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We present measurements of thermalized collisional rate coefficients for ultra-cold 7Li and 87Rb colliding with room-
temperature He, Ne, N2, Ar, Kr, and Xe. In our experiments, a combined flowmeter and dynamic expansion system,
a vacuum metrology standard, is used to set a known number density for the room-temperature background gas in the
vicinity of the magnetically trapped 7Li or 87Rb clouds. Each collision with a background atom or molecule removes a
7Li or 87Rb atom from its trap and the change in the atom loss rate with background gas density is used to determine
the thermalized loss rate coefficients with fractional standard uncertainties better than 1.6 % for 7Li and 2.7 % for
87Rb. We find consistency—a degree of equivalence of less than one—between the measurements and recent quantum-
scattering calculations of the loss rate coefficients [J. Kłos and E. Tiesinga, J. Chem. Phys. 158, 014308 (2023)], with
the exception of the loss rate coefficient for both 7Li and 87Rb colliding with Ar. Nevertheless, the agreement between
theory and experiment for all other studied systems provides validation that a quantum-based measurement of vacuum
pressure using cold atoms also serves as a primary standard for vacuum pressure, which we refer to as the cold-atom
vacuum standard.

I. INTRODUCTION

Since the first magnetic trapping of laser-cooled neutral
alkali-metal atoms, experiments performed in ultra-high vac-
uum chambers,1 it has been recognized that collisions of
residual or background gas atoms and molecules with the
trapped atoms establish a limit on the lifetime of cold atoms
in their shallow magnetic trap. Inverting the problem—
using the measured loss rate of cold atoms from a conser-
vative magnetic trap to sense vacuum pressure in the ultra-
high vacuum regime—has since been pursued in several
experiments.2–9 Such a conversion requires knowledge of gas-
species-dependent loss rate coefficients L to determine the
background-gas number densities n from measured trap loss
rates Γ. In fact, n = Γ/L and a value for pressure p then
follows from the ideal gas law p = nkT , where k is the
Boltzmann constant and T is the background gas tempera-
ture, assuming that this gas is in thermal equilibrium with
the walls of the vacuum chamber. The loss rate coefficients
correspond to thermally averaged rate coefficients for elastic,
momentum-changing collisions between a trapped atom and
room-temperature background-gas atoms or molecules.

Many of the first attempts to measure pressure with
laser-cooled atoms relied on semi-classical theory of elastic
scattering10 to compute the loss rate coefficients.2,3,5,6,8 Quan-
tum universality of these elastic and small-angle, or diffrac-
tive, collisions, derived from this theory, has been put forward
as a means to extract the loss rate coefficients.9,11,12 The ac-
curacy of the semi-classical model, however, is not well char-
acterized. Analyses by Refs. 13 and 14, for example, have
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suggested that loss rate coefficients based on this theory can
be in error by as much as 30 %.

Here, we measure loss rate coefficients with high-accuracy
in a model-independent way. Our measurements achieve one-
standard-deviation combined statistical and systematic (k = 1)
relative uncertainties better than 1.6 % for 7Li and 2.7 % for
87Rb . We use two different cold atom vacuum sensors15–18

that trap a relatively small number of either 7Li or 87Rb sen-
sor atoms in a weak magnetic trap with energy depth W , typi-
cally W/k ≲ 1 mK, connected to a dynamic expansion system,
which sets a known number density of background atoms or
molecules. We compare our findings to recent fully-quantum
mechanical theoretical results14 and, in the case of 87Rb, the
results from experiments utilizing the theory of universality
of quantum diffractive collisions.9,11,12 For the former, we
find excellent agreement; for the latter, we find more nuanced
agreement.

The rate coefficient L(T,W ) depends on both T and W . The
W dependence arises from small angle, glancing collisions
that fail to impart enough momentum to eject a cold atom
from the trap. For small losses due to glancing collisions, we
expand

L(T,W ) = K(T )−agl(T )W +bgl(T )W 2 , (1)

where K(T ) is the total rate coefficient, agl(T ) and bgl(T ) are
the first-, and the second-order glancing rate coefficients, re-
spectively. For convenience, we further define K(T ) = K0 +
K1(T − 300 K), agl(T ) = A0 +A1(T − 300 K), bgl(T ) =
B0 +B1(T − 300 K) as, in practice, most vacuum chambers
operate near ambient temperature. For the present work, a
second-order expansion in W is of sufficient accuracy.

Quantum-mechanical scattering calculations of K(T ) and
agl(T ), including an analysis of their theoretical uncertainties,
have been conducted for a few systems. The first to be char-
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FIG. 1. Experimental (blue downward triangles) and theoretical (or-
ange upward triangles) values of L(W,T ) in panel (a) for natural
abundance noble gas species and nitrogen N2 colliding with 7Li and
K(T ) and agl(T ) for these same species colliding with 87Rb in pan-
els (b) and (c), respectively. Error bars are two-standard-deviation
combined statistical and systematic (k = 2) uncertainties. The values
for W and T can be found in the main text.

acterized was 6,7Li+H2,19,20 followed by 6,7Li+4He.21,22 Re-
cently, Ref. 14 presented comprehensive calculations of 7Li
and 87Rb colliding with H2, 14N2, and all the noble gases and
provides tables for the coefficients Ki, Ai and Bi with i = 0
or 1.

Our principal results for natural abundance noble gas
species and nitrogen N2 are given in Fig. 1. The figure com-
pares experimentally determined values of L(W,T ) for 7Li
and K(T ) and agl(T ) for 87Rb with the corresponding theoret-
ical values from Ref. 14. For 7Li data, W/k = 0.95(14) mK
and T = 300.2(2.9) K. For 87Rb data, T = 295.2(3) K
and W ranges between between k × 0.3986(4) mK and k ×
1.594(1) mK in order to extract K(T ), agl(T ), and bgl(T ).
Most values of bgl(T ) are consistent with zero at the two-
standard-deviation (k = 2) level and are thus omitted from
Fig. 1. The experimental and theoretical values for L(W,T )
and K(T ) are consistent at the two-standard deviation com-
bined statistical and systematic (k = 2) uncertainty level, ex-
cept for 7Li-Ar and 87Rb-Ar.

The agreement observed in Fig. 1 has a second or differ-
ent but equally valid interpretation. Specifically, the pressure
measured by a cold atom pressure sensor, when using the val-
ues of L from Ref. 14, agrees with the pressure set by a clas-
sical dynamic expansion system. When used to measure pres-

sure in this way, the cold atom pressure sensor is traceable
only to the SI second and kelvin, making it a primary stan-
dard. We thus refer to our two sensors as cold atom vacuum
standards (CAVSs). Agreement between a CAVSs and the DE
system in our direct comparison validates a CAVS as a stan-
dard of vacuum pressure.

Given that a CAVS can easily measure loss rates between
0.01 s−1 and 10 s−1 and typical values of K(T ) are on
the order of 10−9 cm3/s at T = 300 K, we therefore esti-
mate that a CAVS’s range of operation spans background-gas
number densities (pressures) from of the order of 107 cm−3

(4×10−8 Pa) to ∼ 1010 cm−3 (4×10−5 Pa). Indeed, similar
devices have been operated up to 6× 10−5 Pa.11 These pres-
sures correspond to most of the ultra-high vacuum and part of
the high-vacuum regimes.

A significant difference between a CAVS based on 7Li and
87Rb sensor atoms is the value of agl(T ). 87Rb with its larger
mass has typical values agl(T )k ∼ 10−7 cm3/(s K), while 7Li
has typical values agl(T )k ∼ 10−8 cm3/(s K).14 In a trap with
depth W ∼ k×1 mK, roughly one of every ten collisions be-
tween the background gas and a 87Rb sensor atom is a “glanc-
ing” collision. As shown in Fig. 1, measured values of agl(T )
are consistent at the two-standard deviation combined statisti-
cal and systematic (k = 2) uncertainty level, except for 87Rb-
Kr and 87Rb-Xe. For 7Li confined in a trap with the same
depth, the fractional rate of glancing collisions is an order of
magnitude smaller. Given current fractional measurement un-
certainties of order of 1 %, glancing collisions are thus not
detectable for 7Li.

