-
cally expected to operate for long periods of time without
interruptions. This is especially the case for medical implants.
Large batteries or frequent recharge might not be feasible
for these devices, particularly when connection to IoT-health
infrastructure further increases their energy consumption.
Conversion of the kinetic energy into electrical energy can
be achived through magnetic, piezoelectric and electrostatic
forces. Compared to the first two, the electrostatic-based con-
version is much more effective in micro scales [14]. Therefore,
this approach allows for further miniaturization of the har-
vester’s size, making it more favorable for very small wearable
or implantable medical sensors.

The Coulomb force parametric generator (CFPG) is a
kinetic-based micro-energy harvester that can best harvest
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Fig. 2. Schematic of a CFPG using adaptive electrostatic force.

energy from low-frequency nonstationary movements [14],
[15], [16], [17]. For acceleration waveforms consisting of
only a single harmonic, resonant-based micro-harvesters can
perform optimally. By using the optimal parameters, those
micro-generators can harvest the maximum amount of power
at their operating frequency. However, the acceleration result-
ing from the human body motion is not a simple sinusoidal
waveform and consists of a rich spectral content. For such
motions, a CFPG is proven to extract the maximum amount
of power; and therefore, considered to be the most suitable
architecture for wearables or implants. The core component
of a CFPG includes a proof mass that can move between two
plates. An internal electrostatic force maintained by a trans-
ducer holds the proof mass to one of the plates. The proof
mass stays attached to the plate until the input acceleration
due to the movement of the human body overcomes this hold-
ing force. Then, the proof mass is detached and moves toward
the other plate. Energy is generated only if the proof mass
makes a full flight (i.e., reaches the other plate) against the
direction of the electrostatic holding force. If the proof mass
fails to make a full flight, the amount of the extracted energy
during its flight is dissipated when it returns to its initial
position. After each full flight, the direction of the holding
force applied to the proof mass reverses, and the EH process
continues accordingly.

Typically, the magnitude of the holding force is kept
constant during this process. However, Budic et al. [18],
Yarkony et al. [19], and Dadfarnia et al. [20] demonstrated
that judicious adjustment of the holding force could signif-
icantly increase the output harvested power. The possibility
of this adjustment to harvest the maximum amount of energy
is especially important for wearable and implantable devices
where a limited supply of energy is a critical bottleneck to
their usability as well as improvement in future functionality.
This concept is schematically shown in Fig. 2. For any input
acceleration waveform, the adaptive methodology estimates
the electrostatic force that maximizes the harvested power in
a CFPG.

Budic et al. [18] investigated the output harvested power
of a CFPG for different constant values of the holding force
and daily activities. Through statistical analysis of the acceler-
ation waveform generated by the human body movement, an
upper bound on the harvested power of a CFPG device was
obtained in [19]. Dadfarnia et al. [20] introduced a mathemat-
ical model for a more accurate estimation of the generated
power by a CFPG. In addition, they formulated an adap-
tive optimization problem for adjusting the holding force with

respect to the input acceleration waveform. The solution to this
optimization problem is a mapping from the acceleration data
in a given time interval to the optimal value of the holding
force that should be used for the following time interval. As
such, this type of adaptive adjustment of the holding force can
be classified as an online (or dynamic) optimization problem.
The underlying assumption in the proposed optimization is
the temporal correlation in the acceleration waveform gen-
erated by the human body movement for sufficiently short
time intervals. Roudneshin et al. [21], [23] proposed method-
ologies including machine learning approaches to solve this
optimization problem and compared the harvested power for
a limited number of acceleration waveforms.

In this article, we propose three methodologies to estimate
the optimal value of the electrostatic holding force with rela-
tively low computational power. First, by formulating a regu-
larized optimization problem, we extend the linear estimation
method proposed in [22] and [23] to enhance its generalizabil-
ity to unobserved acceleration data and reduce overfitting with
respect to the training data. Then, we investigate the applica-
bility of a multi-armed bandit (MAB) algorithm to estimate
the holding force using the history of the previously applied
forces. In another approach, by considering the physical con-
straints of the proof mass, we propose an adaptive algorithm
that estimates the holding force without the need for prior
training with acceleration data. The contributions of this article
can be summarized as follows.

1) Developing three adaptive methods to enhance the out-
put power in a CFPG.

2) Evaluating the performance of the adaptive methodolo-
gies based on a comprehensive data set consisting of
acceleration waveforms generated from various physical
experiments.

The remainder of this article is organized as follows. In
Section II, the problem formulation is described. We describe
our adaptive approaches for estimating the holding force to
maximize the harvested power in Section III. Section IV
describes the data acquisition and calibration processes for the
experiments. In Section V the impact of the so-called “deci-
sion set” and “decision interval” on the harvested power is
studied, followed by a comparative performance evaluation
in Section VI. Finally, conclusions and future directions are
discussed in Section VII.

