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Abstract
Prompt gamma ray activation analysis (PGAA) is a non-destructive nuclear measurement technique that quantifies isotopes 
present in a sample. Here, we use PGAA spectra to train different types of models to elucidate how discriminating these 
spectra are for various classes of materials. We trained discriminative models for closed set scenarios, where all possible 
material classes are known. We also trained class models to address open set conditions, where this enumeration is impos-
sible. After appropriate pre-processing and data treatments, all such models performed nearly perfectly on our dataset, sug-
gesting PGAA spectra may serve as powerful nuclear fingerprints for robust material classification.

Keywords Prompt gamma ray activation analysis · Machine learning · Class modeling · Material classification · Material 
authentication

Introduction

Prompt gamma ray activation analysis (PGAA) is a non-
destructive nuclear measurement method employing gamma 
ray emission spectroscopy. The spectra generally cover a 
high-dimensional (multi-channel) energy space occupied by 
the isotopically characteristic gamma peaks of a material. 
Conventional spectral analysis of the location and intensity 
of a pre-determined energy peak can quantify the presence 
of an isotope in a material, providing a material signature. 
To obtain multi-elemental information, an expert must per-
form a peak-by-peak analysis, comparing against tabulated 
gamma ray emission energies and probabilities, which is a 
time-consuming and potentially error-prone task.

At the National Institute of Standards and Technology 
(NIST) Center for Neutron Research (NCNR), PGAA is 
performed on a nuclear reactor-based instrument, utiliz-
ing a high intensity and cold (low energy) neutron beam to 
irradiate a sample which emits gamma rays, intended for 

high-precision measurements with metrological quality. In 
industrial and field settings, as a non-destructive technique, 
PGAA has been widely used as an online monitoring tool 
in manufacturing, for example, in cement production [1]. It 
has also been shown to be capable of detecting explosive 
materials [2, 3]. There are many situations when such rapid 
approximate classification of a material is necessary without 
any prior knowledge about the nature of the material.

In this work, we use this spectrum as a holistic signature 
and explore how well it can be used to distinguish between 
a range of different real-world materials, without the need 
to perform traditional peak-by-peak analysis. Since prompt 
gamma emissions do not depend on the chemical (elec-
tronic) state of a material the spectrum can provide a simpli-
fied picture solely based on the atomic composition. Unlike 
other non-targeted spectroscopic analysis methods, PGAA 
spectra contain contributions from each isotope present in 
a sample that undergoes the nuclear activation process. It is 
therefore natural to assume that such spectra will contain 
enough information to discriminate between many different 
classes of materials and complex mixtures.

Here, we explore whether accurate predictive models can 
be developed for this purpose. To do so, we make retro-
spective use of PGAA data acquired at the NCNR on vari-
ous standard reference materials (SRMs) and other com-
mon materials to train these models. Given that electronic 
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structure creates chemical identity and that PGAA only 
measures the nuclear composition of a material, we inves-
tigate what classes of materials it can differentiate. For 
example, if PGAA-based models can distinguish between 
explosive and non-explosive materials, can they also be used 
to distinguish between organic fuels?

We employed various machine learning and conventional 
multivariate classification and authentication tools to answer 
this question. Conventional machine learning classification 
models often excel at differentiation between a set of finite, 
well-sampled categories; these are referred to as discrimina-
tive models. However, in this case the categories themselves 
are not necessarily well-defined. For example, should all 
organic material be considered a single class, or can it be 
broken into subcategories such as coal, coke, and oil? Fur-
thermore, these algorithms often require that all possible 
classes in multiclass classification tasks be sampled (closed 
set conditions) and trained on, but this is not reasonable 
when considering an infinite number of different possible 
materials (open set conditions) that may be encountered 
during deployment. Open set recognition and detecting if a 
test sample falls outside a model’s training distribution is an 
active area of research in machine learning, which requires 
algorithms that generalize well [4–7], and is beyond the 
scope of this work.

Instead, we focus on more conventional class mod-
eling approaches to build classifiers capable of working 
in this setting [8, 9]; these multivariate methods build 
models by observing measurements from a single class 
and yield a binary prediction that a new sample is, or is 
not, consistent with that class. This distinguishes the task 

of authentication from conventional classification. Essen-
tially, they develop acceptance boundaries that are ellip-
tical and do not tessellate the latent space (though they 
may overlap), which is how many conventional machine 
learning classifiers operate (cf. Fig. 1a). It is then possible 
to predict that a sample falls within the acceptance region 
(ellipse) of zero, one, or multiple known classes enabling 
new samples to be authenticated against a set of known 
materials. The case of zero is akin to anomaly detection in 
that the conclusion is the sample is a novel material. The 
case of multiple acceptances may also be insightful since 
a prediction that a sample may be coal, coke, and/or oil 
helps suggest which classes are easily distinguished from 
each other post hoc, and may help alleviate the training 
burden on models if it is deemed acceptable to combine 
such classes into a single one.

