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ABSTRACT
The Open Radio Access Network (O-RAN) Alliance is an industry-
led standardization effort, with the main objective of evolving the
Radio Access Network (RAN) to be open, intelligent, interoperable,
and autonomous to support the ever growing need of improved
performance and flexibility in mobile networks. This paper intro-
duces an extension to Network Simulator 3 (ns-3) which mimics
the behavior and components of the O-RAN Alliance’s O-RAN ar-
chitecture. In this paper, we will describe the O-RAN architecture,
our model in ns-3, and a Long Term Evolution (LTE) case study that
utilizes Machine Learning (ML) and its integration with ns-3. At the
end of this paper, the reader will have a general understanding of
O-RAN and the capabilities of our fully simulated contribution so
it can be leveraged to design and evaluate O-RAN-based solutions.
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→Modeling and simulation; Machine learning.
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1 INTRODUCTION
The Third Generation Partnership Project (3GPP) is the standards
body responsible for creating and maintaining specifications that
define how a User Equipment (UE) communicates with a Base
Station (BS) over the RAN, so a UE can make use of the various
audio and data services provided by Long Term Evolution (LTE)
networks and beyond. However, as the traffic of mobiles within a
cellular network increases, the need for a more intelligent, agile,
and virtualized Radio Access Network (RAN) is required to ensure
that the network can adapt to meet the demand [16]. In 2018, five
mobile network operators formed the O-RAN Alliance to help meet
these requirements [15]. As of February 2023, this global alliance
consists of over 30 mobile network operators and 320 companies,
all sharing the same goal of enhancing the RAN.

Building upon the effort of 3GPP, the O-RAN Alliance is deter-
mined to extend the RAN so it has an open interface, smart RAN
controllers, and greater flexibility. To further elaborate, as networks
become more complex, the use of Machine Learning (ML) can be
leveraged to correlate network parameters with network state to
increase network performance [17]. Artificial Intelligence (AI) may
be used in combination with real-time data and statistics for au-
tonomous control over network decisions so human intervention is
not required to ensure that the network can better adapt to changing
environments [17].

Due to the work of the O-RAN Alliance, several standards exist
that define potential use cases and the architecture of O-RAN. Now
the O-RAN Alliance is focused on accelerating the deployment and
integration of O-RAN with commercial networks [18]. This pro-
vides an opportunity for both affiliated and non-affiliated O-RAN
Alliance members to create, implement, and test O-RAN solutions.
To support this effort, we would like to present a fully simulated
research tool, ns3-oran1, that can be used to design and evaluate
O-RAN-based solutions utilizing Network Simulator 3 (ns-3) [34].

1https://github.com/usnistgov/ns3-oran.git
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The outline of this paper is as follows: In Section 2, we provide an
overview of the O-RAN architecture for background information
on the technology. We present a literature survey in Section 3 to
provide context and discuss existing contributions relevant to this
work. In Section 4, we describe our model and its integration with
ML. In Section 5, we describe how theML integration offered by our
model can be used to better control the RAN and improve network
performance. Finally, in Section 6, we summarize the key elements
of this paper and discuss future work.

2 O-RAN OVERVIEW
This section gives an overview of the O-RAN architecture. First,
a general description of the architecture will be given to provide
a high-level view of the main O-RAN components. Then, a more
detailed description of the Near-Real-Time RAN Intelligent Con-
troller (RIC) (Near-RT RIC) and E2 interface is given to coincide
with the implementation of our model in ns-3. These more detailed
descriptions will cover the components and functions that make
up the Near-RT RIC, as well as the use of the E2 interface that
facilitates the exchange of information and control indications.

