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Highlights:  13 

• A deep-learning (DL) model was developed to simultaneously predict flashover with 14 
lead time.  15 

• Synthetic temperature data for more than 17 000 fire cases were used to develop the 16 
DL model. 17 

• Dimension-wise Class Activation Map is utilized to interpret models for increasing 18 
trustworthiness of the DL model. 19 

• The proposed model was tested on 11 full-scale experimental data to assess its 20 
prediction capability in real fire scenarios. 21 

 22 
Abstract: 23 

This paper presents the development of an explainable machine learning based flashover 24 
prediction model, named xFlashNet. Synthetic temperature data from more than 17 000 fire 25 
cases are used for model development. The effect of missing data due to heat detectors to 26 
elevated temperature from the fire scene is also considered. xFlashNet utilizes multi-residual 27 
convolutional layers to effectively learn the indicative temperature features and dimension-28 
wise class activation map (dCAM) to interpret the model decision. The proposed model is 29 
benchmarked against three current-state-of-the-art models. Results shows that the proposed 30 
model outperforms the benchmark models and it has an overall accuracy of about 92.9 %. 31 
Based on dCAM, the model decision is analyzed. Depending on the location of the fire and the 32 
heat detector operating conditions, the proposed model shows the discriminative region of the 33 
temperature inputs which influence the model to make the decision. In addition, model testing 34 
against real fire data is conducted. It is believed that this present work contributes a step 35 
forward to bring trustworthy ML systems to fire safety applications and to enhance situational 36 
awareness for firefighting safety that can help reduce firefighter injuries and deaths. 37 
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1. Introduction 1 

Current home structure fires are more hazardous. In a recent study [1], it is experimentally 2 
shown that flashover occurs in a much shorter time from a fire in a modern room consisting of 3 
synthetic materials. By definition [2], flashover is an extreme fire phenomenon in which a local 4 
fire rapidly transitions into full room involvement. Physically, almost all combustible materials 5 
in an enclosed space are ignited simultaneously. In this situation, the resulting average 6 
temperature of the enclosed space can exceed 800 °C from approximately 100 °C in less than 7 
30 seconds [3]. At this point, personal protective equipment is highly unlikely to provide 8 
effective protections to the firefighters and they must retreat before the flashover occurs. Based 9 
on previous studies [2, 3], it is well established that if the average temperature of the hot gas 10 
layer reaches approximately 550 ℃ to 650 ℃ and/or the average incident heat flux onto the 11 
floor surface is about 20 kW/m2 to 25 kW/m2, flashover is likely to occur. However, this kind 12 
of information is difficult to be obtained on a fire scene. In fact, firefighters can only rely on 13 
their experience to recognize flashover indicators, such as rollover [4], to avoid flashover. 14 
Since the fire growth the fire scene is complex and highly dynamic and with the fact that the 15 
onset of flashover to yield a full room involvement takes less than 30 seconds, if the firefighters 16 
are unable to recognize the potential occurrence of flashover in advance, their lives will be in 17 
great danger. 18 

In the past twenty years, attempts were made to develop models that can be used to predict the 19 
onset of flashover. For example, Babrauskas [3] presented an empirical formula to predict the 20 
occurrence of flashover using a simple combustion model. Mccaffrey et al. [5] developed a 21 
simple method for estimating the likelihood of the occurrence of flashover in an enclosure. 22 
Kim and Lilley [6] found that the major influential factors for flashover in a space are the fire 23 
growth rate and the ventilation opening area. However, these empirical formulas were limited 24 
to simple geometric configurations with a single compartment and a door-like opening. In order 25 
to accommodate multi-compartment structures, Jahn [7] used computational fluid dynamic 26 
(CFD) based fire simulation model to predict the future temperatures. The transient heat release 27 
rate of the fire was estimated using real-time temperature readings from sensors. But there were 28 
two major problems. The first problem is that the exact fire location and the interior door 29 
opening conditions are needed. However, in real fire scenarios, this kind of information is 30 
generally unknown. The second problem is that the CFD based approach requires extremely 31 
long computational time and the use of high performance computers. It was noted from [7] that 32 
a single calculation takes more than five minutes to complete. For that, it can be seen that the 33 
traditional prediction methods are not numerically efficient at providing real-time decision-34 
making assistance to firefighters in complex fire scenarios. 35 

Recent studies show that the machine learning (ML) paradigm can be a promising tool to 36 
overcome the numerical challenges from real-life practical engineering applications. This 37 
robust technology has been used in fault detection [8], human activity recognition [9], structural 38 
health monitoring [10] and other engineering field [11,12]. These ML-based models are 39 
formulated with close-form mathematical expressions and since these models are always 40 
trained/developed beforehand, they are easy to use and are extremely numerically efficient. In 41 
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the fire research community, the ML paradigm has also been utilized in various prediction 1 
tasks. Wang et al. [13] proposed a support vector regression to recover missing temperature in 2 
the room of fire origin using temperature information from other rooms. Wu et al. [14] used a 3 
long-short term memory to estimate the location and size of the original fire source in a tunnel. 4 
Kou et al. [15] developed a model based on gated recurrent unit to determine the fire location 5 
and its growing intensity in complex building structure. Fu et al. [16] utilized an attention based 6 
bi-directional long short-term memory to predict future occurrence of flashover in a single-7 
story family home. Zhang et al. [17] proposed a stacked long short-term memory to predict the 8 
onset of flashover in a 0.5 m by 0.5 m compartment. Results from these studies [13-17] 9 
demonstrated that if the ML-based model is designed properly, it can effectively learn the 10 
indicative patterns from the data and is capable of providing reliable predictions in less than a 11 
second without the need of prior knowledge about the fire location and other boundary 12 
conditions. 13 

