
EDITOR: Irena Bojanova, irena.bojanova@computer.org

DEPARTMENT: CYBERSECURITY

Bug, Fault, Error, or Weakness:
Demystifying Software Security Vulnerabilities
Irena Bojanova, NIST, Gaithersburg, MD, 20899, USA

Carlos Eduardo C. Galhardo, INMETRO, Duque de Caxias, RJ, 25250-020, Brazil

Abstract—In this work, we define the notions of software bug, weakness, and
vulnerability in the context of cybersecurity and elucidate their causal relations.

S ecurity vulnerabilities lead to failures that are
commonly used to attack cyberspace and the
critical infrastructure. Communicating about

them, however, even security experts use loosely the
notions of bug, fault, weakness, vulnerability, and fail-
ure. For example, artificial intelligence (AI) chatbots
are trained on input from all over the Internet in-
cluding misunderstandings. Subsequently, conflating
explanations about these concepts resurface, provid-
ing a glimpse on how software security concepts are
used in publications, security advisories, and testing
tool reports. Figure 1 shows one particular interaction
with ChatGPT on defining software security bug and
weakness. Skimming through the definitions, a reader
may find them sound, unaware the AI algorithm has
been forced to mix apples and oranges.

Building a common language that avoids conflation,
synonymy, and polysemy is a critical challenge in sys-
tems engineering [1]. This is also true for cybersecurity.
For example, misunderstanding the root cause is a
critical factor for reopening fixed bugs [2], and the
lack of clearly defined concepts hinders the automatic
processing of security-related information [3].

In this paper, we clearly define the software se-
curity terms bug, fault, error, weakness, vulnerability,
and failure, as part of our work on the NIST Bugs
Framework (BF) ([4]). Starting from vulnerability, we go
towards weakness, bug, and fault, and then towards
error, final error, and failure. We model a software
security vulnerability as a chain of weaknesses that
leads to a security failure. A security bug causes the
first weakness, leading to an error. This error becomes
the cause (i.e., the fault) for a next weakness and
propagates through subsequent weaknesses until a
final error is reached, causing the security failure.

XXXX-XXX © 2023 IEEE
Digital Object Identifier 10.1109/XXX.0000.0000000

DEFINITIONS
A broad spectrum of software security researchers and
practitioners would benefit from clear definitions of the
terms bug, fault, error, weakness, vulnerability, and
failure in the context of software security.

We can observe that a security vulnerability leads
to a security failure. However, what are the building
blocks of a vulnerability? What is the defect in software
that triggers a vulnerability? How does it propagate
through errors until a final, exploitable error is reached?
How do the underlying weaknesses of a vulnerability
relate to these propagating errors?

A software security vulnerability is a chain of weak-
nesses linked by causality. It starts with a bug and ends
with a final error, which if exploited leads to a security
failure.

A software security weakness is a (bug,

operation, error) or (fault, operation,

error) triple. It is an instance of a weakness type that
relates to a distinct phase of software execution, the
operations specific for that phase and the operands
required as input to those operations.

A software security bug is a code or specification
defect – an operation defect.

A software fault is a name, data, type, address, or
size error – an operand error. Name is in reference
to a resolved or bound object, function, data type, or
namespace. The others are in reference to an object.

A software error is the result from an operation with
a bug or a faulty operand. It becomes a next fault or
is a final error.

Disclaimer: Certain trade names and company products are
mentioned in the text or identified. In no case does such
identification imply recommendation or endorsement by the
National Institute of Standards and Technology (NIST), nor
that they are necessarily the best available for the purpose.

January/February Published by the IEEE Computer Society IT Professional 1



DEPARTMENT

...

FIGURE 1. Software security concepts conflation, demonstrated by querying the Internet via ChatGPT.

A software security final error is an exploitable or
undefined system behavior that leads to a security
failure.

A security failure is a violation of a system security
requirement.

A chain of weaknesses starts with a bug, propa-
gates through errors that become faults, and ends with
a final error. The final error is the one exploited by
attackers towards a security failure. For example, miss-
ing input validation may propagate to integer overflow,
followed by buffer overflow, which if exploited may lead
to a remote code execution failure.