In this work, we evaluate machine learning models and 
other multivariate methods at discriminative and class 
modeling (authentication) tasks. We also consider two 
popular unsupervised dimensionality reduction methods to 
visually suggest rational class labelling schemes and infer 
which classes might be naturally separable by PGAA. We 
present a workflow to perform these tasks and illustrate 
how PGAA spectra may be used to build class models to 
authenticate materials.

Fig. 1  a Example of decision boundaries for discriminative models 
(red lines) and class models (colored ellipses). The former models 
divide the latent space into disjoint regions which cover the entire 
space, while the latter may overlap and do not typically encompass 
the entire latent space. b Schematic of the PGAA instrument. A beam 

of neutrons enters the sample chamber irradiating the material, which 
then emits prompt gamma rays. This emission is detected by a high 
purity germanium (HPGe) detector (surrounded by a bismuth ger-
manate (BGO) scintillator for Compton suppression). (Color figure 
online)
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Methods

Prompt gamma ray activation analysis

The PGAA instrument is schematically shown in Fig. 1b. 
The sample under neutron beam irradiation emits prompt 
gamma rays that are collected by a high purity germa-
nium detector. The acquisition lasts from minutes to hours, 
depending on the concentration of the elements of interest 
as well as the precision desired. The signal pulses are pro-
cessed by digital signal processing electronics and sorted 
by a multi-channel analyzer into counts in each energy bin. 
The acquisition is controlled by computer via ethernet con-
nection, and the spectra are recorded for off-line analysis.

Dataset summary

Our dataset consists of a variety of samples of different 
organic and inorganic materials. Figure 2a shows a sum-
mary of the different categories of materials used. Various 
SRMs and materials were selected as representative of each 
class, and complete descriptions of the selected materials in 
each category are available in the Supplemental Informa-
tion (SI). For example, “steel” contains samples of various 
alloys, and “biomass” contains samples ranging from wood 
chips to plant leaves. We will partially evaluate the validity 
of these category choices later. In this work we only attempt 
to model materials for which we have at least 10 different 
samples. The remaining materials, those with less than 10 
different samples, are kept in a held-out challenge set to test 
each model’s novelty detection capabilities after they are 
trained. All data used in this work is available for download 
at Ref. [10].

Data collection and pre‑processing

PGAA spectra were collected as histograms. The instru-
ment used at NIST to obtain this data collects spectra in 
 214 = 16,384 energy bins spaced evenly to cover a range of 
up to approximately 12 MeV. The energy value for each bin 
is estimated by a calibration run which produces a linear fit 
of bin index to energy. This means the numerical energy 
value of a bin can vary slightly between measurements. All 
spectra were aligned to  214 new bins evenly spaced between 
the global minimum and maximum energies in the dataset 
by linearly interpolating each spectrum at the fixed bin cent-
ers. Next, we coarsened the spectra by summing every 4 
bins to produce aligned spectra with  212 = 4,096 total bins. 
Since very low energy portions of the spectra are considered 
unreliable, we removed the first 40 bins so that the spectra 
spanned from approximately 0.1 to 12 MeV using 4,056 

bins. Finally, we normalized each spectrum so that the total 
number of counts summed to unity; while it is possible to 
normalize these measurements using the length of collection 

Fig. 2  Summary of PGAA spectral dataset used in this work. a Num-
ber of samples from each class. The horizontal red line indicates the 
minimum number of observations (10) needed to be considered for 
modeling. b A representative spectrum from several different classes. 
c Variance of the spectra at each energy bin across the entire dataset. 
The vertical red line in b, c at 7650 keV is a guide to the eye. (Color 
figure online)



3262 Journal of Radioanalytical and Nuclear Chemistry (2023) 332:3259–3271

1 3

time, calibrated neutron flux, and the mass of the sample 
[11] we found an empirical normalization to be simpler, and 
more consistent as it does not depend on the accurate meas-
urement of other factors.

The energy range over which spectra are collected var-
ies. Bins beyond an individual measurement’s limit are 
fixed at the last measured value, creating an artifact; e.g., 
the Coal and Coke sample in Fig. 2b displays a flat line at 
high energy. Changing this value did not qualitatively affect 
the outcome of this study. Detector efficiency also decreases 
non-linearly at higher energies, leading to lower counts. As 
a result, both the global mean and variance over the data-
set systematically decrease (cf. Fig. 2c) in higher energy 
regions of the spectra. These high-energy regions contain 
the artifacts, which should be regarded as spurious; Fig. 2b, 
c illustrate an estimated cutoff around 7650 keV after which 
artifacts from across the dataset create a notable decrease 
in bin variance. It is possible to simply truncate the spectra 
above this upper bound, however this eliminates all potential 
information that may be contained beyond this. Instead, we 
used a variance thresholding scheme whereby any energy 
bin which has a variance (measured over the available data-
set) below some threshold value was removed. Bins with 
low variance contain essentially the same values and may 
be regarded as background noise. Furthermore, thresholding 
has the benefit of automatically trimming the spurious tail of 
the spectra, but the cutoff does not need to be determined a 
priori. Instead, it is a hyperparameter that can be optimized 
during model training.