2.1 Architecture
At its highest level, the O-RAN architecture consists of three
main bodies, depicted in Figure 1: Service Management and Or-
chestration (SMO) Framework, Network Functions, and O-RAN
Cloud (O-Cloud). The SMO Framework houses the Non-Real-Time
RIC (Non-RT RIC) that is responsible for top-level control (or or-
chestration) of the network, primarily through policy management.
The O-Cloud is a pool of physical servers that provide resources to
the SMO framework, through the O2 interface, which includes the
ability to host virtualized components, such as the Centralized Unit
Control Plane (CU-CP). The Network Functions body is responsible
for control at the micro level when compared to the macro level of
the SMO Framework, as it consists of a Near-RT RIC, which is con-
trolled by the Non-RT RIC through the A1 interface, and the many
E2 nodes that the Near-RT RIC is managing. An E2 node is any
RAN component, such as a Fourth Generation (4G) LTE Evolved
Node B (eNodeB) or Fifth Generation (5G) New Radio (NR) Next
Generation Node B (gNB), that possess an E2 interface between
itself and the Near-RT RIC. Moreover, E2 nodes are connected to
the Near-RT RIC, can perform O-RAN related actions requested by
the Near-RT RIC, and/or provide information to the Near-RT RIC
about network status and performance. Control loops are also asso-
ciated with the components in each body. These control loops are
constraints that restrict how long it should take for a component
to collect information and then use it when it is time to perform
a useful action. Further details related to the architecture can be
found in [17, 19–25].

2.2 Near-RT RIC
To fulfil its role, there are many components that make up the
Near-RT RIC, and a diagram of those components can be found in
Figure 2. First and foremost, the Near-RT RIC may house one or
many xApps. An xApp is software running on the Near-RT RIC that
utilizes many of the other functions included in the Near-RT RIC
so that it can process data and determine what changes should
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Figure 1: High-Level View of O-RAN Architecture

be made in the RAN, if any. Typically, an xApp is the entity that
digests and realizes the policies pushed to the Near-RT RIC by the
Non-RT RIC, and is responsible for analyzing data stored at the
Near-RT RIC to make useful decisions. For example, there may
be an xApp designated to use sensing data to enforce spectrum
sharing, while another xApp analyzes UE location and traffic data
to manage cell selection. The Database (DB) is where all of the data
is stored that may need to be accessed by the Near-RT RIC and
its components, such as the xApps. The Conflict Mitigation (CM)
module is a filter that processes all of the actions that xApps plan to
carry out in the RAN to handle direct, indirect, and implicit conflicts.
This is necessary since it is possible for differences in xApp goals
or settings to result in multiple actions that affect or depend on
the same configuration or outcome, and it is the responsibility of
the CM to both discover these conflicts and form resolutions. The
ML module provides ML support so that xApps can train models
and use them to make inferences. Additional details regarding the
Near-RT RIC and its components can be found in [26, 29].
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Figure 2: Near-RT RIC Components

2.3 E2 Interface
The E2 interface is the logical link between E2 nodes and the
Near-RT RIC. This interface provides the transport for two pro-
tocols: the E2 Application Protocol (E2AP) and E2 Service Model
(E2SM). The E2AP defines the control procedures and signals that
allow E2 nodes to establish a link with the Near-RT RIC to sup-
port the E2SM. This includes setup request signals sent from an E2
node to the Near-RT RIC to identify an E2 node and the functions
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that it supports, and setup response signals that are sent from the
Near-RT RIC to the E2 node to mainly indicate whether the setup
was successful or not. Once a successful link is created, the E2SM
can be used by the E2 node to report network-related informa-
tion to the Near-RT RIC via report and insert messages, while the
Near-RT RIC can send control and policy messages to the E2 node
to request an action or convey an overall policy that should be
followed. Further details regarding the E2 interface can be found in
[26–28].

3 LITERATURE SURVEY
This section provides a literature survey of existing works rele-
vant to this paper. This includes publications on existing emu-
lated/simulated O-RAN architectures and ML integration with ns-3.
We also focus on the means of each result/capability so that we
may consider them later when we describe what is necessary to
use our contribution.

3.1 Existing O-RAN Tools
Since O-RAN is a relatively new topic with the potential to create
significant advances in mobile networks, a recent surge in litera-
ture exists in its area. This includes various works that discuss the
performance gains of O-RAN-based solutions [7, 32, 33], as well
as frameworks and testbeds specifically designed to facilitate the
implementation and evaluation of O-RAN components and features
[2, 4, 5, 11, 31].

