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Highlights: 12 

• A deep-learning model was developed to determine ECG cardiac rhythms in real-time.  13 

• 24-hour ECGs from 112 career on-duty firefighters were used for training. 14 

• The model predicted normal, abnormal, and noisy ECG with an error of < 6 %. 15 

• Using non-firefighters’ ECG datasets led to substantial errors (~ 40 %).   16 
 17 

Abstract: 18 

A machine learning-based heart health monitoring model, named H2M, was developed. Twenty-19 

four-hour electrocardiogram (ECG) data from 112 career firefighters were used to train the 20 
proposed model. The model used carefully designed multi-layer convolution neural networks with 21 

maximum pooling, dropout, and global maximum pooling to effectively learn the indicative ECG 22 
characteristics. H2M was benchmarked against three existing state-of-the-art machine learning 23 
models. Results showed the proposed model was robust and had an overall accuracy of 24 

approximately 94.3 %. A parametric study was conducted to demonstrate the effectiveness of key 25 
model components. An additional data study was also carried out, and it was shown that using 26 

non-firefighters’ ECG data to train the H2M model led to a substantial error of ~ 40 %. The 27 
contribution of this work is to provide firefighters on-demand, real-time status of heart health status 28 
to enhance their situational awareness and safety. This can help reduce firefighters’ injuries and 29 

deaths caused by sudden cardiac events. 30 

Keywords: Abnormal heartbeat detection; machine learning; on-duty ECG signals; sudden cardiac 31 
death prevention; smart firefighting  32 

 33 

1. Introduction 34 

Sudden cardiac death (SCD) has been the leading killer for U.S. firefighters. Over the past 10 35 

years, SCD consistently accounted for more than 40 % of on-duty fatalities [1]. In the year of 2021 36 
alone, it resulted in 31 firefighter fatalities. In the same study [1], statistics showed that firefighters 37 

aged 50 years and over accounted for roughly two-thirds of the total number of SCD. Moreover, 38 
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the incidence of SCD among firefighters was about twice that of police officers and four times 39 
higher than other emergency responders [2]. In terms of injuries, cardiac events led to about 13 % 40 

of the severe injuries during fireground operations between 2010 and 2014 [3]. From the studies 41 
carried out by the National Fire Protection Association (NFPA) [4-6], there was an annual average 42 

of about 831 instances due to cardiac related events for on-duty firefighters between 2015 and 43 
2020. Based on these statistics, research is needed to prevent future firefighter deaths and injuries. 44 

The National Institute for Occupational Safety and Health (NIOSH) conducts independent 45 
investigations of on-duty firefighter deaths through the Fire Fighter Fatality Investigation and 46 

Prevention Program. Currently, there are about 700 completed investigation reports [7]. These 47 
reports are useful because they provide a detailed timeline of the cardiac event. From the recent 48 

reports [8-12], there are two consistent observations before the fatal cardiac event occurs: 1) the 49 
firefighter feels physical discomfort and 2) their fellow firefighters notice unusual symptoms. 50 
Important notes from one investigation [12] are provided here. A 44-year-old female firefighter 51 

(FF) was dispatched as the driver of a rescue unit at 1022 hours. Although the light-duty work, her 52 
fellow firefighter noticed she was diaphoretic (Moment 1). When questioned, the FF indicated that 53 

she completed a physical test in the morning and she was just tired (Moment 2). The second 54 
dispatch took place at 1125 hours. While returning to the fire station, the FF complained about a 55 
burning sensation in her throat (Moment 3) but insisted that she was physically healthy and the 56 

unusual feeling was attributed to breathing cold air during the morning physical test. At around 57 
noon after arriving at the fire station, the FF indicated the symptoms were getting worse. The FF 58 

began to experience chest pain and complained that she could not breathe. Shortly after, the FF 59 
went into seizure-like activity and had a cardiac arrest. The FF’s heart rhythm was shown to be 60 
ventricular fibrillation. At about 1215 hours, the FF was unresponsive and pulseless. Based on the 61 

details provided from [12], if the FF had understood her cardiac status at any one of the three 62 
moments, she could have sought immediate medical attention and this fatal event could have been 63 

avoided. 64 

Three NFPA standards help firefighters prevent heart attacks and/or other cardiac related issues. 65 
Firstly, NFPA 1500 [13] addresses firefighter safety with general guidance on operations, health 66 
and wellness, equipment, fitness assessments, and rehabilitation. Secondly, NFPA 1582 [14] 67 

provides guidance for medical testing, minimum performance, and specific testing criteria. Finally, 68 
NFPA 1583 [15] provides guidance on fitness and wellness programs. However, there are two 69 

potential problems. The first problem is that compliance with the NFPA standards is voluntary [16] 70 
and the second problem is that all firefighter victims from the NIOSH reports [8-12] had received 71 
medical clearance for their duties and there were no major concerns noted in their medical 72 

evaluations. This is a major concern because the medical evaluations aimed at protecting 73 
firefighters fail to accurately acquire the true physiological demands of firefighting; as such, 74 

firefighters are incorrectly classified as fit yet suffer SCD. Additional efforts are needed to 75 
understand the relationship between emergency duties and SCD among firefighters specifically in 76 
the real world environment. 77 

