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ABSTRACT

Energy consumption in buildings continues to rise with increased deployment of energy-consuming equipment such as Heating, Ventilation, and Air
Conditioning (HVAC) amid a growing world economy. Renewable energy is projected to comprise a majority of the future electricity supply, but the
intermit-tent nature of renewables means that consumption must respond to dynamic supply for optimal utiliza-tion. This paper proposes a novel
HVAC control strategy for residential buildings using the adaptive comfort model, considering occupancy through probability and real-time
information, and optimizing the HVAC schedule to reduce cost, maintain thermal comfort, and respond to the dynamic availability of renewable energy
while being generalizable to different situations. To validate this approach, the Universal CPS Environment for Federation (UCEF) co-simulation
platform is used to connect advanced building controls with the building energy simulation software EnergyPlus. Simulations are performed for a
residential building in Sacramento, CA during a typical summer week. Economic impacts, energy consumption, and thermal comfort are analyzed for
traditional, adaptive, and occupancy-based control strategies under demand-based, tiered, and fixed electric tariff systems. Simulation results show
that occupancy consideration, adaptive thermal comfort, and optimization can reduce cost by 50.1 %, electric-ity consumption by 52.9 %, and
discomfort by 56.2 % compared to traditional fixed setpoints. The ability of the proposed HVAC control strategy to shift energy consumption away from
peak times under a demand-based tariff system is qualitatively analyzed and findings suggest that maximum load-shifting on a grid-scale is attained
using occupancy consideration with optimized control and demand-based pric-ing. For individual residential buildings, similar economic benefits can

be gained using the less-complex adaptive HVAC control strategy with existing tiered or simple electric tariff systems.

1. Introduction

Global energy consumption is expected to increase by 1.3 %
annually between 2020 and 2050, and electricity in particular is
projected to grow even faster, at 1.8 % annually over the same per-
iod [1]. Buildings will be a major contributor, as their electricity
usage is projected to increase by 70.1 % between 2020 and 2050
[1], and Heating, Ventilation and Air Conditioning (HVAC) makes
up 49.4 % of the increase [2]. While many studies focus on indus-
trial or commercial sector energy usage because each individual
building has a larger economic impact, the residential building sec-

tor offers an equally large potential for energy saving and peak
shaving. As of 2020, residential buildings in the United States con-
sume 29.5 % of the total energy, and space heating and cooling con-
sist of 39.4 % of the energy consumption in residential buildings
[3]. While a single home has minimal effect on the overall grid,
at scale the total energy consumption and balance of supply and
demand can be positively impacted by more effective use of energy
in residential buildings.

Along with growing consumption, the growth of factors includ-
ing renewable energy sources (RESs), electric vehicles (EVs), and
cooling demand will create new challenges for the management
and stability of the electric grid. RESs generated 28 % of the total
global electricity consumed in 2020, and are projected to supply
56 % of all electricity in 2050 [1]. Increased reliance on RESs
requires improvements to managing supply and demand because



the intermittent nature of some RESs limits the electricity supply
at certain times. Along with RESs, the transition to sustainable
transportation can create more variability in the grid. While elec-
tric vehicles currently make up less than 1 % of the global light-
duty vehicle fleet, by 2050, electric vehicles are projected to com-
prise 31 % of all light-duty vehicles [1]. Since many EV charging
stations are connected to the grid, increased penetration of EVs
may significantly increase the peak demand if actions are not taken
to shift EV charging times as well as operation of other equipment
on the grid [4]. Another factor affecting electricity consumption is
cooling demand, which is expected to increase by 182.1 % globally
between 2020 and 2050 [2]. Demand for cooling is greatest in the
late afternoon, when generation from some RESs, in particular
solar, decreases.

As RESs are less able to adjust rapidly to demand, balancing the
overall load on the grid will require flexible demand. Consumers,
such as buildings, need to respond proactively to the dynamic sup-
ply of electricity to fully utilize the available energy when intermit-
tent energy sources are producing effectively and reduce
consumption when RESs are less plentiful [5]. One approach is to
allow active buying and selling of energy among utility providers,
prosumers — consumers with electricity generation capability such
as rooftop solar — and regular consumers [6]. This multidirectional
energy market concept is known as “transactive energy,” which
uses dynamic electric cost and associated controls to balance the
supply and demand of electricity for the grid [6]. Each building
becomes a participant in the market and needs an advanced con-
trol method with the flexibility to adapt to a varying energy supply
to implement a transactive energy approach. Internet of Things
technology will be used to coordinate and control appliances and
electrical devices within each building [7]. Such control will
actively and automatically interact with the transactive energy
market, encouraging energy conscious behavior through financial
incentives without negatively affecting thermal comfort or becom-
ing burdensome to the user [7]. The Pacific Northwest Smart Grid
Demonstration project evaluated the distribution system reliabil-
ity, automation, and communication infrastructure for demand
response and distributed generation and storage [8]. Other
researchers explored efficiency in transactive energy systems via
simulations [9,10]. A large scale network simulation model is used
in Nguyen et al. to show how transactive control can help solve the
problem of peak demand and to improve system efficiency and
reliability [9]. The model showed that energy-conserving behavior
in homes can save up to 65 % of energy compared to wasteful
behavior [9]. Bejestani et al. [10] propose optimal allocation of
resources with consideration of uncertainty in RES generation
and load by implementing a hierarchical transactive control archi-
tecture that combines market transactions at the higher levels with
inter-area and unit-level control at the lower levels. While numer-
ous studies demonstrate the positive effects of transactive energy
including peak shaving and optimal allocation of resources, the
majority of individual consumers have little understanding of
demand-based energy tariffs and few are able to adjust their con-
sumption [11]. Thus, price signals need to be interpreted and han-
dled automatically in order to have a large-scale effect [11].