In particular, the authors in [32] provide a thorough overview
of the O-RAN architecture and its potential applications. These
include, but are not limited to, how O-RAN-based solutions can
provide performance gains via autonomous load balancing, the
optimization of radio resource allocations, Quality of Service (QoS)-
based control targets, sensing solutions, and the optimization of
O-RAN deployments themselves. The authors in [7] propose a
cell selection algorithm that uses global network state instead of
the heuristic, LTE-based method that relies on UE reported sig-
nal quality, on top of a combination of tools that include the 5G-
EmPOWER Near-RT RIC, srsRan Software Defined Radio (SDR)
suite, and Open5GS LTE core to implement and evaluate their
algorithm. The authors of [33] use a Kubernetes cluster, several
laptops, SDRs, GNU Radio, a JavaScript application, and Python
implemented xApps to demonstrate how an O-RAN-based solution
can provide a decent sensing-based algorithm.

The authors in [4] present a tool called, Channel-Aware Reactive
Mechanism (ChARM), that can be used to effectively share spec-
trum among unlicensed LTE and Wireless Fidelity (Wi-Fi) bands
using srsRAN, the Colosseum wireless testbed, and System-on-
Chip (SoC) boards to show how effective ChARM is at exploiting
the available channels. The strategy described in [31] alsomakes use
of the Colosseum testbed, but instead provides a framework called,
ColO-RAN, that is combinedwith srsRAN, Linux Containers (LXCs),
and custom components to provide ML integration, programmable
BSs, and the generation of large-scale data sets. In [5], the authors
present an O-RAN-centric toolbox that combines the Near-RT RIC
provided by ColO-RANwith the SCOPE framework from [2], which
is a ready-to-deploy LXC that provides software-based, 3GPP com-
pliant BSs, data collection tools, and a set of sample scenarios, for

an "end-to-end" O-RAN design, specifically for the development
and testing of ML solutions. Finally, the work from [11] requires
the use of Docker containers and/or a true implementation of a
Near-RT RIC, the E2 interface, and remaining O-RAN components,
in combination with a specialized version of ns-3, so that the RAN
of an LTE network can be simulated. This tool, which is a part of
the OpenRAN GYM2 toolbox, allowed the authors in [11] to demon-
strate how ML may be leveraged to perform Traffic Steering (TS)
with throughput and spectral efficiency gains of over 50 % when
compared to the traditional handover triggers.

3.2 ML Integration in ns-3
There are also two more tools that are relevant to this work, ns3-
gym [9] and ns3-ai [35], as they provide a means to integrate ML
with ns-3. More specifically, ns3-gym is an extension of ns-3 that
uses Protocol buffers (Protobuf) to encode the information (e.g., en-
vironment state, rewards, penalties, etc.) exchanged between ns-3
and a Reinforcement Learning (RL) model in Python. Communica-
tion between these two processes is carried out using Transmission
Control Protocol (TCP) sockets. This allows for remote executions
of the ML model and ns-3 at the expense of significant delays and
the overhead of having to keep two processes running and syn-
chronized. ns3-ai is an inspiration of ns3-gym that supports Deep
Learning (DL) in addition to RL, that also provides a faster message
exchange between the ns-3 simulation and a Python model through
the use of shared memory when compared to Protobuf. However,
ns3-ai still requires muxes/semaphores to regulate access to shared
memory, which means that at any point, only one process is run-
ning. This limits flexibility as one needs to run both processes in
the same system and keep them synchronized.

4 MODEL
Before we describe the details of our model, it is important to note
our contribution’s advantages. All of the solutions mentioned in
Section 3 are useful, however they rely on multi-component setups,
intimate knowledge of several tools, and/or costly pieces of hard-
ware. For example, the components necessary to use the solution
from [11] are depicted in Figure 3, while the components required
for our contribution are depicted in Figure 4. From these figures
we can see that the work presented in [11] requires several com-
ponents, including a specialized version of ns-3 and real/emulated
hardware. However, our model only requires two components that
are typical of any ns-3 extension: the base version of ns-3 and the
module that we provide. Therefore, our solution has the advantage
of providing all of the necessary O-RAN components, through soft-
ware, in one module, to design and evaluate O-RAN-based solutions
using simulation. Since this solution does not rely on real or emu-
lated components, but simply models them via the ns-3 paradigm,
this approach is for the researcher that is still in the exploratory
or design phase with no need to overcommit to more expensive
and complex solutions that may be more attractive to vendors and
operators who intend to implement and later deploy their solutions
to a production environment.