Contributions from the fire and medical research communities provide a better understanding of 78 
cardiovascular risk factors. These studies investigated the effect of firefighter’s age [17,18], 79 
sex [19], fitness [20,21], career path [22,23], and roles [24]. Research findings indicated that there 80 

was a prevalence of overweight and obesity within a cohort of male career firefighters. This was 81 
alarming because obesity was found to be highly correlated with increased cardiovascular risk. In 82 

addition, a great deal of efforts has been made to understand firefighter’s physiological responses 83 
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in various emergency duties and firefighting environments. For example, early studies examined 84 
the effect from various simulated firefighting activities such as a response to a fire alarm [25], 85 

training [26], fire suppression [27], high-rise building operation [28], and recovery [29]. More 86 
recently, several research groups, such as those in references [30-32], expanded the studies to 87 

accommodate real emergency and fire responses. It was found that strains due to strenuous work, 88 
dangerous environments, and heavy protective equipment, which include attack and suppression, 89 
search and rescue, climbing stairs, extreme temperatures, toxic gases, low visibility, increased 90 

metabolic work, decreased heat dissipation, and restrictive body movement, contributed as cardiac 91 
stressors that may trigger sudden cardiac events. In [32], the study showed that firefighters, who 92 

did not have any underlying cardiac diseases and had completed NPFA 1582, do experience at 93 
least one non-sustained cardiac arrhythmia (supraventricular and/or ventricular) in the 24-hour 94 
shift. However, none of these cardiac reports were available to the firefighters in real-time and 95 

none of the firefighters noticed any of these events during their 24-hour shifts. Indeed, the 96 
traditional approaches in the fire and/or medical research communities are limited to offline 97 

analysis of physiological signals. Therefore, a robust approach is required to transfer fundamental 98 
knowledge into practical applications and to provide on-demand, real-time heart health status to 99 
the firefighters.  100 

Deep learning algorithms have achieved great success in electrocardiogram (ECG) classification 101 

tasks. The current state of the art models can provide cardiologist-level detection of ECG 102 
waveforms [33], heart beats [34], artifacts [35] and classification of abnormal heart rhythms [36]. 103 

The performance of these models is promising, and the model accuracy for heart rate [34] and 104 
abnormal cardiac ECG rhythm [36] detection can be nearly 99 % and at least > 80 %, respectively. 105 
However, there are three major problems. Firstly, ECG data obtained from hospital patients were 106 

used for model development [33-36]. Secondly, the existing models generally rely on multi-lead, 107 
lengthy ECG sequences for predictions. Finally, none of these models has been validated against 108 

any ECG recordings obtained from on-duty firefighters where these models may not be reliable 109 
because the models have not learned sufficient ECG characteristics (i.e., more noise and higher 110 
heart rate) from career firefighters and their unique activities. In this paper, the development of a 111 

lightweight, domain specific, deep learning-based heart rhythm classification model is presented. 112 
The proposed model only requires the use of single-lead, six-second, ECG segments and is trained 113 

using the ECG recordings obtained from career on-duty firefighters. It is expected that the 114 
proposed model can provide firefighters on-demand, real-time, heart health status to enhance their 115 
situational awareness and safety and to help reduce firefighters’ deaths and injuries due to sudden 116 

cardiac events. 117 

This paper is organized as follows. Section 2 describes the on-duty firefighters’ ECG data covering 118 
baseline information about the firefighters, data collection and annotation procedure, data 119 

behaviors and potential challenges, and data processing. Section 3 presents the development of the 120 
heart health monitoring (H2M) model. Then, Section 4 provides the model performance of the 121 
H2M model, benchmark results against the current state-of-the-art models, and model comparison 122 

with hospitalized ECG datasets. Finally, Section 5 presents the conclusions of the study.  123 

 124 

2. On-Duty Firefighters’ ECG Data 125 

Data is one of the most important elements for the development of a reliable machine learning 126 
model. In contrast to [33-36], this study utilizes realistic firefighters’ ECG data collected from on-127 
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duty firefighters [31]. This dataset is unique because it accounts for a diverse population of career 128 
firefighters and includes various dynamic on-duty activities. Thus, the proposed model is expected 129 

to be used in emergency response and firefighting contexts.  130 

2.1 Firefighters Demographic and Anthropometric Characteristics 131 

ECG data from one-hundred and twelve (112) career firefighters mainly from metro fire stations 132 
in the Western New York area were used. Of the 107 male firefighters and 5 female firefighters, 133 

91 were White, 15 were Black, and the remaining were considered as Others. The average age of 134 
the firefighters was (43.6 ± 7.7) years old and about 47 % were ≥ 45 years old. It should be noted 135 

that the age significance was attributed to the fact that more than 75 % of on-duty fatalities in the 136 
US were older than 45 years old [37]. The mean length of fire service experience was about 15.5 137 
years with a standard deviation of about 7 years.  138 