The bug must be fixed to resolve the vulnerability;
while, in most cases, fixing a fault would only mitigate
the vulnerability. To fix a bug (code or specification
defect), lines of code or configuration files, etc., must
be changed. The bug is a concrete error; it is a
wrong sequence of bits that must be changed. Fixing
a specification is also code related, as it requires fixing
its implementation.

A security failure may be caused by the converging
final errors of several vulnerabilities. The bug in at least
one of the chains must be fixed to avoid the failure.

Using our definitions, we formalize at a high-level a
vulnerability description with the rules in Listing 1 (the
complete current BF LL1 grammar is available at [4]).

Listing 1. A high-level grammar of a vulnerability description.

START := Vulnerability Converge END
Vulnerability := Bug Operation Error
Error := Fault Operation Error

| FinalError
Converge := Vulnerability Converge

| Failure

VULNERABILITY MODEL
Figure 2 presents our BF software security vulnerability
model. Following the definitions of weakness, bug,
operation, error, and final error and our formal gram-
mar (Listing 1), a vulnerability description uses causal
relations to form a chain of underlying weaknesses,
leading to a failure.

Each weakness is an instance of a weakness type
with a particular bug or fault as a cause and an error
as a consequence. The error establishes a transition
to another weakness or a failure.

A bug always causes the first weakness in a chain
of weaknesses1; it is a coding or specification defect,
which, if fixed, will resolve the vulnerability. A fault
causes each intermediate state. The last weakness
always ends with a final error (undefined or exploitable

1Focus of this work are weaknesses within software.

2 IT Professional January/February 2023



DEPARTMENT

Final Error

Instance of Weakness Type n

Opera�on nFault n-1

Bug Error 1Opera�on 1

Fault 1 Error 2

Instance of Weakness Type 2

Opera�on 2

Instance of Weakness Type 1 

Final Error
Bug

Failure

…

Fault/Error

Opera�on
Failure

FIGURE 2. The BF software security vulnerability model. A
chain of underlying weaknesses, leading to a security failure.

system behavior) that causes the failure (a violation of
a system security requirement).

A transition is the result of the operation over the
operands. For example, in Figure 2, Operation 1 from
the first weakness has a Bug and results in Error 1,
which becomes the fault for operation 2, leading to
Error 2. The chain goes on, until the last operation
results in a Final Error, leading to a failure.

Therefore, a vulnerability can be described pre-
cisely as a chain of weaknesses and their transitions.
This chain is a sequence of improper states in the
vulnerable software.

Each improper state is an instance of a weakness
type, corresponding to a Bugs Framework (BF) class
[4]. The transition from the initial state is by improper
operation (an operation that has a bug) over proper
operands. The transitions from intermediate states
are by proper operations with at least one improper
operand (the operand is at fault).

In some cases, several vulnerabilities must be
present for an exploit to be harmful. The final errors
resulting from different chains converge to cause a
failure (see Figure 3). The bug in at least one of the
chains must be fixed to avoid that failure.

EXAMPLE
Let’s look at BadAlloc, a pattern discovered by Mi-
crosoft researchers [5] and reported by the Cybersecu-
rity and Infrastructure Security Agency (CISA) [6] with

…

…

Final 
Error ’

Final 
Error

Ini�al State

Failure

Final State

FIGURE 3. Converging software security vulnerabilities, lead-
ing to a security failure.

25 similar vulnerabilities found in multiple IoT devices.
The BadAlloc vulnerability pattern comprises five

consecutive weaknesses (see Figure 4). The first
weakness occurs at the data verification phase of soft-
ware execution. There is a bug, such as missing code
for checking data towards allowed numerical values,
creating a data verification weakness. This allows input
of an unusually large number 2, which causes a wrap-
around error when performing arithmetic calculations
(a type computation weakness). This error results in
a smaller number being used for memory allocation,
leading to not enough memory reserved for a buffer (a

2E.g., greater than the maximum allowed integer – 232 − 1
for 32-bit systems.