II. PROBLEM FORMULATION

In this section, a mathematical model for the CFPG is
provided and an optimization problem for its output power
maximization is introduced.

A. CFPG Mathematical Model

Fig. 3 depicts the generic model of the core component of
a CFPG, where a proof mass can move between two plates
against the electrostatic holding force denoted by F. The proof
mass is attached to either of the plates when the micro-
generator is stationary or the external acceleration is not large
enough. For sufficiently large external accelerations, the proof
mass detaches from one plate and moves toward the other.
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Fig. 3. Generic model of the core component in a CFPG.

Fig. 4. Relay hysteresis function.

Once the proof mass completes a full journey between the two
plates with separation of 2Zl, the work done against the elec-
trostatic force is converted to electric energy. When the proof
mass reaches the other plate, the direction of the holding force
reverses and the energy conversion process continues.

Let the relative position of the proof mass with respect to
the device’s frame be denoted by z(t). Also, denote by y(t) the
device motion with respect to the inertial frame. The follow-
ing nonlinear differential equation models the dynamics of a
CFPG as presented in [20]

mÿ(t) = −mz̈(t)+ F × R(z(t)) (1)

where m denotes the mass, ÿ(t) is the acceleration with respect
to the inertial frame, z̈(t) is the relative acceleration of the
proof mass with respect to the frame, and F denotes the elec-
trostatic force (also referred to as the holding force). The
reversal of the holding force direction after a full flight of
the proof mass is represented by a relay hysteresis function
R(·) (see Fig. 4). The instantaneous power generated by the
proof mass is given by

P(t) = F × ż(t)

where ż(t) is the relative velocity of the proof mass with
respect to the frame.

Remark 1: As long as the proof mass moves in the oppo-
site direction of the holding force, the instantaneous generated

power has a positive value. If the proof mass cannot make a
full flight, the motion direction reverses and the instantaneous
power will turn negative. Once the proof mass returns to the
starting plate, its motion results in a zero-average harvested
power.

The average power generated in a CFPG is affected by sev-
eral factors: the input acceleration, the distance between the
two plates, the value of the proof mass, and the magnitude of
the electrostatic force. In this article, assuming a constant size
and geometry for the CFPG component shown in Fig. 3, the
effect of the holding force on the generated power for various
input acceleration will be investigated.

B. Output Power Optimization

Assume that the holding force can be adjusted every �i sec-
onds. Then, at each time interval, the objective is to estimate
the optimal holding force value which maximizes the average
harvested power, i.e.,

argmax
Fi+1,�i ,�i

[
1∑N

i=1 �i
×

N∑
i=1

∫ ti

ti−�i

P(t)dt

]
(2)

where �i is the optimal length of the ith decision interval,
Fi+1,�i is the optimal constant electrostatic force in the
(i+ 1)th interval (as a function of �i), N denotes the num-
ber of decision intervals and P(t) is the instantaneous output
power. Assume, for simplicity, that the length of the deci-
sion interval is fixed and denoted by �. Then, (2) can be
rewritten as

argmax
Fi+1,�

[
1

N�
×

N∑
i=1

∫ t0+i�

t0+(i−1)�

P(t)dt

]
. (3)

For a fixed decision interval �, the optimal electrostatic
force is a function of the acceleration waveform at the ith
interval [t0 + (i− 1)�, t0 + i�]. Hence, one way to estimate
the holding force Fi+1,� is to employ a parametrized policy
πθ such that

Fi+1,� = πθ

(
ÿi

)
(4)

where θ denotes a vector of parameters for the policy, and
ÿi ∈ R

M denotes a vector of M acceleration samples in the ith
interval in (4).

It should be emphasized that the optimization problem (3)
can be categorized as an online optimization since the knowl-
edge of the future acceleration data is not required for
the solution. In other words, Fi+1,� is estimated from the
information in the ith interval (i.e., past acceleration data).
For a known acceleration waveform, the maximum amount
of the average harvested power can be obtained by an offline
exhaustive search. Although this method cannot be utilized in
practice, it provides an upper bound on the maximum achiev-
able harvested power for the given acceleration waveform. For
each decision interval i, the optimal value of the holding force
can be obtained by the following offline optimization problem:

Fopt,i = argmax
Fi,�∈F

[
1

N�
×

N∑
i=1

∫ t0+i�

t0+(i−1)�

P(t)dt

]
(5)
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where Fopt,i denotes the optimal solution at each decision
interval. We have used this method to assess the effectiveness
of the proposed methods.