Anthropometric data were measured before the study started. Based on the body mass index 139 

(BMI), almost half of the firefighters (~ 49 %) were overweight, and more than 40 % were obese 140 
with the BMI ≥ 30 kg/m2. In the group of obese firefighters, about 55 % had a waist circumference 141 

larger than 100 cm. For blood pressure, the systolic and diastolic readings were 142 
(129.3 ± 14.9) mmHg and (81.8 ± 10.6) mmHg, respectively. Hypertension was observed in 35 143 
firefighters. Past medical history from the firefighters was also collected. It showed that about 144 

13 % were active smokers, 3 % had a history of coronary artery disease, and 9 % had respiratory 145 
disease (i.e., asthma, chronic obstructive pulmonary disease, or sleep apnea). This baseline 146 

information provided important characteristics about the firefighter data which was crucial to 147 
understanding the model capabilities.  148 

 149 

2.2 Data Collection and Annotations [31] 150 

Portable ambulatory recorders (H12+ Holter V3.121) were used to obtain the 12-lead ECG data 151 

from the firefighters. In order to optimize signal quality, the contact areas were prepped. For 152 
example, skin hair was removed and the skin was cleaned with alcohol wipes. Electrodes were 153 
applied utilizing the Mason-Likar lead configuration [38] under the firefighters’ uniformed t-shirts 154 

and the Holter was secured to the uniform belt. Fig. 1a shows the corresponding placement 155 
locations of the 10 electrodes, and Fig. 1b presents an overview of normal 12-lead ECGs in a 156 

resting state. Each ECG had different temporal characteristics because each ECG lead 157 
corresponded to electrical activity of the heart muscle at different locations. 158 

Twenty-four-hour Holter ECG recordings were collected from all 112 firefighters. The 24-hour 159 
recordings consisted of data from 16-hour on-duty shifts and the following 8-hour post-duty shifts. 160 

Various activities were engaged by the firefighters during the 16-hour shifts and grouped into six 161 
different categories: i) fire calls, ii) medical calls and non-emergency categories, iii) physical 162 

activities (i.e., trainings, exercises, etc.), iv) sitting/talking (i.e., shift reports, administration, 163 
instruction, etc.), v) meals, and vi) rest/sleep. Post-duty activities were also grouped into the same 164 
non-emergency categories.  165 

 
1 Disclaimer: any mention of commercial products by NIST authors is for information only; it does not imply 

recommendation or endorsement by NIST 
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The ECG recordings were downloaded for annotations. First, each beat of the ECG recordings was 166 
annotated by a computer software. There were seven different classes: 1) normal beat, 2) 167 

supraventricular premature beat (SVPB), 3) ventricular premature beat (VPB), 4) paced rhythm, 168 
5) atrial fibrillation (AF), 6) R on T, and 7) artifact due to movement. These classes were selected 169 

based on expert knowledge and previous studies from [31,32] that suggested the irregular heart 170 
rhythms from Class 2 to Class 6 were most indicative to potentially trigger SCD for on-duty 171 
firefighters. Then, all ECGs and the corresponding annotations were reviewed by an expert 172 

investigator with over 15 years of experience in electrocardiography. In general, the ECG dataset 173 
from the 112 firefighters during a 24-hour shift had a total number of 9 588 015 beats. Table 1 174 

provides detailed beat counts for each class. 175 

 176 

Fig. 1. a) A diagram of the 10 electrode placements [38] and b) an example of normal 12-lead 177 
ECG signals [31]. 178 

Table 1. Total beat counts for 7 different classes. 179 

  

Class 1 

Normal 

Class 2 

SVPB 

Class 3 

VPB 

Class 4 

Paced 

Class 5 

AF 

Class 6 

R on T 

Class 7 

Artifact 

Counts 9 393 057 21 746 45 437 1 128 9 502 192 116 953 

 180 

2.3 ECG Characteristics and Potential Challenges 181 

Understanding the characteristics from normal and abnormal ECG rhythms was vital to the design 182 

of a robust model. Fig. 2a shows an overview of a complete cardiac cycle. It consists of a P-wave, 183 
a QRS complex (Q-wave, R-wave, and S-wave), and a T-wave. In principle, the P-wave, QRS 184 

complex, and T-wave correspond to the atria contraction, ventricular depolarization, and 185 
ventricular relaxation, respectively. To determine the rhythm normality, cardiologists compare 186 
consecutive cardiac cycles and examine the length, relative difference in magnitude, and the shape 187 

of each wave. Fig. 2b depicts a 6-second normal sinus rhythm (NSR) obtained at lead position V6 188 
(see Fig. 1) from Firefighter-2 (FF-2), and there are six complete cardiac cycles. As shown in the 189 
figure, the overall shape of the ECG rhythms from each cycle is consistent and the relative 190 

difference of the length and magnitude of each wave is negligible. Fig. 2b also shows that the heart 191 
rate of FF-2 (obtained from measuring the R-to-R intervals) is increasing over time because the 192 

firefighter was moving while performing on-duty tasks. It is important to note that this kind of 193 
normal ECG characteristics (i.e., monotonic increasing or decreasing R-to-R intervals over time) 194 
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were not available from the ECG datasets being used in [33-36] because those ECG datasets were 195 
taken from hospital patients who were lying on beds. 196 