DVR

TCM

MUS

MAL

MAD

Type Computa�on 
Weakness

Memory Alloca�on
Weakness

Memory Addressing
Weakness

Memory Use
Weakness

Failure

Data Valida�on
Weakness

DoS
/

RCE

FIGURE 4. The BadAlloc vulnerability pattern,
described using the BF classification [4].

January/February 2023 IT Professional 3



DEPARTMENT

Buffer Overflow

Memory Use Weakness

Write
Over Bounds 

Pointer

Missing Code Inconsistent ValueVerify

Wrong Argument Wrap Around

Type Computa�on Weakness

Calculate

Data Verifica�on Weakness

Wrong Size Used
Not Enough 

Memory Allocated

Memory Alloca�on Weakness

Allocate

Not Enough 
Memory Allocated

Over Bounds 
Pointer

Memory Addressing Weakness

Reposi�on

Code Defect Opera�on Data Error

Data Fault Opera�on Data Error

Data Fault Opera�on Size Error

Size Fault Opera�on Address Error

Address Fault Opera�on Final Error

DoS
/

RCE

Final Error
Bug

FailureFault/Error

Opera�on

FIGURE 5. The BF [4] BadAlloc chain as in CVE-2021-21834.

memory allocation weakness). This allows a pointer
to move outside the buffer boundaries (a memory
addressing weakness) and cause a buffer overflow
final error while writing data there (a memory use
weakness). The final error then can lead to a failure,
such as denial of service or remote code execution.

Figure 5 presents the chain of weaknesses, under-
lying the particular BadAlloc vulnerability CVE-2021-
21834. To examine its fully detailed BF description,
please refer to [7].

DISCUSSION
Explanations generated by ChatGPT about particular
software security notions depend on the dialog, but it is
astonishing how wrong they could be to start with. For
example, the result from the query on Figure 1 states a
security bug is “an error, a flaw, a failure, or a fault” that
“causes incorrect or unexpected results” and “creates
a security vulnerability”. It then plays with the common
understanding of vulnerability [8] instead of explaining
weakness, except it adds a “weakness is a defect or
problem in the design of a piece of software”. While a
bug is not a failure, a weakness is not a vulnerability,

defect relates to bug, and fault relates to error. The
results support our own research conclusion that clear
definitions of all these notions are greatly needed.

Our vulnerability model (Figure 2) and definitions
can be used on a high enough abstract level to de-
scribe the weakness pattern for several vulnerabilities
– e.g., the BadAlloc pattern (Figure 4). However, they
are also concrete enough to provide details on the
weaknesses underlying a particular vulnerability – e.g.,
the CVE-2021-21834 chain (Figure 5). Our approach
allows to reveal how same types of weakness chain to
form different vulnerabilities and how a particular bug
in a piece of code leads to a failure.

Understanding the role of faults as propagating
errors in a chain of weaknesses, makes it easier to
see that the final error of a vulnerability is the one
that gets exploited. Recall the BadAlloc pattern and the
CVE-2021-21834 description adherent to our vulnera-
bility model: an unverified large input to a calculation
at buffer allocation causes use of a wrapped-around
value as size, leading to a smaller buffer and allowing
overbound writes. First and more importantly, we learn
about the vulnerability severity: a write buffer overflow
may crash the system or, even worse, allow remote
code execution. Next, we learn what should be fixed to
resolve the vulnerability: the missing input verification
bug. Last, we can reason about in-depth defense
measures to mitigate the vulnerability. For example,
use of address space layout randomization to mitigate
buffer overflow on dynamically allocated memory or
safe integer libraries to mitigate wrap-around errors.
Understanding the chain of weaknesses allows bet-
ter development, defense, and mitigation decisions. It
would be misleading to say CVE-2021-21834 has a
buffer overflow bug or is a buffer overflow failure. Much
would be missing also if we only say it has a buffer
overflow weakness.

Note that the BF vulnerability model focuses on
weaknesses within software. Embedding it in attack
specific models (e.g., NIST Vulntology [9]), would allow
external causes, such as hardware failures, system
misconfigurations, interactions with other software, or
human interactions.

RELATED WORK
In this section, we compare and contrast our BF vul-
nerability model with related works.

