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Abstract
In this presentation we employ a direct X-space deconvolution to estimate particle distributions from MPI data. We
report on how the accuracy of those estimations changes as a function of sampling frequency and compare the
findings to the MPI core operator approach found in literature.

I. Introduction

Determining the particle distribution through image re-
construction in magnetic particle imaging (MPI) is usu-
ally done using one of two ways: by employing the system
matrix [1, 2] or via the X-space [3] approach. While the
system matrix approach, that makes use of the whole
harmonic spectrum of the measured signal and relates
it to several reference measurements, tends to be more
accurate, the X-space approach tends to be more flexible
by relying mostly on computational resources. But, if
one wishes to determine quantitative information about
the particle concentration with the X-space approach,
an additional processing step of deconvolving the raw
image data is required.

In this work, we focus on the X-space approach,
specifically on the approach introduced in [4], where
the data is transformed from time to space domain by
relating the time signal to the grid of measured pixels
and further processing it by calculating the MPI core op-
erator and an additional deconvolution. This approach
helps to dramatically reduce the memory and, to a lesser

degree, time requirements for the reconstruction. It also
potentially introduces errors into the process, such as
assumptions about the point spread function (PSF) and
in determining the trace operator itself by performing
a linear fit of the signal to the field free point (FFP) ve-
locity data. One way to avoid these sources of potential
errors is to use the full MPI data and perform a point
by point deconvolution. The biggest drawback to this
approach is the amount of computational resources re-
quired. We therefore investigate how these requirements
can be reduced by decreasing the sampling frequency
while still achieving an accurate reconstruction in terms
of simulated data.

II. Simulation Setup

II.I. Signal Generation

We use the computational phantom shown in Fig.1 (a)
with simulation parameters from Table 1 to generate our
MPI signal. Furthermore, in order to prevent us from
obtaining overoptimistic results, i.e., committing an in-
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verse crime [5], we add normally distributed noise η to
our simulated signal s (t ). We assume a mean of zero and
a standard deviation that corresponds to a percentage of
the maximum of the signal, such that:

η∼N
�

0,σ2
�

, σ= κ ·max [s (t )] . (1)

We use a total of four different noise levels ranging from
1% to 10%, hence κ ∈ {0.01, 0.03, 0.05, 0.1}.

II.II. Image Reconstruction
Once we have generated the noisy signal, we need to
post-process the data in order to reconstruct the particle
distribution. The base algorithm to determine the par-
ticle distribution from the raw time-signal is explained
in more detail in [4] and can be broken down into three
steps:

1) Bin the time-signal w.r.t. its spatial position, i.e.,
for each pixel collect all the data for which the cor-
responding FFP positions fall within that pixel’s
boundaries. The data set we collect consists of three
parts, the measured signal itself, the FFP trajectory
values, and the FFP velocities, arranged as matrices
Si , X i , and Vi for the i -th pixel.

2) For each of those bins (pixels) solve the system of
equations:

Si = Ai ·Vi , (2)

to determine the matrix Ai and calculate its trace
ui = tr(Ai ).

3) Deconvolve the trace data u = [u1, · · · , un ], using a
Toeplitz matrix K that consists of the PSF at every
pixel position. This leads to a regression problem:

K ·ρ = u , (3)

from which we determine the particle distribution
ρ. Note that the regression problem in Eq. 3 might
require an additional regularization step [6].

By gridding the data in this way and fitting the signal vs.
velocity data in step 2), we average and therefore lose
some of the information contained in the time-signal
data. See Fig. 2 where we compare the data in the vector
Si (Data) vs. the product Ai ·Vi (Fit).

However, we have dramatically reduced the size of
the matrices involved, since the dimensions of K after
this process only depend on the number of pixels in x
and y directions, nx and ny , respectively, such that K ∈
Rnx ·ny×nx ·ny (this is of course an example in 2D and for
problems with differing dimensions the sizes will change
accordingly).