Furthermore, this contribution employs the direct linkage of
ML libraries with ns-3 through the use of Open Neural Network
2https://openrangym.com/

https://openrangym.com/
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Exchange (ONNX) that reduces the overhead of exchanging infor-
mation between the ML model and ns-3. Thus, the flexibility of this
approach does not require the use of additional hardware or shared
memory, so simulations can easily be run in parallel on the same
machine with fewer resources. This solution also naturally invites
the simulation as a part of ML model development, as a researcher
can quickly iterate between training and evaluating a model. More
specifically, researchers can generate data using ns-3 or an external
source, train the model outside of ns-3, make inferences directly
within ns-3, evaluate performance using simulation output, and
repeat. In summary, our contribution is the first and only fully
simulated, O-RAN-based extension for ns-3 that supports ML.
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Described in this Paper

4.1 O-RAN ns-3 Module
The O-RAN module for ns-3 implements the classes required to
model a network architecture based on the O-RAN Alliance spec-
ifications. This includes a RIC that is functionally equivalent to
O-RAN’s Near-RT RIC and reporting modules that attach to net-
work nodes and serve as communication endpoints with the RIC
similar to an E2 node in O-RAN. In its current state, the SMO Frame-
work and O-Cloud are not considered as policy-level design and
RAN virtualization are out of the scope of our model.

These models are designed to provide the infrastructure and
access to data so that developers and researchers can focus on
implementing their solutions and minimize the time and effort
spent on handling interactions between models. With this in mind,
all the components that contain logic that end users may modify are
modeled hierarchically. The ns3-oran model uses a Data Repository
(DR) to store all the information exchanged between the RIC and the
modules, as well as to serve as a logging endpoint. By default, this
requires the use of an SQLite [10] storage backend for the DB which
is supported out-of-the-box by ns-3, but still requires SQLite to be
properly installed on the system for use. The DB file is accessible
after the simulation and can be accessed by any SQLite-compatible
tool and interface. Modeling of the reporting and communication
models for the network nodes is implemented using existing traces
and methods, which means there is no need to modify the models
provided by the ns-3 distribution to make use of the full capabilities
of this module.

4.1.1 Architecture. The Near-RT RIC is modeled as a container
that houses all of the individual components that provide the dif-
ferent functionalities of the RIC, as seen in Figure 5. This includes
a DR for data storage, Logic Modules (LMs) to model xApps, a CM
module, report triggers, and an E2 terminator. In this context, an E2
terminator is simply an endpoint (either on the Near-RT RIC or E2
node) of the E2 interface to facilitate communication. Moreover, an
E2 node is any network node with an E2 terminator that connects it
with the Near-RT RIC. The Near-RT RIC allows each of its compo-
nents to be instantiated independently, but takes care of providing
references between internal components, the collection of reports,
and the dissemination of commands. Additionally, the Near-RT RIC
can activate or deactivate all of its associated components when
itself is activated or deactivated.
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Figure 5: Block Diagram Showing the Communication Be-
tween Nodes and the Near-RT RIC

The DR model serves as the access point to the actual storage
instance, which can be a database, a text file, or any other storage
structure. This abstraction also serves as a single-point definition
of the data access Application Programming Interface (API) that
will be implemented by a storage instance. This ensures that all
the other components will work the same from one simulation to
another, regardless of the storage mechanism used. The operations
defined by the DR API can be grouped into three categories: report
storage, network status, and logging. Report storage is for storing
registration requests and reports sent by network nodes through
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their E2 terminator. The network status queries allow for retrieving
information from node reports. Finally, the logging functions store
log-related information generated by the CM module and LMs.

The LMs are the components that implement the intelligence of
the RIC. It is expected that each LM will implement unique logic
for issuing commands to nodes, depending on the network status.
LMs use the DR to retrieve the information reported by network
nodes and generate sets of commands that will help achieve the
goal defined in their logic. The LMs do not decide when their code is
executed, but instead the Near-RT RICwill query all of the deployed
LMs for the sets of commands they want to issue. The Near-RT RIC
may perform this invocation at fixed intervals or it may be triggered
by a report received from a network node. The Near-RT RIC must
always reference at least one LM, which serves as the default LM
for the RIC. Additional LMs can be deployed as needed. The CM
module processes all the commands generated by the deployed LMs
to minimize potential conflicts between them. The final component
of the Near-RT RIC is the E2 terminator. In the RIC model, the
E2 terminator is the entity that interacts with the network nodes,
receiving reports from the E2 terminators of network nodes and
sending commands filtered by the CM module. Both the received
reports and sent commands are logged in the DR.

