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ABSTRACT 

Digital twins for additive manufacturing (AM) have drawn much 

research attention recently, thanks to advancements in artificial 

intelligence and machine learning. Machine learning takes the 

process and measurement data from the manufacturing process 

to build data-driven models instead of physics-based descriptive 

models. The latter are usually hard to obtain for complex AM 

processes such as laser powder bed fusion. This study proposed 

a digital twin framework for the laser powder bed fusion AM 

process control and optimization. The framework is created 

based on the recently developed advanced point-wise scan 

control method. It consists of four components: digital twin of 

process design, digital twin of process control, digital twin of 

process monitoring, and digital twin of printed part. Their 

construction is detailed, and potential applications are 

demonstrated/discussed. 

 

1. INTRODUCTION 

Laser powder bed fusion (LPBF) additive manufacturing 

(AM) uses a high-power laser to melt and solidify thin layers of 

metal powder in areas of geometric patterns sliced from a three-

dimensional (3D) computer-aided design (CAD) representation 

of parts [1]. A typical LPBF process scans a laser beam following 

the designed path to completely cover the designated cross-

section area of each layer. The main advantage of the LPBF 

process is its ability to directly manufacture metal components 

with highly complex geometries that are often not possible with 

conventional manufacturing processes. However, there are still 

many challenges in the LPBF process that prevent its widespread 

application. These challenges include, but are not limited to, part 

distortion due to residual stress, internal defects such as lack of 

fusion (LOF) or keyhole pores [2], dimensional error due to poor 

laser or build platform calibration, and failures caused by 

difficult-to-build geometries such as overhangs. In this paper, we 

proposed a digital twin framework to systematically study and 

address the issues in the LPBF process.   

In a broader sense, a  digital twin is defined as a digital 

representation of assets, processes, or systems [3]. Various 

studies were undertaken to develop this technology for AM. 

DebRoy and his co-workers carried out pioneering work in the 

construction of digital twins for AM process [4–6]. They 

suggested that a digital twin of 3D printing hardware should 

consist of a mechanistic model, a  sensing and control model, a 

statistical model, big data, and machine learning (ML). They also 

presented a framework of mechanistic models to predict the melt 

pool (MP) level phenomena and estimate the metallurgical 

attributes such as the transient temperature field, solidification 

morphology, grain structure, phases present, and susceptibilities 

to defect formation. The inputs to these mechanistic models 

include printing techniques, process parameters, and material 

properties. It is a  very comprehensive framework, but it is also 

difficult to implement and optimize, as many physics-based 

descriptive models are involved. Grieves first defined a digital 

twin “as a virtual representation of what has been produced” [7]. 

This is quite different from the process-based digital twins by 

DebRoy. In his later publications [8], Grieve further extends the 

scope of digital twin to digital twin prototype (DTP), digital twin  

instance (DTI), and digital twin aggregate (DTA), and he also 

connected product life cycle management to digital twins under 

this framework.  

We started our AM process digital twin development with 

process control and monitoring [9] and extended the scope to the 

printed part and process design. Instead of the product lifecycle 

management Grieve discussed, our digital twin framework is 

focused on AM process lifecycle management (Figure 1). It 

optimizes the process design and control through process 

monitoring and part qualification. The foundation of our digital 

twin framework is pointwise AM control [10]. It provides a 

platform-independent unambiguous description of the scan 

strategy and control. More details on pointwise control will be 

discussed in section 2. The construction and sample applications 

of the digital twins will be provided in section 3.  
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Figure 1. AM process lifecycle. 

 
2. AM PROCESS CONTROL AND MONITORING 

For the LPBF process, the laser beam is guided to the build 

layer by a pair of mirrors driven by galvanometer (galvo) motors. 

Galvo is a limited-rotation direct current (DC) motor; its angular 

position is proportional to the DC voltage applied to the 

galvanometer coil. This is similar to the conventional computer 

numerical machine tool control. To scan a line, the line is first 

interpolated into a sequence of points according to the 

programmed velocity profile. The corresponding angular 

position of the galvo for each point is calculated and converted 

to the voltage value. This voltage value is then sent to the galvo 

driver at a regular time interval to move the mirror position.  

Figure 2 shows the typical steps in AM process preparation. 

The 3D CAD part is digitally sliced into two-dimensional (2D) 

layers first; scan paths are then created to cover each layer. These 

scan lines can be described by AM G-code [10], or other formats 

such as Common Layer Interface (CLI) [11] or eXtensible 

Markup Language (XML). The scan lines need to be interpolated 

into points to execute. On most existing commercial machines or 

galvo controllers, this interpolation is done by the embedded 

software and the result is not user accessible. Therefore, the users 

only have line-wise control. This greatly limits the development 

of advanced scan strategies that require synchronization of laser 

power, speed, and position [12].  