In practice, the range and resolution of the values of the
estimated electrostatic forces that solve the online (or offline)
optimization problems (3) [or (5)] are limited. Here, we con-
sider a finite set of electrostatic forces F (hereafter referred
to as the decision set) defined by

F = {Fi|Fmin ≤ Fi ≤ Fmax, Fi − Fi−1 = δF} (6)

where Fmin, Fmax, and δF denote the minimum, maximum and
the increments for the holding force values. The impact of the
decision set (i.e., F) on the harvested power will be studied
in Section V-A and V-B.

Remark 2: Let E and V denote the electrostatic field
between the two plates and the operating voltage of a CFPG,
respectively; then

E = V

2Zl
.

Also, let qmass denote the charge of the proof mass. The
electrostatic force can then be formulated as

F = Eqmass =
V

2Zl
qmass.

Given a decision set with components having fixed incre-
ments δF , the proper range for the values of the electrostatic
force is dependent on the technology that controls the supply
voltage V . This must be taken into account for the practical
implementation of a CFPG.

III. ADAPTIVE METHODOLOGIES

In this section, we describe our proposed methodologies that
can adaptively estimate the electrostatic force to maximize the
harvested power.

A. Linear Estimation of the Holding Force

Consider that the holding force is estimated by a linear map-
ping from the absolute value of the acceleration data samples
during the ith interval as

FLin,i = θᵀ|ÿ|i−1

where F̂Lin,i denotes the estimated holding force for the ith
interval, and ÿi−1 ∈ R

M is the acceleration vector from the
(i− 1)th interval, and |.| denotes the absolute value operator.
In addition, θ ∈ R

M is the vector of the linear estimator’s
parameters. To find the estimation parameters for the electro-
static force F̂Lin,i, the average distance between the estimated
and actual values of the holding force should be minimized.
Therefore, the following minimization problem is formulated:

minimize
θ

‖Fopt − Flin‖ = ‖Fopt − θᵀŸ‖ (7)

where Fopt = {Fopt,i}Ni=1 and Flin = {F̂Lin,i}Ni=1 denote the
vectors of the optimal (training label) and estimated holding
forces, respectively. In the above equation, Ÿ ∈ R

M×N is the
matrix of input training data, containing absolute values of M
acceleration measurements for N decision intervals.

Considering the L2-norm in (7), the approach can be simpli-
fied to a least-squares problem. For limited acceleration data,
we can find the closed-form solution in a computationally
efficient manner. In practice, Ÿ is a tall matrix that can be con-
structed by down-sampling the measurement data set for each
decision interval. The solution of the least-squares problem in
this case is given by

θ = (
ŸᵀŸ

)−1
ŸᵀFopt. (8)

If the input samples in the least-squares problem are not
selected sufficiently distinct from each other, ŸᵀŸ in (8) may
be close to being singular, causing numerical problems. In
addition, the formulation in (7) may lead to overfitting and
relatively large norms for the estimator θ . In the case of over-
fitting, the linear estimator fits well to the training acceleration
data but performs poorly for unseen acceleration waveforms.

To keep the size of the estimator’s parameters sufficiently
small and to avoid possible overfitting, we can add a regular-
ization term to (7) as follows:

minimize
θ

‖Fopt − Flin‖ = ‖Fopt − θᵀŸ‖ + λ‖θ‖ (9)

where λ is the regularization constant introducing a tradeoff
between the minimization of the estimation error and that of
the L2-norm of the estimator vector.

The optimization in (9) is equivalent to solving a maximum
likelihood problem with a priori distribution where the param-
eters are sampled from a zero-mean Gaussian distribution, also
known as maximum a posteriori (MAP) estimation [30]. Using
Bayesian linear regression (BLR), one can have a broader view
of the concept of parameter prior. In addition, instead of seek-
ing a point-estimate of θ , BLR can evaluate the holding force
estimation performance for a distribution of linear estimator
functions. Here, we assume that the estimator parameters are
drawn from a Gaussian distribution, i.e.,

p(θ) = N (m0, S0)

where m0 and S0 denote the mean and variance of the distri-
bution. Also, the estimated holding forces are assumed to be
drawn from a Gaussian distribution such that

p
(

F̂Lin,i||ÿ|i−1, θ
)
= N

(
θᵀ|ÿ|i−1, σ 2

)

where σ 2 denotes the measurement noise variance. Given this
assumption, information about the distribution of the estimator
parameters can be updated. This posterior over the parameters
is obtained using the Bayes theorem as

p
(
θ |Ÿ, Fopt) = p

(
Fopt|Ÿ, θ

)
p(θ)

p
(
Fopt|Ÿ) .

The following theorem provides the general form of the
posterior over the parameters.