Model training and comparison

Pipelines

All predictive models were built using pipelines in scikit-
learn [12] and compatible python packages. A pipeline is a 
series of individual steps combined sequentially as shown in 
Fig. 3. The final step in a pipeline is the model which yields 
a prediction. Different pipelines may contain different pre-
processing steps with various hyperparameters, which are 
optimized using cross-validation (CV). Testing and training 
data (or folds during CV) follow different paths. The perfor-
mance of each pipeline is estimated using a nested scheme 
illustrated in the SI. The overall dataset is first broken into 
R = 5 different data (sub)sets; K-fold CV is performed on 
each subset and the performances on the K = 2 (validation) 
sets are recorded to determine the optimal pipeline. The 
R × K total scores may be averaged to estimate the perfor-
mance and uncertainty that can be expected when this pipe-
line is optimized using CV, and is amenable to statistical 
testing, though it was not necessary in this work [13, 14]. 
Here, we report the mean and standard deviation of the R × K 
total scores as an estimate of the pipeline’s performance and 

uncertainty after training on new data. Although these per-
formance estimates may be biased, this generally does not 
affect the relative ranking of pipelines [15].

Once a final pipeline was selected, the overall data was 
split 80:20 in a stratified fashion into a single train and test 
set. A single fivefold CV loop was performed on the training 
set to determine the final hyperparameters and produce a 
final model. The final pipelines were evaluated on the held-
out test set and in all cases were found to be consistent with 
the nested loop estimates used for ranking, suggesting mini-
mal bias therein.

We used pipelines as implemented in the imbalanced-
learn package [16]. Due to differences in the number of sam-
ples from each material class (cf. Fig. 2a), class balancing 
was performed either with SMOTEENN [16, 17] or with 
internal mechanisms such as class-based weighting when 
models allowed, but not both. In the former case, resampling 
was used to produce synthetic data used only during training 
(cf. Fig. 3); in the latter case, greater weight was assigned 
to incorrect predictions on minority classes during training 
and no additional data was generated. During the data cen-
tering and scaling step, the input data was always column-
centered and divided by some scale. We allowed pipelines to 
select either standard or robust scaling procedures. Standard 
scaling (autoscaling) uses the mean and standard deviation 
for this transformation [18], while robust scaling uses the 
median and inter-quartile range instead. We also included 
a hyperparameter to enable Pareto scaling [19] for standard 

Fig. 3  Pipeline used for training models in this work. Training data 
(or folds) travel a different path (blue) through the steps which deter-
mine and store hyperparameters (e.g., mean or standard deviation) 
used during the testing phase (orange path). (Color figure online)
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and robust scaling, which instead divides by the square root 
of, respectively, the standard deviation or inter-quartile 
range. Dimensionality reduction was either performed in a 
linear fashion by principal components analysis (PCA), or 
in a non-linear fashion using the Pairwise Controlled Mani-
fold Approximation Projection (PaCMAP) [20] technique. 
All other tools and models are from the scikit-learn python 
package [12]. For visualization and analysis we used Jupyter 
notebooks [21], seaborn [22], and pandas [23, 24]; note-
books producing these calculations are available online at 
Ref. [10]. All calculations were performed using the pyche-
mauth package [25].

Discriminative models

In this work we considered several representative discrimi-
native models for closed set classification including logis-
tic regression and random forests. A discriminative model 
uses examples of a set of known classes to learn bounda-
ries between them in some latent space [26]. This produces 
N disjoint regions each associated with one of the N total 
classes seen during training (cf. Fig. 1a). When classes 
are reasonably balanced and there is no reason to devote 
additional concern to any subset of them, accuracy is a rea-
sonable metric that characterizes the performance of such 
models. If nij is the number of members of class i predicted 
to belong to class j, then the accuracy is:

where we have a total of M samples in the dataset and 

M =

N
∑

i=1

N
∑

j=1

nij . The best model is the one with the best 

accuracy.

Class models

Class models, or one-class classifiers (OCC), are trained to 
determine if a new sample is consistent with a particular 
class; here, a separate model is trained for each class, though 
this may be done in several ways [8, 9, 26, 27]. For “rigor-
ous” OCCs, only examples of the class itself are used dur-
ing training [9, 28]. In contrast, “compliant” OCCs also use 
alternative classes during training to determine how well 
those alternates are rejected by the model; this can assist in 
the training, but it may introduce some bias based on which 
alternates are used.

In this work we used the popular OCC data-driven soft 
independent modeling by class analogy (DD-SIMCA) 
model [28–30]. In DD-SIMCA the input matrix, X, contain-
ing rows of spectra collected from only the target class are 
centered and possibly scaled, then PCA is used to perform 

(1)acc =
1

M

N
∑

i=1

nii

dimensionality reduction. Regardless of the number of 
principal components, two distances determine class mem-
bership: the score distance, h, and the orthogonal distance, 
q (cf. SI for details and definitions). The former reflects a 
point’s position within the class space, whereas the latter 
captures the distance away from the class space (the error 
introduced from the dimensionality reduction). The total 
distance for each point,

is assumed to be distributed according to a chi-squared dis-
tribution ( h0 and q0 are scaling factors, cf. SI) such that class 
membership is determined by a critical chi-squared value 
with Nh + Nq degrees of freedom and a significance level, � , 
which is the type I error rate selected (typically from 0.01 
to 0.05).