Based on the point-wise AM control developed [10], user 

accessible time-stepped digital command files of the format in 

Figure 2e are generated.  The file is a n x m numerical array, 

where n is the number of time steps in 10 μs increments, in 

agreement with the 100 kHz command transmission frequency 

defined by the xy2-100 transmission protocol [13]. m is the 

number of control parameters, which includes X and Y for laser 

coordinates in mm, L for laser power in watt, D for laser spot 

size (position of the linear motor for laser focusing) in mm, and 

T for triggers.  Triggers are for synchronizing process monitoring 

sensors, such as the coaxial melt-pool monitoring (MPM) 

camera. For example, T = 3 will send a Transistor–transistor 

logic (TTL) high to both channels 0 and 1, since ‘3’ is ‘0011’ in 

binary format.  

 
Figure 2. AM process preparation. (a) 3D CAD part. (b) Sliced  

layer. (c) Path created to cover each layer. (d) AM G-code 

describing the path. (e)  Time-stepped digital commands.  

 

Figure 3 shows how the time-stepped digital commands are 

executed. One line is executed at a  time step. X and Y are sent to 

galvo motors to position the mirrors, L is sent to the laser unit to 

set the laser power, D is used to position the laser focusing lens 

by a linear motor, and T is sent to the monitoring devices. 

Feedback from the x-galvo, y-galvo, linear motor position 

encoders, and the laser power monitoring module are sampled at 

every time step. These feedback signals are then put into the 

same format as the time-stepped digital commands to create a 

one-to-one mapping between commands and feedback.  

 
Figure 3: Time-stepped digital command execution.  

 

3. DIGITAL TWINS FOR ADDITIVE MANUFACTURING 
PROCESS 
The proposed AM digital twin framework consists of four 

components: digital twin of process design (DTPD), digital twin  

of process control (DTPC), digital twin of process monitoring 

(DTPM), and digital twin of printed parts (DTPP). These digital 

twins correspond to each stage of the AM process lifecycle, as 

shown in Figure 4. Each digital twin consists of a collection of 

raw data, and virtual volumes constructed from these data. The 

virtual volume is a three-dimensional (3D) representation of the 

AM part at different stages of the process. All virtual volumes 

are constructed on the same coordinates as the time-stepped 

digital command, and the digital twins are correlated through this 

virtual volume.  

Process 
control
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Process 
design



 

 3  

 
Figure 4.The AM digital twin framework 

 
3.1. Digital twin of process design 

The AM process lifecycle (Figure 1) starts with AM process 

design. It creates scan paths from the 3D model. The first step of 

the process design is slicing the 3D model into build layers; then 

layer-wise process parameters, such as infill pattern, laser speed, 

laser power, path mode, power mode, power map, etc. can be 

applied to create scan paths. The sliced layers are described by 

their vertices. Together with the process parameters, these are 

referred to as the digital twin of process design (DTPD). The 

virtual volume of DTPD is defined by the vertices. Figure 5a 

shows an example of how the vertices a re created. The 

intersecting points of a 3D model (represented by tessellated 

surfaces) with the slice planes are first determined. The 

redundant points in each layer are then eliminated by fitting 

straight lines and arcs. Eventually, four vertices are lef t to define 

the layer in the example. Note these vertices determine the final 

part geometry, not the 3D model. For example, a  smooth inclined 

surface in a 3D model can only be approximated by the staircase 

created by the layers defined by the vertices.    

 

Figure 5: AM process design. (a) Slicing. (b) Infill options. 

The process design parameters include layer thickness, infill 

pattern, contour smoothness, layer-specified scan strategies, 

support structures, layer pre-heating/post-heating, path mode, 

power mode, velocity profile, etc. Figure 5 shows sample infill 

options provided in Simple AM software (SAM) [10], an in-

house developed AM software. SAM allows a different 

combination of hatching patterns, power, and sequence for 

different layers. The layer-wise process design information is 

embedded into each layer in the DTPD and can be correlated to 

other digital twins in the framework through their virtual 

volumes.   

The DTPD can be used to verify the tolerance of the final 

part (certification for part dimension). The vertices can be 

converted into checkpoints in 3D space, and the part can be 

measured against these checkpoints. The DTPD is also used to 

create the process control commands. That is discussed in the 

next section.   