One method for peak load shifting and cost saving in a dynamic
energy market is pre-heating and pre-cooling a building before the
peak demand and high cost period. One study uses a decentralized
grey-box building model of a real office building to simulate pre-
cooling energy saving potential with a tiered electricity tariff,
and found that energy cost can be reduced by up to one third
[12]. Simulations of pre-cooling a single-family residence using
rule-based control and an optimized rule-based control were
shown to reduce overheating during heat waves [13]. At a
district-level with over 800 varying type residential buildings,
pre-cooling controls increased thermal comfort by 60 % using the

unmet degree hours metric, but increased costs as well under a
time-of-use pricing system [13].

When adopting pre-heating, pre-cooling, and other setpoint
changes, the thermal comfort of occupants must be considered.
Predicted Mean Vote (PMV) is the most common method for deter-
mining thermal comfort in literature [14], as well as in standards in
many regions, including ISO 7730:2005, ANSI/ASHRAE Standard
55-2020, and EN 16798-1:2019 [15-17]. PMV depends on meta-
bolic rate, clothing, radiant temperature, air speed, air tempera-
ture, and humidity [16]. PMV is often used alongside Predicted
Percentage of Dissatisfied (PPD) to predict what percentage of peo-
ple are uncomfortable in a given condition [18]. Both PMV and PPD
are based on studies of people wearing standard uniform clothing
while sedentary in temperature controlled chambers [18]. Izhar
et al. detected metabolic rate and clothing using smartphone appli-
cations, combining wireless sensors for air velocity, relative
humidity, and air temperature to implement all PMV factors in
determining HVAC controls [19]. Espejel-Blanco et al. implemented
PMV to design HVAC control systems to respond to thermal com-
fort and yielded energy savings of 33 % to 44 %, assuming constant
values for metabolic rate, air velocity, and clothing insulation [20].
Some criticisms of PMV include that it does not account for behav-
ioral changes when people start to feel uncomfortable, or to accli-
mation to different climates [18,21]. Other variations of PMV have
been developed; Li et al. found that the variables of climate and
building type played a significant role in determining thermal sen-
sation and developed an adapted PMV model to reduce this dis-
crepancy [21].

According to the adaptive thermal comfort model, the range of
comfortable indoor temperature is a linear function of mean effec-
tive outdoor temperature because the human body adapts to dif-
ferent climates and seasonal temperature shifts throughout the
year, as well as thermal adaptation [22]. Thermal adaptation is a
behavioral response to temperature changes, which can be per-
sonal, often by adding clothing; technological, such as opening
windows or operating HVAC; and cultural changes in activity
based on the weather [18]. The adaptive thermal comfort model
was introduced by de Dear and Brager [22]| based on approximately
21,000 observations from around 160 buildings. Adaptive thermal
comfort has been adopted into ANSI/ASHRAE Standard 55-2020
[16]. The adaptive model was refined to specific region, climate,
ventilation, and building type by Parkinson, de Dear, and Brager
[23] and has been supported by field studies around the world
[24-26]. Rijal, Humphreys, and Nicol demonstrated that comfort
temperature was not significantly affected by relative humidity
and that behavioral adaptations to increase air movement helped
maintain thermal comfort in hot and humid environments using
over 13,000 observations from residences in Japan [24]. A field
study recording thermal sensation votes of 430 occupants in office
buildings during the summer season showed a linear relation
between outdoor temperature and preferred indoor temperature,
and showed that more occupants were comfortable in temperature
ranges prescribed by the adaptive thermal comfort model com-
pared to PMV [25]. Additionally, the adaptive model was shown
to be applicable in air conditioned buildings [25]. A field study of
residential buildings in different climate zones in China found that
the comfortable indoor temperature using a thermal sensation
model was linear with outdoor temperature, and thermal adapta-
tions increased in climates with the largest discrepancy between
summer and winter temperature [26]. The relation between indoor
and outdoor temperature is consistent with the PMV model, which
shows an increased comfortable temperature as the outdoor tem-
perature increases and vice versa if the other factors are held con-
stant [16]. An adaptive-rational thermal comfort model was
proposed by Zhang et al. to account for thermal adaptations by
adding an adaptive thermal comfort coefficient to PMV [27].