Despite the numerical advantages from [13-17], there is one sufficient drawback of using the 14 
ML paradigm and that is, the models are not explainable. Often times, it is considered as a 15 
black box. It is well understood that being able to explain the model decision is important for 16 
practical engineering applications, especially when the potential applications involve lives. 17 
Also, model interpretability provides traceable information to scientists or engineers to 18 
understand the underlying reasons why a model is making such a correct or a wrong decision. 19 
In this study, an explainable ML-based flashover prediction model is proposed and the model 20 
interpretability is introduced using a technique called dimension-wise Class Activation Map 21 
(dCAM) [18]. Unlike the traditional CAM [19] in which it can only extract spatially average 22 
information in the temporal domain, dCAM offers discriminative information in both spatial 23 
and temporal domains for the multivariate series. Specifically, when a decision is made by the 24 
ML-based model, the model also outputs a weight for each element of the input sequence. It is 25 
believed that this research work contributes a crucial step to enhance explainable ML and to 26 
bring trust for utilizing ML-based technologies in fire safety problems.  27 

The rest of the paper is organized as follows. Section 2 describes the data collection process 28 
for temperature data involving flashover using a learning-by-synthesis approach, numerical 29 
setup of the problem, data behaviors, data preprocessing, and potential challenges. Section 3 30 
presents the development of the explainable deep learning based flashover prediction model 31 
and the formulation of the dimension-wise class activation map. Then, Section 4 provides the 32 
model assessment against current state-of-the-art models, parametric studies on the effect of 33 
missing temperature to the model performance, and model interpretability for visualizing the 34 
discriminant regions with dCAM. Finally, Section 5 presents the conclusions of this study. 35 

2. Flashover Temperature Data Collection Process 36 

Training a ML model using a deep learning algorithm requires a large amount of relevant data. 37 
This requirement is due to the fact that deep learning algorithms need data to extract useful 38 
features to carry out the prediction task. However, obtaining temperature data from real-life 39 
full-scale fire tests in a residential home [20] involving flashover as shown in Fig. 1a is 40 
challenging, costly, and time-consuming. It was shown in [13] that approximately 3000 fire 41 
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cases are needed to develop a converged model for a simple three-compartment building 1 
structure. For that, in order to obtain a sufficient amount of temperature data for the 2 
development of a ML based flashover prediction model, the learning-by-synthesis approach 3 
[21] was used in this study. Basically, this approach relies on utilizing a fire simulation 4 
computer program to conduct numerical experiments with various fires such that a synthetic 5 
temperature dataset can be obtained for model development.  6 

CFAST Data generator (CData) [22] was used to obtain the desired amount of temperature data 7 
from various fire and venting opening conditions in a residential home. The description of the 8 
residential home is provided in the subsequent section and an example of a simulation run is 9 
shown in Fig. 1b. CData uses CFAST as the simulation engine. CFAST is a two-zone fire 10 
model that predicts the thermal environment caused by a fire within a compartmented structure. 11 
In general, CFAST has been validated against more than 15 other sets of full-scale experiments 12 
[23] with peak heat release rate (HRR), compartment aspect ratio (i.e., compartment length 13 
against ceiling height), and global equivalence ratio, ranging from approximately 50 kW to 14 
15 700 kW, 0.4 to 4.9, and roughly 0 to a value larger than 1 for a wide range of ventilation 15 
factors, respectively. For the residential home considered in this study, a separate validation 16 
case study (gas burner) based on the settings from [20] was conducted and the absolute error 17 
between the predicted upper layer gas temperature from CFAST and the experiment 18 
measurements was about 6 %. From that, CFAST is reliable to generate synthetic temperature 19 
data to facilitate the current study. 20 

 21 

Fig. 1. a) Screenshot of the full-scale experiment from the residential home [20] and b) 22 
CFAST simulation run for the residential home. 23 

2.1 Numerical Setup 24 

Figure 2a shows a single-story residential home. As seen in the figure, there are seven different 25 
compartments: a kitchen (K), a dining room (DR), a living room (LR), three bedrooms (B1, 26 
B2, B3), and a hallway (HW). The overall approximate interior dimensions of the structure are 27 
13.92 m (x-direction) × 7.7 m (y-direction) with a ceiling height of 2.44 m. The detailed 28 
dimensions associated with each of the compartments are shown in Fig. 2a. The walls and 29 
ceiling of each compartment are constructed using gypsum wallboard and the floor material is  30 



5 
 

 1 
Fig. 2b shows the relative position of the openings and the heat detectors in different 2 
compartments. For the openings, there are two exterior doors (front and back), three bedrooms 3 
doors, and seven windows (A through G). All windows are constructed using 3-mm single-4 
layer float glass. The vent sizes and sill heights are summarized in Table 1. There is one heat 5 
detector in each compartment and they are located approximately 0.02 m down from the ceiling. 6 
The heat detectors are used to collect the temperature near the ceiling in each compartment. 7 

Table 1. Summary of approximate vent size and sill height (unit in m) [20]. 8 

Vents Front Back A B C D E F G 
Tall 2.05 2.05 1.02 1.46 1.46 1.46 1.46 1.46 1.46 

Width 0.89 1.78 0.85 0.86 0.86 0.86 0.85 2.67 1.78 
Sill Height 0 0 1.07 0.61 0.61 0.61 0.61 0.61 0.61 

 9 
2.2 Fire Conditions 10 

Three fire effects, namely fire growth, fire location, and nearby-item ignition, are taken into 11 
account to specify the fire conditions. Firstly, the fire growth of the first ignited item is 12 
described by a four-stage HRR curve. Fig. 3a shows that the fire undergoes a linear fire growth, 13 
t-squared fire growth, peak, and a decay stage. Three furnishing items, such as a sofa, cotton-14 
a based mattress, and a polyurethan based mattress, are considered. Table 2 shows the 15 
corresponding values for the smoldering to flaming fire (QL), peak HRR (Qmax), time to 16 
transition (tL), time to peak HRR (tP1), peak time (tP2 – tP1), and decay time (tE – tP2) and these 17 
values are determined based on the reported experimental work from [24, 25]. In general, this 18 
fire configuration provides different fires with the growth rate ranging between slow, medium, 19 
and fast.   20 

 

Fig. 2. Overview of a) the single story structure and b) openings with heat detectors (HD). 
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  1 
 Fig. 3. a) Four-stage fire growth curve and b) an example of a fire case.  2 