Alternatively, we can skip the gridding, i.e., use the
whole data set, evaluate the PSF at every time step, and
deconvolve with a matrix Kcomp whose size depends on
the number of pixels in x and y direction and the total

Figure 1: (a) Ground truth phantom used for simulations.
(b) The FFP trajectory within the whole FOV. (c) Zoom of a
single pixel marked in red in (a) and (b), illustrating the gridding
process in which we collect all the data points (blue points) that
fall within the pixel’s boundaries and in (d) plot of the signal vs.
velocity data. Data shown have an added noise with κ= 0.05.

number of measurements in time domain nt , such that
Kcomp ∈ Rnx ·ny×2·nt . Note that the factor of 2 in the ma-
trix’s column dimension is due to the fact that we treat
the signals measured at the x and y receive coils sepa-
rately, whereas in the MPI core operator approach, we
added those in step 3) by taking the trace of Ai .

The number of measurement data nt depends on the
sampling frequency f for our measurement and a reduc-
tion of that frequency consequently leads to a reduction
of the size of Kcomp. How a change in f affects the accu-
racy of the reconstruction will be investigated in the next
section.

Table 1: Simulation Parameters.

Parameter Value
Particle Diameter 2 ·10−8 m

Saturation Magnetization 4.5 ·105 A/m
Temperature 300 K

Gradient in x -direction 12 T/m
Gradient in y -direction −6 T/m

Coil Sensitivity 8.38 ·10−4 T/A
Field of View (FOV) ±5 ·10−3 m

Total Number of Pixels 21×21
Measurement Time 4 ·10−3 s

Drive Coil Frequency x -direction 25.5 kHz
Drive Coil Frequency y -direction 25.25 kHz

10.18416/ijmpi.2023.2303042 © 2023 Infinite Science Publishing

https://dx.doi.org/10.18416/ijmpi.2023.2303042
https://dx.doi.org/10.18416/ijmpi.2023.2303042


International Journal on Magnetic Particle Imaging 3

Figure 2: Noisy data vs. fit data in step 2) of the gridding
algorithm for κ = 0.05. The index refers to the different FFP
positions, i.e., the blue points in Fig. 1. (a) data from the x
receive coil, (b) data from the y receive coil. Note the deviation
in the fits.

Figure 3: Reconstructed particle distributions for different
noise levels and sampling frequencies. Left most column shows
results from the trace data approach.

III. Results
In this section we use five different sampling frequen-
cies between 50 kHz and 2 MHz in addition to the base
sampling frequency of 2.5 MHz. For each of those fre-
quencies we apply four different noise levels from 1%
to 10% of the maximum of the time-signal. We use a
gradient based Newton-CG optimization algorithm with
Tikhonov regularization and manually determine the op-
timal regularization parameter for each fit individually.

The qualitative comparison of the reconstructed par-
ticle distributions is shown in Fig. 3. One can clearly see
how the image quality decreases with decreasing sam-
pling frequency and increasing noise level (left to right
and top to bottom, respectively).

To have a quantitative understanding of the quality of
the reconstructions, we also calculate the mean-square
error (MSE) between the estimated particle distribution
and the ground truth, shown in Fig. 4. We see that the re-
constructions from the trace data remain relatively stable
for the different noise levels, while the other reconstruc-
tions show a higher variance in the estimated particle
distributions. However, the reconstructions from the
trace data always have a worse MSE compared to the

Figure 4: MSE between reconstructions and ground truth for
different noise levels and sampling frequencies.

data with a sampling frequency above 100 kHz, and are
superior to the 100 kHz data only for a noise level above
5%.

IV. Conclusion
In this work we have shown how a reduction of the sam-
pling frequency impacts the accuracy of the image recon-
struction for MPI if compared to the MPI trace operator
approach introduced in [4]. We show that a reduction of
the sampling frequency by a factor of more than twelve
is possible without compromising accuracy relative to
the trace operator approach.

Note that even though the total size of the matrices
involved is still four times the size used in the trace opera-
tor approach, with recent developments in computation
efficiency and parallelization [7] and the fact that a signal
vs. velocity fit is not required, our findings imply that the
direct reconstruction could be a more accurate way of
MPI image reconstruction in the future.
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