 

3.2. Digital twin of process control  
The time-stepped digital commands (Figure 2e) enable a full 

and unambiguous description of the scan strategy and the 

geometry of a part [14]. Since an AM part can be created based 

on the digital command, the digital command is, in fact, a  digital 

twin for the AM part. The digital commands can be thought of 

as a point cloud in the 3D space. Since laser power is assigned to 

each point, whether this point is melted or not is known. This 

information can be used to create a virtual part  as shown in 

Figure 6, where a voxel in the cube is marked as melted if a  point 

with laser power on falls into it. Similarly, a  MP volume can also 

be assigned to each point, this volume can be a geometrical 

approximation or from physics-based simulation. For example, 

at any point (time step), a  snapshot can be taken from the finite 

element model-based thermal process simulation, and volume 

above melting point can be assigned to the point as its MP 

volume. The voxel can be defined at any high resolution, where 

the voxel that falls into the MP volume can be marked as melted.   

 
Figure 6: Build a virtual 3D volume using digital command. The 

dark color voxel is when the laser power is on. The arrows 

indicate the scan path, and the circle indicates the current laser 

spot position.   

By following the digital commands, a virtual part can be 

built layer by layer, just like the actual 3D printing process. 

Figure 7 shows an example, where simulated MP images are 

superimposed by their intensity at the locations they were taken, 

to create a virtual track. The tracks joined together to form layers, 

and layers stacked together to form the virtual volume. The MP 

images can also be obtained by a ML model, which is usually 
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much faster than a finite element simulation. The MP image in a 

layer can be thought of as an approximation of the MP volume 

with uniform cross-section and meltpool depth of the layer 

thickness.  

 
Figure 7: Build a virtual 3D volume using simulated MP images.   

If the interest is only the geometry of the part, a  binary MP 

volume is good enough to create the virtual volume, such as in 

Figure 6. Otherwise, a  grayscale MP volume generated from an 

ML or physics-based model can be used, with the grayscale 

intensity representing the temperature. Since the digital 

command is time-sequenced, the thermal history of any voxel in 

the part can also be traced. The virtual volume created from 

digital commands can be used to predict the part defects or 

microstructure, or simply visualize the potential processing 

error. 

The digital command, the simulation model, and the virtual 

volume are referred to as digital twin of process control (DTPC). 

The DTPC provides all the control information necessary to 

build the part and can also be ‘self-optimized;’ examples can be 

found in [14,15]. In [14], the as-built geometry created by the 

method in Figure 6 is used to account for the conductivity 

changes for an overhang structure. A geometric conductivity 

factor (GCF) is assigned to each point, and the laser power at the 

point is adjusted according to the GCF. In [15] the thermal 

condition of the current scanning point is estimated based on 

previously scanned points in its neighborhood. A residual heat 

factor (RHF) is assigned to each point and the laser power of the 

point is adjusted according to the RHF. Both GCF and RHF are 

completely based on the DTPC itself , therefore it is ‘self-

optimized’. The DTPC optimization can also be carried out 

based on real-time monitoring feedback, which will be discussed 

next.   

On many existing commercial AM machines, a  DTPD 

equivalent is sent directly to the machine to execute, without a 

DTPC intermediate step. The process control is handled by the 

embedded algorithm on the machine, which is not user 

accessible or changeable. Pointwise control and optim ization, 

such as laser power-position synchronization, real-time 

feedback/feedforward control, GCF/RHF compensation, etc., is 

then not possible. Therefore, the DTPC creation is also an 

indication of the controllability of the physical system.      

 

3.3. Digital twin of process monitoring 
The point-wise AM control enables synchronized in-situ  

process monitoring. The actual laser position and power can be 

measured and stored in the same format as the digital command. 

Instead of using simulated MP, the actual MP images can be used 

to repeat the virtual volume creation in the DTPC (Figure 7). 

This is referred to as MP intensity volume (MPIV). Similarly, an 

MP area volume (MPAV) can also be created. It is shown in [9] 

that MPIV can be used to predict LOF pores and MPAV for 

keyhole pores. Different types of virtual volume can be created 

based on different monitoring data. The process monitoring data 

and the virtual volumes created are referred to as the digital twin 

of process monitoring (DTPM), as it is a  digital representation of 

the as-built part.   

 
Figure 8: MPIV creation. MP images superimposed by the image 

intensity at the locations they were taken to create virtual layers 

and hence virtual volume.   

The DTPM provides a way to process the large amount of 

data collected from the in-situ monitoring of the LPBF process. 

The virtual volumes thus created provide direct visualization of 

the potential build issues, such as LOF pores. Figure 8 shows an 

example, where a cylindrical part was built at a  nominal laser 

power of 285W, but lowered to 40 W for 0.2 ms for every 2 ms 

period. This is to simulate that a spatter or plume blocks the laser 

path and causes a drop in the laser energy, a typical issue in the 

LPBF process. The LOF pattern is clearly visible in the MPIV. 

Although the LOF pores thus predicted may be recovered in the 

physical part by remelting from the top layers, it is still a  good 

indication of potential quality issues. 