The modules that enable a network node to interact with the
Near-RT RIC are an E2 terminator and one or more reporters. This
is depicted in Figure 5. The reporters are modules that attach to
existing traces in the node, build reports with the values being
traced, and pass them to the E2 terminator for transmission to the
RIC. Each reporter has an associated trigger that tells the reporter
when to collect the information and generate the report. These
triggers may be periodic or based on events. Each report includes
the identity of the node, and the time at which it is generated, so
even if the transmission to the RIC is delayed, the RIC will know
when the values in the report were captured. When a reporter is
instantiated, it is linked to an E2 terminator in the network node
which allows the reporter to obtain the node identity from the E2
terminator and the E2 terminator to store the reports generated by
the reporter.

The E2 terminator in the network nodes is analogous to the E2
terminator in the RIC, in that it is the entity that communicates
with the Near-RT RIC by exchanging reports and commands. All
of the E2 terminators periodically send the reports generated by
their reporters to theNear-RT RIC’s E2 terminator. Additionally, the
network nodes’ E2 terminators are in charge of receiving commands
from the RIC and translating them into the appropriate function
calls. For example, an LTE handover command can be translated
into a function call to start an X2 handover in the associated eNodeB
of ns-3. Due to the disparity of the commands that may be accepted
by each type of node, there are multiple E2 terminator subclasses,
each capable of processing its own set of commands.

The communication between the network node E2 termina-
tors and the Near-RT RIC E2 terminator is modeled using vir-
tual interfaces. This means that there is no network link between
these entities, instead, during the configuration, the E2 termina-
tors in the network nodes are given a pointer to the Near-RT RIC.
With this pointer, the network node terminators can contact the
Near-RT RIC terminator directly when they are activated, allowing

the Near-RT RIC to keep track of all the E2 terminators. Trans-
mission delays for both reports and commands are simulated us-
ing Random Variables (RVs): one RV in the E2 terminator of the
Near-RT RIC generates the delays incurred by commands sent
to network nodes, and another RV in each network node’s E2
terminator generates the delays incurred by reports sent to the
Near-RT RIC.

4.1.2 O-RAN Model Operation Workflow. This section documents
the sequence of events generated by the most common operations
of the O-RAN models during a simulation: activation of the models,
reporting from the nodes to the Near-RT RIC, LM logic invocation,
and command issuing from theNear-RT RIC to the nodes. As shown
in Figure 6, when the Near-RT RIC is activated using its public API,
the activation signal is propagated to the rest of its components:
DR, LMs, CM module, and E2 terminator. On the nodes’ side, the
activation of the E2 terminator will trigger the activation of all the
reporters and report triggers attached to it, and it also triggers a
registration request to the Near-RT RIC. If the Near-RT RIC has
already been activated, the registration request will be recorded in
the DR. If the Near-RT RIC is not active, the registration request
will be ignored, and periodic retransmissions of the request will
occur.
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Figure 6: SequenceDiagramShowing a Typical Flow of Events
and Signal Exchanges Between O-RAN Objects

Once the Near-RT RIC and network nodes’ E2 terminators are ac-
tivated and a registration request is successfully recorded in the DR,
the report triggers in the node will signal when the reporters should
generate reports. The node’s E2 terminator, equipped with a timer,
will periodically send the collected reports to the Near-RT RIC.
When the Near-RT RIC’s E2 terminator receives a report, it will be
stored in the DR, as shown in Figure 6, and the Near-RT RIC will be
notified so it can be examined in case a trigger should be invoked.

Figure 6 also shows how LMs in the Near-RT RIC can be trig-
gered by a periodic timer or by an event, such as the reception of
a specific report. In either case, the Near-RT RIC will request all
deployed LMs to run their logic and generate commands for the
network nodes. For each LM to process this request, it will retrieve
information from the DR that it is interested in and then use this
information to decide, based on its custom logic and goals, if any
change needs to be made to the network, and if so, the appropri-
ate commands are issued. These commands will be passed to the
Near-RT RIC once a timer in the LM expires to simulate processing
delays.