Table 2. HRR parameters for burning items. 3 

QL (kW) Qmax (kW) tL (s) tP1 (s) tP2-tP1 (s) tE-tP2 (s) 
10 – 30 270 – 3500 50 – 150 50 – 300 0 – 500 100 – 1070 

 4 
Secondly, there is one fire in each fire case. The fire is assumed to be initiated on the floor 5 
surface in either LR, K, or B1 and the fire is located in the middle of these compartments about 6 
0.5 m away from the left wall. Thirdly, in order to account for more complex fire growth 7 
behaviors, ignition up to two additional fires is considered. In CFAST, two targets are placed 8 
about ± 0.725 m (in y-direction) away from the first fire with its normal facing the first fire. 9 
The ignition criterion is determined based on the incident heat flux onto the targets and the 10 
value of the ignition heat flux ranges from 20 kW/m2 to 50 kW/m2. Once the ignition criterion 11 
is met, a secondary fire occurs. This fire is also described by the four-stage fire curve and Fig. 12 
3b shows an example of multi-item ignition. It is expected that this fire setting can offer 13 
simulation cases with various fire growth behaviors. It should be noted that the noticeable 14 
change of HRR curve from the first fire is discussed in below section. 15 

2.3 Vent Opening Conditions 16 

Two types of vent-opening conditions are considered. The first type is the time-trigger vent 17 
opening condition, which is applied to the front door and three bedroom doors. For the current 18 
study, each of these doors is initially closed. At the beginning of the numerical experiment, 19 
each door has 50 % chance to be opened. The intents of this type of vent opening condition are 20 
to mimic simple door opening events due to evacuation and to obtain temperature data that 21 
captures various effects due to air exchange between different compartments and oxygen 22 
availability.  23 

The second type is the temperature-trigger setting and it allows windows to be arbitrarily 24 
opened when a temperature threshold is reached. This is because due to temperature or a flux 25 
gradient [26], a window may crack and eventually break out creating an opening to the outside 26 
environment. Based on [27], breakage of a single-pane float glass is experimentally observed 27 
at temperature between 100 °C and 200 °C. In CFAST, a target is placed at the top of a window 28 
to create the window breakage phenomenon. When the temperature of a target reaches a 29 
threshold, the corresponding window will then be opened. As shown in Fig. 3b, the HRR drops 30 
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at about 500 s due to lack of oxygen in the fire compartment. The window from that 1 
compartment breaks at about 800 s. It can be seen that when fresh air enters the compartment, 2 
the HRR from the first fire increases. It is believed that the vent opening settings help to account 3 
for simulation cases with different fire growth behaviors. Table 3 provides the summary of the 4 
parameters for data generation in this study. Uniform sampling function is used to generate the 5 
fire cases. 6 

Table 3. The summary of parameters considered in the data generation process. 7 

 Fire Conditions Vent Opening Conditions 

Parameters Fire location HRR 
Nearby-item 

ignition 
criterion 

Probability of 
door opening 

Triggering 
temperature for 

window 
opening 

Range of 
Values 

Living Room, 
Kitchen, 

Bedroom 1 

See 
Table 2 

20 kW/m2 - 50 
kW/m2 

50% 100 °C – 200 °C 

 8 

2.4 Data Behavior and Data Preprocessing  9 

Sixty-thousand numerical experiments with a wide range of fire and vent opening conditions 10 
are conducted. Of these experiments, there are only 17 365 fire cases that have reached the 11 
flashover condition. Based on the literature from [2,3], it is assumed that the flashover 12 
condition is met when the upper layer gas temperature of the compartment reaches 600 °C. 13 
This flashover condition also being used in various flashover prediction studies [3,5,13]. The 14 
duration of each numerical experiment is 3600 s with an output temperature interval of 5 s. 15 
Temperature profiles for each heat detector (HD) and the upper layer gas temperature from the 16 
room of fire origin are recorded. It should be noted that in order to ensure the data balance in 17 
between non-flashover and flashover data, only the fire cases with the occurrence of flashover 18 
are being used. This is because flashover fire cases have both the non-flashover and flashover 19 
data whereas the non-flashover fire cases only have the non-flashover data. 20 

Fig. 4a shows the HD temperature of each compartment from a medium fire growth case that 21 
is shown in Fig. 3b. The second and third items are ignited at around 300 s, and 400 s, 22 
respectively and have relatively different fire growth rates. The upper layer temperature from 23 
B1 is denoted as an indicator because this temperature profiles is only used for labeling the 24 
data and is not used for model training. The visualization of the simulation case can also be 25 
seen in Fig. 1b. The front door and the B3 door are always closed. As seen from the temperature 26 
profiles in Fig. 4a, the heat from B1 spreads across the hallway, then to LR and B2, and to the 27 
dining room and kitchen. This set of temperature profiles is used to described how the data 28 
instances for each flashover fire case are formulated. 29 
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 1 

Fig. 4. a) Temperature profiles for a flashover fire case and b) an illustration of a sliding 2 
window with a window size of w. 3 

In order to carry out model training, instances need to be extracted from each flashover fire 4 
case. Two parameters, namely sliding window and lead time, are considered for instance 5 
extraction. The sliding window is used to facilitate real-time continuous predictions. Fig. 4b 6 
shows an illustration of a data sequence with a sliding window of size w. For that, a single input 7 
instance, 𝐼𝐼𝑒𝑒 , consists of temperature data from each HD and it is denoted as 𝐼𝐼𝑒𝑒 =8 
[𝑇𝑇𝑖𝑖−𝑤𝑤

𝑗𝑗 , … ,𝑇𝑇𝑖𝑖
𝑗𝑗] for 𝑗𝑗 = 1,… ,𝐷𝐷 where D is the total number of HD. Because firefighters need 9 

additional time to react, a lead time of 30 s is considered. With that, the model uses input 10 
instances up to present time to determine if there is a potential occurrence of flashover in 30 s. 11 
Given that, the input instance is rewritten as 𝐼𝐼𝑒𝑒 = [𝑇𝑇𝑖𝑖−𝑤𝑤−𝑙𝑙𝑙𝑙