This model can be assessed with several metrics: sensi-
tivity, specificity, and efficiency [9, 31]. The model’s total 
sensitivity (TSNS) is the rate of true positives: TSNS = TP/
(TP + FN); a true positive, TP, occurs when the model cor-
rectly accepts a true class member, while a false negative, 
FN, occurs when a true member is rejected. The model’s 
total specificity (TSPS) refers to the true negative rate; 
TSPS = TN/(TN + FP) = 1 − FP/(TN + FP), where TN is 
the number of true negatives and FP is the number of false 
positives. The geometric mean of these two is the total effi-
ciency: TEFF2 = TSNS × TSPS.

For rigorous DD-SIMCA models, only TSNS can be 
computed since only members of the target class are avail-
able, so the optimal model is the one where TSNS = 1 − � 
[9]. In this case hyperparameters, such as the number of 
principal components, are adjusted to meet this target while 
α is fixed. For compliant DD-SIMCA models where alter-
native classes are available, TSPS can be computed and the 
model with the highest TEFF is selected; in this case, α is 
allowed to vary to increase TEFF.

Intermediate models

We consider partial least-squares discriminant analysis 
(PLS-DA) to be an intermediate approach between OCCs 
and discriminative models. PLS-DA performs partial least-
squares regression (PLS2) against a one-hot encoded class 
target matrix for N classes to map the input to a latent space 
of N dimensions containing an N-simplex where each of 
the vertices corresponds to a different class; for example, 
a tetrahedron in 3D. The extra vertex located at the origin 
means the latent space effectively has one extra dimension; 
the approach we use here is to subsequently perform PCA 
using N − 1 components after the PLS mapping. This is 
more thoroughly discussed in Ref. [31].

(2)c = Nh

(

h

h0

)

+ Nq

(

q

q0

)

∼ �
2

Nh+Nq
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Thus, PLS-DA yields a single model trained on a fixed 
set of known classes, akin to a discriminative model, but the 
boundary around each class center can be made to mimic 
either a discriminative model with “hard” boundaries or an 
OCC with “soft” boundaries. A hard PLS-DA model follows 
by constructing hyperplanes, e.g., by using a linear discrimi-
nant analysis approach where the (squared) distance from a 
given point projected into the latent space, t, to a projected 
class center, ck , for a class k is given by [31]:

Here, Λ refers to the pooled sample covariance matrix 
which is a diagonal matrix composed of the (sorted) eigen-
values from the PCA. A sample point is assigned to the near-
est class center, which is always one of the known classes 
trained on.

Alternatively, an elliptical boundary can be determined 
by the Mahalanobis distance to each class center to create 
a soft PLS-DA model [31]. The (squared) distance is now 
given by:

where Sk refers to the within-class sample covariance matrix 
of class k. Rather than simply predicting class member-
ship based on the single nearest class, class membership is 
assumed for any, and all, classes such that:

where d2
crit

 is the critical chi-squared value with N-1 degrees 
of freedom and a significance level of α. Equations for total 
and class-based specificity and sensitivity vary slightly 
because of this and are discussed in more detail in the SI.

Results and discussion

Unsupervised clustering

PGAA spectra have over 4,000 bins (features) in this work 
which is much larger than the number of classes we will 
attempt to distinguish. Appropriate pre-processing and 
dimensionality reduction (DR) are critical to developing 
good models. PCA is a common tool used for linear dimen-
sionality reduction and focuses on preserving the global 
structure of the data. It is also a common component found 
within class models. A powerful non-linear alternative is 
the Pairwise Controlled Manifold Approximation Projec-
tion (PaCMAP) method [20]; this method produces a low 
dimensional embedding by looking at pairs of points at dif-
ferent distances (neighbors, mid-near, and further) and can 

(3)d2
k
=
(

t − ck
)

Λ
−1
(

t − ck
)T

(4)d2
k
=
(

t − ck
)

S−1
k

(

t − ck
)T

(5)d2 < d2
crit

preserve both the local and global structure of the data in 
the original space. Both DR methods can provide intuition 
as to which classes are naturally separable, and what sort of 
confusion we may expect to arise during modeling.

Both PCA and PaCMAP are unsupervised approaches 
and for comparison we elect to project the PGAA spec-
tra into 2 dimensions to simplify visualization. Figure 4 
illustrates the projection, colored by class, after variance 
thresholding and autoscaling. When all 4,056 features are 
included, the PCA loadings indicate that high energy bins 
(> 7650 keV) are contributing significantly to these princi-
pal components. As the minimum variance threshold, T, is 
increased, high energy features are systematically removed. 
When all features are included both DR methods show sepa-
ration of classes into different clusters depending on the T 
value. Both methods fail to separate clusters when there are 
too few bins allowed, but PCA’s failure is more pronounced 
as evidenced by more overlapping ellipses. However, there 
is an intermediate amount of thresholding ( T ≈ 10−8 ) that 
produces very clean separation; importantly, this also cor-
responds to the point where most of the potentially spurious, 
high-energy bins have been eliminated. Note that regardless 
of thresholding,the Coal and Coke category tends to overlap 
with many similar organic materials. This suggests the cat-
egory is very broad, which could lead to confusion in low 
dimensional models. Regardless, the categories it overlaps 
are chemically similar organic compounds.