After all of the LMs run their logic and generate commands, or a
maximumprocessing timer expires in the Near-RT RIC, all collected
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commands are sent to the CM module. Here, the CM module filters
the commands according to its own logic and returns the final set
of commands that are to be sent out to the network nodes. This
set is passed to the Near-RT RIC’s E2 terminator which will log
the individual commands in the DR, and then eventually pass each
command to the appropriate network node’s E2 terminator.

4.2 ML Framework
In order to implement ML, ns3-oran utilizes the ONNX standard
[1]. ONNX is an open-source standard for representing DL models,
designed to facilitate interoperability between various DL frame-
works and tools. This standard defines both a file format and a set
of operators for constructing a computational graph that represents
the neural network. ONNX is natively supported by a growing
number of ML frameworks, such as PyTorch [30] and MXNet [6].
Additionally, it can also be utilized through converters for Ten-
sorFlow [3] and CoreML [14]. The main benefits of using ONNX
include the following:

• Framework Interoperability: ONNX brings the ability to eas-
ily import a model trained in oneML framework and perform
inferences using any other ML framework that supports the
ONNX format, without the need for retraining the model
from scratch. This not only saves a significant amount of
time but also simplifies model deployment across a wide
range of platforms. For example, one can train a model in
Matlab [12] and deploy it in ns-3.

• Better Performance: Multiple vendors implement hardware
optimizations specifically for ONNX to increase inference
speed. By utilizing ONNX as a common interface, access
to these optimizations is facilitated for any ML framework
that is compatible with ONNX. Additionally, the collective
effort of multiple vendors to improve the performance of
a single framework, ONNX, results in greater optimization
when compared to targeting multiple ML frameworks inde-
pendently.

The use of ONNX in ns3-oran is enabled by ONNX Runtime
[13]. ONNX Runtime supports a wide range of platforms and op-
erating systems. It is capable of importing ONNX-trained models
and performing ONNX inferences using C++. It is integrated with
our model by linking it through the ns-3 build process. This allows
the simulation to access ONNX models and query them directly
via function calls, as if they were any other C++ object. With this,
the simulation can perform inferences, generate dynamic training
information, and/or use reward structures for RL. For added flexibil-
ity, since the model is loosely coupled with the library, as it is only
used at runtime, one can produce a trained model that is stored in a
file on either the same system or a different system that is set up to
run ns-3. Lastly, as ns-3 is C++ based, the C++ API used to query
the ONNX model provides improved performance as the model can
be accessed directly and there is no need to implement semaphores
or muxes.

5 CASE STUDY
In this section we will walk through a case study to demonstrate an
application of ns3-oran, as we consider several network configura-
tions in the scenario depicted in Figure 7. This will include separate

simulations for both non-O-RAN and O-RAN-based approaches.
First, we will discuss the overall details of the scenario and the dif-
ferent approaches we consider. Then we will discuss the simulation
results collected from each of the simulations and compare network
performance.

5.1 Description
The topology consists of two static, single-cell eNodeBs and four
mobile UEs: UE 1, UE 2, UE 3, and UE 4. Each circle in Figure 7
indicates the coverage area for a given eNodeB, which is the area
in which it can serve a single UE without losing a single packet.
The movements of UE 1 and UE 4 are restricted to the coverage of
a single eNodeB cell (eNodeB 1 for UE 1 and eNodeB 2 for UE 4),
while UE 2 and UE 3 move into an area covered by both cells. The
areas in which the UEs can move are depicted by each rectangle
in Figure 7. Each UE’s data traffic is configured as a video stream
download with a rate of approximately 290 kbits/s at the application
layer, and the streams are active for a total of 200 s between the
simulation times of 2 s and 202 s. We then compare the use of
three different approaches to see what gains are achievable, if any,
from the baseline scenario. This includes a "heuristic" approach
that relies on UE signal quality, a "distance" approach that relies
on UE reported location information, and an "ML" approach that
relies on UE reported location and application loss.

Figure 7: Topology of Case Study

The baseline scenario considers the setup of "Configuration 1"
that Figure 8 depicts, with UE 1 and UE 2 connected to eNodeB 1,
while UE 3 and UE 4 are connected to eNodeB 2. In the baseline
scenario, the UEs are mobile but no handover mechanism is con-
sidered. Therefore, this configuration persists for the entire 210 s
simulation, regardless of the location of a UE or its signal quality. In
this case, the Near-RT RIC is equipped with a "no-op" LM that does
nothing, however, the UEs still report their locations and packet
loss.