𝑗𝑗 , … ,𝑇𝑇𝑖𝑖−𝑙𝑙𝑙𝑙
𝑗𝑗 ] where lt is the lead time. 12 

In this study, the model performs a binary classification task and this means that the model 13 
predicts if there is no flashover or if there is a flashover in 30 s. For that, two separate sets of 14 
instances are needed to be obtained. Given the lead time of 30 s and the output temperature 15 
interval of 5 s, the current setting yields six flashover instances. Since the flashover moment 16 
(FO) is known for each flashover fire case, the flashover instance for 5 seconds before flashover 17 
is 𝐼𝐼𝐹𝐹𝐹𝐹−5𝑒𝑒 = [𝑇𝑇𝐹𝐹𝐹𝐹−5−𝑤𝑤

𝑗𝑗 , … ,𝑇𝑇𝐹𝐹𝐹𝐹−5
𝑗𝑗 ]  and the six flashover instances are 𝐼𝐼𝐹𝐹𝐹𝐹−𝑖𝑖𝑒𝑒  where 𝑖𝑖 =18 

30, 25,… , 10 ,5. Since it is important to maintain data balance in between flashover and non-19 
flashover data, six non-flashover data are obtained for each flashover case and they are 𝐼𝐼𝐹𝐹𝐹𝐹−𝑖𝑖𝑒𝑒   20 
where 𝑖𝑖 = 60,55, … ,40 , 35. Therefore, the entire dataset has 208 380 instances (17 365 x 12). 21 

2.5 Potential Challenges 22 

In real-life fire scenarios, HDs cannot survive at elevated temperature and will be destroyed 23 
well below the flashover temperature conditions. Based on NFPA 72 [28], heat sensing fire 24 
detectors are categorized into seven different classes with temperature classifications ranging 25 
from low to ultra-high, and the maximum operational temperature ranges from approximately 26 
29 °C to 302 °C. Fig. 5a shows the zoomed-in temperature profiles as shown in Fig. 4a and 27 
Fig. 5b shows the identical figure with a temperature cut-off at 300 °C. As seen in Fig. 5b, the 28 
lower the maximum operational temperature of the HDs, less temperature signals are available. 29 
With less temperature information, the prediction of the potential flashover occurrence will 30 
become more difficult. It can be seen that in addition to being able to discriminate temperature 31 
data with high importance, the model also needs to have learning capabilities to correlate 32 
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complex temperature information from other compartments to flashover conditions in the room 1 
of fire origin. Therefore, a parametric study is conducted to understand the effect of maximum 2 
operational temperature to the model performance.  3 

 4 
Fig. 5. a) Zoom-in plot of Fig. 4a and b) temperature profiles of the same case with HD 5 

maximum operational temperature at 300 °C. 6 

3. Development of Explainable Flashover Neural Network Model (xFlashNet) 7 

3.1 Model structure 8 

Fig. 6 shows the overall model structure of xFlashNet (explainable Flashover Neural network 9 
model). The model consists of two main components. One component is a neural network to 10 
correlate temperature data for predicting flashover events. The other component involves 11 
utilizing the Class Activate Mapping (CAM) method to provide model interpretability for the 12 
predictions and CAM is a post-processing method in which it does not participate in the training 13 
process.  14 

The model takes an input of multivariate time series, 𝐼𝐼𝑖𝑖 ∈  RD×N, where i is from 1 to M for M, 15 
D, and N being the number of flashover cases, the number of heat detectors, and the length of 16 
the temperature instance, respectively. The model has three residual blocks. Fig. 6b shows the 17 
layer structure of the residual block and as seen, it contains three one-dimensional convolution 18 
(1D Conv) layers and a residual connection. The use of 1D Conv is to extract features from 19 
input instances [19]. The residual connection is included to stabilize model training and to 20 
allow deeper networks from vanishing gradient [29]. Mathematically, the output features, ℎ, 21 
from the first and the second convolutional layer, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, is:  22 

ℎ𝑖𝑖 =  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵𝑖𝑖(ℎ𝑖𝑖−1))   for    i = 1 and 2        (1) 23 

with 24 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵𝑖𝑖(ℎ𝑖𝑖) = 𝐵𝐵𝐵𝐵(𝑊𝑊𝑖𝑖 ⊗ ℎ𝑖𝑖 + 𝑏𝑏𝑖𝑖)              (2) 25 

where ℎ0 is the input information (x), b is the bias vector, W is the weight matrix, ⊗ is the 26 
convolution operator/kernel, and BN is the batch normalization. BN is used to normalize the 27 
extracted features from the convolution in the same scale. And ReLU (rectified linear unit 28 
activation function) is utilized to include nonlinearity for feature activations (i.e., to determine 29 
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the importance of the features). The last convolutional layer extracts higher level features and 1 
it is concatenated with the original input information from the beginning of the residual block: 2 

ℎ3  =  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵3(ℎ2) + ℎ0)             (3) 3 

The kernel size (𝑙𝑙𝑖𝑖) and stride are determined based on numerical experiments and they are [7, 4 
5, 3] and [1, 1, 1], for the first, second, and third convolution layers, respectively. The extracted 5 
features from the first residual block are passed onto the subsequent residual blocks. The 6 
convolution setting for each block is identical except the number of kernels. The convolution 7 
from the first residual block has the kernel number of 10 and the convolution from the second 8 
and third residual blocks have the kernel number of 20. The increase of kernel number in later 9 
convolution layers is to allow the model to remember a larger number of higher level features 10 
which are generally more useful for predictions. 11 

 12 
Fig. 6. a) Overall model structure of xFlashNet, b) structure of a residual block, and c) 13 

information flow to obtain the dimension-wise class activation map. 14 

As shown from Fig. 6a, the feature representation is then passed to a global average pooling 15 
(GAP) layer. Basically, GAP takes the average of the output feature representation from the 16 
last residual block, ℎ3 , in the temporal domain and it is obtained based on the following 17 
expression:  18 