The remainder of the paper is divided as follows. Section II
describes the salient features of our two types of apparatuses.
In Sec. III we analyze our observed sensor atom loss curves as
a function of background gas pressure or, equivalently, num-
ber density produced by the dynamic expansion system. Sec-
tion IV presents our measured total and glancing rate coef-
ficients along with a description of uncertainty budgets. We
conclude in Sec. V. Appendices A and B provide additional
details on the dynamic expansion standard and sensor atom
imaging, respectively.

II. APPARATUS

Our apparatuses17,18,23,24 have been described elsewhere.
Briefly, a laboratory-scale cold-atom vacuum standard (l-
CAVS),18 operating with 87Rb as its sensor atom, and a
portable cold-atom vacuum standard (p-CAVS),17 operating
with 7Li as its sensor atom, are attached to a dynamic expan-
sion standard. The dynamic expansion standard sets a known
partial pressure of a gas of interest between 2× 10−8 Pa and
2×10−6 Pa. In this standard, a known number flow of gas Ṅ,
with dimension atoms or molecules per unit time, is injected
into a chamber. This first chamber, to which the CAVSs are at-
tached, connects to a second chamber via a small orifice with a
well-characterized flow conductance. (See Fig. 4 of Ref. 18.)
As shown in Appendix A, the additional number density of
atoms or molecules with mass m and at temperature T at the
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location of the CAVS is

n =
Ṅ

αMCA

√
2πm
kT

rp

rp −1
, (2)

where αMC is the probability of transmission of an atom or
molecule through the orifice, A is the opening area of the ori-
fice, and rp is the measured ratio of pressure in the first cham-
ber to the pressure in the second chamber. Here, the total gas
number density ntotal = n+nbase, where nbase is the gas num-
ber density at base pressure. For the remainder of this paper,
we shall simply call n the number density.

While a known partial number density is generated, either
the l-CAVS or the p-CAVS measures the loss rate Γ of sensor
atoms held in a quadrupole magnetic trap. Simultaneous op-
eration of both CAVSs was not possible because operation of
the l-CAVS interferes with the stability of the p-CAVS. Prepa-
ration of the sensor atom cloud in either CAVS involves sev-
eral steps (see Refs. 17 and 18). First, a magneto-optical trap
(MOT) is loaded with atoms. Complementary metal-oxide
semiconductor (CMOS) cameras record fluorescence images
of the MOT during the loading process and we determine the
final number of atoms in the MOT, N0, using these images.
For both the l- and p-CAVSs, N0 is of the order of 106.

Next, the atoms are transferred into the quadrupole mag-
netic trap. For both the l- and p-CAVSs, the transfer process
involves optical pumping to the F = 1 hyperfine ground state
and, for the l-CAVS, subsequent heating and removal of any
remaining F = 2 hyperfine states. See Ref. 17 and 25 for de-
tails. All trapped atoms are then in the F = 1, mF = −1 hy-
perfine state.

Radio frequency (RF) radiation with a frequency νRF be-
tween 5 MHz and 40 MHz induces spatially localized transi-
tions between magnetic Zeeman states of the sensor atom and
sets the energy depth of the magnetic trap to W = hνRF(1−
Mg/µBgF B′), where M is the mass of a sensor atom, g is
the local gravitational acceleration, gF is the Landé g-factor,
and µB is the Bohr magneton. In practice, after loading the
l-CAVS magnetic trap, this so-called RF knife is applied with
an initial frequency of 40 MHz. The RF frequency is then lin-
early decreased to νRF = 5 MHz in 1 s. The end of this RF
frequency ramp corresponds to t = 0 for the l-CAVS loss rate
measurement. At t = 0, the remaining 105 87Rb atoms have
a temperature between 50 µK and 200 µK. The former esti-
mate comes from fitting an in situ image of the atoms in the
magnetic trap to the expected distribution for a thermal cloud;
the latter comes from time-of-flight expansion of similarly-
prepared clouds with 10 times the atom number to achieve
good signal-to-noise. For t > 0, the RF frequency is changed
to a final, constant νRF between 10 MHz and 40 MHz and
is applied for the remainder of the time the atoms are in the
magnetic trap. This controllably sets the trap depth to values
between k × 0.3986(4) mK and k × 1.594(1) mK. We have
verified the effectiveness with which our RF knife removes
atoms with E > hνRF by extending the RF knife ramp down
to νRF = 100 kHz, which removes all the atoms.

For the p-CAVS, approximately 1×105 7Li atoms are trans-
ferred from a grating MOT26 into a magnetic quadrupole trap
with axial magnetic field gradient B′ = 4.59(17) mT/cm. No

RF knife is used in the p-CAVS, instead the trap depth is set
by the distance between the center of the trap and the near-
est in-vacuum surface, the magneto-optical trap’s diffraction
grating.16 We calculate a trap depth of W/k = 0.95(14) mK,
where the uncertainty comes from the uncertainty in the dis-
tance. The temperature of the magnetically-trapped 7Li cloud
could not be measured. It can be as high as 0.75 mK based on
temperatures observed in other Li grating MOTs.25,26 Load-
ing atoms into the magnetic trap marks t = 0 for the p-CAVS
loss rate measurement.

For both l- and p-CAVSs, sensor atoms are held in the mag-
netic trap for a variable amount of time t > 0, after which
the atoms are recaptured into a MOT. Fluorescence from the
MOT is imaged onto CMOS cameras to determine sensor
atom number NS(t) as function of time. The atom-number
measurement is destructive, so the atom cloud preparation de-
scribed above is repeated for each t. For the l-CAVS, we also
repeat the cloud preparation process for each trap depth W . In
practice, we measure the ratio ηS(t) = NS(t)/N0, which re-
duces our statistical noise by eliminating fluctuations in the
atom number loaded into the MOT N0 from one cloud prepa-
ration to the next. Once a full decay curve is measured, tak-
ing between 0.25 h and 3 h, the background gas density n is
changed and another decay curve is taken. We do not require
an absolute measurement of sensor atom number, so proper-
ties of our imaging system, such as the quantum efficiencies of
the cameras, do not contribute to our uncertainty budgets, pro-
vided such properties do not vary with time. Details about our
imaging system, including its stability and nonlinearity can be
found in Appendix B. The instability and lack of linearity add
a small systematic uncertainty in our final uncertainty budget
for the rate coefficients.

III. MEASURED LOSS CURVES

Before we add background gas to the dynamic expansion
system, we record the number of sensor atoms as function
of time in the quadrupole magnetic traps of the l-CAVS and
p-CAVS at the lowest reachable, or base, pressure (i.e. at
n = 0 as defined by Eq. 2). These decays curves for ηS(t) =
NS(t)/N0 as functions of time t are shown in Fig. 2. For these
traces, T = 295.8(3) K for the l-CAVS, and T = 301.7(3.3) K
for the p-CAVS. At base pressure, the decay curves from
both the p-CAVS and l-CAVS are non-exponential. This non-
exponential decay of NS is well described by the solution to
the differential equation

dηS

dt
=−ΓηS −βη

2
S , (3)

where Γ is the trap loss rate and β is a two-body loss rate. We
have taken 87Rb data at several trap depths W , so we further
parameterize

Γ(W ) = Γ0 −Γ1W +Γ2W 2 and β (W ) = β0 +β1W . (4)

We find that satisfactory fits to the decays curves can be
found by adjusting the initial ηS(t = 0), the parameters in
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FIG. 2. Measured decay curves showing ηS(t) as functions of hold
time t at the lowest achievable pressure in the dynamic expansion
system for the p-CAVS with 7Li atoms at T = 301.7(3.2) K (panels
a-b) and the l-CAVS with 87Rb atoms at T = 295.8(3) K (panels c-d).
Panels (a) and (c) show the data (colored points) and fits to solutions
of Eq. (3) (solid curves). Panels (b) and (d) show the residuals of
the fit normalized to our noise function. For 87Rb, the colors of the
points and curves encode trap depth W with W/k = 0.3985(4) mK
(blue), 0.5978(6) mK (orange), 0.7970(8) mK (green), 0.996(1) mK
(red), 1.195(1) mK (violet), 1.394(1) mK (brown), and 1.594(2) mK
(pink).

Γ(W ) and β (W ) as well as ση and σ0 in noise function

u(ηS) =
√
(ση ηS)2 +σ2

0 . The noise function is a model for
the uncertainty in the sensor atom number and is an implicit
function of time t. The first component, proportional to ηS, is
related to random fluctuations in the initial sensor atom num-
ber in the magnetic trap and the fluctuating detuning of the
MOT laser beams. The second component σ0 reflects the min-
imum number of sensor atoms that is detectable by our imag-
ing system. The parameters ση and σ0 are different for 7Li
and 87Rb but should be independent of background species, n,
and W .