Three abnormal ECG recordings obtained at lead position V6 are shown in Fig. 3. These rhythms 197 

are selected to demonstrate various information associated with abnormal ECGs. Fig. 3a shows 198 
the 6-second ECG recording with a SVPB (see the red arrow in the figure). As compared to the 199 

preceding cardiac cycles, the 4th cardiac cycle begins about 0.5 s earlier, and there is a significant 200 
discrepancy in the TP segment between the 3rd and the 4th cycle (the duration is less than 0.2 s). 201 
Fig. 3b shows the ECG recording with a VPB. Comparing each of the cycles, the start and the 202 

duration of different waveforms are relatively consistent. However, during the 4th cycle, there is 203 
an elevated R-wave and a missing positive S-wave. The expected S-wave is replaced with a large, 204 

inverted wave pattern. Fig. 3c shows the ECG recording with AF rhythms. Unlike SVPB and VPB, 205 
there is a significant change in the R-to-R interval. The deviation is rather random and the R-to-R 206 
interval varies from ~ 1 s to ~ 1.5 s. Given the observed ECG data characteristics, the model needs 207 

to capture indicative features at different magnitudes and time scales. In Section 3, a sensitivity 208 
study on model structure is presented to understand the effect of different modeling components. 209 

 210 

Fig. 2. a) An overview of a complete cardiac cycle and b) 6-second normal sinus rhythm (NSR) 211 

obtained at lead position V6. 212 

 213 

Fig. 3. Abnormal ECG due to a) SVPB, b) VPB, and c) AF at lead position V6 from FF-2, FF-3, 214 
and FF-93, respectively. 215 

 216 

2.4 Data Preprocessing 217 

Four additional steps were taken to prepare the final dataset. 1) The ECG dataset was re-organized 218 
from seven classes into three major classes: a) normal, b) abnormal, and c) noisy ECGs. The 219 
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number of classes was reduced to provide simple actionable information to enhance firefighters’ 220 
awareness of their heart health. The normal (class 1) and noisy (class 7) ECG data remained the 221 

same. The abnormal data now consisted of ECGs with SVPB, VPB, paced rhythm, AF, and R on 222 
T (classes 2 through 6). With that, there were 9 393 057 samples, 30 864 samples, and 116 953 223 

samples for normal, abnormal, and noisy beats, respectively. The dataset is obviously imbalanced 224 
at this stage, so further processing is needed. 2) Therefore, data balancing was conducted to help 225 
avoid prediction bias and the modified dataset only contained 30 864 selected samples for each of 226 

the classes. During the selecting process, the normal, abnormal, and noisy samples were forced to 227 
select from the same firefighter. By doing so, the dataset was optimized to make use of all available 228 

abnormal ECG data, to maximize data diversity, and to capture well-balanced data characteristics 229 
from each firefighter. In total, the modified dataset contained 92 592 samples (30 864 + 30 864 + 230 
30 864 for normal, abnormal, and noisy beats, respectively). 3) The modified dataset was then split 231 

into different subsets using a fixed ratio. Approximately 60 %, 20 %, and 20 % of data were 232 
assigned to the training, validation, and testing subsets, respectively. 4) Data normalization was 233 

carried out and the z-score normalization method [39] was used to maintain the data from each 234 
subset in a specific range. The normalization helped to improve the training stability and to 235 
expedite the learning process. The final training, validation, and testing subsets were used to 236 

facilitate the machine learning (ML) model development.    237 

 238 

3. Development of the Heart Health Monitoring Model 239 

The Heart Health Monitoring (H2M) model was developed using a convolutional neural 240 
network [40] (CNN) which is a class of deep learning algorithms. There were three reasons why 241 

CNN was selected: a) CNN has unique operations, such as convolution and pooling, that 242 
automatically and adaptively learn temporal hierarchies (i.e., from local to global and from low 243 

level to high level) of features. These operations were important to help the model to accurately 244 
capture the abnormal ECG characteristics mentioned in Sec. 2.3; b) the size of the ECG dataset 245 
being used in this study was sufficiently large so the model had adequate data to distinguish 246 

indicative features and ignore irrelevant information, such as high frequency noise, for the 247 
classification task; c) CNN can be finetuned to have robust model architecture to facilitate training 248 

(i.e., less computational time) and to be relatively lightweight (i.e., less memory). These benefits 249 
are favorable for practical engineering applications, including this present study. 250 