In what follows we include variance thresholding in all 
pipelines unless otherwise stated. Although PaCMAP per-
forms well, PCA is a simpler alternative which separates 
classes nearly as well for this dataset, so we elect to use 
this exclusively. Both the dimensionality of this space and 
the variance threshold are key hyperparameters that, when 
well-tuned, enable highly accurate predictive models to be 
obtained.

Supervised classification

Discriminative models

First, we developed pipelines which use discriminative mod-
els to distinguish the classes in Fig. 2a with a minimum of 10 
observations from the other well-sampled classes. Inspection 
of successful models can provide insight into what char-
acteristic differences exist between classes in this dataset, 
and how discriminating PGAA spectra are for this task. 
Table 1 summarizes the performance of different pipelines 
(cf. Fig. 3) we considered. All pipelines performed quite 
well. Regardless of pre-processing, pipelines using a ran-
dom forest (RF) model [32] performed the best, while those 
using quadratic discriminant analysis (QDA) performed the 
worst. Regardless of the model, using only thresholding as a 
pre-processing step yielded the worst pipelines on average. 
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This was improved by adding data scaling or PCA steps, but 
the best pipelines employed both. This is unsurprising given 
the natural separation that can be found between the classes 
we used in this work even in only 2 dimensions (cf. Fig. 4). 
Robust scaling did not typically outperform standard scaling.

Although pipelines with RF models performed the best, 
RF models are typically difficult to interpret. Instead, here 
we examine pipelines using a logistic regression (LR) 
model, which is more naturally interpretable and did not 

substantially underperform RF-based pipelines. In these LR-
based pipelines, multinomial LR was used to predict the 
un-normalized probability, pk, that a sample, x, belongs to a 
class, k, with multilinear regression:

(6)ln
(

pk
)

= ak,0 +

4,056
∑

i=1

ak,isi

(

xi

si

)

Fig. 4  Unsupervised dimensionality reduction of PGAA spectra. The 
absolute value of the coefficients for the 2 principal components used 
in PCA (first row) are shown at the top (loadings); the vertical black 
line denotes 7650 keV as a guide to the eye. PCA is performed after 

variance thresholding which removes low variance energy bins. The 
same variance threshold is employed before using PaCMAP to per-
form a non-linear dimensionality reduction into two dimensions (sec-
ond row). Ellipses drawn around classes are a guide to the eye

Table 1  Accuracies and uncertainties (one standard deviation) of different pipelines with different pre-processing steps (columns) and models 
(rows); cf. Fig. 3

Steps in the pipelines are separated by semicolons. These performances were estimated as described in the SI. Pipelines using LDA, QDA, and 
the hard PLS-DA models used SMOTEENN to perform class balancing, while the rest used frequency-based weighting to balance the models

Thresholding: 
standard scaling: 
PCA

Thresholding: 
robust scaling: 
PCA

Threshold-
ing: standard 
scaling

Thresholding: 
robust scaling

Thresholding: PCA Thresholding Average

Random forest 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0) 0.997 (8) 1.0 (0) 0.999
Hard PLS-DA 0.997 (4) 0.993 (4) 0.999 (2) 0.999 (2) 0.986 (10) 0.999 (2) 0.995
Linear discriminant 

analysis
1.0 (0) 0.997 (4) 0.992 (5) 0.992 (5) 0.996 (4) 0.992 (5) 0.995

Logistic regression 0.997 (4) 0.998 (3) 0.998 (4) 0.998 (4) 0.984 (11) 0.970 (19) 0.991
Decision tree 0.991 (11) 0.997 (5) 0.988 (14) 0.988 (14) 0.988 (13) 0.988 (14) 0.990
Quadratic discriminant 

analysis
0.989 (9) 0.993 (5) 0.970 (19) 0.972 (24) 0.976 (12) 0.71 (7) 0.935

Average 0.996 0.996 0.991 0.991 0.988 0.943
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The softmax function was then used to compute a nor-
malized probability for each class. The coefficients, ak,i, 
on each histogram bin, xi, give insight into the signifi-
cance of each bin for each class. Variance thresholding 
effectively sets certain ak,i = 0 reducing the number of 
terms which contribute to this sum. The scale of xi fac-
tors into the interpretation of these coefficients; divid-
ing an energy by its bin’s sample standard deviation over 
the dataset implies the product, ak,isi , can be taken as a 
dimensionless term indicating the significance of each 
bin.