For 7Li in the p-CAVS with its fixed W , we fit all values for
ηS(t) to Eq. (3) and, in this manner, determine Γ and β and
their covariances. For 87Rb in the l-CAVS with its variable
W , we simultaneously fit the time traces ηS(t) at all W to the
combination of Eqs. (3) and (4). This procedure gives us reli-
able values for the two parameters in the noise function, as a
single time trace at a single W does not contain enough data.
This simultaneous fit determines Γ0, Γ1, β0, and β1 and their
covariances.

Figure 2 also shows the quality of our fits. The residu-
als normalized by the noise function do not have recogniz-

able patterns. A cumulative distribution function (CDF) con-
structed from the residuals is well described by the CDF for
a Gaussian distribution. For our p-CAVS with 7Li atoms
ση ≲ 0.03, while for our l-CAVS with 87Rb atoms, ση ≲ 0.08.
The minimum detectable atom number σ0 is about 500 for the
p-CAVS and is 300 for the l-CAVS.

The best fit values of Γ(Wp−CAVS) for 7Li and Γ0 for 87Rb
are 0.00388(6) s−1 and 0.0119(8) s−1, respectively. Here,
Wp−CAVS is the fixed trap depth of the p-CAVS. Assuming
that H2 is our dominant background gas and using the the-
oretical values of rate coefficients KLi−H2 = 3.18(6)× 10−9

cm3/s at T = 301.7(3.3) K and KRb−H2 = 3.9(1)×10−9 cm3/s
at T = 295.8(3) K, we find pressures of 5.19(3) nPa and
14.2(1.4) nPa, according to 7Li p-CAVS and 87Rb l-CAVS,
respectively. Here, the uncertainty is dominated by the uncer-
tainty in the theoretical rate coefficients. The factor of nearly
three difference in the base pressure readings may be due
to a variety of factors, including pressure gradients (see Ap-
pendix A), the difference in Majorana loss of the two species,
and the inability to accurately separate Γ from two- or even
three-body losses in the fits. We note that a previous ex-
periment with two p-CAVSs closely connected to each other
on a different vacuum chamber than used here measured the
same, higher pressure (42.2(1.0) nPa) within their respective
uncertainties.17

For 87Rb, we find Γ1 = dΓ/dW = 1.56(81) s−1/K. This
value is consistent with zero at two standard deviations (k =
2). The ratio of Γ1/Γ0 = 142(85) K−1 is likewise consistent
with the theoretical prediction of 36.7(1.8) K−1 for 87Rb+H2
and a recent measurement13 of 43(5) K−1.

We convert the fitted values of β (Wp−CAVS) for 7Li and β0

for 87Rb from the data in Fig. 2 to rate coefficients K2 defined
through the differential equation ṅS = −ΓnS −K2n2

S for the
sensor atom number density nS(t).18,27 The fitted β1 is con-
sistent with zero. For 87Rb, the derived K2 ≈ 2×10−10 cm3/s
is remarkably close to the known elastic scattering rate coeffi-
cient of 1.2×10−10 cm3/s among 87Rb atoms using the in situ
rubidium temperature estimate of 50 µK.18 Elastic collisions
only change the momenta of the atoms and thus should not
lead to sensor atom loss when the sensor atom temperature is
much less than the trap depth W as is the case in our 87Rb ex-
periments. We observe no difference in the two-body loss rate
when we reduce the efficiency of the RF knife by halving the
amplitude of the RF radiation, further indicating that our RF
knife is efficient at removing highly energetic atoms, which,
if left behind, could increase the observed two-body loss rate.
For 7Li, the derived K2 is inconsistent and much larger than
the known elastic scattering rate coefficient at a lithium tem-
perature of roughly 750 µK. The origin of the non-zero values
for β in both CAVSs remains a mystery.

We are now ready to study the readings of the CAVSs when
a known background number density n of a gas species X is set
by the combined flowmeter and dynamic expansion system. A
sampling of the available data for 7Li with natural abundance
Ar gas, taken with the p-CAVS, and for 87Rb also with nat-
ural abundance Ar gas, taken with the l-CAVS, are shown in
Fig. 3(a) and (b), respectively. The figure shows ηS(t) as func-
tions of time for several values of n between 0.2× 108 cm−3
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FIG. 3. Measured decay curves of ηS(t) as functions of time t
for several natural-abundance argon background gas number den-
sities n for 7Li (panel a) and 87Rb (panel b). For the 7Li data,
the Ar mean gas temperature is T = 300.7(3.0) K and the densi-
ties are 2.63(3)×107 cm−3 (labeled [1]), 4.75(6)×107 cm−3 ([2]),
8.61(9)× 107 cm−3 ([3]), 1.50(2)× 108 cm−3 ([4]), and 3.54(4)×
108 cm−3 ([5]). For the 87Rb data, the Ar mean gas temperature
is T = 295.1(3) K and the densities are 2.66(2)× 107 cm−3 ([1]),
4.79(2)× 107 cm−3 ([2]), 8.73(3)× 107 cm−3 ([3]), 1.524(5)×
108 cm−3 ([4]), and 2.682(9)×108 cm−3 ([5]). For 87Rb, the points
and curves with different colors correspond to data taken at different
trap depths W . The color coding and values for W are as in Fig. 2.

and 4×108 cm−3. For 87Rb, Fig. 3(b) also shows time traces
for several trap depths W . We observe that for roughly the
same Ar gas density, the observed lifetimes for 7Li are about
60 % longer than those of 87Rb, consistent with the observa-
tion that the rate coefficients K for 7Li are about 60 % smaller
than those of 87Rb. We have similar quality data for the other
noble gases as well as for N2. In all cases, we use gases con-
taining a natural abundance distribution of the stable isotopes.

For 7Li, we fit all values for ηS(t) taken at number density
n to Eq. (3), even though the non-exponential decay is not al-
ways apparent. In this manner, we determine Γ and β and
their covariances for each n and each background gas species
X . For 87Rb, we fit all values of ηS(t) at all values of W at a
single background-gas number density n to the combination of
Eqs. (4) and (3), even though, again, the non-exponential de-
cay is not always apparent. This simultaneous fit determines
Γ0, Γ1, β0, and β1 and their covariances for each n and each
background gas species X . We find that within their uncer-
tainties the fitted values for ση and σ0 are consistent for all
n and all background species, as expected, for both 7Li and
87Rb.
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FIG. 4. (a) Sensor atom decay rates Γ as functions of background
gas number density n with linear fits for 7Li colliding with Ne
(blue circles), Ar (orange squares) and Kr (green trangles) at T =
299.8(2.8) K. Error bars on Γ and n are smaller than the points. As
shown in the inset, the typical fitted value of the atom loss rate at
n = 0 (i.e., base pressure) is Γbase ≈ 0.005 s−1. Panel (b) shows the
normalized residuals of the linear fit.

IV. ANALYSIS & DISCUSSION

The values for rate Γ extracted from fitting 7Li-atom de-
cay curves for approximately seven background gas number
densities n for each background species determine the cor-
responding rate coefficient L. These data are uncorrelated.
Figure 4 shows Γ as a function n for natural-abundance back-
ground gas species Ne, Ar, and Kr. The smallest n shown in
the figure correspond to pressures that are still well above our
base pressure. We observe that the n-dependence of Γ must
be described by

Γ = Ln+Γbase, (5)

with non-negligible offset rate Γbase representing sensor atom
loss at base pressure. In this section, we will use n = 0 to rep-
resent the background gas number density at base pressure.
The y-uncertainties of the data in Fig. 4 are the statistical un-
certainties of the fitted value of Γ. The x-uncertainties in the
data are due to combined type-A and type-B uncertainties in
n, described in Appendix A. Typically, u(n)/n ≪ u(Γ)/Γ. We
fit the data in Fig. 3 to Eq. (5), with each point weighted by
variance σ2 = u2