𝑔𝑔(𝑘𝑘) =  1
𝑁𝑁∗𝐷𝐷

∑ ∑ ℎ3(𝑖𝑖, 𝑗𝑗, 𝑘𝑘)𝐷𝐷
𝑖𝑖

𝑁𝑁
𝑗𝑗        for k = 1, 2, …, K3                         (4) 19 

where 𝑔𝑔 is GAP output feature representation. It should be noted that the empty dimension 20 
indicates the number of flashover fire cases in the training subset and the data assignment is 21 
discussed in next subsection. Finally, the fully connected layer takes the feature representation 22 
and a prediction, 𝑝𝑝, is given by: 23 

𝑝𝑝 =  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�∑ (𝑤𝑤𝑘𝑘 ∗ 𝑔𝑔𝑘𝑘𝐾𝐾3
𝑘𝑘 + 𝑏𝑏𝑘𝑘�                                        (5) 24 

where 𝑤𝑤𝑘𝑘 and 𝑏𝑏𝑘𝑘  are the weight and bias of the fully connected layer, respectively. Softmax 25 
activation function is used because this is a binary classification task such that the outputs  are 26 
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probabilities ranging from 0 to 1. The final output for each fire case has an output dimension 1 
of 1 x 2 (i.e., 𝑦𝑦 = [0.17, 0.83]). A prediction threshold of 0.5 is used to determine if the final 2 
output is considered as non-flashover or flashover. Given 𝑦𝑦 = [0.17, 0.83], the prediction is 3 
considered as flashover. 4 

3.2 Formulation of Dimension-Wise Class Activation Map (dCAM) 5 

Fig. 6c shows the illustration on how a dimension-wise class activation map (dCAM) is 6 
obtained. In principle, a dCAM can be obtained for each input instance and it is shown in the 7 
figure that the dCAM can be used to understand the most discriminative parts of the 8 
multivariate temperature information (see the solid red boxes) that the model tends to focus to 9 
make a prediction. It should be noted that the determination of the dCAM is a post-processing 10 
process and the dCAM is obtained using the feature representations from the last residual block 11 
and the weights from the fully connected layer from the final xFlashNet. The primary process 12 
for obtaining the dCAM is presented below and readers who are interested in the derivation 13 
and detailed explanation of dCAM can refer to [18]. 14 

Five steps are involved in order to obtain dCAM for each instance. Firstly, for a given data 15 
instance 𝐼𝐼𝑖𝑖

𝑗𝑗 with i being the index of the temperature sequence (from 1 to 60) and j being the 16 
index of the HD (from 1 to 7), a new input structure 𝐶𝐶(𝑰𝑰) is formed:  17 

𝐶𝐶(𝑰𝑰) = �
𝐼𝐼𝐷𝐷 𝐼𝐼1 ⋯ 𝐼𝐼𝐷𝐷−2 𝐼𝐼𝐷𝐷−1
⋮ ⋮ ⋯ ⋮ ⋮
𝐼𝐼2 𝐼𝐼3 ⋯ 𝐼𝐼𝐷𝐷 𝐼𝐼1
𝐼𝐼1 𝐼𝐼2 ⋯ 𝐼𝐼𝐷𝐷−1 𝐼𝐼𝐷𝐷

�                                        (6) 18 

𝐶𝐶(𝑰𝑰) has a dimension of D x D x N and as seen in Eqn.6, the first element of each row is offset 19 
by one HD. The inclusion of an extra dimension in 𝐶𝐶(𝑰𝑰), rather than only using 𝐼𝐼𝑖𝑖

𝑗𝑗, is to enable 20 
the determination of the data importance in spatial domain and offsetting the elements of each 21 
row allows subsequent random permutation calculations (an important step to find out the data 22 
importance in temporal domain) without having duplicate inputs. The discussion on the random 23 
permutation calculation is provided in the third step.  24 

Secondly, a regular class activation map (CAM) is obtained for each sequential element of 25 
𝐶𝐶(𝑰𝑰) and the CAM is obtained as:  26 

𝐶𝐶𝐶𝐶𝐶𝐶�𝐼𝐼𝑖𝑖
𝑗𝑗� = ∑ 𝑤𝑤𝑘𝑘

𝑐𝑐 ∗ 𝑔𝑔𝑘𝑘(𝐼𝐼𝑖𝑖
𝑗𝑗)𝐾𝐾3

𝑘𝑘                                               (7) 27 

where 𝑔𝑔𝑘𝑘  is feature representations from Eqn.4 and 𝑤𝑤𝑘𝑘
𝑐𝑐  is the weight matrix from Eqn.5 that 28 

specifically belongs to the prediction class, c, which is non-flashover or flashover. It should be 29 
noted that the activated weights for the two different classes are different. From Eqn.7, one can 30 
see that different sequential orders of 𝐼𝐼𝑖𝑖

𝑗𝑗  in 𝐶𝐶(𝑰𝑰)  yield different 𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶(𝑰𝑰)) and the 31 
corresponding CAM might not be the most influential for model decision making in temporal 32 
domain. For that, the random permutation calculation is carried out such that the temporal data 33 
importance can be numerically determined.  34 

Thirdly, a single permutation is denoted as 𝑆𝑆𝐼𝐼1. For example, if 𝐼𝐼 = {𝐼𝐼1, 𝐼𝐼2,𝐼𝐼3}, one possible 35 
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permutation is 𝑆𝑆𝐼𝐼1 = {𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼1}. It can be seen that the possible permutation of 𝐶𝐶(𝑰𝑰) for all 𝑰𝑰 1 
scales as D!. In the current study, since there are 7 HDs in the building structures, leading to 7 2 
x 7 x 60 for 𝐶𝐶(𝑰𝑰), the possible permutation is 7! which is 5040. This kind of brute force 3 
approach does work, but it requires lengthy computational time. Based on [18], for D = 10, it 4 
was numerically observed that the number of required permutations, z, is 100 to achieve 5 
discriminative feature accuracy of about 90 %. From that, the number of permutations 6 
considered in this study is taken to be 100 for 𝑆𝑆𝐼𝐼𝑧𝑧 where z is from 1 to 100 and CAM is obtained 7 
for all 𝑆𝑆𝐼𝐼𝑧𝑧. This yield 100 different CAM with the dimension of 7 x 7 x 60. 8 