 251 

3.1 Model Structure 252 

Fig. 4 shows the overall model structure of the H2M model. The network took an array of ECG 253 

sequences with a dimension of (X1, X2, 1) as inputs. X1 and X2 were the number of training samples 254 
and the sequence length of each sample and they were taken to be 55 555 (60% of 92 592) and 255 
1800 (12 s ECG signals with a sampling frequency of 150 Hz), respectively. In terms of prediction, 256 

the model provided an output every 1 second.  257 

As shown in Fig. 4, the model consisted of 8 layers of convolution blocks. For each convolution 258 
layer, 1-D convolution were applied. There were three hyperparameters, namely kernel size, stride, 259 

and number of filters, to modify the 1-D convolution (conv). For each conv, the kernel/filter size 260 
was 3 and the stride was 1. In principle, this convolution configuration allowed the model to extract 261 



8 

 

temporal features from three neighboring input representations. The 1st conv was set to have 8 262 
different kernels/filters and the number of filters was increased by a factor of 2 in every two 263 

convolution blocks. Each convolution operation was then followed by a batch normalization (BN) 264 
and an activation function using ReLU (Rectified Linear Unit). The BN normalized output features 265 

from conv to improve training stability [40] and the use of ReLU provided nonlinearity to activate 266 
useful features [40].  267 

 268 

Fig. 4. Overview of the H2M model structure. 269 

To allow the model to learn indicative features from a larger time scale, maximum pooling 270 

(maxpool) was used. There were 4 maxpool operations, and they were added after the ReLU 271 
activation function in the first 4 convolution blocks. Using a pool size of 2, the model selected the 272 

feature with the highest activation values from every 2 temporal features. In addition, dropout was 273 
also utilized, and they were added to the 2nd and the 4th convolution blocks. The dropout rate was 274 
taken to be 0.1. Physically, this dropout operation forces the model to randomly retain 90 % of the 275 

features. The use of maxpool and dropout helped the model to extract better features and avoid 276 
overfitting [40]. The learned features from the final conv were passed into a global maximum 277 

pooling (gmaxpool) operation in which the gmaxpool took the strongest activation to separate the 278 
different classes of ECGs. The selection of the exact number, locations, and the size/rate for both 279 
maxpool and dropout, was based on the observation from the data characteristics made in Sec. 2.3, 280 

and the model was optimized based on numerical experiments. Table 2 provides a summary of the 281 
important layer parameters.  282 

Table 2. A summary table of the H2M layer parameters. 283 

Layer Type 
Output 

Size 

Kernel/ 

Pooling 

Size 

Stride 

  

Layer Type 
Output 

Size 

Kernel/ 

Pooling 

Size 

Stride 

1  
 conv  (, 1798, 8) 3 1   6  conv  (, 106, 24) 3 1 

 maxpool  (, 899, 8) 2 −   7  conv  (, 104, 48) 3 1 

2  
 conv  (, 897, 8) 3 1   

8  
 conv  (, 102, 48) 3 1 

 maxpool  (, 448, 8) 2 −    gmaxpool   (, 48) − − 

3  
 conv  (, 446, 16) 3 1   

9   dense  

 (, 128) − − 

 maxpool  (, 223, 16) 2 −    (, 64) − − 

4  
 conv  (, 221, 16) 3 1    (, 32) − − 

 maxpool  (, 110, 16) 2 −    (, 8) − − 
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5  conv  (, 108, 24) 3 1   10  softmax  (, 3) − − 

Besides the convolution blocks, the H2M model also had 4 fully connected layers (denoted as 284 
dense). Differing from convolution blocks in which they were used to extract features, the dense 285 

layers were utilized to combine the high-level features to make classifications. The dense layers 286 
had a nonlinear activation function (ReLU) with decreasing numbers of neurons, which reinforced 287 
dimension reduction. Finally, there was an output layer with a dimension of 3 for three different 288 

prediction classes: normal, abnormal, and noisy ECGs. Softmax was used as the activation 289 
function because the outputs were expected to range from 0 to 1. Given the ECG sequences, the 290 

H2M model was optimized by solving the cross-entropy objective or the loss function (ℒ): 291 

ℒ(𝑋, 𝑟) =
1

𝑛
∑ log 𝑝(𝑅 = 𝑟𝑖  | 𝑋)

𝑛

𝑖=1

 (1) 

where X was the ECG sequences, r was the corresponding labels of the ECG signals, p(·) was the 292 
probability the model assigned to the i-th output taking on the value ri, and n was 3.  293 

 294 

3.2 Training and Testing 295 

The proposed CNN-based H2M model was trained on a PC workstation with a Nvidia Quadro 296 

RTX 5000 and an Intel Xeon 3.70GHz (W-2145). Tensorflow-GPU 2.0 with CUDA 10.0 and 297 
cuDNN 7.4.1 was used as a backbone to enable parallel computing. Adam optimizer [40] with an 298 
initial learning rate of 5e-4 was used to update trainable parameters during the training model. The 299 

