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Gate-defined quantum dots (QDs) have appealing attributes as a quantum computing platform.
However, near-term devices possess a range of possible imperfections that need to be accounted
for during the tuning and operation of QD devices. One such problem is the capacitive cross-talk
between the metallic gates that define and control QD qubits. A way to compensate for the capacitive
cross-talk and enable targeted control of specific QDs independent of coupling is by the use of virtual
gates. Here, we demonstrate a reliable automated capacitive coupling identification method that
combines machine learning with traditional fitting to take advantage of the desirable properties of
each. We also show how the cross-capacitance measurement may be used for the identification of
spurious QDs sometimes formed during tuning experimental devices. Our systems can autonomously
flag devices with spurious dots near the operating regime, which is crucial information for reliable
tuning to a regime suitable for qubit operations.

I. INTRODUCTION

Quantum dot (QD) arrays, in which charge carriers
are trapped in localized potential wells and qubits can
be made by use of the spin and permutation symme-
tries of the carriers, are a promising quantum computing
platform [1–3]. In fact, the first demonstrations of QD
two-qubit gates with fidelities exceeding the thresholds
for fault-tolerant computing were developed in 2022 [4–
6]. However, because the individual charge carriers that
make up qubits have electrochemical sensitivity to minor
impurities and imperfections, calibration and tuning of
QD devices is a nontrivial and time-consuming process,
with each QD requiring careful adjustment of a gate volt-
age to define charge number, and multiple gate voltages
to specify tunnel coupling between QDs for two-qubit
gates or to reservoirs for reset and measurement. While
manual calibration is achievable for small, few-QD de-
vices, with increasing size and complexity of QD arrays
the relevant control parameter space grows quickly, ne-
cessitating the development of autonomous tuning meth-
ods.

There have been numerous demonstrations of automa-
tion of the various phases of the tuning process for single-
and double-QD devices [7]. Some approaches seek to
tackle tuning starting from device turn-on to coarse tun-
ing [8–11], while others assume that bootstrapping (cal-
ibration of measurement devices and identification of a
nominal regime for further investigation) and basic tun-
ing (confirmation of controllability and device character-
istics) have been completed and focus on a more tar-
geted automation of the coarse and charge tuning [12–
16]. While the initial autotuning approaches relied
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mainly on the appealingly intuitive and relatively easy-
to-implement conventional algorithms that typically in-
volved a combination of techniques from regression anal-
ysis, pattern matching, and quantum control theory, the
more recent algorithms take advantage of the modern
computer vision and machine learning [7].

A typical accumulation-mode QD device consists of
two sets of gates—plungers and barriers—that collec-
tively control the overall potential profile, the QD-
specific single-particle energy detuning of individual
QDs, the tunnel couplings between QDs, and tunnel rates
between the outermost QDs and reservoirs. Ideally, each
plunger gate would affect only the electrochemical poten-
tial of a single targeted QD and each barrier gate only
one intended tunnel barrier. Due to the tight proximity,
however, each gate capacitively couples to nearby poten-
tial and tunnel barriers. This makes careful control of
these key parameters challenging.

One way to compensate for the capacitive crosstalk be-
tween gates is to enable orthogonal control of the QDs
potential by implementing so-called virtual gates [17].
Specifically, linear combinations of gate voltage changes
can be mapped onto onsite energy differences [17–20].
These approaches have been key for the initialization and
control of larger QD arrays [21, 22].

To autonomously identify capacitive couplings in a
device, various approaches have been demonstrated us-
ing both conventional fitting and machine learning (ML)
techniques [23–26]. However, these approaches, typically
relying on the Hough transform or conventional least-
squares fitting procedures, may be unreliable in the pres-
ence of data imperfections. Hough transforms can ex-
tract slopes directly but may be sensitive to noise or be
excessively complex to analyze. Conventional fitting can
be more flexible but is susceptible to local minima and
can be time-consuming at inference time.