The purpose of using ML is to use a DL model to efficiently
trigger UE 2 and UE 3 handovers to maximize performance in
terms of packet loss. The DL model used is shown in Figure 9. It
is a simple classifier composed of a 4-layer neural network with
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Figure 8: The Four Possible UE to eNodeB Configurations
Considered in this Case Study

Rectified Linear Unit (RELU) activation for the first three layers. The
classifier has four configurations, summarized in Figure 8, based on
the eNodeBs to which UE 2 and UE 3 are connected. The input of the
model is the distance of each UE to each eNodeB and the observed
normalized packet loss of the UEs during the last 1 s. The classifier’s
output is a ranking of each configuration, which allows the selection
of the one providing the lowest overall packet loss for the next 1 s.
Moreover, in the O-RAN model itself, the Near-RT RIC is equipped
with a single LM that, when queried, collects the locations reported
by each UE and eNodeB from the DB, as well as the packet loss
reported by each UE, calculates the distance between each UE and
eNodeB, passes those inputs to the DL model, and then selects the
configuration based on the DL model’s inference. The data used
to train this model is generated by running a simulation for each
configuration without the use of any handover algorithms, and
then post-processing the data to determine which configuration is
best at any given time. In the case when the DL model is used, we
will refer to it as the "ML" approach.

As a reference, we also employ two non-ML approaches that we
refer to as the "heuristic" and "distance" approaches. The heuris-
tic approach does not make use of any information collected via
O-RAN, but instead makes use of the handover algorithm described
in [8] that is included in ns-3’s LTE module. The method used for
handover is known as the "traditional power budget algorithm."
This algorithm regularly monitors the Reference Signal Received
Power (RSRP) of a UE’s serving cell and neighboring cells so that
once the RSRP of a neighboring cell is greater than the serving
cell’s, the UE is handed over to that neighboring cell. The distance
approach does make use of the O-RAN reports similar to the ML
approach, however, the LM uses the reported locations to calculate
the distance between each UE and eNodeB, and then performs a
handover for a UE if its distance to the neighboring cell is less than
that of the serving cell.

A subset of parameters used in the simulations are described in
Table 1, and the performance metrics considered are:

• The packet loss rate for each UE, defined as 𝑃𝐿 =
𝑁𝑇𝑥−𝑁𝑅𝑥

𝑁𝑇𝑥

where 𝑁𝑇𝑥 is the total number of packets sent by the server
and 𝑁𝑇𝑥 is the total number of packets received at the UE.

• The aggregated throughput defined as 𝑇ℎ𝑟 =
∑𝑛
𝑖=1𝑇ℎ𝑟𝑈𝐸𝑖

where 𝑇ℎ𝑟𝑈𝐸𝑖 is the total throughput observed at the UE 𝑖

in the last second for a given simulation time.

Table 1: Parameters of the Simulated Scenario

Parameter Value Unit
Simulated Time 210 s
Traffic 290 kbits/s
Pathloss Model Cost231 NA
Max UE-to-eNodeB Distance 461 m
Scheduler Round Robin NA

O-RAN dependent parameters
LM Invocation Interval 1 s
UE/eNodeB Report Interval 1 s

ML training parameters
Epochs 3 NA
Training Set Size 666 667 NA
Verification Set Size 333 333 NA

• The total number of handovers that take place.

5.2 Simulation Results
Figure 10a shows the packet loss of each UE for all four approaches.
On the y-axis, the total packet loss is represented as a percentage,
the UE that the loss corresponds to is on the x-axis, and the color of
the series denotes which approach the loss is recorded for. In all four
cases neither UE 1 nor UE 4 experience any packet loss, thus we
will only focus on UE 2 and UE 3. For the baseline, the total packet
loss for UE 2 and UE 3 is 35 % and 9.2 %, respectively, resulting
in an average packet loss of 22.1 %. With the heuristic approach
the packet loss for UE 2 and UE 3 is reduced to 6.3 % and 2.8 %,
resulting in an average packet loss of 4.5 %. The distance approach
brings the losses down to 1.9 % and 6.4 % for an average packet
loss of 4.2 %. Lastly, with the ML approach we see the greatest
improvement as the packet loss recorded for UE 2 and UE 3 is 1.6 %
and 5.3 %, resulting in an average packet loss of 3.5 %. Therefore,
each approach reduces the total packet loss when compared to
the baseline. However, the greatest improvements come from the
O-RAN-based approaches, with the ML approach providing the
greatest reduction in packet loss.