H2M model size was lightweight with only 31 298 parameters. The model convergence was 300 
monitored using the validation subset. Fig. 5 shows the validation loss and accuracy for the 301 

optimized H2M model. When the validation loss did not improve for 10 consecutive epochs, the 302 
learning rate was decreased by a factor of 2 to stabilize the training. Early-stopping with a patience 303 
number of 25 was used to avoid overfitting. The training stopped at epoch 171, leaving the best 304 

model saved at epoch 146. The total training time was about 1371.3 s. The best model was applied 305 
to a testing subset to evaluate its model performance. 306 

 307 

Fig. 5. Validation loss and accuracy for the H2M model.  308 

 309 

4. Results and Discussion 310 
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Table 3 shows the model performance for predicting the normal, abnormal, and noisy ECGs from 311 
the testing subset. There were a total number of 18 519 samples for the testing set and these 312 

samples are evenly distributed over the three different ECG classes. The three ECG classes, namely 313 
normal, abnormal, and noisy ECGs, were denoted as C1, C2, and C3, respectively. The proposed 314 

model, H2M, was benchmarked against three state-of-the-art ECG rhythm classification models. 315 
The baseline models include i) MLP – a feedforward multiple-layer perceptron [41], ii) LSTM – 316 
a three-layer long short-term memory [42], and iii) ResNet – a 12-layer residual neural network 317 

[43]. Each model was fine-tuned to obtain optimal model performance without overfitting. The 318 
following metrics: accuracy, precision, and recall, were used to evaluate the model performance. 319 

The mathematical expressions were given as: 320 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (2a) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2b) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2c) 

where TP, TN, FP, and FN were true positive, true negative, false positive, and false negative, 321 

respectively. Since the classification task involved three different classes, it yielded a 3-by-3 322 
confusion matrix. The determination of TP, TN, FP, and FN from the 3-by-3 confusion matrix is 323 
trivial, and readers who are not familiar with this calculation method can refer to [44] for the 324 

details.  325 

Table 3. Model performance of the H2M model against three different ML algorithms. 326 

Method   
Predictions 

Acc. Prec. Recall 
Testing 

Time 
Param. 

C1 C2 C3 

MLP 

C1 5133 311 729 89.2 % 84.4 % 83.2 % 

2.4 s 38 974 C2 444 4278 1451 81.5 % 73.7 % 69.3 % 

C3 507 1216 4450 78.9 % 67.1 % 72.1 % 

LSTM 

C1 5131 534 508 68.9 % 52.1 % 83.1 % 

199.6 s 41 387 C2 2803 1625 1745 67.2 % 51.6 % 26.3 % 

C3 1907 990 3276 72.2 % 59.3 % 53.1 % 

ResNet 

C1 5498 149 526 94.7 % 94.9 % 89.1 % 

10.8 s 944 659 C2 130 5401 642 93.7 % 93.1 % 87.5 % 

C3 168 252 5753 91.8 % 83.1 % 93.2 % 

H2M 

C1 5909 84 180 96.4 % 93.7 % 95.7 % 

6.2 s 31 298 C2 94 5914 165 97.1 % 95.4 % 95.8 % 

C3 306 203 5664 95.4 % 94.3 % 91.8 % 

 327 
As shown in Table 3, H2M outperformed the existing ML-based prediction models and achieved 328 
a better overall accuracy of about 94.3 %. MLP and LSTM have an overall accuracy of ~ 74.9 % 329 

and ~ 52.0 %, respectively. ResNet had a similar model performance (~ 89.9 %) as compared to 330 
H2M. In terms of total testing time, H2M needed about 6.2 s to provide predictions for 18 519 331 
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samples. This yields only 3.3 x 10-4 s for a single prediction. For that, the proposed model is 332 
numerically suitable for real-time applications. Also, the precision and recall scores suggest that 333 

H2M was a more well-balanced model minimizing the false positives and the false negatives. The 334 
recall score is a more important evaluation metric for the current application because a high 335 

number of abnormal misclassifications (i.e., low recall score) might put firefighters into dangerous 336 
situations. In general, the main reason why H2M tended to perform better was that the model was 337 
designed carefully to capture the important ECG characteristics at different timescales. In the later 338 

section, results from a parametric study are provided to highlight the effect of each modeling 339 
component for H2M.  340 

Fig. 6 shows examples of three correct prediction cases selected from the testing subset: a) normal, 341 

b) abnormal, and c) noisy ECGs. Two observations are worth noting. Firstly, H2M was capable of 342 
differentiating noise due to powerline interference and minor muscular activities (i.e., the blue-343 
arrow region in Fig. 6a) and noise due to movement artifacts (i.e., the blue-arrow regions in Fig. 344 

6c). Secondly, the model effectively recognized ECG abnormalities (see the red-arrow regions 345 
from Fig. 6b) and ignored motion induced ECG peaks shown in Fig. 6c (see the red-arrow regions). 346 