Theorem 1 [30, Th. 9.1]: Given Assumption 1, the param-
eter posterior can be computed as

p
(
θ |Ÿ, Fopt) = N (θ |mN, SN)

SN =
(

S−1
0 + σ−2ŸᵀŸ

)

mN = SN

(
S−1

0 m0 + σ−2ŸᵀFopt
)
.
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Having found the updated estimator parameters, the
predictive distribution (posterior) for an unseen acceleration
data can be obtained as

p
(

F̂lin,∗|Ÿ, Fopt, ÿ∗
)
=

∫
p
(

F̂lin,∗|ÿ∗, θ
)

p
(
θ |Ÿ, Fopt)dθ

= N
(

F̂lin,∗||ÿ∗|ᵀθ, |ÿ∗|ᵀSN |ÿ|∗ + σ 2
)
.

Remark 3: As discussed in Section II-B, the parameterized
policy πθ utilizes the acceleration sample vector ÿi to esti-
mate the electrostatic holding force. The acceleration vector
ÿi contains acceleration samples with either positive or neg-
ative signs. If the signed values of the acceleration data are
employed to learn the parameters of the estimation mapping
πθ , the learning parameters may not necessarily converge to
a stationary value. This leads to large errors in the estimated
values of the holding force. Hence, for the linear estimation
approach, the magnitude of acceleration samples is utilized.

B. Estimation Using Multi-Armed Bandit Approach

Given the real-time data processing in the adaptive estima-
tor, one can use a MAB approach as in [26]. Let FMAB,i ∈ F
denote the estimated holding force at the ith decision interval
by this approach. The knowledge about the power distribution
resulting from a specific holding force is updated after each
decision interval. Denote Pi(FMAB,i) as the harvested power
at the ith decision interval as a function of a specific value
of the holding force. The expected harvested power for each
holding force value is defined as

P̄ = E

[
Pi

(
FMAB,i

)]
(10)

where the expectation in (10) is taken with respect to all
decision intervals. The optimal policy is to always select
the holding force with the largest expected reward. To this
end, this approach initially selects different holding forces
to observe and explore their associated harvested power.
With sufficient observations, the near-optimal holding force
is selected by exploiting the previously collected information.
Therefore, one key aspect of such approach is the tradeoff
between exploration and exploitation. A variety of algorithms
are developed in the literature to tackle such problems in the
MAB approach [27], [28].

For our EH maximization problem, MAB algorithms with
low computational effort are more favorable. Therefore, in this
article, we select the upper confidence bound (UCB) algorithm
(Algorithm 1) for estimating the holding force.

C. Min–Max-Based Adaptive Approach

Considering the optimization problem (3), let ÿi+
max and ÿi−

max
denote the maximum absolute value of the positive and nega-
tive lobes of the acceleration waveform during the ith decision
interval, respectively. To harvest energy from the acceleration
waveform during the ith decision interval, the optimal value
of the electrostatic force must satisfy the following condition:

Fi,�

m
< min

{
ÿi+

max, ÿi−
max

}
. (11)

Algorithm 1 Estimation of the Holding Force With UCB

Input: The decision set F = {Fk}10
k=1, the number of deci-

sion intervals N, the confidence value c, the set of the
average collected power of all actions {P̄k}10

k=1, and the
set of occurrences of each actions {Nk}10

k=1
Output: Estimated holding force FMAB,i

1: Initialize {P̄p}10
p=1 = 0

2: Initialize {Nk}10
k=1 = 0

3: for i = 1, ..., 10 do
4: Select the ith action FMAB,i = Fi

5: Evaluate the harvested power Pi(FMAB,i)

6: P̄i = Ei(FMAB,i)

7: Ni ← Ni + 1
8: end for
9: for i = 11, ..., N do

10: FMAB,i = argmax P̄k + c
√

log(i)
Nk

11: Evaluate the harvested power Pi(FMAB,i)

12: P̄i = Ei(FMAB,i)

13: Ni ← Ni + 1
14: end for

The above inequality implicitly indicates that the electrostatic
force must be sufficiently small to make a full flight between
the two plates of the CFPG. In other words, the following
condition should be taken into account:

∫ tf

ti

∫ t

ti
z̈dτdt ≥ 2Zl (12)

where z̈ = (Fi,�/m) − ÿi and ti and tf denote the initial and
final times of the flight, respectively. Motivated by this obser-
vation, Algorithm 2 is proposed to estimate the value of the
electrostatic force (i.e., FMM).