A(Γ)+L2u2
A(n), where uA(O) is the statisti-

cal (type-A) uncertainty in observable O. Type-B uncertain-
ties are propagated separately. The value of Γ at base pres-
sure, n = 0, is excluded in the fits for three reasons: (1) the
day-to-day fluctuations in the Γ measured at n = 0, using data
similar to Fig. 2, are much larger than the statistical uncer-
tainty from the fit to Eq. (3); (2) inclusion of the measured Γ
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Type Source Contribution (%)
Experi- B Temperature of the CAVS, T 0.51

mental B Flowmeter, Ṅ 0.24
B Orifice Area, A 0.13
B Imaging non-linearity & stability, Γ 0.07
B Pressure Ratio, rp 0.05
B Orifice Transmission Prob., αMC 0.02
B Subtotal 0.58
A Subtotal 0.57

Total 0.82
Theory B Temperature of the CAVS, T 0.28

B Theory Coefficients, K 0.25
B Trap Depth, W 0.07
B Isotopic composition < 0.01
B Temperature of cold atoms, Tc < 0.01

Total 0.41

TABLE I. Experimental and theoretical statistical (type-A) and sys-
tematic (type-B) uncertainty budgets of loss rate coefficient L for the
p-CAVS with 7Li sensor atoms and a natural abundance Ar back-
ground gas. The experimental and theoretical contributions add in
quadrature to the relative uncertainty u(L)/L of L. The experimental
and theoretical temperature contributions are correlated. See text on
how this non-zero correlation is treated.

at n = 0 weighted by its uncertainty u(Γ) causes correlations
in the residuals of the linear fits; and (3) we lack confidence
that the non-linear least squares fitting algorithm employed in
Sec. III is accurately separating Γ and β , which itself might
indicate that term βη2

S in Eq. (3) may not be the correct func-
tional form.

Our values of χ2/ν , where ν is the number of degrees
of freedom, are 0.41 (7Li+He, ν = 5), 0.59 (7Li+Ne, ν =
11), and 0.57 (7Li+N2, ν = 8), 0.62 (7Li+Ar, ν = 16), 0.47
(7Li+Kr, ν = 4), and 1.61 (7Li+Xe, ν = 5). In fact, no fits
fail the χ2 test,28 where the probability of a hypothetical re-
peated realization of the experiment with the same uncertain-
ties yielding a larger χ2/ν is less than 5 %. Fitted values
of Γbase range from 0.0042(6) s−1 to 0.066(4) s−1, consistent
with the long-term fluctuations observed in repeated measure-
ments of the decay rate at base pressure (such as that shown
in Fig. 2).

We can now discuss the systematic, type-B uncertainties of
the data for 7Li in Fig. 4. These are (a) the uncertainty in the
measured flow, which has a complicated dependence on Ṅ,24

(b) the uncertainties in the orifice transmission αMC and area
A, (c) the uncertainty in the fitted value of Γ due to the imag-
ing non-linearities and stability, (d) the uncertainty in the mea-
surement of rp, and (e) the uncertainty in the measurement of
the background gas temperature T . For pairs of observables O
and P with O,P ∈ {Ṅ,αMC,A,Γ,rp,T}, we chose the covari-
ance matrix for these type-B uncertainties to be equal to

cov(O,P) = u2
B(O)δO,P ,

where δO,P = 1 for O = P and 0 otherwise. The type-B stan-
dard uncertainty of observable O is

uB(O) =
∑i u(Oi)/σ2

i

∑i 1/σ2
i

, (6)

where index i labels data points (Γi,ni) of independently ex-
tracted Γi at number density ni. Then, u(Oi) is the standard
uncertainty of observable O recorded during the taking of data
point i, and σ2

i = u2
A(Γi)+L2u2

A(ni) is the type-A variance at
data point i.

The type-B uncertainty of L with measurement equation

L =
Γ

n
=

ΓαMCA
Ṅ

√
kT

2πm
rp −1

rp
(7)

from Eq. (2) and Γ = Ln then follows from standard error
propagation using cov(O,P).

Table I shows the complete uncertainty budget for the ex-
perimental value of L for 7Li+Ar. Its statistical uncertainty
follows from the linear least squares fit for L of the data in
Fig. 4. We observe that the statistical and systematic un-
certainties of the experimental L are approximately equal.
The experimental uncertainty budgets for L of 7Li with other
natural-abundance background species are similar.

Atom loss decay curves for 87Rb sensor atoms described
in the previous section have resulted in values for Γ0 and Γ1
at approximately ten background number densities n for each
background species. The values for Γ0 and Γ1 at the same
n and background species are correlated. The approximately
ten values of Γ0 are then fit to Γ0 = Kn+Γ0,base and we find
values, uncertainties, and covariances for K and Γ0,base. Fi-
nally, we fit all values for Γ1 to Γ1 = agln+ Γ1,base and all
values for Γ2 to Γ2 = bgln+Γ2,base and obtain agl, Γ1,base, bgl,
Γ2,base, respectively. As for 7Li, we do not include data taken
at base pressure in the fits to determine these four parameters.
We find that the values of χ2/ν for the linear least squares
fits to extract K are 1.32 (87Rb+He, ν = 8), 1.20 (87Rb+Ne,
ν = 7), and 1.07 (87Rb+N2, ν = 8), 0.33 (87Rb+Ar, ν = 7),
0.42 (87Rb+Kr, ν = 6), and 1.34 (87Rb+Xe, ν = 8). Again, no
fits fail the χ2 test.

Values of Γ0,base for 87Rb range from 0.017(2) s−1 to
0.034(4) s−1, much larger than rate 0.0119(8) s−1 determined
from the fit to data shown in Fig. 2(b). This larger Γ0,base
suggests that we can not sufficiently separate the effects from
βη2

S(t) and ΓηS(t) in decay curves. We have performed anal-
yses of the experimental systematic uncertainties in the same
manner as described for the 7Li data. Our systematic relative
uncertainties are approximately the same as those for the 7Li
experiments. The relative statistical uncertainties of K, how-
ever, are larger by a factor between 2 and 4 compared to those
for L of 7Li.

We now determine the systematic uncertainty budgets of
the theoretical expectations for L, K, agl and bgl given the ex-
perimental conditions and data in Ref. 14. For 7Li-X systems,
we evaluate Eq. (1) at the experimental values for temperature
T and trap depth W and account for their uncertainties. For
87Rb, we only need to evaluate K(T ) at the experimental tem-
perature and account for its uncertainty. Note that the theoreti-
cal uncertainty uB(T ) is the same as that used to determine the
uncertainties of conductance C0 and thermal transpiration ef-
fects in Eq. (7). Hence, the theoretical (thr) and experimental
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System L (thr) L (exp) E(L)
(10−9cm3/s) (10−9cm3/s)

7Li-4He 1.66(4) 1.72(3) 0.64
7Li-Ne 1.6(1) 1.63(2) 0.30
7Li-N2 2.64(2) 2.67(3) 0.45
7Li-Ar 2.34(1) 2.38(2) 1.15
7Li-Kr 2.140(7) 2.18(3) 0.84
7Li-Xe 2.23(2) 2.22(3) −0.23

TABLE II. Theoretical (thr) and experimentally (exp) determined
values of the total loss rate L for various natural abundance gases
colliding with ultracold 7Li. The degree of equivalence is En(L) =
(Lexp−Lthr)/[2u(Lexp−Lthr)]. All uncertainties are one-standard de-
viation k = 1 uncertainties.

(exp) rate coefficients are correlated with covariance

cov(Lthr,Lexp) =
∂Lthr

∂T
u2

B(T )
∂Lexp

∂T
=

1
2
K1

Lexp

T
u2

B(T ) . (8)

The covariance cov(Kthr,Kexp) = cov(Lthr,Lexp), and
cov(agl,thr,agl,exp) is the same as Eq. (8) with K1 replaced by
A1.

In addition, we must adjust for the fact that we experimen-
tally use natural isotope abundance background gases while
the data in Ref. 14 is computed for a gas containing only the
most abundant isotope. We scale the theoretical rate coeffi-
cients for one isotope to values for other isotopes by using the
semiclassical dependence on the mass of the background gas
species m and the mass of the sensor atom M. We then find
“weighted” rate coefficients based on the natural abundance of
each isotope. The relevant semi-classical mass dependencies
are K ∝ m−3/10, agl ∝ m−1/10, and bgl ∝ m1/10. This scaling
matters most for neon and xenon, for which the isotope cor-
rection δKisotope represents a −0.28 % and +0.14 % shift in
K, respectively. We take this scaling to be approximate with a
15 % relative uncertainty that is u(K)|isotope = 0.15δKisotope to
be added in quadrature to all other uncertainties in the theoret-
ical rate coefficients. The relative uncertainty due to isotopic
abundance for bgl is negligible, so we omit it from the uncer-
tainty budget.