Home Energy Management Systems (HEMS) have been devel-
oped to assist users in more efficiently managing their home
equipment including HVAC, lighting, and appliances. Many HEMS
implement simple rule-based controls [28], while others use infor-
mation from the electrical grid to optimize energy consumption in
the home [29]. Researchers from NREL created Foresee, [30] an
algorithm for generating and solving a multiobjective convex opti-
mization problem that considers user-preferences to determine
how to control the home equipment. Chen et al. used Model Pre-
dictive Control (MPC) to determine the optimal schedules of flexi-
ble thermal and non-thermal appliances using energy price
information from the grid [29].

HEMS require extensive configuration to accommodate each
building’s unique thermal capacitance, HVAC configuration, local
climate, and occupancy patterns. To avoid losing performance if
users do not properly configure the HEMS, this work takes a more
generalistic strategy that considers occupancy and thermal com-
fort inherently and operates using automatic input data without
requiring user interaction. While previous studies optimize the
home equipment based on information from the electrical grid
and maintain an acceptable thermal comfort level, most use PMV
for thermal comfort and require user inputs or rely on assumptions
about metabolic rate and clothing. Many studies assume occu-
pancy follows a predictable schedule. In contrast, the strategy pro-
posed here addresses the random nature of occupancy in
residential buildings by using probability to limit the discomfort
caused by the setback. Aggregate historical occupancy data and
current occupancy status are used directly in setpoint calculation,
a method that is transferable to different types of buildings and
occupants where occupancy data is available.

The present work extends from several prior works by the
research team of the presenting authors. Singer et al. [31] devel-
oped a co-simulation environment using UCEF, Transmission Con-
trol Protocol/Internet Protocol, and Functional Mock-up Interface,
that allowed for setpoints from an external controller to be used
in an EnergyPlus simulation. An economically viable method for
detecting and processing human presence in real-time using
non-invasive sensors was presented by Wang et al., but no associ-
ated control method was implemented [32]. Wang, Pattawi, and
Lee [33] demonstrated that using the current occupancy informa-
tion, HVAC energy consumption can be reduced while still main-
taining a high level of thermal comfort in comparison to
traditional setpoint controllers. An occupancy-driven thermostat
that switched between adaptive setpoints when occupied and an
expanded range between 12 °C and 32 °C when unoccupied was
used to show the impact of occupancy detection alone on energy
savings in residential buildings [33]. One challenge of using occu-
pancy detection without probability is that when occupants return,
the HVAC system may require time to return to a comfortable tem-
perature, during which the occupant may experience thermal dis-
comfort. HVAC efficiency may decrease if occupancy changes at a
high frequency, requiring frequent cycles of setting back and
returning to a comfortable temperature. This work attempts to
solve this dilemma by incorporating occupancy prediction using
historical occupancy data, and adjusting the temperature con-
straints based on the probability of occupancy at that time. In
McCurdy et al. [34], optimization with adaptive and fixed comfort
zone models and wholesale-based pricing was simulated for sev-
eral one-week periods to demonstrate the cost saving potential
for heating a residential building. The optimization was validated
using co-simulation, demonstrating load shifting to times of lower
price, with the majority of benefits during extreme weather [34].
While previous works demonstrate energy-saving HVAC control
strategies and simulation capabilities, the present research adds
the ability to account for the random nature of occupancy using
probability, expands optimized control to consider separate direct

and diffuse solar radiation components in addition to indoor tem-
perature and outdoor temperature, and analyzes economic savings
for the end user and load-shifting benefits at utility scale.

The contribution of this work is presenting and validating a
demand-based electric tariff and novel HVAC control strategy to
increase efficiency and cost savings for grid-interactive residential
buildings. Thermal comfort is considered requiring only current
weather data. Adaptive thermal comfort is adjusted to use current
conditions rather than a recent average temperature to improve
efficiency in climates with a larger temperature variation within
a 24-hour period. The random nature of occupancy is considered
using an occupancy generator to enable testing of real-time occu-
pancy information and the historical probability of occupancy for
that time of day to determine the temperature constraints while
reducing equipment cycling and discomfort when occupants
return unexpectedly. An optimization strategy to schedule HVAC
operation attempts to reduce the electricity cost to the consumer
under tariff systems in which the price of electricity changes
throughout the day in response to supply and demand. Potential
benefits to utility operators in terms of load shifting to low demand
times are analyzed. A total of five HVAC control strategies are mod-
eled: fixed setpoint, adaptive, adaptive with optimization,
occupancy-based, and occupancy-based with optimization. Eco-
nomic effects of conventional electric tariff systems and a
demand-based pricing system where electricity cost is propor-
tional to wholesale energy prices are compared by simulating four
pricing models: demand-based, simple (fixed-rate), tiered (time of
use), and extreme tiered tariffs. A co-simulation framework for
simulating residential buildings with advanced controls is utilized
to compare the economic benefits, energy consumption patterns,
and thermal comfort under each scenario.