To solve optimization problem (3), Algorithm 2 detects the
zero-crossings of the acceleration waveform. Then, between
each two zero-crossings, the maximum value of the accelera-
tion waveform is obtained. These values are collected in A+
and A− as two lists corresponding to positive and negative
portions of the acceleration waveform. Let Ā+ and Ā− denote
the average of each list. To account for the full-flight condition
in (12), we consider a force margin Fmarg. Then, the holding
forces associated with the positive and negative portions of
the acceleration waveform are estimated as mĀ+ −Fmarg and
mĀ− − Fmarg, respectively. Finally, condition (11) gives the
electrostatic force as the minimum of the two estimated hold-
ing forces and the acceleration lists A+ and A− are reset to
empty values.

IV. ACCELERATION DATA ACQUISITION

To evaluate our proposed power maximization methodolo-
gies and obtain a realistic measure of the harvested power,
we conducted various physical experiments to acquire human
acceleration data. The following sections describes data acqui-
sition and calibration processes that we have used to prepare
a sufficiently diverse data set of human motion acceleration.
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Algorithm 2 Min–Max-Based Algorithm
Input: Acceleration samples ÿ, decision interval length �,

acceleration sampling frequency fs, the decision set F ,
force margin Fmarg, total CFPG execution time T , proof
mass m

Output: FMM,i

1: Variables
2: zCross, list of zero-crossing acceleration samples
3: Initially empty lists of acceleration A+ and A−
4: k and i (acceleration sample and decision interval

counters, respectively)
5: end Variables
6: F1,�← minF
7: k← 2
8: while t[k] < T do
9: if ÿ[k]ÿ[k − 1] < 0 then

10: Append k to zCross
11: end if
12: indx1← zCross(end − 1), indx2← zCross(end)

13: if ÿ[indx1 : indx2] is a positive array then
14: append max(abs(ÿ[indx1 : indx2])) to A+
15: else
16: append max(abs(ÿ[indx1 : indx2])) to A−
17: end if
18: if mod(k,fs�) = 0 then
19: i← i+ 1
20: Fi,�+ ← argminF∈F |F − (mĀ+ − Fmarg)|
21: Fi,�− ← argminF∈F |F − (mĀ− − Fmarg)|
22: FMM,i = min{Fi,�+ , Fi,�−}
23: Empty A+ and A−
24: end if
25: k← k + 1
26: end while

A. Data Acquisition

To collect acceleration data from the human body motions,
the X16-mini triaxial accelerometer made by Gulf Coast Data
Concepts, LLC1 has been used in this study. The dimensions
of this device are 51×25×13 mm3. It is small enough to be
comfortably placed at various locations on the body and collect
data. Body acceleration data is measured along three orthog-
onal axes. The measurement samples are time-stamped and
stored in the device for later retrieval. The sampling rate of
the device can be selected to be 12, 25, 50, 100, 200, 400, or
800 Hz. Data are collected from various daily physical activi-
ties such as walking, jogging, sit-ups, roping, weight exercises
and general random movements of hand and shoulder.2 Data
from each activity are collected for 5 min with the accelerom-
eter attached on the volunteers’ wrist, biceps, leg, and chest.
To account for changes in the frequency and amplitude of

1Commercial products mentioned in this article are merely intended to
foster research and understanding. Such identification does not imply rec-
ommendation or endorsement by the National Institute of Standards and
Technology.

2The experiments were conducted according to the research ethics regu-
lations under the approval number 30013664 at Concordia University and
ITL-2021-0273 at NIST.

Fig. 5. Acceleration waveform during walking at moderate speed with the
accelerometer attached to the wrist.

the acceleration waveform, we conducted physical experiments
with three intensity levels (slow, moderate, and intense) using
ten volunteers. In total, we acquired 144 000 s of acceleration
data. Fig. 5 shows a sample twenty-second acceleration wave-
form for walking in moderate intensity with the accelerometer
attached to the wrist.

Remark 4: For analysis and performance evaluation of the
proposed methodologies in this article, we have chosen the
acceleration data in the z axis; however, similar results were
observed using data from other axes as well.

Remark 5: The range and sampling frequency of the X16-
mini triaxial accelerometer is completely sufficient for captur-
ing the human motion data. Other accelerometers with a higher
range or sampling frequency will also provide the same raw
acceleration data for the purpose of this research. However,
the preprocessing step to remove potential biases in the mea-
surement data could slightly change from one accelerometer
to another.

The data acquisition process described here is based on
potential wearable sensor locations on the body surface. As
can be imagined, it is not possible to do similar physical
experiments with the accelerometer placed at possible implant
locations inside the body. However, it is reasonable to assume
that the accelerations applied to an implant and a wearable sen-
sor are almost identical if the wearable device is placed closest
to the implant on the surface of the body. The movements of
the body part (with the implant) would apply the same accel-
eration to the implant and the closest wearable sensor on the
surface. This would be the case as long as the accelerometer
is tightly fixed to the body surface and does not experience
additional motion relative to the human body during data
acquisition. Therefore, we expect the results obtained in this
article can also be applied to implant applications.