We also consider the effect of the temperature of the cold
atom cloud, Tc, on the theoretical prediction. Reference 14
computes its results using a reference value Tc0 = 100 µK;
nonzero differences Tc − 100 µK are accounted for by esti-
mating the change of the effective collision temperature19

Teff =
M

m+M
T +

m
m+M

Tc , (9)

which leads to the modified first-order expansion19,21

K(T ) =K0 +K1(T −300 K)+K1
m
M
(Tc −100 µK) . (10)

For both the p- and the l-CAVS, we use Tc = 100 µK, and as-
sume symmetric uncertainties for simplicity. For the p-CAVS,
we take u(Tc) = 350 µK, which encompasses the 750 µK
maximum temperature at k = 2; for the l-CAVS, we take
u(Tc) = 50 µK, which encompasses the 50 µK to 200 µK

range at k = 2. For both the p- and the l-CAVS, the additional
relative uncertainty to L is < 0.01 %, significantly smaller than
many other sources of uncertainty. We include it in the uncer-
tainty budget for completeness.

Table I shows the uncertainty budget in the theoretical value
for L for the 7Li+Ar system. The relative uncertainty for the
theoretical value is half that of the combined systematic and
statistical uncertainties of the experimental value. Table II
shows our final theoretical and experimental values of L for
7Li+X systems, along with the degree of equivalence E(L) for
L defined by E(O) = (Othr −Oexp)/[2u(Othr −Oexp)], where
u(Othr −Oexp) =

√
u2(Othr)−2cov(Othr,Oexp)+u2(Oexp) is

the uncertainty of the difference between the correlated the-
oretical and experimental values for quantity O. As the tem-
perature dependence of the theory and experiment values are
correlated, E(L) is larger than the uncorrelated combination
of the theoretical and experimental uncertainties would sug-
gest. All values agree at three standard deviations, k = 3, all
except 7Li-Ar agree at k = 2.

Table III shows the predicted and measured K, agl, and bgl

for 87Rb colliding with He, Ne, N2, Ar, Kr and Xe as back-
ground species. We find k = 2 agreement between the the-
oretical and experimental K for all collision partners except
87Rb+Ar. The theoretical and experimental values of agl and
bgl agree at k = 2 for all collision partners except 87Rb+Kr,
which agrees at k = 3. We constrained Γ2 = 0 in our fits
87Rb+He because the expected size of bgl is two orders of
magnitude lower than the uncertainty on the values for all
other background species. The experimental relative uncer-
tainties for agl are much larger than the corresponding theo-
retical uncertainties and experimental uncertainties observed
in Ref. 9, 11, and 12 because the present experiment focused
on taking data at many distinct pressures, rather than at many
trap depths for each pressure.

We examined several other potential systematic effects. For
the l-CAVS, we studied sensor atom loss rates after changing
the laboratory temperature from 22.0(1) ◦C to 19.0(5) ◦C, the
magnetic field gradient of the quadrupole trap from 18 mT/cm
to 9.0 mT/cm and 24 mT/cm, and the applied RF powers from
25 W to 12 W, but saw no statistically significant dependence
of K or agl on these parameters. We also tested an alterna-
tive application of the RF knife, that of Ref. 9. After load-
ing the magnetic quadrupole trap and waiting for a time t, we
apply an RF sweep such that the trap depth decreases from
k× 3.188(3) mK to final trap depth W to eject sensor atoms
with kinetic energy E >W and, immediately afterward, mea-
sure the final atom number N. We observed no change of
K or agl when using this alternative application of the RF
knife. For the p-CAVS, we changed the power dissipated in
the source from 2.7 W to 2.0 W and 3.5 W, magnetic field gra-
dient of the quadrupole trap from 4.59 mT/cm to 7.53 mT/cm,
and laboratory temperature from 22.0(1) ◦C to 19.0(5) ◦C and
25.0(1) ◦C, but again saw no statistically significant depen-
dence of L on these parameters.

Finally, we compare our rate coefficients with those pub-
lished in Refs. 12–14 in Table IV. Agreement is observed
for 87Rb-4He at the one-standard deviation (k = 1) level. For
87Rb-N2 and 87Rb-Xe, rate coefficients based on universality
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System K (thr) K (exp) E(K) agl (thr) agl (exp) E(agl) bgl (thr) bgl (exp) E(bgl)
(10−9cm3/s) (10−9cm3/s) (10−7cm3/[s K]) (10−7cm3/[s K]) (10−5cm3/[s K2]) (10−5cm3/[s K2])

87Rb-4He 2.37(3) 2.34(6) −0.23 0.336(5) 0.12(77) 0.14 0.067(3) — —
87Rb-Ne 2.0(2) 2.23(5) 0.58 1.06(9) 1.27(72) −0.15 0.59(3) 2.6(2.4) −0.41
87Rb-N2 3.45(6) 3.6(1) 0.64 2.6(2) 2.3(1.4) 0.13 2.3576(7) 13.3(8.4) −0.66
87Rb-Ar 3.035(7) 3.30(6) 2.27 2.42(2) 2.34(79) 0.05 2.19(2) −1.0(2.9) 0.54
87Rb-Kr 2.79(1) 2.83(4) 0.47 3.04(2) 1.87(53) 1.11 3.97(3) 3.8(2.7) 0.03
87Rb-Xe 2.88(1) 2.93(7) 0.35 4.11(5) 3.93(92) 0.10 7.1(1) 10.3(3.0) −0.53

TABLE III. Theoretically (thr) and experimentally (exp) determined values of the loss rate coefficient K at zero trap depth, the first-order
glancing rate coefficient agl, and the second-order glancing rate coefficient bgl for various natural abundance gases colliding with ultracold
87Rb. Numbers in parentheses are one-standard-deviation, k = 1 uncertainties. The degree of equivalence is En(K) = (Kexp−Kthr)/[2u(Kexp−
Kthr)] for K and likewise for agl.

System K (10−9cm3/s)
UQDC12 Ratiometric13 Theory14 This work

87Rb-H2 5.12(15) 3.8(2) 3.9(1) —
87Rb-4He 2.41(14) — 2.37(3) 2.34(6)
87Rb-Ne — — 2.0(2) 2.23(5)
87Rb-N2 3.14(5) — 3.45(6) 3.6(1)
87Rb-Ar 2.79(5) — 3.035(7) 3.30(6)
87Rb-CO2 2.84(6) — — —
87Rb-Kr — — 2.79(1) 2.83(4)
87Rb-Xe 2.75(4) — 2.88(1) 2.93(7)

TABLE IV. Comparison of this work with published measurements,
including those utilizing universality of quantum diffractive colli-
sions (UQDC), and theoretical calculations of 87Rb-X loss rate co-
efficients. Numbers in parentheses are one-standard-deviation, k = 1
uncertainties. For simplicity, the statistical and systematic uncer-
tainty from Ref. 12 is added in quadrature. For the theory and this
work, T = 295.2(3) K. For Ref. 12, T = 294 K.

of quantum diffractive collisions (UQDC) from Ref. 12 are
smaller than our K by 12 % and 7 %, corresponding to more
than four and two standard deviations, respectively. The data
points for 87Rb-Ar are discrepant. Further research for this
system is needed. As discussed in Ref. 13 and reflected in the
table, UQDC does not work well for the 87Rb-H2 system. In
Ref. 13, the authors measure the ratio of loss rate coefficients
for 87Rb and 7Li with background H2 and use the theoretical
results for the 7Li+H2 system from Ref. 19 and 20 to derive a
loss rate coefficient for 87Rb with H2. The resulting loss rate
coefficient is in agreement with Ref. 14. This scaling proce-
dure was first suggested by Ref. 15.

V. CONCLUSION

We have measured total rate coefficients for room-
temperature natural abundance gas species He, Ne, N2, Ar,
Kr, and Xe colliding with ultracold 7Li and 87Rb sensor atoms
using a flowmeter combined with a dynamic expansion sys-
tem and two cold-atom vacuum sensors. Our measurements
have an uncertainty of better than 1.6 % for 7Li and 2.7 % for
87Rb. We find consistency at the two-standard-deviation com-
bined statistical and systematic (k = 2) uncertainty level for all

gas combinations except for 7Li-Ar and 87Rb-Ar with recently
published quantum-mechanical scattering calculations.14 We
also compare the rate of “glancing” collisions for 87Rb, col-
lisions that do not impart enough energy to eject 87Rb from
its shallow magnetic quadrupole trap, and find consistency at
the two-standard-deviation combined statistical and system-
atic (k = 2) uncertainty level with the calculations of Ref. 14
for all collisions except 87Rb-Kr.