A final LR-based pipeline with no other pre-process-
ing besides variance thresholding was trained using an 
80:20 train:test split of the data with fivefold CV used to 
optimize hyperparameters on the training set. The scaled 
coefficients are shown in Fig. 5a. Only results for 3 rep-
resentative materials are given, since they all displayed 
prominent peaks at 3 main energy bins (roughly 2224, 
1382, and 342 keV, cf. SI). The optimal variance thresh-
old was found to be Topt = 1.0e–10 which is slightly less 
than the optimal suggested by Fig. 4 if it is combined 
with dimensionality reduction. Regardless, this model, 
like others trained without variance thresholding, natu-
rally found the primary differences originate in the lower 
energy portion of the spectra. This result is specifically 
premised on the 10 classes used here and may not hold 
true in general.

For comparison, we also optimized a pipeline that 
used a logistic regression model after pre-processing the 
spectra by centering, standard scaling, then using PCA. 
After CV, 10 latent variables in the PCA were found to be 
optimal, with an accuracy of 100% on both the test and 
training set (again, Topt = 1.0e–10); however, the optimal 
pipeline when using only 2 dimensions yielded a 96.7% 
accuracy on the test set and is easier to visualize, so we 
report this model here (Topt = 1.0e–8). Figure 5b shows 
the 2D latent space used by this pipeline, with the sub-
sequently trained logistic regression model’s decision 
boundaries. The training data depicted naturally separate 
in this space with the exception of the “Coal and Coke” 
class; PC 1 is essentially just the 2224 keV energy peak 
corresponding to hydrogen, while PC 2 is primarily com-
posed of the titanium peaks at 342 and 1382 keV. Even 
after completely different pre-processing steps, these 
peaks are again the most important features to the LR 
model in these pipelines.

Collectively, this suggests that these 10 classes are 
characteristically different based on their hydrogen and 
inorganic/metallic content. Thus, we essentially have one 
pseudo-organic axis (PC 1) and one pseudo-inorganic 
axis (PC 2) along which these training materials separate 
very well. If our training set contained different materi-
als, these dimensions could change. This is the central 

Fig. 5  Predictions using a logistic regression model. a Coefficients 
for 3 representative materials show that 3 energy bins (at roughly 
2224, 1382, and 342  keV) are the most significant to the pipeline 
using only variance thresholding. b Logistic regression model deci-
sion boundaries after pre-processing by centering, (Pareto) standard 
scaling, then performing PCA. The loadings indicate that PC 1 and 
PC 2 reflect the same importance of these 3 peaks
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problem with discriminative models since they focus on 
learning the differences between known training classes. 
In contrast, class models focus on determining the essence 
of a material.

Soft PLS‑DA model

Soft PLS-DA produces ellipsoidal acceptance regions 
around class centers in a latent space whose dimensionality 
is determined by the number of classes used during training 
(due to one-hot encoding). Thus, both the number and spe-
cific choice of classes to use during training can introduce 
some bias into the model. Regardless, the soft boundaries 
are amenable to authentication problems under open set 
conditions since they enable novelty detection. We trained 
various pipelines using soft PLS-DA as the model following 
the same set of different pre-processing steps reported in 
Table 1. The average performances and one standard devia-
tion are shown in Fig. 6.

Here, pre-processing makes only very minor differences 
to the pipeline’s final performance (TEFF ≈ 0.95 always). 
We compare the top two pipelines: one involving only vari-
ance thresholding, the other adding PCA to this step. Before 
any PCA is performed the data is always column-centered, 
but here it is not scaled. Still, including scaling yielded 
similar results. On the final test set the first pipeline yielded 
TEFF = 0.958, whereas the second yielded TEFF = 0.973.

The table in Fig. 6 details how materials from different 
classes (rows) are assigned (columns) for the final pipelines. 

Once again, Topt ≥ 1.0e–8 was found naturally by cross vali-
dation. As a baseline, the pipeline with only thresholding is 
reported in black, and changes which occur when includ-
ing PCA are shown in red. For example, there were 6 Bio-
mass samples in the test set. In the first pipeline all 6 were 
assigned to both the “Biomass” and “Coal and Coke” cat-
egories, whereas the second pipeline did not confuse any 
of these with “Coal and Coke.” In general, the “Coal and 
Coke” column is much more populated by the first pipe-
line than the second. This is the primary source of error 
for this model, the cause of which is qualitatively reflected 
in Fig. 4; the “Coal and Coke” category is very broad and 
seems to encompass several other classes of organic materi-
als. Including PCA in the pre-processing steps seems to help 
structure the latent space better, which allows the underlying 
PLS2 model to better exclude non-members. This pipeline 
has a substantially higher class specificity, CSPS = 0.952 vs. 
0.548, as a result (cf. SI).

Despite its biases, soft PLS-DA performs very well on 
this dataset, especially with the appropriate pre-processing 
steps in place. If a reasonably complete set of classes can be 
enumerated and measured, PGAA spectra modeled by soft 
PLS-DA may enable high-quality authentication and clas-
sification of materials in practice. Note that hard PLS-DA 
was also the second best performing discriminative model, 
on average, in Table 1.