Convolutional neural networks (CNNs) are well suited
for extracting high-level features from images and can
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remain effective in the presence of noise or other imper-
fections [27]. However, ML methods can have difficulties
identifying data outside of the training distribution even
if they contain similar features [28]. Fortunately, given a
simplified, high-level representation of the data, conven-
tional fitting approaches can be more targeted to extract
key information more effectively and quickly.

Here we develop a reliable automated capacitive cou-
pling identification method that combines ML with tra-
ditional fitting to take advantage of the desirable proper-
ties of each. We use an ML module for pixel classification
followed by linear regression for extracting targeted in-
formation and demonstrate effective performance across
varying noise levels and data variations. Testing each
of these methods on a set of eight simulated QD de-
vices with large variability and realistic noise variation
mimicking experimental conditions shows that the ap-
proach combining ML and traditional fitting works well,
with a root-mean-square error (RMSE) of 0:034(14), cor-
responding to a roughly 8 % error, for predicting virtual
gate matrix off-diagonal values (normalizing such that
diagonal values are one) [29]. This RMSE roughly cor-
responds to the error rate expected for previous cross-
capacitance extraction methods [24] that required multi-
ple iterations and higher data quality.

We also demonstrate how the cross-capacitance mea-
surement may be used for the identification of spurious
QDs formed during tuning experimental devices. Many
of the autotuning approaches proposed to date rely on
a series of small two-dimensional (2D) scans capturing
a relatively narrow range of the voltage space [13, 14,
27, 30]. While such approaches improve the efficiency of
tuning, they may result in unexpected and difficult-to-
assess failure modes when the tuning algorithm termi-
nates at an anticrossing with a spurious QD that may
form in small potential wells due to interface defects,
surface roughness, or strain within the device [31]. They
are highly undesirable since they may interfere with the
QDs intended for use as qubits and cannot themselves be
used as qubits. To avoid device tuning failure, spurious
QDs must be identified when present and avoided. We
test the utility of our approach for capacitive coupling
estimation by identifying spurious QDs in experimental
measurements of QD devices [1].

This paper is organized as follows: In Sec. II we intro-
duce the framework of combining traditional fitting tech-
niques with a pixel classifier to process the high-level in-
formation extracted from experimental data. In Sec. III
we show the utility of the proposed framework to auto-
matically extract virtual gates as well as identify charge
transitions resulting from a formation of spurious QDs.
Finally, in Sec. IV we summarize the results and discuss
the outlook.

II. METHODS: MACHINE LEARNING AND FIT

Capacitive couplings in a QD device can be measured
and, in a constant capacitance approximation, described
by a matrix that maps the physical gate voltages onto the
effect they each have on the QD’s chemical potentials or
barriers [17, 23, 24, 32–34]. Measurement of the elements
of this matrix must be performed distinctly for electro-
chemical potentials and tunnel barriers. Couplings of
the chemical potentials to each QD—the focus of this
work—can be extracted from shifts in charge transition
lines when each voltage is varied [17], while the effect of
each gate on tunnel barriers can be assessed by measuring
changes in the width of interdot transitions, assuming the
electron temperature is sufficiently low [33]. Measured
this way, the couplings are relative, usually scaled with
respect to the coupling of the QD to the nearest gate.
An absolute energy scale can be obtained by measur-
ing the gate lever arms with photon-assisted tunneling,
Coulomb diamonds, or bias triangles [35]. However, for
establishing the orthogonal control the relative scale is
sufficient [21].

For a double QD, the virtualization matrix relating the
physical plunger gates to virtual gates can be represented
by the equation(
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Each row is normalized such that the diagonal entries are
1 to reflect the relative nature of our virtual gates.