An equivalent interpretation of our results is that quantum-
based measurement of vacuum pressure with cold atoms is
consistent with that set by a combined flowmeter-dynamic
expansion standard. Thus, cold-atom based vacuum pres-
sure sensors are also cold atom vacuum standards, or CAVSs.
Agreement between the dynamic expansion standard and the
CAVS validates their operation as quantum-based standards
for vacuum pressure.

This validation opens potential new opportunities in vac-
uum metrology at ultra-high vacuum (UHV) pressures. In
particular, the quantum measurement of pressure by a CAVS
is primary. It is not traceable to a measurement of like kind.
Given the demonstrated consistency, the CAVS could now po-
tentially replace the combined flowmeter and dynamic expan-
sion systems in the calibration of other pressure gauges.

The portable CAVS (p-CAVS), in particular, can also re-
place common classical gauges, like the Bayard-Alpert ion-
ization gauges.16,17 The p-CAVS shows lower uncertainties
than calibrated ionization gauges in the UHV.29 The per-
formance of our p-CAVS is comparable and complemen-
tary to that of the recently developed 20SIP01 ISO ioniza-
tion gauge,30 which has better than 1.5 % relative uncertain-
ties without calibration but operates at higher pressures from
10−6 Pa to 10−2 Pa. Both have absolute uncertainties that are
independent of the individual gauge.

Another advantage over ion gauges is related to pressure
sensing with unknown mixtures of background gases. Despite
the range of masses and polarizabilities of the background gas
species for which we have calculated and measured the loss
rate coefficients, the maximum relative deviation of L from L
for N2 is roughly 40 % for both 7Li and 87Rb, as seen in from
Table I of Ref. 14. We believe, based on semi-classical scatter-
ing theory,10 that the mean and variation will not significantly
increase as data for other background gases become available.
Thus, we can expect a pressure measurement of (mixtures of)
unknown gases by a CAVS to have at most a 40 % relative
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uncertainty if one simply used the value of L for N2. The un-
certainty is small compared to the factor of five difference in
readings seen by an ionization gauge between N2 and He at
the same pressure.31,32

If the background gas contains a single species with an un-
known L, then the procedure outlined in Ref. 9, 11, and 12
can determine L from measurements at a single, unknown n.
The procedure relies on the validity of semi-classical scatter-
ing theory10 and a measurement of the variation of the atom
loss rate Γ on trap depth W . The procedure is known to fail
when the colliding pair’s reduced mass is small compared to
the cold atom’s mass; the discrepancy of K for 87Rb+H2 be-
tween Refs. 9, 11, and 12 and Refs. 13 and 14 is roughly 30 %.
However, disagreements between the K of Ref. 9, 11, and 12
and those of Ref. 14, mostly verified by this present work,
can be between 5 % and 9 %, with these residual discrepan-
cies not strongly dependent on the reduced mass. If we ig-
nore 87Rb+H2, then, in the same spirit as the ionization gauge
discussion above, we conclude that the maximum relative un-
certainty for a cross section obtained using the procedure of
Refs. 9, 11, and 12 is 9 %. Further work is required to ver-
ify the uncertainty of the methods of Ref. 9, 11, and 12. Be-
cause it requires knowledge of the variation of Γ on W , how-
ever, the procedure will likely not be feasible for 7Li, given
its light mass.12 There are simply fewer “glancing” collisions
with which to accurately measure this dependence compared
to 87Rb.

This decrease from 40 % to 9 % in relative uncertainty due
to an unknown L is not the only motivating factor in choos-
ing between 7Li and 87Rb as the CAVS sensor atom. Another
key difference between 7Li and 87Rb is that 87Rb exhibits sig-
nificant non-exponential decay in the atom-loss decay curves
at the lowest UHV pressures, as evidenced by the large, fit-
ted β in Eq. (3) and shown in Fig. 2. We currently have no
satisfactory explanation for this observation. This unexpected
discovery suggests that 87Rb-based CAVSs will probably not
be as accurate as one based on 7Li in the low ultra-high vac-
uum and extreme high vacuum regimes. Combined with the
other advantages outlined in Ref. 16, we believe that 7Li offers
superior performance.

To realize the low < 2 % uncertainty potential of a 7Li based
p-CAVS, loss rate coefficients for other common gases found
in vacuum chambers like CO, CO2, O2 and H2 must be mea-
sured and compared to theoretical evaluations when available.
Measurement of L with these more reactive gases requires an
upgrade to our dynamic expansion system, which is currently
underway. Theoretical calculations for CO, CO2 and O2 are
also forthcoming; theoretical calculations for H2 are already
contained in Ref. 14.

Finally, we must further validate the pressure range of op-
eration of the CAVSs. Currently, such devices have been op-
erated as high as 6× 10−5 Pa,11 where loss rates are of the
order of 10 s−1. The lowest detectable pressure of a CAVS is
less well characterized; we are currently endeavoring to un-
derstand the physics behind the non-exponential behavior at
low pressures.

Appendix A: Dynamic expansion system

Dynamic expansion standards rely on precise knowledge
of the rate of evacuation of a background gas from a vac-
uum chamber through an orifice. This is achieved by using
an orifice with known conductance C0 that connects to a sec-
ond chamber, which is evacuated using a vacuum pump with
pumping speed S. For S ≫ C0, the orifice reduces the pump-
ing speed out of the first chamber such that the evacuation rate
out of this chamber is C0, leading to

n =
Ṅ
C0

. (A1)

The flow Ṅ is both generated and measured by a flowmeter
designed to operate in the XHV.24 The flowmeter reports a
type-A, statistical uA(Ṅ) and type-B, systematic uB(Ṅ) un-
certainty for each flow measurement. For this work, uA(Ṅ) is
the larger of the extrapolated modified Allan deviation33 of Ṅ
and the standard uncertainty from least-squares fitting for Ṅ
from time traces of N(t) in the flowmeter versus t. A detailed
discussion of the flowmeter is contained in Ref. 24.

Our orifice has a cylindrical shape with a length l =
5.0462(3) mm, radius r = 1.1092(4) cm, and a corresponding
cross-sectional area A = πr2 = 3.865(3) cm2. The uncertain-
ties in radius and cross sectional area are dominated by their
changes along the length of the cylinder. The orifice dimen-
sions were obtained by NIST’s dimensional metrology group
using a Moore Coordinate Measurement Machine (CMM).34

The conductance of the orifice is given by

C0 = αAvth/4 , (A2)

where α is the transmission probability of a molecule entering
the orifice, and vth =

√
8kTDE/πm is the mean velocity in the

Maxwell-Boltzmann distribution of background gas atoms or
molecules with mass m at temperature TDE.

For cylindrical tubes, the transmission probability α is
known analytically under reasonable gas flow assumptions
and is only a function of l/r.35 At our uncertainties for l and
r, the transmission probability given by Eq. (16) of Ref. 35
is sufficiently accurate and gives αAn = 0.8157(1). Here, the
standard uncertainty u(αAn) follows from uncertainty propa-
gation of u(l) and u(r) ignoring correlations between the mea-
surements of l and r.

We amend this analytical estimate of α using Monte Carlo
simulations of particles in our dynamic expansion standard
based on the actual orifice and chamber geometries and as-
suming that the temperature of the particles is that of chamber
walls, TDE.36 In these simulations, particles only collide with
the chamber walls, which is a good assumption at our UHV
pressures as the mean free path for particle-particle collisions
is orders of magnitude larger than the chamber sizes. Re-
flections from the walls are Lambertian: the particle is given
a new random speed, sampled from the Maxwell-Boltzmann
velocity distribution independent of its incoming velocity, and
a random angle θ with respect to the surface normal sampled
from a cosθ probability distribution. Finally, particles col-
liding with vacuum pump surfaces have an absorption coeffi-
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cient that, given the surface’s area, yields the correct pumping
speed.