DTPC can be compared with DTPM to identify and address 

potential process control issues. Figure 9 shows the laser power-

path plots for the first layer of the part in Figure 8. DTPM shows 

the laser power was switched on slightly earlier than it should be. 

This could cause side surface roughness and subsurface pores 

[16], and they can be addressed by adding a laser-galvo delay 

time in the digital command. DTPM also shows following errors 

at the sharp corners, but they can be safely ignored since the laser 

power was off.  

 
Figure 9: Laser power-path plots based on (a) DTPC, and (b) 

DTPM.  
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DTPM can also be used for feedback control. For example, 

it is a  well-known phenomenon that as the number of layers 

increases, the part temperature increases due to the residual heat 

buildup and conductivity reduction [17]. This issue can be 

addressed by scaling the laser power in DTPC for the next layer 

based on the DTPM of the current layer. The conductivity 

variation at each point can be estimated based on the MP area, 

laser power density, and scan sequence derived from DTPM.  

Assuming the RHF factor can be isolated, power maps can be 

created from the current DTPM layer and used to scale lase 

power of the next layer. A power map is a grayscale image, and 

it scales the laser power according to its pixel value. Power maps 

can be created in DTPD, DTPC, or DTPM. Figure 10 shows 

power maps created in DTPD from the CAD model, and the GCF 

model [14] is a  power map created in DTPC.  

 

 
Figure 10: Power map created in DTPD based on the part 

geometry. 

An ML model can be trained to predict the DTPM from 

DTPC. This ML model, instead of the traditional physics-based 

model, can be used to describe the build process. The MP area 

prediction model in [18] provides such an example.  

 

3.4. Digital twin of printed part 

Different measurements and characterization can be 

conducted on the printed part. These measurements can be used 

to create the digital twin of the printed part (DTPP) since they 

describe the printed part. In this study, we limit the DTPP 

discussion to the X-ray computer tomography (XCT) 

measurement. The XCT images can be used to create a virtual 

volume, as shown in Figure 11. This is referred to as XCT 

volume (XCTV). The first step to constructing the DTPP is to 

convert XCTV to the same coordinates as DTPC/DTPM. There 

are three steps involved: tilting, scaling, and rotation. Tilting is 

done by aligning the XCTV to a reference surface (such as the 

build plate) or aligning the top surface of the part to the build 

direction. Scaling is done by interpolating the XCT images to the 

same resolution as the MPIV. Rotation is done by aligning the 

same patterns in MPIV and XCTV, such as the track orientation. 

The original XCTV is in grayscale but can be thresholded to 

binary in order to label the voids. More details on the  XCTV 

alignment and thresholding can be found in  [9,16].   

 
Figure 11: XCTV creation and alignment.  

Once the XCTV is thresholded and put into the same scale 

and coordinates as MPIV, the locations of the voids determined 

in the XCTV can be mapped directly to their locations in the 

MPIV. Multi-layer blocks centered around the void location can 

be ‘cut’ out from the MPIV and used to train a deep learning 

model to identify the common features in the MPIV tied to these 

voids. Once a model is trained, it can be used to predict voids 

directly from the DTPM. This approach is explained in 

Figure 12. It is different from many existing defect prediction 

studies; they are either based on layer-wise images [19], or 

individual MP images [20]. The defect formation in the LPBF 

process is very dynamic and localized, and there is also much 

remelting within and between layers. The MPIV creation 

(Figure 8) takes into consideration the same layer remelting, 

while the multi-layer blocks retain the cross-layer remelting 

information.   

 

 

 
Figure 12: Development of defect prediction ML model.  

The DTPC, DTPM, and DTPP have mapped the control, 

monitoring, and measurement data into the same coordinates 

through the virtual volumes they created. This mapping is 

sometimes referred to as data registration. In this digital twin 

framework, all the data are registered to the time-stepped digital 

command of the pointwise control. ML models can be developed 

to connect DTPC to DTPP through DTPM, to predict the build 

quality directly from the time-stepped digital commands. 

Meanwhile, the DTPP and DTPM can also be used to optimize 

the DTPC and DTPD. This is summarized in Figure 13. 
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Figure 13: AM quality prediction and process optimization by 

digital twins.  

 

4. CONCLUSION 
An AM digital twin framework is demonstrated. It consists 

of four components: digital twins of process design, process 

control, process monitoring, and printed part. Their applications 

in the AM process control and optimization are demonstrated. A 

machine-learning based descriptive model for the AM process 

can be established based on these digital twins, and the process 

can be continuously improved through the design-control-

monitoring-measure cycle. The digital twin framework was 

developed for AM process control, but can also be applied for 

certification, data correlation, and quality prediction.  
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