B. Accelerometer Calibration

The raw acceleration data are usually subject to various
types of noise and bias. Here, we describe a method to cal-
ibrate the measurement data from the accelerometer in order
to improve its accuracy. When the accelerometer is stationary,
the gravity could impact the measurements. The axis that is
perpendicular to the ground senses the constant value of 1g
(due to earth gravity) while the other two axes should mea-
sure a value of zero. The combined effects of bias, scaling,
and cross-axis coupling on the accelerometer output data can
be observed by the following procedure. In consecutive time
intervals, the static accelerometer is rolled in such a way that
first the z axis (and then y and finally x) is perpendicular to
the ground in order to sense the full impact of gravity in the
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Fig. 6. Accelerometer output data while the device is laid on the ground
along x, y, and z axes.

TABLE I
CALIBRATION PARAMETERS FOR THE ACCELEROMETER

direction of each axis. Measurement data along each axis for
our accelerometer is shown in Fig. 6. To account for scale fac-
tors and bias, the following model for triaxial accelerometer
is utilized [24]:

ã = �a + μ (13)

where a, ã ∈ R
3 denote, respectively, the actual and the

measured acceleration vectors along three axes. The matrix
� ∈ R

3 represents the scaling and cross-axis coupling effects,
and μ ∈ R

3 is the bias vector. To obtain the exact acceleration
vector, (13) is rewritten as

a = �−1(ã− μ
)
.

It is desired to calibrate the accelerometer and find the matrix
� and bias vector μ. Considering symmetry in the cross-axis
coupling effects, let (13) be rewritten as

ã = AX (14)

where A ∈ R
3×9 is a matrix consisting of the elements of the

actual acceleration measurements a and

X = [�11 �12 �13 �22 �23 �33 μ1 μ2 μ3]ᵀ.

One way to obtain the calibration matrix is to collect
multiple acceleration measurements for the accelerometer in a
stationary mode. Considering ν acceleration samples, (14) can
be expressed in the augmented form as

Ã = �X

where � = [Aᵀ
1 , . . . , Aᵀ

ν ]ᵀ and Ã = [ãᵀ1 , . . . , ãᵀν ]ᵀ. For the
accelerometer utilized in this study, the calibration parame-
ters were obtained by solving a least-squares problem and the
result is reported in Table I.

TABLE II
COMPARISON OF THE HARVESTED POWER (mW) FOR DIFFERENT

DECISION SETS DEFINED BY δF AND Fmax

Fig. 7. Comparison of the harvested power for different decision intervals
with Fopt and constant holding force F = 3, 5, 10 mN.

V. OPTIMAL PARAMETER SELECTION

In this section, we study the impact of the decision set and
the decision interval on the harvested power of the micro-
generator.

A. Impact of the Decision Set

Consider the decision set as defined in (6) with
Fmin = 1 mN, Fmax ∈ {10, 20, 30} mN and δF ∈
{0.1, 0.25, 0.5, 1} mN. These values will result in twelve
different candidate decision sets. Table II demonstrates the har-
vested power resulting from each of the candidate decision sets
using the offline optimization (5) averaged over acceleration
data from various activities discussed in the previous sec-
tion. As observed, the decision set with the largest range and
smallest discretization step offer approximately 13.9% more
harvested power compared to the set with the smallest range
and largest discretization step (which is approximately thirty
times smaller in size). The increase in the harvested power
is achieved at the cost of additional computational complex-
ity to estimate the holding force from a larger decision set.
Hence, for lower computational cost, the candidate decision
set with the smallest range and largest discretization step is
selected to evaluate the performance of our proposed adaptive
algorithms, i.e., F = {1, . . . , 10} mN. For the simplicity of
notation, we also represent the decision set as F = {Fk}10

k=1,
where Fk = k mN, k ∈ N10.

B. Impact of the Decision Interval

The length of the decision interval is another parameter
that can affect the average harvested power in (3) and (5).
To get a better understanding of this impact, Fig. 7 shows
the average harvested power for different values of � and the
acceleration waveform resulting from the random movement
of the hand. The average power in Fig. 7 has been obtained
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using the offline optimization (5). For comparison, the aver-
age power using several constant values of the electrostatic
force (i.e., F = 3, 5 and 10 mN) has also been plotted. As �

increases, the result of the adaptive optimization (5) converges
to the optimal constant electrostatic force, as expected. For the
example in Fig. 7, this optimal value is 2 mN. The harvested
power for this constant holding force will be almost identical
to the power generated through offline optimization (5) for
� > 2000 s.