Fourthly, a mean CAM, 𝐶𝐶𝐶𝐶𝐶𝐶������(𝑋𝑋1,𝑋𝑋2,𝑋𝑋3), over 100 possible CAMs is obtained, where 𝑋𝑋1, 9 
𝑋𝑋2, and 𝑋𝑋3 represent different sensors, the position of sensors, and the time dimension. This 10 
averaging of CAMs provides a summarization of the importance of each element from 𝐶𝐶(𝑰𝑰). 11 
Fig. 7 (most left) shows an example of 𝐶𝐶𝐶𝐶𝐶𝐶������ and the red box in the most left part of the figure 12 
shows the most discriminant subsequence. In general, this kind of interpretation is 13 
counterintuitive because one would consider the high values (see the dotted box) are regarded 14 
as discriminative. However, based on numerical observation, this type of high values has 15 
relatively constant activation. With that, any changes to the data information for the 16 
subsequence are not important and so the activations with strong variance indicate that any 17 
missing information has much larger effects. Therefore, if the activation is low for a 𝑋𝑋2 in 18 
𝐶𝐶𝐶𝐶𝐶𝐶������  and high for 𝑋𝑋2 , then the subsequence at 𝑋𝑋2  has strong variance and is thus 19 
discriminant. 20 

 21 
Fig. 7. dCAM determination process. 22 

Lastly, given the CAM behaviors, dCAM is determined from the following expression:  23 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  𝜇𝜇�𝐶𝐶𝐶𝐶𝐶𝐶������(𝐶𝐶(𝑰𝑰))� ∗ 𝜎𝜎2�𝐶𝐶𝐶𝐶𝐶𝐶������(𝐶𝐶(𝑰𝑰))�                                   (8) 24 

with 𝜇𝜇  and 𝜎𝜎  are the mean and the standard derivation of 𝐶𝐶𝐶𝐶𝐶𝐶������(𝑋𝑋1,𝑋𝑋2,𝑋𝑋3)  in 𝑋𝑋2 25 
dimension. The final dCAM is in the dimension of D x N and in this study, it is 7 x 60. The 26 
middle of Fig.7 shows the dCAM for a particular flashover instance and by observing the 27 
important region in dCAM, one can relate the corresponding input temperature (see right most 28 
figure) that the model tends to focus on during decision marking. It should be noted that dark 29 
blue and light yellow colors represent 0 and 1, respectively. In Section 4.3, three sets of 30 
examples are provided to highlight the dCAM to achieve better model interpretability. 31 

4. Results and Discussion 32 
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4.1 Model Performance of xFlashNet 1 

To demonstrate the performance of the model, three baseline models are selected for 2 
benchmarking. These models include a feedforward multiple-layer perceptron (MLP) [30], a 3 
two-layer long short-term memory (LSTM) [17], and a three-layer fully convolutional neural 4 
network (FCN) [19]. Each model is fine-tuned to obtain optimal model performance. In order 5 
to assess the model performance, three evaluation metrics, accuracy, precision and recall, are 6 
used and they are determined from the following expressions:  7 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

             (10) 8 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

               (11) 9 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                (12) 10 

where TP, TN, FP, and FN are true positive, true negative, false positive, and false negative, 11 
respectively. The testing subset (20 838 instances) is used in the following model evaluation. 12 
The testing subset (20 838 instances) is used in the following model evaluation. All models are 13 
tested on the same testing set to ensure consistency for model comparison.  14 

Table 4 shows the performance of each model using inputs with a sliding window size of 300 s. 15 
It can be seen that xFlashNet has the best prediction performance; it has a loss value of about 16 
0.171 and an overall accuracy of about 92.9 %. In addition, xFlashNet has a relatively high 17 
recall score and this is important because the model has fewer false negatives. Furthermore, it 18 
is worth noting that xFlashNet has a lighter model structure with only 12 602 trainable 19 
parameters. As compared to numerical performance reported in [7], xFlashNet needs less than 20 
0.01 seconds to make a prediction and it can be seen that xFlashNet can meet the real-time 21 
prediction requirements for practical firefighting applications. 22 

Table 4. Model performance for xFlashNet and state-of-the-art models.  23 

Model Loss Accuracy Precision Recall 
Testing 
Time (s) 

Trainable  
Parameters 

MLP 0.467 84.1 % 80.4 % 90.3 % 1.42 16 658 
LSTM 0.285 87.3 % 83.4 % 92.9 % 1.73 14 302 
FCN 0.227 90.6 % 88.8 % 93.0 % 1.36 13 282 
xFlashNet 0.171 92.9 % 91.6 % 94.4 % 1.69 12 602 

 24 
4.2 Effect of Missing Data to xFlashNet Performance 25 

To investigate the model performance under realistic scenarios where the HD fails to provide 26 
temperature data, a parameter study is conducted. Based on the descriptions provided in Section 27 
2.5, three HD maximum operating temperature limits are considered: 300 °C, 200 °C, and 28 
150°C. In a fire case, if the HD readings exceed the temperature limit, a non-realistic 29 
temperature (i.e., 0 °C) is replaced. Table 5 shows the model performance of xFlashNet under 30 
different HD failure limits. It can be seen from the table that the amount of available data 31 
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decreases with lower HD maximum operating temperature limits. Because there is less 1 
temperature information, the model performance drops from about 92.9 % (ideal HD that never 2 
fails) to approximately 81.9 % when HD fails at 150 °C.  3 

Table 5. xFlashNet model performance from different HD temperature limits. 4 

HD Temperature Limits Loss Acc. Precision Recall Missing Temperature (%) 
No limit 0.171 92.9 % 91.6 % 94.4 % 0 % 
300 ℃ 0.246 89.6 % 88.7 % 90.7 % 16.8 % 
200 ℃ 0.308 86.1 % 83.4 % 90.2 % 20.8 % 
150 ℃ 0.384 81.9 % 78.7 % 87.4 % 29.2 % 