2. Methods

This work demonstrates a strategy for optimizing HVAC control
to decrease cost and increase occupant’s thermal comfort based on
electricity rate pricing, occupancy probability, and real-time occu-
pancy information. To test the efficacy of this new HVAC control
strategy against existing conventional control algorithms, this
work utilizes a framework for simulating buildings with compli-
cated controls using co-simulation to integrate each of the simula-
tion entities.

2.1. Co-simulation platform

EnergyPlus, a building energy simulation program developed by
the United States Department of Energy, is used to model a single-
family house [35]. While EnergyPlus has settings for scheduling
lighting, home appliances, and HVAC operation, it can only follow
pre-defined schedules. The present work uses the external com-
puting platform powered by Universal Cyber-Physical System
Environment for Federation (UCEF) developed in Singer et al. [31]
to compute and transmit variables that change during the simula-
tion such as real-time occupancy, weather conditions, and opti-
mization between the different simulation components. This
configuration allows a single EnergyPlus house model to simulate
advanced control strategies calculated in Java and Python. The ser-
ies of communication between EnergyPlus and the simulation enti-
ties is summarized in Fig. 1.

The external computing platform also enables realistic HVAC
equipment operation cycle time controls, instead of the default
EnergyPlus model, which assumes equipment can be run continu-
ously at lower power settings. Equipment operation cycles are sim-
ulated by keeping the air conditioning active until it has cooled
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Fig. 1. The transfer of information through the simulation for each timestep. (1) EnergyPlus transmits the current building energy and environment information to the
Controller. (2) The Controller queries stored weather, occupancy, and building constants. (3) The Controller sends the building energy consumption information to the
Market. (4) The Market sends electricity price to the Controller. In future works, the Market will adjust or recompute the electricity price based on the energy consumption it
receives. (5) The Controller computes the HVAC indoor air temperature setpoints using weather, occupancy, electricity price, and building parameters (6) The controller sends
the setpoints to EnergyPlus. (7) EnergyPlus uses the setpoints to simulate the indoor temperature for the new timestep.

1 °C below the setpoint, then shutting the cooling off until the tem-
perature rises within 0.1 °C of the setpoint.

2.2. House model

All simulations use a residential building model obtained from
the U.S. Department of Energy and based on the 2018 International
Energy Conservation Code, consisting of a single-family detached
home with a heat pump for electric heating and cooling and a
crawlspace foundation type in the Northern California region
[36]. The house is approximately 110 m?, is located in the suburbs,
has a single floor, single cooling zone, and uses appliance and light-
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ing schedules from the IECC model [36]. Weather and pricing data
from a representative summer week of August 1-7, 2020 are used
to simulate recent conditions and prices. Weather information is
from MesoWest, a historical weather database by the University
of Utah and the weather station located at the Sacramento Interna-
tional Airport [37].

2.3. Electric rate models
Utility companies throughout the United States have imple-

mented electricity rate programs where customers pay a function
of the wholesale price [38-40]. Customers are expected to plan
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Fig. 2a. Comparison of the simple, seasonal time-of-use, and one example day of the wholesale-based electricity pricing schemes used to demonstrate occupancy and

optimization. Note that the wholesale-based price varies by day.



ahead and manually adjust their energy consumption so day-ahead
hourly forecasts are used [40]. This work uses real-time wholesale
pricing in 15 min intervals because grid-interactive buildings can
respond with less planning and it provides a more accurate view
of the current supply and demand. Prices are from Pacific Gas
and Electric Company (PG&E), the utility company for the simu-
lated region [41]. Similar to the tariff systems used in Ref. [38-
40], a realistic demand-based electricity retail price is calculated
using the linear relation in Eq. (1).

RetailPriceofElectricity = o x WholesalePriceofElectricity + j3 (1)

Values of o and B are computed such that the time average
demand-based price matches the average retail price charged by
PG&E during the duration of the simulation. In this work, a period
between August 1, 2020 and August 7, 2020 was simulated with
o = 17.1x1072 and p = 0.0094 USD/kWh to match the average
time-of-use summer price of 0.438 USD/kWh [42]. To compare
the impact of the demand-based pricing scheme, comparison sim-
ulations are run using the time-of-use summer and simple rate
plans offered by PG&E. A hypothetical schedule with extreme price
jumps between 0.01 USD/kWh and 10.00 USD/kWh is also simu-
lated to model wholesale pricing trends during extreme weather
events, in which the peak price may be greater than ten times
the price on a median or typical day. This is a time-of-use schedule
inspired by a series of days such as August 13, 2020 to August 20,
2020 in which wholesale energy prices increase by at least 10
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times the average price and sometimes more than 70 times the
average for one or more time periods [43]. These rate plans along
with demand-based pricing for typical and extreme event days
are compared in Figs. 2a & 2b.