Fig. 6  Test set performances of pipelines using a soft PLS-DA model. 
The dial on the left indicates the mean performance (error bars are 
one standard deviation) over R × K different subsets of the data. The 
results for the second-best performer (only variance thresholding 
used to pre-process) are given in black; differences in the best model 

(which includes PCA in pre-processing) are shown in red. In the for-
mer, Topt = 1.0e–4, α = 0.01, and the number of latent variables in the 
PLS2 stage was 3. In the latter, Topt = 1.0e–8, α = 0.05, and the num-
ber of latent variables in the PLS2 stage was 2; the PCA compressed 
the data into 10 dimensions
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Class models

Next, we developed both rigorous and compliant DD-
SIMCA models for these materials. Compliant models make 
use of alternative classes to evaluate a model’s TSPS (and 
TEFF) which affects hyperparameter selection during CV. 
This additional information may enable better performance 
against these known alternative classes, however, the impact 
of this bias is difficult to assess. Rigorous models do not 
need to be re-evaluated when new alternative classes become 
available, whereas compliant ones may benefit from this. 
Since DD-SIMCA performs PCA to create the class space 
in the first place, we did not bother with an additional PCA 
pre-processing step. Instead, we trained pipelines with only 
variance thresholding (where we enforced Topt ≥ 1.0e–8) and 
class balancing (via SMOTEENN). Non-robust estimates 
were used for the scaling parameters and degrees of freedom 
[29].

Table 2 summarizes the performance of these models on 
the final held-out test set, and the hyperparameters of the 
optimal models. Most models relied on only a single latent 
variable (LV) in the PCA and elected to use the lowest α 
value allowed (0.01). The values correspond to compliant 
models which use samples from the other 9 classes to com-
pute TSPS used during training. The bold numbers corre-
spond to rigorous models which do not compute TSPS dur-
ing training since they see only examples of the class they 
are meant to model. In the latter, hyperparameters are tuned 
using CV to achieve TSNS = 1 − α; to make a fair compari-
son to compliant models, we selected α = 0.01 as their target. 
Compliant models tended to use a higher variance threshold, 
focusing on lower energy portions of the spectra, and more 
latent variables than their rigorous counterparts. Representa-
tive models are summarized in Fig. 7.

Nearly all the models performed identically on the test 
set, with the notable exception of the model for Coal and 
Coke. TEFF is quite high for most models; TSNS is less than 

one for Graphite/Urea Mixtures and Titanium Alloy, though 
these have 3 or less samples in the test set to evaluate this 
on. More data would likely improve both the model itself 
and the accuracy of the test set performance estimate. The 
TSPS = 1 for all compliant models and only substantially 
different for the rigorous Coal and Coke model, for which 
TSPS drops to 0.619.

Again, the breadth of this category leads to issues making 
a model which is specific enough to exclude other similar 
organic materials. The acceptance plot for the compliant and 
rigorous DD-SIMCA models is given in Fig. 8. The training 
data is depicted to illustrate how these models have been 
tuned. The rigorous model, seeing only examples of Coal 
and Coke during training, correctly accepts all 74 training 
examples of this class, but also erroneously accepts all 25 
Biomass samples and all 31 Lubricating Oil samples in the 
training set. Moreover, 3 Fuel Oil samples were erroneously 
accepted, and the remaining 18 (shown in yellow crosses in 
Fig. 8) were nearly accepted. This qualitatively agrees with 
Fig. 4 which shows how these intuitively similar categories 
can end up overlapping after PCA is applied. The advantage 
of using these alternative classes during training is clear, 
and the optimal compliant model uses 2 additional LVs to 
separate Coal and Coke from these other classes. Figure 8 
shows that out of the training data only 1 of the 74 Coal and 
Coke samples ended up being erroneously rejected, and only 
2 out of 25 Biomass samples were incorrectly accepted by 
the final compliant model; on the test set, TSPS = TSNS = 1 
(cf. Table 2).

Overall, this suggests that accurate class models can be 
developed for PGAA spectra which perform as well as soft 
PLS-DA or discriminative models. While it is important to 
take care that classes are not so broad that they can be eas-
ily confused with similar materials, using compliant models 
can be a fruitful way to combat this effect, if necessary. For 
example, the compliant DD-SIMCA model’s TEFF for Coal 

Table 2  Test set performance of 
DD-SIMCA models

The results from the compliant model are shown in black; the rigorous model yielded identical results 
except where indicated in bold

Test TSNS Test TSPS Test CEFF # LV Topt α

Biomass 1 1 (0.982) 1 (0.991) 2 (1) 1e–4 (1e–6) 0.01
Coal and coke 1 1 (0.619) 1 (0.787) 3 (1) 1e–6 (1e–8) 0.01
Concrete 0.875 1 0.935 1 1e–8 0.01
Dolomitic limestone 1 1 1 1 1e–6 0.01
Forensic glass 1 1 1 1 1e–4 (1e–8) 0.01
Fuel oil 1 1 1 2 1e–8 0.01
Graphite/urea mixture 0.667 1 0.816 1 1e–4 (1e–8) 0.01
Lubricating oil 1 1 1 1 1e–8 0.01
Steel 1 1 1 1 1e–8 0.01
Titanium alloy 0.500 1 0.707 1 1e–4 (1e–8) 0.01
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and Coke (TEFF = 1) exceeds the class efficiency for this 
category in the best PLS-DA model (0.950).