 5 
To further understand the model performance, Fig. 8 presents the overall accuracy of each 6 
instance for fire cases with different HD maximum operating temperature limits. It can be seen 7 
that the overall accuracy tends to decrease for predictions of 𝐼𝐼𝐹𝐹𝐹𝐹−35 and 𝐼𝐼𝐹𝐹𝐹𝐹−30 . Practically, 8 
this kind of model behavior is expected because the temperature data for these two instances 9 
have similar temperature information, but they have completely different labels (the earlier 10 
instance as non-flashover and the latter as flashover). With that, it is difficult for the model to 11 
distinguish them. Yet, for 𝐼𝐼𝐹𝐹𝑂𝑂−20, … , 𝐼𝐼𝐹𝐹𝐹𝐹−5, which are closer to the flashover moment, the 12 
model accuracy improves. From the ideal HD cases (no limit), the accuracy is about 98 %. The 13 
model performance is still promising (with an accuracy of about 90 %) even when the 14 
temperature limit of the heat detector is set at 150 ℃. Furthermore, as the available temperature 15 
data from sensors decreases, there is a decrease in model accuracy for non-flashover instances 16 
such as 𝐼𝐼𝐹𝐹𝐹𝐹−60 , … , 𝐼𝐼𝐹𝐹𝐹𝐹−40 . This parameter study shows that the missing temperature data which 17 
occurs in real fire scenarios will notably affect the model performance.  18 

 19 

Fig. 8. Detailed model performance of xFlashNet for various HD temperature-limit cases. 20 

4.3 Understanding Discriminative Data to Model Decisions Using dCAM 21 

Fig. 9 shows the dimension-wise class activation map (dCAM) for non-flashover and flashover 22 
instances for 30 cases with a fire started in living room (LR). Each dCAM is obtained using 23 
180 samples (30 fire cases x 6 instances, either non-flashover or flashover, from the same case). 24 
As shown in the figure, the dimension of dCAM is 60 x 7 in temporal and spatial domain, 25 
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respectively. Each dCAM element has a weight ranging from 0 to 1. The higher the weight of 1 
the element is, the more important/discriminative the corresponding temperature information 2 
is for the model to make the decision. It can be seen in both Fig. 9a and Fig. 9b, the model 3 
tends to rely on LR HD temperature information in between 250 s to 300 s to decide whether 4 
there is a flashover and this model behavior is reasonable and expected. To determine flashover, 5 
although the model does rely mostly on the HD temperature from LR, the HD temperature 6 
from other compartments (most notably hallway, denoted as HW) are also used. 7 

 8 

Fig. 9. dCAM for a) non-flashover and b) flashover instances (no HD temperature limits).  9 

Fig. 10 shows the dCAM for LR fire cases (Fig. 9a and b) and bedroom 1 (B1) fire cases (Fig. 10 
10c and d) with HD maximum operating temperature limit at 300 °C. Similar to Fig. 9, non-11 
flashover and flashover instances are used to construct the dCAM and 180 samples are used. It 12 
is interesting to note that, for LR fire cases, the model uses relatively different temperature 13 
information to make the decision when HD maximum operating temperature limit is considered. 14 
For non-flashover cases and as compared to Fig. 9a, Fig. 10a illustrates that the model relies 15 
more often the HD temperature from HW. This makes sense because the temperature in LR 16 
exceeds 300 °C and so useful temperature from LR is no longer available. For that, the model 17 
needs to learn the temperature patterns from other compartments to make correct predictions. 18 
This model behavior is consistent for non-flashover instances from B1 fire cases as shown in 19 
Fig. 10c. The figure shows that the model also utilizes temperature from HW and LR to make 20 
the prediction. 21 

 22 

Fig. 10. dCAM for a) LR non-flashover, b) LR flashover, c) B1 non-flashover, and d) B1 23 
flashover instances with HD maximum operating temperature limit at 300 °C. 24 

In terms of flashover instances, since the HD from the room of fire origin generally does not 25 
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provide any useful temperature readings, it is observed from Fig. 10b and Fig. 10d that the 1 
model also tends to make use of temperature information from adjacent compartments. For the 2 
LR fire cases, the model tends to focus on temperature information from 240 s to 295 s in DR, 3 
K, and HW to make a decision. For the B1 fire cases, the model tends to rely on temperature 4 
from LR. Physically, this is because the HD from HW also exceeds 300 °C soon after in the 5 
B1 fire cases. For that, LR temperature information is used. As seen from Fig. 9b, 10b, and 6 
10d, the temperature from B2 and B3 has relatively less influence for model decision making. 7 
It should be noted that this is because the doors of B2 and B3 are closed in some of the 30 8 
flashover fire cases. Since, the HD temperature is generally at room temperature, the model 9 
neglects this information. Nevertheless, the dCAM is helpful to interpret the model decision 10 
and this is an important step forward to build a more trustworthy ML-based prediction model. 11 

4.4 Model Testing on Real Fire Data 12 

Given the fact that xFlashNet is developed based on synthetic temperature data, it is necessary 13 
to examine its performance against real fire scenarios. In this study, 11 sets of full-scale 14 
experiments reported in [20] are utilized. The full-scale experiments include 5 living room 15 
(LR), 2 kitchen (K), and 4 bedroom 1 (BR1) fire tests. The building structure is identical to that 16 
shown in Fig. 2. 17 

The temperature sequences collected from the 7 sensors near ceiling (3 cm away from ceiling) 18 
in each experiment are pre-processed according to that described in Section 2.2. There are 6 19 
instances for flashover (𝐼𝐼𝐹𝐹𝐹𝐹−30 … 𝐼𝐼𝐹𝐹𝐹𝐹−5) and 6 instances for non-flashover (𝐼𝐼𝐹𝐹𝐹𝐹−60 … 𝐼𝐼𝐹𝐹𝐹𝐹−35). 20 
In addition, the maximum operational temperature of the sensors is also applied for this 21 
analysis. If the temperature surrounding the sensors exceeds 300 °C, no temperature data will 22 
be seen by the sensors. 23 