These example cases demonstrate that H2M does learn indicative patterns that can be used to 347 
separate different classes of ECGs. Another interesting note is that the output probabilities for 348 
these cases were high. The output probabilities (normal, abnormal, noise) for Case a, Case b, and 349 

Case c, are (0.99, 0.01, 0.00), (0.00, 1.00, 0.00), and (0.00, 0.01, 0.99), respectively. These results 350 
show that the model has more than a 99 % confidence level for its predictions. 351 

 352 

Fig. 6. Correct prediction of a) normal, b) abnormal, and c) noisy ECGs with the confidence 353 

level of approximately 0.99, 1.00, 0.99, respectively. 354 
 355 

Fig. 7 presents two selected misclassification cases. The model prediction and the corresponding 356 

ground-truth are shown in the figures. There are two reasons why these example cases are being 357 
discussed. The first reason is that the classification task becomes challenging when the ECGs have 358 

various dynamic effects from emergency response/firefighting related activities. For example, 359 
there existed unusual peaks in the P-wave and other minor noise in both Fig. 7a and 7b. However, 360 
the ground-truths for these cases were completely different: one was an abnormal ECG and the 361 

other one was a noisy ECG. The second reason is that the model has relatively low confidence 362 
level in its predictions. For Case a, the output probability was (0.03, 0.46, 0.51), and the output 363 

probability for Case b was (0.13, 0.49, 0.38). These examples indicate that the model is likely to 364 
be more reliable if it can omit or disregard predictions that have relatively low confidence.  365 

Fig. 8a shows the adjusted accuracy for seven sensitivity tests in which the classification threshold 366 

varies from 0.3 to 0.99. Given a 12-second ECG sample, if the model output probability was lower 367 
than the classification threshold, the ECG sample was omitted. For example, if the classification 368 
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threshold was 0.4 and if the output probability was (0.33, 0.34, 0.33), the model prediction was 369 
disregarded. Fig. 8b shows the histogram for the number of omitted cases, misclassification cases, 370 

and correctly predicted cases for seven different sensitivity tests. As the classification threshold 371 
increased, the number of omitted cases increased and the number of misclassification cases 372 

decreased. When the classification threshold became 0.99, Fig. 8a shows a corresponding adjusted 373 
accuracy of ~ 99.7 %. A drawback was that approximately 7000 cases were disregarded. Yet, 374 
depending on the application requirements, the classification threshold can be modified. 375 

 376 

Fig. 7. Misclassification of a) abnormal and b) noisy ECGs with the confidence level of 377 

approximately 0.51 and 0.49, respectively. 378 

 379 

Fig. 8. a) Adjusted accuracy and b) histogram for seven sensitivity tests.  380 
 381 

A parametric study was conducted to examine the effectiveness of key components that 382 
contributed to the improved outcomes for H2M. The full model of H2M was compared with four 383 

model variations: i) w/o gmaxpool – H2M without global maximum pooling and it was replaced 384 
by a flatten layer, ii) w/o dropout – taking out dropout and all convolution layers were fully 385 
connected, iii) w/o maxpool – all maximum pooling operations were removed, and iv) plain CNN 386 

– all global maximum pooling, dropout, and maximum pooling operations were removed. 387 

Table 4 shows the accuracy, precision, and recall scores for each of the models. The inclusion of 388 
maximum pooling improved the model performance the most as it allowed the model to learn the 389 

ECG characteristics from larger timescales. The effect from using global dropout and maximum 390 
pooling and dropout was evident. As shown in Table 4, when all of these modeling components 391 
were removed, the overall accuracy of the model dropped to about 89.8 % and each of these 392 
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components helped the model through the training process to learn useful data patterns for 393 
classifications.  394 

Table 4. Parametric study for H2M. 395 

  H2M w/o gmaxpool w/o dropout w/o maxpool Plain CNN 

Accuracy 96.3 % 95.8 % 92.6 % 91.7 % 89.8 % 

Precision 94.1 % 93.9 % 88.9 % 87.6 % 85.6 % 

Recall 94.7 % 93.7 % 88.2 % 87.5 % 84.7 % 

 396 

4.1 Effect of the ECG Dataset 397 

In order to examine the contextual importance from firefighters’ ECG data, a cross validation was 398 

carried out. Two public datasets from the 2021 Computing in Cardiology Challenge [45] were 399 
selected. The datasets were from the Chapman University and Ningbo First Hospital with about 400 
10 247 and 34 905 ECG recordings, respectively. Both datasets were obtained from anonymous 401 

patients and contained normal and more than 100 different abnormal ECG rhythms. The ECG 402 
recordings were prepared accordingly. They were divided into 10 second segments at 150 Hz and 403 

each ECG recording had a sequence annotation. Unlike the firefighters’ data, the ECGs from the 404 
public datasets did not contain any noisy data. For that, the cross validation can only be done with 405 
binary classifications with normal and abnormal classes. Also, the public dataset did not contain 406 

any ECG characteristics due to movements, emergency response, and/or firefighting related 407 
activities because they were solely obtained for medical diagnostic purposes. 408 