2.4. Thermal comfort model

The PMV thermal comfort model may be more challenging to
implement using current technology because it can be difficult to
obtain clothing type, metabolic rate, and radiant temperature
[16]. Barriers to implementation include detection, which would
require advanced vision sensors or continuous self-reporting by
the occupants, and that multiple occupants may have a different
comfort level if they partake in different activities or wear different
levels of clothing. The adaptive thermal comfort model, as
described in Section 1, is defined using a function of outdoor air
temperature only [16]. This simplification provides a thermal com-
fort range while eliminating the challenge of obtaining the param-
eters needed for PMV thermal comfort. Instead of a historical mean
daily temperature, this work follows prior works in using an
instantaneous adaptive setpoint based on current outdoor temper-
ature, which may provide greater energy savings particularly in cli-
mates where there is a large difference between daily high and low
temperatures [33,34]. The mean comfortable temperature at any
time is computed as a function of the current outdoor temperature
as shown in Eq. (2).
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Fig. 2b. Extreme time-of-use has three periods in which the electricity price jumps from $0.01 to $10.00. Wholesale-based prices for August 15, 2020, when prices spiked for
about two hours because of power shortages and a heat wave, are shown as an example of a real life extreme event although this day is not part of the simulation [43].



Mean Comfortable Temperature
20.9 Toutdoor < 10
= ¢ 17.8 +0.31 * Toytgoor 10 < Tougoor < 33.5
28.185 Toutdoor > 33.5

(2)

The temperatures in Equation 2 are in degrees Celsius. The
equation has bounds at 20.9 °C and 28.185 °C to account for
extreme outdoor temperatures. Data from the study shows that
90 % of occupants would be comfortable within +2.45 °C, creating
a “comfortable zone” and 80 % would be comfortable within +3.50
°C such that this region is considered an “acceptable zone” [22,16].
These comfort ranges are shown in Fig. 3 alongside a conventional
“always on” thermostat setpoint with a constant temperature
range regardless of outdoor temperature.

Using the adaptive comfort model can help reduce HVAC oper-
ation because the comfortable temperature is proportional to the
outdoor temperature such that the temperature difference
between indoor and outdoor is reduced.

2.5. Occupancy simulator

To consider occupancy information, an occupancy simulator
determines when the building is vacant or occupied. This work

uses the probability that a residential building will be occupied
during a given hour aggregated from the American Time of Use
(ATUS) study [44]. First, a random number generator is used to
generate a uniformly distributed random value between 0 and 1.
If that number is less than the occupancy probability for that hour,
the building is considered occupied. If the random number is
greater than the probability of occupancy, the building is vacant.
The building may occasionally be unoccupied during times of high
probability of occupancy and vice versa due to the random nature
of occupancy, but an average of many days will match the expected
probability for each time. Using this strategy, 11 trials of duration
1 year (365 days) of simulated occupancy data matched the occu-
pancy probability data with an average mean squared error of
4.58x1074. Aggregated occupancy averages for the median case
are shown in Fig. 4.

2.6. Considering occupancy probability & current status

The probability and real-time based occupancy consideration
allows the proposed HVAC control strategies to be transferable to
different buildings and different occupants, provided occupancy
data is available. The occupancy-based HVAC controls consider
both the simulated occupancy state from Section 2.5 and the per-

321

30 1

28 1

26 -

24 -

22

Indoor Temperature [°C]

20

Uncomfortable

Uncomfortable

10 15 20

25 30 35

Outdoor Temperature [°C]

Fig. 3. Instantaneous adaptive comfort zones compared to fixed setpoints.



1.00

¥ X 4
*

S
\l
&

* %

average
0.25

Probability of Occupancy

0.00

Actual

0.50 x
_ > ¢
Simulated data _¥ e

*
K kK

12 AM 6 AM

12 PM 6 PM 12 AM

Hour of Day

Fig. 4. Comparison of occupancy probability data from ATUS [44] and a 365-day average of the generated occupancy data.

cent probability of occupancy. The simulated current occupancy is
used to determine if the temperature constraints can be relaxed,
allowing the system to adjust so that an occupant who appears
at an unexpected time is not left thermally uncomfortable. The
HVAC controller calculates two types of setpoints: expanded set-
points based on occupancy probability to reduce space heating or
cooling, and adaptive setpoints where 90 % of occupants are com-
fortable. If the house is occupied, the adaptive setpoints are used.