Authentication Tests

Class models are considered the most useful for authentica-
tion tasks, where an arbitrary sample is obtained and the goal 
is to ascertain if it is consistent with any known materials or 

Fig. 7  Rigorous DD-SIMCA models for several materials. At the left, 
the absolute values of the coefficients (loadings) for the leading prin-
cipal component is given. One hyperparameter in DD-SIMCA mod-
els is whether to column-wise divide the input by its sample standard 
deviation after centering (before PCA). To fairly compare models, 
if the data was scaled, then the loadings are multiplied by the scale 

(s) here (fuel oil and concrete); otherwise just the coefficients are 
reported. Acceptance plots are shown on the right. The green curve 
is the acceptance boundary for class membership (α = 0.01), while the 
red line is an outlier threshold corresponding to the same significance 
level based on Ref. [29]. (Color figure online)

Fig. 8  Acceptance plots for DD-SIMCA models of Coal and Coke 
when trained to be compliant (left) vs. rigorous (right). Predictions 
made on the training set are shown here. Green symbols are accepted 
as a member of the class by the model, yellow and red are rejected, 

and different symbols are used to denote different classes. The green 
curve is the acceptance boundary for class membership (α = 0.01), 
while the red line is an outlier threshold corresponding to the same 
significance level based on Ref. [29]. (Color figure online)
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not. Here we test the DD-SIMCA models against the sam-
ples from the 3 categories in Fig. 2a which did not have 
enough samples to warrant the training of their own class 
model: Carbon Powder, Phosphate Rock, and Zircaloy. For 
such cases we can only evaluate the TSPS of the DD-SIMCA 
models to ensure all models reject these materials as mem-
bers; in fact, both the rigorous and compliant models yielded 
a perfect TSPS = 1 against these materials for all classes. 
Figure 9 shows the acceptance plots for the Coal and Coke 
models, which are the most interesting. Both the rigorous 
and compliant models reject all alternate classes, but the 
Carbon Powder samples are much closer to the acceptance 
boundary (green curve) for the compliant model than the 
rigorous one. This suggests DD-SIMCA models based on 
PGAA spectra can be very accurate and robust for authen-
tication purposes. These models did not require any pre-
processing beyond simple thresholding making them easy 
to train and deploy.

Conclusions

In this work we developed a variety of models to differenti-
ate materials using PGAA spectra. Key to these models’ 
success is the appropriate use of pre-processing to ensure 
models do not overfit to unreliable regions of the spectra. 
Here, this was accomplished with variance thresholding and 
dimensionality reduction via PCA. We developed discrimi-
native models to help explain the basic differences between 
materials being considered here; despite their excellent per-
formance, these models are considered less applicable under 
most real-world conditions since they can only distinguish 
between the known set of materials they were trained on. To 
handle open set conditions more appropriately, we trained 
soft PLS-DA and DD-SIMCA models. Both performed very 

similarly, but each have individual caveats that may make 
one more appropriate than another in different scenarios. 
Soft PLS-DA carries an implicit bias owing to the number, 
and specific choice, of categories to use during training. 
However, if it is possible to sample most classes that are 
going to be encountered when deployed, this can be a power-
ful model for authenticating materials. If this is not possible, 
DD-SIMCA models were found to perform similarly on this 
dataset. Rigorous class models may be trained with sufficient 
data to represent intra-class variance but may struggle to 
distinguish very similar materials. Compliant models can 
circumvent this issue, often increasing the model complex-
ity, but introduce bias which is difficult to fully quantify.

However, we caution that all conclusions reached here are 
based on models trained using laboratory prepared samples, 
many of which are standard reference materials. These mate-
rials are highly homogenous and designed to have very low 
variance between samples of the same material. Although 
we have defined many classes to be composed of multiple 
SRMs, it is important to note that this low variance repre-
sents an idealized version of a class. In practice, intra-class 
variance is expected to be higher in many real-world mate-
rials; this is likely to make it harder for models to achieve 
good specificity if a class is very broad, akin to issues seen 
here with Coal and Coke. Regardless, this study illustrates 
that PGAA spectra can be used to develop high-performance 
models for many classes of materials; moreover, when 
“broad” categories are encountered, adding dimensionality 
to models and using compliant approaches can circumvent 
issues with low specificity. It is primarily a matter of obtain-
ing sufficient data to train such models, since the computa-
tional time required to authenticate a newly acquired mate-
rial using any of these trained models is minimal (i.e., less 
than a second on any modern computer).

Fig. 9  Acceptance plots for DD-SIMCA models of Coal and Coke. 
These are the same models as in Fig. 8. Predictions are made for the 
classes which we did not use to train any models. The Carbon Powder 
samples are much closer to the acceptance boundary in the rigorous 

model than the compliant model. The green curve is the acceptance 
boundary for class membership (α = 0.01), while the red line is an 
outlier threshold corresponding to the same significance level based 
on Ref. [29]. (Color figure online)
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