Table 5. Cross-validation results from public and firefighter datasets. 409 

Train on Ningbo Chapman Ningbo Chapman Ningbo Chapman Combine 

Test on Ningbo Chapman Chapman Ningbo Firefighter Firefighter Firefighter 

Accuracy 86.5 % 96.5 % 92.9 % 87.5 % 62.7 % 66.0 % 71.5 % 

Precision 87.9 % 96.0 % 91.1 % 87.4 % 69.5 % 62.7 % 66.9 % 

Recall 87.3 % 97.4 % 94.7 % 88.1 % 45.2 % 78.9 % 85.0 % 

 410 

Table 5 shows results from the seven cross-validation tests. Each test was trained on dataset-A and 411 
was tested on dataset-B. The subset assignment was the same where 60 %, 20 %, and 20 % of the 412 
data were assigned to the training, validation, and testing subsets. The testing subset from a dataset 413 

was identical to have a consistent comparison. Three metrics, namely accuracy, precision, and 414 
recall, were used to assess the data effects. As shown in Table 5, when the public datasets were 415 

used for training and testing (i.e., train on Ningbo and test on Ningbo, or train on Chapman and 416 
test on Chapman), the model performance has an overall accuracy of > 86 %. The same model 417 
performance was also observed for two special cases in which the model was trained on Ningbo 418 

(or Chapman) and was tested on Chapman (or Ningbo). However, the model performance dropped 419 
significantly when the trained model used either one or both (denoted as ‘Combine’) of the public 420 

datasets then tested on the firefighter dataset. An error of more than 37 % with a recall score of 421 
only 45.2 % was observed. Even when both public datasets were used, the best model accuracy 422 
was only about 71.5 %. The results from these cross-validation tests suggest that the data 423 

characteristics were substantially different. Therefore, in order to develop a robust heart health 424 
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monitoring model for emergency response and/or firefighting related activities, firefighters’ ECG 425 
data is essential. The use of non-firefighters’ data is likely to lead to substantial errors.   426 

 427 

5. Conclusions 428 

This paper presents the development of a deep learning-based heart health monitoring model that 429 
can provide firefighters real-time, on-demand, beat-by-beat classifications of normal, abnormal, 430 
and noisy ECG rhythms. The heart health monitoring (H2M) model utilized 24-hour ECG 431 

recordings from 112 career firefighters. This dataset had approximately 92 592 samples and was 432 
unique from public ECG datasets because it contained firefighters’ beat-to-beat ECGs from 433 

various emergency response and/or firefighting related activities. H2M was designed carefully to 434 
learn indicative ECG characteristics. Model comparison against three current-state-of-the-art ECG 435 
prediction models showed that H2M offered convincing performance with an overall accuracy of 436 

about 94.3 % with a relatively lightweight model structure that required only 31,298 trainable 437 
parameters. Results from the parametric study demonstrated the effectiveness of each model 438 

component. Using the multi-layer CNN structures with maximum pooling, dropout, and global 439 
maximum pooling, H2M effectively captured ECG behaviors at different timescales. Examples 440 
for correctly predicted cases and misclassification cases were discussed. A sensitivity study on 441 

prediction thresholds showed an extremely high model reliability with an accuracy of about 99.7 % 442 
if low-level confidence predictions were omitted. Results from cross-validation tests were 443 

presented. The importance of firefighters’ ECG data was demonstrated when non-firefighters’ 444 
ECG data were used to train the heart health monitoring model for firefighters and resulted in a 445 
substantial error of about 40 %. Therefore, on-duty firefighters’ data was crucial to develop a 446 

robust and reliable model. The outcome of this work is expected to enhance firefighters’ situational 447 
awareness and safety about their heart health and to help reduce firefighters’ deaths and injuries 448 

due to sudden cardiac events.   449 

 450 
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Figure captions 555 
Fig. 1. a) A diagram of the 10 electrode placements [38] and b) an example of normal 12-lead ECG 556 

signals [31]. 557 
 558 

Fig. 2. a) An overview of a complete cardiac cycle and b) 6-second normal sinus rhythm (NSR) 559 
obtained at lead position V6. 560 
 561 

Fig. 3. Abnormal ECG due to a) SVPB, b) VPB, and c) AF at lead position V6 from FF-2, FF-3, 562 
and FF-93, respectively. 563 

 564 
Fig. 4. Overview of the H2M model structure. 565 
 566 

Fig. 5. Validation loss and accuracy for the H2M model.  567 
 568 

Fig. 6. Correct prediction of a) normal, b) abnormal, and c) noisy ECGs with the confidence level 569 
of approximately 0.99, 1.00, 0.99, respectively. 570 
 571 

Fig. 7. Miss-classification of a) abnormal and b) noisy ECGs with the confidence level of 572 
approximately 0.51 and 0.49, respectively. 573 

 574 
Fig. 8. a) Adjusted accuracy and b) histogram for seven sensitivity tests.  575 
 576 