When the building is vacant, adaptive thermal comfort values
from de Dear and Brager [22] and the occupancy probability values
from the ATUS [44] are combined to determine occupancy
probability-based adjustments to the temperature constraints.
The central limit theorem is applied to the thresholds described
in Section 2.4 where 80 % and 90 % of occupants are comfortable
to create a normal distribution for the percentage of occupants
who are comfortable at a given temperature difference from the
ideal comfortable temperature in Equation 2. The comfort range
expansion in degrees Celsius is computed using the probability of
occupancy and a normal distribution with a standard deviation
of 3.937. During timesteps in which the building is unoccupied,
the temperature constraints are the ideal comfortable temperature
in Equation 2 plus and minus the comfort range expansion. Incor-
porating occupancy probability helps reduce the frequency and
severity of uncomfortable temperatures when occupants return
by making more gradual adjustments to the temperature con-
straints when a return is more likely. The combined occupancy
responsive HVAC control strategy for one day is illustrated in Fig. 5.

2.7. Optimization of HVAC schedule

The adaptive and occupancy-based HVAC control strategies
may be further improved using optimization to consider future
weather conditions and electricity prices when deciding when
and how much to operate the HVAC system. The solver from
CVXOPT, a Python-based convex optimization software library
[45], is implemented to predict the optimal HVAC schedule. Using

the electricity prices and the relationship between indoor temper-
ature, energy consumption, and environmental factors, CVXOPT
solves for the next two hours of indoor temperature values that
result in the minimum electricity cost while remaining within
the comfortable indoor temperature constraints provided. Because
CVXOPT is forecasting future indoor temperature with varying
HVAC operation, a method for predicting the indoor temperature
for a series of timesteps into the future is used.

The relationship to predict indoor temperature was derived in a
previous work by the presenting authors [34], using the energy
consumption by the HVAC system, outdoor temperature, direct
solar radiation, and building material information. Using historical
HVAC energy consumption during the initial regression allows the
model to inherently account for factors affecting HVAC efficiency
such as equipment type and coefficient of performance. Since
indoor temperature is affected by all heat gains, other heat gains
are addressed in the regression as well. In this work, diffuse solar
radiation is added as a factor to improve prediction accuracy when
clouds, smoke, or other obstructions reduce the direct solar radia-
tion. Eq. (3) computes the predicted indoor temperature for the
next timestep.

n n-1 n n-1 £
indoor — ! indoor — dt x [Cl (Toutdoor - indoor) + CZEHVAC
W W
+GC3 Qdirec[ solar T C4Qdi/fuse solar (3)

Removed:

In Eq. (3), the next timestep is designated by the superscript n,
and the previous timestep is n-1. T}, is the indoor temperature
at the n™" timestep, dt is the duration of one timestep, T’ is

the outdoor temperature at the n'" timestep, T/},

temperature in Kelvin at the previous timestep. EZVAC is the amount
of thermal energy in watts added to or removed from the building
by the HVAC during the n™ timestep. Q"5 csoiar A0 Q" fiicesorar ATE
the amount of direct and diffuse solar radiation respectively in
watts per square meter during the n™® timestep. The coefficients

n
outdoor
is the indoor
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Fig. 5. Illustration of setpoint generation method with August 1, 2020 data. (a) Adaptive setpoint bounds based on outdoor temperature only. (b) Setpoints based on the
probability of occupancy and outdoor temperature at a given time. (c) The randomly generated occupancy status, indicated by shaded regions, alongside the probability of
occupancy at that time, using the method described in Section 2.5. (d) Setpoints that use the adaptive bounds when occupied, and occupancy probability when unoccupied.

Table 1

Thermal model & indoor temperature prediction constants from the linear regression.
Constant Value
Cy [1/s] 5.31x107%
C, [K/(kWh*s)] 0.0108
3 [(K*m?)/(kWh*s)] 527x1077
C4 [(K*m?)/(kWh*s)] 9.58x107%7

Table 2

Simulation results for a typical summer week using the demand-based pricing strategy.

Ci, Gy, C3, & C4 are constants shown in Table 1, which are deter-
mined using a linear regression of historical indoor temperature,
HVAC energy, and weather data generated in EnergyPlus for the
specific building model.

For the training dataset, the model overall RMS error was
8.62x107* K per 5 min timestep. Thus, these constants are able
to produce a sufficiently accurate prediction of indoor temperature
for the next timestep.

Pre-cooling optimization Temperature setpoint method Cost [$] Electricity [kWh] Fraction of occupied time within 90 % comfort zone [%]
No Fixed (baseline) 27.89 61.19 42.29
Yes Occupancy 13.91 28.85 98.44
No Occupancy 13.92 28.86 98.44
Yes Adaptive 14.25 30.18 99.93
No Adaptive 14.38 30.34 99.93
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Fig. 6. Percentage of energy cost savings for the consumer comparing the baseline fixed, non-optimized controller to alternative controller strategies under different pricing

schemes.