From the Monte-Carlo simulations, we find αMC =
0.8160(2), which is 0.03 % larger than but consistent with
αAn. This result confirms that the chamber geometry has a
negligible impact on C0. The standard uncertainty of αMC is
twice that of αAn as it combines two sources of (uncorrelated)
uncertainty: (1) the counting uncertainty of the Monte Carlo
simulations and (2) the uncertainty in the dimensions of our
orifice. We use the more conservative αMC.

We measure TDE by averaging the time-series readings of
four calibrated platinum resistance thermometers (PRTs). The
thermometers are mounted to the exterior walls of the dy-
namic expansion standard and are placed in pairs. Each pair
is placed on opposing sides of the standard. One pair is copla-
nar with the orifice while the other pair is mounted on the first
chamber 18.9(4) cm away from the orifice plane. A reading
Ti,DE(t) of thermometer i= 1, 2, 3, or 4 at time t has a standard
uncertainty of 36 mK. Self-heating of the PRTs, measured to
be about 3 mK, is negligible. Temperature gradients of ap-
proximately 0.4 K combined with drifts of roughly 0.05 K
over the time interval it takes to map out the decay of sen-
sor atom number NS(t), however, are observed in the dynamic
expansion system. Hence, temperature gradients dominate the
uncertainty of TDE and thus u(TDE)=

√
s with sample variance

s = ∑
4
i=1 ∑

m
j=0(Ti,DE( j∆t)−TDE)

2/(4(m+1)−1), where time
step ∆t = 30 s, integer m = ⌊ttot/∆t⌋, and ttot is the total time
to acquire a measurement of a time trace NS(t). TDE tracks the
stabilized air temperature Tlab in the laboratory well. For ex-
ample, Tlab = 295.2(1) K and TDE = 295.3(3) K for the data
shown in Fig. 2.

The temperature of the l-CAVS vacuum chamber is found
by averaging the readings of four PRTs, in a manner identical
to that of TDE. Oscillations in the cooling water temperature
for the electromagnets23 that generate the l-CAVS quadrupole
magnetic field causes the temperature of the l-CAVS vacuum
chamber to oscillate with an amplitude of up to 0.5 K. No tem-
perature change is observed due to the application of current
in the electromagnets. This leads to a standard uncertainty of
u(T ) = 0.3 K for the l-CAVS, while T and TDE typically agree
within their uncertainties.

The temperature of the p-CAVS vacuum chamber is found
by averaging the readings of two PRTs, in a manner identi-
cal to that of TDE. When the p-CAVS is turned on, we em-
pirically observe that its temperature has a time dependence
T (t) = T0 +∆T [1− exp(−γt)], with T0 ≈ TDE, ∆T ≈ +5 K,
and 1/γ ≈ 1 h. The temperature increase is caused by the
effusive lithium source dissipating roughly 3 W of heat to
evaporate lithium. Because the outside of the p-CAVS vac-
uum chamber is heated above the laboratory temperature, we
reasonably assume that the inside is even warmer. Indeed,
measurements with a separate, identical p-CAVS with an in-
vacuum thermocouple suggest that the interior of the vacuum
chamber is 1 K warmer than the exterior-mounted PRTs mea-
sure. We conservatively take u(T ) = |T −TDE|/2 ≈ 2.5 K for
the p-CAVS.

For the p-CAVS, we observe temperatures T that signifi-
cantly differ from TDE. That is, a temperature gradient exists

between the dynamic expansion chamber and the p-CAVS and
leads to ‘thermal transpiration”, where equal effusive parti-
cle flux from one chamber to the other in the molecular-flow
regime implies31

n =

√
TDE

T
nDE , (A3)

where nDE is the background gas density in the dynamic ex-
pansion system and T is the temperature of the background
gas atoms in the CAVS. We have also modified our Monte
Carlo simulation to incorporate thermal gradients of the walls
of the chambers, and find that the pressure analog of Eq. (A3)
is accurate to better than 0.4 % assuming a temperature gradi-
ent of 10 K.

We use a turbo-molecular pump attached to the second
chamber with a finite pumping speed S ≈ 1500 L/s to evac-
uate the dynamic expansion system leaving a small residual
pressure in this chamber and thus allowing some particles to
return to the first chamber. Equation (A2) is derived under the
assumption that particles do no return, i.e. assuming S → ∞.
We can correct for the finite S by measuring the pressure ra-
tio rp of the pressure in the first chamber to the pressure in the
second chamber and using the substitution C0 →C0(rp−1)/rp
in Eq. (A2). Our measurement of rp is described in Ref. 18.
We give a brief synopsis here. A spinning rotor gauge (SRG)
is connected via pneumatically actuated valves to either the
first or the second chamber. The SRG’s decay rate, which is
a proxy for the pressure, is measured sequentially as it is con-
nected to the first and second chamber. The ratio of these de-
cay rates corresponds to rp. Accurate measurements of rp re-
quire pressures in the first chamber between 0.1 Pa and 0.6 Pa
to obtain sufficient signal. At these pressures, the non-linear
conductance of the orifice needs to be accounted for and we
measure pressure ratios at several pressures and linearly ex-
trapolate to zero pressure. The dominant uncertainty in this
measurement is statistical and is typically u(rp)/rp = 0.02.

Finally, we find that the number density of background gas
at a CAVS is

n =

√
TDE

T
Ṅ
C0

rp

rp −1
=

Ṅ
αMCA

√
2πm
kT

rp

rp −1
. (A4)

by combining Eqs. (A1), (A2), and (A3) with the substitu-
tion for C0 described in the previous paragraph. We use the
transmission probability αMC obtained from our Monte-Carlo
simulations and realize that n is independent of TDE. The rela-
tive uncertainty u(n)/n of the background gas number density
at the CAVS is given by[

u(n)
n

]2

=

(
u(Ṅ)

Ṅ

)2

+

(
u(A)

A

)2

+

(
u(αMC)

αMC

)2

+
1
2

(
u(T )

T

)2

+

(
1

rp −1
u(rp)

rp

)2

(A5)

assuming no correlations among the various sources of uncer-
tainty. The contribution due to the uncertainty in m is negligi-
ble for our purposes.
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Before we conclude this Appendix, let us consider the po-
tential for pressure gradients within the DE system at base
pressure. Differences in measured pressure at base pressure
between the two CAVSs could be caused by local differences
in the specific outgassing rate combined with differences of
the effective vacuum conductance from each of the CAVS to
the orifice. Considering solely the latter, Monte-Carlo simu-
lations assuming uniform specific outgassing throughout the
first DE chamber and the two CAVSs show that the l-CAVS
should be at a 25 % higher pressure than the p-CAVS because
of the former’s slightly longer connection to the DE chamber.
We note that there is no guarantee that the specific outgassing
of chamber walls is uniform; factors of 3-5 difference in local
outgassing rates are reasonable and might explain our obser-
vations at base pressure. Over the duration of our experiment,
such imbalanced outgassing is stable. By contrast, Monte-
Carlo simulations of the added, inert gasses, injected into the
DE chamber at a specific point, show that their partial pres-
sure is uniform to within the simulations’ uncertainty when
the chamber is at uniform temperature.

Appendix B: Imaging

Our imaging system is a potential source of uncertainty in
both the MOT atom number N0 and the number of sensor
atoms in the magnetic quadrupole trap NS(t) at hold time t.
As described in the introduction to Sec. II, the experiment has
several steps for each hold time t: An atom cloud is prepared
in the MOT, subsequently held in the magnetic trap for a time
t, and then atoms are recaptured into the MOT. We take im-
ages before we load the MOT, at the moment when the MOT
is fully loaded, and then after the recapture of the atoms in the
MOT. In the end, we store and analyze six images for each
hold time t. Specifically, before the MOT loading stage, a first
image with neither the atoms nor lasers present and a second
image with the MOT lasers but no atoms present are taken.
At the end of the MOT loading stage, the third image is taken
and we turn off the MOT light. These three images deter-
mine N0. This step is non-destructive. After the recapture of
the sensor atoms at time t, we then take three more images,
spaced in time about 0.3 s apart. The first is an image with the
MOT lasers on and sensor atoms present, the second an image
with the MOT lasers on and no atoms present, and finally, an
image with neither laser nor atoms. The latter three images
determine NS(t) and is destructive.