As expected, the smaller values of the decision interval
result in higher harvested power. For example, compared to
the optimal constant holding force, a gain of about 130% is
observed for � = 0.5 s. It should be noted that the value of
the optimal constant holding force cannot be obtained without
prior knowledge of the whole acceleration waveform. When
other constant values are used for the holding force, the pos-
sible gain in the harvested power can be much more. For
example, a gain of about 400% is observed in Fig. 7 for F
= 10 mN and � = 0.5 s. For very small values of the deci-
sion interval (� < 0.5 s), a reduction in the harvested power
is observed in Fig. 7. However, this is mainly due to the limi-
tation in the number, range, and resolution of the elements in
the decision set. This limitation generally affects the har-
vested power in any adaptive methodology. This impact is
nearly negligible when the size of the decision interval is
relatively large. However, shorter decision intervals require
finer discretization of the elements of the decision set in order
to take advantage of the finer variation of the input accel-
eration waveform during that interval. Coarse values of the
elements in a decision set could over/underestimate the near-
optimal value of the holding force, resulting in lower harvested
power.

Although choosing smaller decision intervals might seem
advantageous, one should consider that smaller intervals are
equivalent to more frequent updates of the electrostatic force,
requiring more frequent execution of the adaptive optimization
algorithm. This will result in more power consumption by
the adaptive methodology, reducing the overall output power
of the micro-harvester. The tradeoff between smaller decision
interval to harvest more power and the decrease in the overall
output power due to the consumed energy by the adaptive
algorithm module requires further investigation and is out-
side the scope of this article. The specific technology that is
used to implement the adaptive methodology is one of the fac-
tors that can impact this tradeoff. Recent technologies such as
neuromorphic processors could be a good candidate to imple-
ment the proposed adaptive algorithms with ultralow power
consumption [12], [13].

The proper choice of the decision interval also depends on
the location of the wearable sensor with integrated micro-
harvester on the body as well as the nature of the acceleration
data and the time spent on the specific daily activities.
Selection of this interval is more difficult for activities that
involve nonrepetitive motions. Consider the acceleration wave-
form generated by random movements of the hand shown in
Fig. 8. The spectral content of this waveform and its cumula-
tive energy in the frequency domain is also shown in Fig. 9(a)
and (b). We conjecture that there is a relationship between the

Fig. 8. Acceleration waveform generated by random movements of the hand
with the accelerometer on the wrist.

Fig. 9. (a) Amplitude of the frequency components in the acceleration wave-
form shown in Fig. 8. (b) Corresponding cumulative waveform energy versus
frequency.

spectral content of the acceleration waveform and the optimal
length of the decision interval. Shorter decision intervals could
allow an adaptive algorithm to capitalize on high-frequency
components of the acceleration waveform and harvest more
power, while longer decision intervals limit the algorithm’s
ability to harvest power from lower frequencies.

As observed in Fig. 9, almost 80% of the acceleration
waveform energy is included within [0 0.5] Hz interval,
which corresponds to a decision interval of 2 s. Considering
the tradeoffs mentioned earlier and studying other accelera-
tion waveforms in our data set, we have selected � = 2 s
to evaluate and compare the performance of the adaptive
methodologies.
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Fig. 10. Acceleration waveforms as test data collected from (a) human arm
performing random motions, (b) human chest during sit-ups, and (c) human
leg during jogging.

VI. PERFORMANCE EVALUATION

In this section, the performance of the proposed method-
ologies are assessed using MATLAB,3 the mathematical
model (1) and experimental data. A CFPG with a proof mass
of m = 1 g and plates separation of 2Zl = 1 mm are con-
sidered in our evaluations. From the analysis in Sections V-A
and V-B, we consider the decision set {1, . . . , 10} mN and
interval � = 2 s. For the linear estimator, the acceleration
data is down-sampled to 4 Hz, i.e., θ ∈ R

8, for a 2-s deci-
sion interval. Using this size for the decision interval, the
14 400 seconds of collected data described in the data acquisi-
tion section results in 7200 intervals. To learn the parameters
of the linear estimator, we select 90% of the collected data
for training and the rest is used for validation. For the MAB
method described by Algorithm 1, we consider a confidence
factor of c = 0.2. Also, the force margin in Algorithm 2 is set
to Fmarg = 0.5 mN. We first provide the performance results
for three scenarios with the accelerometer attached to different
parts of the human body while doing different activities. These
scenarios are accelerometer on the: human arm while doing
random motions (scenario I); human chest while doing sit-ups
(scenario II), and human leg during jogging (scenario III). The
corresponding acceleration waveforms are shown in Fig. 10.