Figure 10c shows the aggregated throughput of all four UE over
1 s intervals at a given simulation time for each approach. The total
throughput, in Mbits/s, is on the y-axis and the simulation time,
in seconds, is on the x-axis. Looking at the chart, we can see that
overall trends show the distance and ML approaches providing an
overall higher throughput throughout the entire simulation.We also
observe these two O-RAN-based approaches typically providing
a throughput that is greater than 1 Mbit/s when compared to the
heuristic approach and the baseline as the throughput in these two
cases dip below 610 kbits/s. These dips also indicate that the signal
quality between eNodeB 1 and UE 3 degrades significantly between
60 s and 69 s. The O-RAN-based solutions can avoid this drop as
both the ML and distance approaches decide to handover UE 3 to
eNodeB 2 at 61 s and 62 s, respectively. This behavior also indicates
that the degradation in signal quality for UE 2 is due to its distance
from eNodeB 1. However, with the heuristic approach no action
is taken until the signal quality is degraded even further, with a
handover taking place at 72 s to again realize a total throughput
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Figure 9: DL Model Used for Handover Management

of over 1 Mbit/s. While it appears that the most significant time
for handovers to take place is between 61 s and 72 s, additional
handovers also took place, and the totals for each approach is shown
in Figure 10b.

Figure 10b shows the total number of handovers triggered for
each approach. The count is shown on the y-axis, and the approach
that the count corresponds to is on the x-axis. Notice that the
improvement in performance achieved by the O-RAN-based ap-
proaches over the heuristic approach, requires additional handovers
since the heuristic approach only performs two handovers. How-
ever, the ML approach is able to provide increased performance
but with fewer handovers than the distance approach, as the ML
approach only triggers four handovers while the distance approach
triggers six.

(a) Packet Loss Rate Per UE (b) Total Number of Handovers

(c) Throughput Evolution Over Simulation Time

Figure 10: Simulation Results Comparing the Baseline with
the Heuristic, Distance, and ML Approaches

Figures 11a, 11b, and 11c show how the link delay between the
Near-RT RIC and the E2 nodes impacts the ML approach’s perfor-
mance. In this case we simply reuse the ML approach but introduce
a constant delay on the E2 interface. Moreover, if the link delay is
1 s, then when a report is sent by an E2 node a total of 1 s in sim-
ulation time will pass before the Near-RT RIC receives the report,

and the same delay would be incurred by a command sent from the
Near-RT RIC to an E2 node. Increasing the link delay means that
any information exchanged, whether it be a report or a command, is
more representative of the past than it is of the current state of the
network. Note that the "0 s" series in these plots means that there is
no link delay, and it is representative of the ML series discussed in
the previous plots. Figure 11a shows that the packet loss increases
for both UE 2 and UE 3 as more delay is introduced on the link.
Figure 11b shows that the number of handovers is not changing,
which indicates that the impact on performance is related to timing
since the same actions are taken across all three simulations but
at later times with increasing link delays. Figure 11c also indicates
that increasing the link delay hinders performance, as the overall
trends show that the aggregated throughput is often lower with
increases in the link delay.

(a) Packet Loss Rate Per UE (b) Total Number of Handovers

(c) Throughput Evolution Over Simulation Time

Figure 11: Simulation Results that Depict the Impact of In-
creasing the Link Delay of the E2 Interface

6 CONCLUSION
This paper gives the reader a high-level overview of O-RAN and
presents a fully simulated model for studying O-RAN-based solu-
tions. This includes a presentation of our ns-3 extension, as well as
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an efficient integration of ML libraries with the simulation. We also
show that these models and libraries make it possible to quickly
define, evaluate, and tune solutions and mechanisms for improving
the RAN performance based on the O-RAN concept. In terms of
future work, we intend to use our model to implement existing and
original case studies, and to explore the development of ML models
further. Finally, we plan to improve the model by implementing
some of the abstracted capabilities, such as the virtual E2 interface.
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