In the optimization, the amount of energy transfer must remain
within the capabilities of the HVAC system. The energy transfer is
negative when cooling to represent thermal energy removal, and
positive when heating such that thermal energy is added. Eq. (4)
ensures that no heating occurs when in cooling mode and vice
versa.

0< |EHHVAC| < |Envac x| (4)

The indoor temperature setpoint associated with the optimal
energy consumption is computed using Eq. (3) by manipulating
E:,VAC Ejvac to minimize the cost function in Eq. (5).

CostFunction = X ( Electricity Price x Epy ¢

()
The predicted optimal indoor temperature, Tj,4,, iS constrained
using Eq. (6) to stay within the setpoint bounds computed using

the adaptive thermal comfort or the occupancy-based methods,
limiting the amount of variation of Ejy,in Eq. (5).

T <Thpoor< Th

comfort lower indoor = * comfort,upper

(6)

2.8. Cases simulated

Three methods are used to determine the allowable tempera-
ture constraints. “Occupancy” uses the current occupancy and his-
toric probability described in Section 2.6 along with the adaptive
thermal comfort model to determine HVAC setpoints. To bench-
mark the HVAC control strategy proposed in this work, existing
HVAC control strategies are simulated for comparison. “Adaptive”
refers to the strategy discussed in Section 2.4 based on the adaptive

thermal comfort model for the 90% comfort zone without occu-
pancy information. “Fixed” uses constant setpoints between
20 °C and 23 °C. “Optimization” refers to the method described
in Section 2.7. When simulating without the optimizer, the tem-
perature constraints are the setpoints, such that energy and cost
savings can be gained from more effective thermal comfort man-
agement but no precooling or load shifting can occur.

Each of the setpoint generation methods is simulated for the
building model in Section 2.2 with each of the electricity tariff sys-
tems in Section 2.3 for a total of 20 simulations.

Thermostat setpoint methods.

. Baseline: Fixed, no optimization.
. Occupancy, with optimization.

. Occupancy, no optimization.

. Adaptive, with optimization.

. Adaptive, no optimization.

U WN =

Electricity tariff systems.

. Simple.

. Time-of-use.

. Wholesale-based.

. Extreme event time-of-use.

AW N =

w

. Results and discussion

The simulations are shown in Table 2 and are categorized by
whether or not the optimizer is used to precool the space and
the type of temperature constraint/setpoint.
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The “occupancy” and “adaptive” simulations produce relatively
similar results with demand-based pricing. The weekly cost ranges
from $13.91 to $14.38, the electricity consumption ranges from
30.34 kWh to 28.85 kWh, and the adaptive comfort condition is
met for above 98% of the occupied time. All of the proposed
improved HVAC control strategies reduced cost, electricity con-
sumption, and discomfort compared to the “fixed” simulations.
The fixed setpoint causes thermal discomfort by over-cooling
when the outdoor temperature is high, which can be seen in the
behavior of the thermal comfort model compared to the fixed set-
points in Fig. 3.

These findings suggest that using occupancy data with an opti-
mizer over a two hour horizon reduces the electricity cost and con-
sumption compared to an adaptive control strategy without
optimization and occupancy consideration. The effect of pre-
cooling is relatively small because under typical conditions the
optimizer predicts that pre-cooling by amounts less than 0.5 °C
is most efficient. However, small fluctuations are not reflected in
the actual indoor temperature because of HVAC equipment opera-
tion cycle time controls which operate on 0.9 °C cycles. Given the
thermal mass of the building, pre-cooling to the coldest allowable
temperature is often less efficient than simply keeping the building
close to the maximum allowable temperature because the addi-
tional HVAC operation and temperature difference is not justified.
The average price change with wholesale-based pricing between
any two timesteps is 3.86 %, but the price can vary between
$0.01 and $1.15 over one day. The two-hour optimization horizon
is not long enough to consider price fluctuations over a longer per-
iod, such as pre-cooling during the morning then allowing the
house to gradually warm up during the afternoon.

Time-of-Use

Simple
Extreme Event

Baseline for all cases: 61.19 k\Wh

Occupancy
Yes No

Adaptive
Yes No

Fig. 7. Amount of electricity saved compared to the baseline fixed, non-optimized controller using alternative controller strategies and different pricing schemes.

Adaptive

These general patterns occur for all of the different pricing mod-
els. The economic and energy-saving impact for the simulated
week of the four different pricing schemes with each thermostat
model are compared in Figs. 6 and 7, respectively.

Key trends observed are consistent across all pricing cases. Over
40 % cost savings for the homeowner are attained using adaptive
setpoints. Pre-cooling optimization has relatively small savings
potential because the optimizer determined that pre-cooling more
than 0.5 °C is less efficient than staying close to the adaptive or
occupancy-based setpoint bounds.