We process or combine each set of three images using a
procedure similar to that described in Appendix A of Ref. 37,
to account for “dark counts” and differences in MOT laser
intensities, and construct sensor atom number densities. We
then calculate N0 or NS(t). For mathematical convenience, we
label an image with (1) neither the atoms nor lasers present,
(2) an image with the MOT lasers on and no atoms present,
and (3) an image with the MOT lasers on and sensor atoms
present.

We then denote the images by Ξ j(x̃, ỹ), where j = 1, 2, or
3 corresponding to the image order defined in the previous
paragraph, and (x̃, ỹ) correspond to the coordinates of a pixel

on the camera. The images can then be parameterized as

Ξ1(x̃, ỹ) = δ (x̃, ỹ) ,
Ξ2(x̃, ỹ) = δ (x̃, ỹ)+qeGΛ(x̃, ỹ)I2 , (B1)
Ξ3(x̃, ỹ) = δ (x̃, ỹ)+qeG [Λ(x̃, ỹ)I3 +Ω(x̃, ỹ, I3)] ,

where δ (x̃, ỹ) is an image of “dark counts”, qe is the quan-
tum efficiency of the camera–the probability to convert a pho-
ton into a photoelectron–and G is the gain–the relationship
between photoelectrons and counts on the analog-to-digital
converter of the camera. The manufacturer of our cameras
specifies G = 0.072 counts/photoelectron, qe = 0.45 for 7Li,
and qe = 0.30 for 87Rb. The function Λ(x̃, ỹ) describes how
many photons are scattered from the MOT laser beams onto
pixel (x̃, ỹ) when no atoms are confined in the MOT. Like-
wise, function Ω(x̃, ỹ, I) describes how many photons from
atoms fluorescing in the MOT laser beams with combined or
total intensity I are imaged onto pixel (x̃, ỹ). The intensities of
the MOT lasers are actively stabilized, which keeps drifts and
fluctuations of I with time to less than 1 %. Nevertheless, we
correct for residual changes of laser intensities I j with j = 2
and 3.

The dimensionless function Ω is given by

Ω(x̃, ỹ, I) =
1−

√
1−NA2

2

(
∆x̃
M

)2

te (B2)

×
∫

∞

−∞

dz nS(x̃/M, ỹ/M,z)R(x̃/M, ỹ/M,z, I) ,

where the dimensionless NA and M are the numerical aper-
ture and magnification of the imaging system, respectively.
The quantity ∆x̃ is the length of a side of the square pixels
in the camera, nS(⃗x) is the number density of sensor atoms
at position x⃗ = (x,y,z) in the MOT, R(⃗x, I) is a position and
intensity-dependent scattering rate in the MOT, and te is the
exposure time of the camera. Equation (B2) is valid when
magnification M does not vary over the size of the MOT and
the depth of field is larger than size of the MOT, both reason-
able approximations for our imaging system. It also assumes
that the atoms fluoresce equally into 4π sterradians.

A determination of Ω(x̃, ỹ, I3) is required to obtain NS and
N0. We manually define a region of interest (ROI) that in-
cludes the region where sensor atoms are located in image
j = 3. The size of the ROI is less than 20 % of the total image
size. The ratio

rI ≡
∑(x̃,ỹ)/∈ROI [Ξ2(x̃, ỹ)−Ξ1(x̃, ỹ)]

∑(x̃,ỹ)/∈ROI [Ξ3(x̃, ỹ)−Ξ1(x̃, ỹ)]
=

I2

I3
, (B3)

where the sums are over all pixels outside the ROI, is then
equal to the ratio of laser intensities used for images j = 2 and
3. Next, we realize that

W3(x̃, ỹ) ≡ Ξ3(x̃, ỹ)−Ξ1(x̃, ỹ)−
1
rI
[Ξ2(x̃, ỹ)−Ξ1(x̃, ỹ)]

= qeGΩ(x̃, ỹ, I3) . (B4)

We have verified that this reconstruction of W3(x̃, ỹ) and thus
Ω(x̃, ỹ, I3) yields

∑
(x̃,ỹ)∈ROI

W3(x̃, ỹ) = 0 (B5)
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when nS(⃗x) = 0 for all x⃗.
To obtain NS or N0 from W3(x̃, ỹ), we use the approxima-

tion that the scattering rate R(⃗x, I) is independent of x⃗ and
given by

R(⃗x, I) =
1

2τ

I/Isat

1+ I/Isat +4(τ∆)2 ≡ R0(I) , (B6)

where Isat is the two-level saturation intensity of the atomic
cycling transition, τ is the excited state lifetime, and frequency
∆ is the laser detuning from the atomic transition. For our
MOTs, we operate at τ∆=−2. The detuning ∆ exhibits short-
term relative fluctuations of < 4 % with no detectable long-
term drifts. The MOTs operate in the non-saturated regime
where R(⃗x, I) ∝ I. In addition, to eliminate systematic effects
from changes of the two I j with time t, we also compute the
quantity

L3 ≡ ∑
(x̃,ỹ)∈ROI

1
rI
[Ξ2(x̃, ỹ)−Ξ1(x̃, ỹ)] = qeGI3 ∑

(x̃,ỹ)∈ROI
Λ(x̃, ỹ) .

(B7)
The sensor atom number is finally given by

Ni =
2

1−
√

1−NA2

1
qeGte

⟨L3⟩
R0(⟨I3⟩)L3

∑
(x̃,ỹ)∈ROI

W3(x̃, ỹ) ,

(B8)
where ⟨L3⟩ is the average value of L3 over the multiple repe-
titions of the experiment measuring N0 or NS(t) for the same
time t. Here, forming ratio ⟨L3⟩/[R0(⟨I3⟩)L3] eliminates fluc-
tuations of the scattering rate due to laser fluctuations about its
time-averaged value of ⟨I3⟩, which is independently measured
with a power meter and the known 1/e2 MOT beam radius.
This procedure eliminates any potential correlations between
I3 and t.

Finally, the ratio

ηS(t) =
NS(t)

N0
(B9)

is formed from the independently measured N0 and NS(t).
This ratio eliminates the effect of the uncertainties in NA,
qe, G, and te. As described in Sec. III, we observe
u(ηS(t))/ηS(t)< 0.03 for the p-CAVS and u(ηS(t))/ηS(t)<
0.05 for the l-CAVS for any single measurement at short time
t. This statistical uncertainty is most likely due to short-term
fluctuations in τ∆ and fluctuations in the fraction of atoms suc-
cessfully transferred from the MOT to the magnetic trap. At
long t, the fluctuations are determined by the statistical noise
in the camera and reflect a minimum detectable atom number.

We last consider correlations between sensor atom number
density nS(⃗x) and t, or, equivalently, correlations between the
shape of nS(⃗x) and NS(t). Most easily inferred from Eq. (B2),
the sensor atom number is proportional to a three-dimensional
integral with an integrand that is the product of nS(⃗x) and
scattering rate R(⃗x, I). The spatial dependence of R(⃗x, I) can
be found by generalizing Eq. (B6). We include spatially-
dependent Zeeman shifts in the detuning ∆ and a spatially
dependent laser intensity. Combined with the variation of the

shape of nS(⃗x) with NS, this produces a systematic relative un-
certainty in our calculated ηS(t) of < 3 %. This “imaging sta-
bility” uncertainty is propagated through the fitting described
in Secs. III and IV.

We note that the use of subtracted images assumes linearity
between the number of photons incident on the camera and
the number recorded by the 10-bit analog-to-digital converter
of the camera. CMOS cameras, in particular, are known to
be non-linear, with most of the non-linearity coming from the
amplification system. We have independently measured the
non-linearity of our cameras and analyzed our results with and
without accounting for the camera non-linearity, and found a
relative uncertainty correction to Γ of only 0.07 % on average,
which we take as a k = 1 a systematic uncertainty.

Finally, our analysis also assumes linearity between the
number of fluorescence photons and number of atoms in the
MOT. For optically thick MOTs, the input beams are attenu-
ated, leading to less overall fluorescence. For N ∼ 105, the
p- and l- CAVS MOTs have 0.1 and 0.3 peak resonant optical
depth, respectively, leading to an attenuation of the detuned
MOT beams as they traverse the atomic cloud of 0.1 % and
0.3 %, respectively. This attenuation causes a slight under-
count of atoms at early times. When fitting time traces of ηS
with Eq. (3), this effect manifests predominantly as a nega-
tive value for β , which we do not observe in our experimental
data. Simulations with noiseless data show that relative shift
in Γ is at a negligible 10−6 level.
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