Fig. 11 displays the harvested power for each scenario and
the adaptive methodologies. For comparison, the average har-
vested power when a constant holding force is used is also

3Commercial products mentioned in this article are merely intended to
foster research and understanding. Such identification does not imply rec-
ommendation or endorsement by the National Institute of Standards and
Technology.

Fig. 11. Comparison of the harvested power using the proposed adaptive
methodologies and constant electrostatic force: (a) scenario I; (b) scenario II,
and (c) scenario III.

shown for each scenario (i.e., the red bar). As observed, the lin-
ear estimator has the best performance for scenario I. However,
Algorithm 2 provides more harvested power for scenarios II
and III. One reason for the inferior performance of the linear
estimator in these two scenarios is the relatively large asymme-
try in their corresponding acceleration waveforms (especially
in scenario III). In particular, it does not take into account the
magnitude of the acceleration data in selecting the holding
force, as shown in (11). Compared to the average harvested
power using a constant electrostatic force, the best adaptive
approach in scenarios I–III offers a gain of about 300%,
400% and 200%, respectively. In scenarios II and III, asym-
metry is the most salient feature of the acceleration waveform.
Therefore, the min–max-based approach can exploit this asym-
metry to outperform the other adaptive methodologies. This
feature does not exist in scenario I (i.e., the random motion
of the human hand). Therefore, the min–max-based algorithm
does not hold any advantage compared to the other methods.
On the other hand, the linear method exploits the acceleration
intensity in scenario I and outperforms other methods as seen
in Fig. 11.

Next, we evaluate the performance of the proposed adap-
tive approaches for a combination of different human activities
over a longer period of time. An acceleration waveform with
a duration of 4000 s can be produced by concatenating accel-
eration data from various individual activities described in
Section IV-A. Fig. 12 displays the harvested energy as a result
of using our proposed adaptive methodologies on this wave-
form. For comparison, the average harvested energy using
three different constant holding forces is also shown in Fig. 12.
Considering the CFPG parameter values as well as the decision
set and interval constraints, the upper bound on the extracted
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TABLE III
COMPARISON OF THE REQUIRED NUMBER OF ELEMENTARY

ARITHMETIC OPERATIONS

energy (achievable through offline optimization (5)) is also
plotted. As observed, among the adaptive approaches, the min–
max algorithm performs best, with over 10% more extracted
energy compared to the linear estimator. The improvement is
due to the fact that this algorithm considers the asymmetry of
the acceleration waveform for selecting the proper electrostatic
holding force. The min–max adaptive methodology on average
generates over 100% more energy compared to the case when
a constant holding force is used. This is a promising gain,
especially for low-power wearable (or implantable) medical
sensors or actuators.

Remark 6: Table III provides the required number of arith-
metic operations for the proposed methods and those studied
in [22] and [23]. The number of operations in functions
tanh(·), log(·), √· can be obtained by approximating them
with their truncated Taylor series expansion (for example,
the first ten terms of the series). Let Pcomp, Pavg, Pconst and
Narith denote the required average computational power for a
single arithmetic operation, the average harvested power of
each method for different scenarios, the average harvested
power with constant electrostatic force, and the number of the
required arithmetic operations by the same method. Depending
on the hardware technology employed for the implementation
of the algorithms, the use of an adaptive strategy is reasonable
as long as

Pavg − Narith × Pcomp > Pconst.

Therefore, an upper bound for the required computational
power of the adaptive module can be estimated as

Pcomp <
Pavg − Pconst

Narith
. (15)

Compared to a constant force strategy, the use of an adap-
tive method with Narith operations is justifiable as long as the
required average power satisfies the upper bound in (15).

VII. CONCLUSION

In this article, three different adaptive approaches were
proposed to increase the harvested power in the CFPGs: 1) the
linear estimation method; 2) the MAB approach; and 3) the
min–max technique. The performance of the proposed method-
ologies depends on the nature of the acceleration waveform.
However, in almost all practical scenarios and on average,
there is a noticeable improvement in the harvested kinetic
power from the human body motion compared to the case
when a constant electrostatic force is used. The additional har-
vested power could partially supply the required resource to
run a low-complexity adaptive algorithm as part of the CFPG

Fig. 12. Comparison of the harvested energy using the proposed adaptive
methodologies for a 4000-s acceleration waveform.

architecture. Considering its computational complexity and
performance with our acceleration data set, the linear estimator
is the best candidate among the studied methodologies.

Knowledge of the exact location of the medical sensor on or
inside the body could provide more specific information about
the characteristics of the acceleration waveform that an embed-
ded micro-harvester would experience. This information can
help to further optimize the adaptive approach with the proper
choice of the decision set and interval. Also, the relationship
between the best adaptation interval and the spectral content
of the acceleration waveform requires additional exploration
in future studies.
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