Simulations using wholesale-based, time-of-use, simple, and
extreme event pricing demonstrate the effect of the pricing scheme
in incentivizing changes in energy consumption habits. With the
simple and tiered rate pricing, there were similar reductions in
price and electricity consumption between the different control
strategies compared to the wholesale based price. Although the
cost saving percentage was lower, the extreme event pricing
showed a large total savings potential - reducing the cost from
$206.66 with a fixed thermostat, to $118.77 with an adaptive ther-
mostat and $106.40 using occupancy. The outdoor temperature is
the highest between 3 PM and 10 PM, the price is highest between
4 and 5 PM, 5-6 PM, and 7-9 PM, and average probability of occu-
pancy during the extreme-price hours is 61 %, which combines to
limit the potential for energy saving using adaptive, occupancy,
and optimization. Thermal comfort changes by less than 0.1 %
across the different tariff systems.

The results comparing the pricing schemes may give the
appearance that the demand-based or extreme-event pricing is
not as economically rewarding for consumers. While demand-
based pricing results in the greatest reduction in energy consump-
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Fig. 8. Linear fit of electricity price to the amount of energy consumption at each timestep for the different control models with wholesale price driven electric rates. Note
that the occupancy with and without optimization overlap so they were shown as a single line.

tion, it causes the customer to pay about two percentage points
more over the time-of-use plan. The cost increase using
wholesale-based pricing could be caused by the fact that when
outdoor temperature is far from the comfort zone and probability
of occupancy is high, demand tends to increase across the entire
grid, driving up the wholesale price. During these times, pre-
cooling is not sufficient and the HVAC in the model building is
required to operate more frequently.

The benefit of optimization and occupancy-based control can be
better appreciated at the utility scale. The best fit of electricity
price and amount of consumption for all timesteps for the one-
week simulation under each control strategy is plotted in Fig. 8.

Under a wholesale-based tariff system, lower electric consump-
tion at higher electric price is shown with all of the adaptive and
occupancy-based simulations. A smaller initial electricity price
represents an offset due to times when energy usage is very small,
indicating that timesteps where price was higher generally had lit-
tle or no energy usage. In systems where price is proportional to
the ratio of energy demand versus production capacity, adding
optimization to an adaptive system improves load shifting from
high demand to low demand times, which causes a decrease in
slope, particularly for adaptive with optimization. Occupancy con-
sideration decreases the total energy consumption by increasing
the timesteps in which little to no energy is used, explained via
the increased price axis intercept for all of the novel control strate-
gies. The probability of a better correlation is below 0.2 %, indicat-
ing a highly significant result. If widely implemented, these
features can decrease peak load across the grid, allowing for more
efficient production and enhanced stability of the electric grid dur-
ing extreme weather events.

4. Conclusion

This work develops a simulation framework to implement
advanced controls in EnergyPlus for a single building model. The
simulation results demonstrate that an adaptive and occupancy-
based HVAC control strategy can reduce cost, electricity consump-
tion, and discomfort for building occupants compared to a conven-
tional always on thermostat. All of the novel control strategies
reduce electricity costs by approximately half. Users can experi-
ence significant benefits with adaptive-based HVAC control alone,
which may be easier to implement because it only requires adding
the current outdoor temperature and a simple mathematical for-
mula. In practice, outdoor temperature and solar radiation can be
obtained by Internet-connected controllers from local weather
forecasts. Depending on the cost of controllers using pre-cooling
optimization and occupancy, these strategies may not yield signif-
icant economic incentives for the end user over basic adaptive con-
trol. Around 5 % of additional savings can be attained using
optimization and occupancy consideration, the exact amount vary-
ing based on pricing rate schedule. At utility scale, optimization to
reduce costs in a wholesale price based tariff system can shift
energy consumption away from peak times, helping to reduce
the burden on the electrical grid. This work can benefit research
related to building energy management, HVAC control, smart grids,
and transactive energy by providing routes to more efficient elec-
tricity consumption by combining wholesale-based prices, opti-
mization, and thermal comfort considering occupancy.

This work simulated a single random occupancy case with an
average occupancy rate of 63 %, so the setpoints can be relaxed
only 37 % of the time. Under these conditions, occupancy consider-



ation reduced energy consumption and cost by an additional 5 %
over the adaptive-based strategy alone. Future studies could
expand upon this scenario by demonstrating the effect of
occupancy-based control on buildings with more consistent occu-
pancy patterns or fewer occupied hours, situations where there is a
larger potential for energy savings.

This work showed significant benefits to different HVAC control
strategies for one middle-income single-family residence. In order
to understand the applicability of these methods to communities,
another direction for future work is developing more diverse build-
ing, appliance, and occupancy models. Expanding this simulation
framework to synchronize multiple buildings can reveal the effect
of different electricity tariffs and HVAC control on grid-scale
demand trends and different demographics, especially low-
income households for whom energy-saving controllers and other
retrofits may not be affordable.
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