The relative cross-capacitances for chemical potentials
manifest themselves via the slopes of charge transition
lines, with the dominant terms of the cross-capacitance
matrix determined from a measurement in the space of
neighboring pairs of gates [21]. We address the identifica-
tion of the cross-capacitances as captured in 2D plunger-
plunger gate scans, as shown in Fig. 1(a). To translate
the low-level QD data into high-level information useful
for automation we use a pixel classifier, that is, a CNN
model with a structure similar to a feature pyramid net-
work [36]. Additional details about the CNN design can
be found in Appendix A. The pixel classifier takes as an
input a small 2D plunger voltage scan obtained using
a charge sensor, as shown in Fig. 1(a). It then iden-
tifies each pixel within the scan as belonging to one of
the charge transition classes—that of left QD, right QD,
central QD, or interdot (polarization line) transition, de-
noted by LT, RT, CT, or PL, respectively—or to the no
transition (NT) class. In other words, the CNN provides
a high-level classification of the raw experimental data
while keeping spatial information about the relative lo-
cation and orientation of the detected features, which is
useful for algorithmic processing. Figure 1(b) shows the
pixel classification of a scan from Fig. 1(a).

To translate pixel classifications into capacitive cou-
plings, we identify contiguous regions within each class
of pixels in an image and then independently fit them us-
ing a linear regression model. A labeling algorithm from
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FIG. 1. An example 2D scan and corresponding pixel classifi-
cation, class clusters, and linear fits. (a) A simulated voltage
scan showing left and right transitions as well as a polariza-
tion line. (b) Pixel classification for the scan shown in (a). (c)
Regions of pixels and linear fits from the pixel classification.
The large dark points indicate the centers of pixel regions.

the multidimensional image processing package in SciPy
is then used to determine the relevant clusters of con-
nected pixels for each class [37]. This separates charge
transitions into distinct lines identified by an index and
an assigned class so that each can be processed individ-
ually. The x and y pixel indices of each region of pixels
classified as LT, CT, or RT are independently fitted using
linear regression, as shown in Fig. 1(c). When multiple
segments for a given class are present in an image, the
capacitive coupling returned is the average for all fitted
lines weighted by the number of pixels in each cluster and
the standard deviations of the respective fits, yielding the
solid lines in Fig. 1(b) (offset arbitrarily for comparison
with the pixel regions). To facilitate a more direct calcu-
lation of the fit error for the RT capacitive coupling, the x
and y indices are inverted before linear regression. Stan-
dard deviations � are computed from the standard error
of the fit, S, by � = S=

p
n, where n is the number of pix-

els in the pixel region, as in Student’s t-distribution [38].
In addition, each region is tagged with its center in volt-
age space, shown by the large black points in Fig. 1(c),
which allows tracking of the changes in charge transitions
and their slopes within the larger space.

A. Data

The data used for training the ML tools and testing
the methods were generated using a simulation of QD
devices [12]. The simulation is composed of a calculation
of the electron density in the Thomas-Fermi approxima-
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FIG. 2. (a) Box plot of root-mean-square error (RMSE) for
all transition classes (left, central, and right [LT, CT, RT]) as
a function of the synthetic noise level. The notch indicates
the 95 % confidence level. (b) RMSE as a function of noise
level for the LT class. (c) RMSE as a function of noise level
for the RT class.

tion and a capacitance matrix to determine the stable
electron configuration. To improve the robustness of the
models, the data are augmented with synthetic white,
pink (1=f), and telegraph noise [27]. The effect of a QD
charge sensor strongly coupled to the plunger gates is
varied during the scan to improve performance on this
type of experimental data.

The training dataset consists of 1:6 � 105 devices with
parameters varied over a uniform distribution with a
standard deviation equal to 1 % of each parameter’s
value. To train the ML models we randomly sample 10
small scans per device and use charge-state ground truth
to label each scan at a pixel level with the presence and
type of transition, yielding NT, LT, CT, RT, and PL la-
bels. Additionally, we extract the slopes of the transition
lines directly using the gradients of the device charge.

The test data consist of eight simulated devices with
large variations in screening length and device pitch and
with large shifts in the position of one of the plunger
gates. These changes lead to large variations in the slopes
of and spacing between the charge transition lines, the ca-
pacitive coupling between QDs, and the relative sizes of
left and right QD regions, making them largely distinct
from the training data. To facilitate a controlled study
and track the performance of the pixel classifier as data
quality degrades, each large scan is randomly sampled
50 times and the resulting small scans are augmented
with increasing levels of synthetic noise. This results in