Table 6 presents the model performance for real fire data. It should be noted that xFlashNet 24 
has not seen these experimental data during the training processing. As shown in Table 6, the 25 
overall performance of the model is quite promising and the average accuracy from all tests is 26 
about 82.5 % with an average accuracy of ~ 88.3 %, ~ 87.4 %, and ~ 72.9 % for LR, K, and 27 
BR1 fire tests, respectively. Table 6 also shows the average accuracy of the individual flashover 28 
instances (𝐼𝐼𝐹𝐹𝐹𝐹−30 … 𝐼𝐼𝐹𝐹𝐹𝐹−5 ) for each test series. It can be seen that the model has relatively high 29 
accuracy for 𝐼𝐼𝐹𝐹𝐹𝐹−20 … 𝐼𝐼𝐹𝐹𝐹𝐹−5 instances for the LR and the K fire cases. However, the prediction 30 
accuracy drops on the accuracy for 𝐼𝐼𝐹𝐹𝐹𝐹−30  and 𝐼𝐼𝐹𝐹𝐹𝐹−25 instances. Also, for BR1 fire cases, the 31 
prediction accuracy for 𝐼𝐼𝐹𝐹𝐹𝐹−30 … 𝐼𝐼𝐹𝐹𝐹𝐹−15  instances is generally poor. Comparing the 32 
temperature increase behaviors from fire cases obtained from CFAST and the real fire 33 
experiments, it is found that the sensor temperature obtained from CFAST is generally higher 34 
to that from the real fire experiments. From that, it is believe that the fire data obtained from 35 
CFAST could overpredict the sensor temperature. Therefore, additional studies are needed to 36 
close this knowledge gap and to improve the model robustness on real fire scenarios 37 

 38 

. 39 
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Table 6. Prediction accuracy of xFlashNet on real fire data. 1 
Fire 
Location 

Avg. 
Non-

Flashover 
𝑰𝑰𝑭𝑭𝑭𝑭−𝟑𝟑𝟑𝟑 𝑰𝑰𝑭𝑭𝑭𝑭−𝟐𝟐𝟐𝟐 𝑰𝑰𝑭𝑭𝑭𝑭−𝟐𝟐𝟐𝟐 𝑰𝑰𝑭𝑭𝑭𝑭−𝟏𝟏𝟏𝟏 𝑰𝑰𝑭𝑭𝑭𝑭−𝟏𝟏𝟏𝟏 𝑰𝑰𝑭𝑭𝑭𝑭−𝟓𝟓  

LR (5) 88.3 % 96.6 % 20 % 60 % 100 % 100 % 100 % 100 % 
K (2) 87.4 % 91.6 % 50 % 50 % 100 % 100 % 100 % 100 % 
BR1 (4) 72.9 % 100 % 0 % 0 % 25 % 25 % 100 % 100 % 

 2 

5. Conclusions  3 

In this present work, an explainable deep learning based flashover prediction model, xFlashNet, 4 
is developed for a multi-compartment structure. The model is trained using synthetic 5 
temperature data from 17 365 flashover fire cases with a wide range of fire and vent opening 6 
conditions. In order to assess the model performance, xFlashNet is benchmarked against three 7 
current-state-of-the-art modes. Results show that the proposed model outperforms the 8 
benchmark models and it has an overall accuracy of ~ 92.9% for predicting if there is a 9 
flashover in the next 30 s. The effect of missing data to the model performance is also assessed. 10 
Parametric studies demonstrate that the overall model accuracy decreases with decreasing 11 
available temperature information. Given the heat detector (HD) maximum operating 12 
temperature limit of 150 °C, the prediction accuracy is reduced to ~ 81.9 %. Model testing 13 
against real fire data is also carried out to examine the model performance and understand the 14 
potential knowledge gap for model implementation in real fire scenarios. xFlashNet is tested 15 
against data from 11 full-scale fire experiments. The overall model accuracy is about 82.5 %. 16 
Results show that additional studies are needed to improve xFlashNet’s accuracy and to reduce 17 
false negatives. Dimension-wise class activation maps (dCAM) are obtained to understand the 18 
data importance to the model decision in both spatial and temporal domains. Three example 19 
cases are shown. Based on the dCAM, it is illustrated that, with ideal HDs that never fail, the 20 
model tends to use the last 50 s of the temperature information from the room of fire origin to 21 
determine whether there is a flashover in 30 s. For HD with a maximum operating temperature 22 
limit of 300 °C, the model tends to use temperature information from adjacent compartments. 23 
These observations are encouraging to take a step forward to develop explainable ML based 24 
models. It is hoped that this present work can also help to develop trustworthy ML based 25 
technology to achieve smart firefighting so that it can help reduce firefighter injuries and deaths. 26 

 27 
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 29 

Figure captions 30 

Fig. 1. a) Screenshot of the full-scale experiment from the residential home [17] and b) CFAST 31 
simulation run for the residential home. 32 

Fig. 2. Overview of a) the single story structure and b) openings with heat detectors (HD). 33 

Fig. 3. a) Four-stage fire growth curve and b) an example of a fire case. 34 

Fig. 4. a) Temperature profiles for a flashover fire case and b) an illustration of a sliding 35 
window with a window size of w. 36 

Fig. 5. a) Zoom-in plot of Fig. 4a and b) temperature profiles of the same case with HD 37 
maximum operational temperature at 300 °C. 38 
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Fig. 6. a) Overall model structure of xFlashNet, b) structure of a residual block, and c) 1 
information flow to obtain the dimension-wise class activation map. 2 

Fig. 7. dCAM determination process. 3 

Fig. 8. Detailed model performance of xFlashNet for various HD temperature-limit cases. 4 

Fig. 9. dCAM for a) non-flashover and b) flashover instances with no HD temperature limits. 5 

Fig. 10. dCAM for a) LR non-flashover, b) LR flashover, c) B1 non-flashover, and d) B1 6 
flashover instances with HD maximum operating temperature limit at 300 °C. 7 