Chillarege et al. introduce the idea of causal, or-
thogonal classification of defects [10]. Our definition
of bug parallels their definition of defect. However, we
delve deeper and differentiate the initial defect (the
bug) from the propagated errors (the faults). We define

4 IT Professional January/February 2023

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21834
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21834
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21834
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21834
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21834
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21834


DEPARTMENT

all the concepts on a level of abstraction that would
help clear explanation of a causal chain from the bug
through faults to the eventual security failure. Facilitat-
ing clear communication about security vulnerabilities
is our main goal. Our approach, however, by its nature,
may also allow automated backtracking to the bug [11].

The reliability community has also struggled to
define the concepts of software defect, fault, error, and
failure. Several papers from the 90’s discuss these
concepts. Some found the hardware analogy tempting
[12], but it had limits and it was found confusing [13].
Instead, we build our definitions from the notion of
software security vulnerability as the cause of security
failure (i.e., loss of a security property). The failure
is triggered by a software security bug unintended
functionality that breaks basic security principles.

Avizienis et al. [14] define security faults, errors,
and failures using causal relationships. They explain
that errors propagate inside components from an initial
fault until a failure is reached. Their definitions of fault
as “the adjudged or hypothesized cause of an error”
and error as “a part of a system’s total state that may
lead to a failure” reflects our understanding of bug
and fault. We also reason a fault is a cause for an
error, but in addition we deem recurrence essential to
explain better how errors propagate in software. For
example, an erroneous result of an operation could be
a faulty cause for a next operation. We define the bug
as the cause of error from the initial improper state,
propagating through errors from intermediate states,
towards the error from the final state, which leads to a
failure. They state that error propagation is through the
computation process, however, they do not delve as
deep as we do. We bring up the concept of operation
(and its operands) to explain how an error, resulting
from a bug or fault, transitions into the fault, causing
another error. We state a vulnerability is underlined
by a chain of weaknesses, each corresponding to a
particular bug or fault and a particular operation that
results in an error. The notion of transition is important
as the error resulting from a weakness can be more
abstract than the concrete fault of a next weakness.

CONCLUSION
In this paper, we define the fundamental notions of se-
curity failure and software security vulnerability, weak-
ness, bug, and final error; and detail the definitions of
software fault and error. We have developed them iter-
atively, while creating the NIST Bugs Framework (BF)
[4] software security vulnerability model. They help
us reason about and create weakness taxonomies,
allowing precise descriptions of existing vulnerabilities.

A broad spectrum of information technology (IT)
managers, software developers, and security re-
searchers would benefit from a clear understanding
of these terms in the context of software security. Ac-
curate understanding of underlying weaknesses would
ensure proper bug identification, which could improve
fixing times and decrease chances of introducing new
bugs via patches. Formalized definitions would assist
in machine processing of security-related information
and in generating software testing reports.

The results from ChatGPT queries show we must
rely on more than just AI to discern concepts. Under
the ChatGPT’s hood lays a model that learns from all
over the Internet, including misunderstandings. In par-
allel to the ancient Oracle of Delphi, the caller should
be well prepared to provide the right questions and
context; otherwise, the reasoning may be misleading
and the result disastrous. Using our software security
expertise to pose more and more tuned questions, thus
providing more context, eventually we got ChatGPT
to at least partially discern our own reasoning. The
collective knowledge seems to approve the direction
we are delving in via our BF research ([4]).

Irena Bojanova, is a computer scientist at NIST, USA.
She is the primary investigator and lead of the NIST
Bugs Framework (BF) project. Her current research
interests include cybersecurity and formal methods.
She is a Senior member of the IEEE Computer Society.
Contact her at irena.bojanova@nist.gov.

Carlos E. C. Galhardo, is a researcher at Inmetro,
Brazil. His research interests include information sci-
ence, cybersecurity, and mathematical modeling in
interdisciplinary applications. Contact him at cegal-
hardo@inmetro.gov.br.

References
[1] D. A. Broniatowski, “Building the tower without

climbing it: Progress in engineering systems,”
Systems Engineering, vol. 21, no. 3, pp. 259–
281, 2018.

[2] T. Zimmermann, N. Nagappan, P. J. Guo, and
B. Murphy, “Characterizing and predicting which
bugs get reopened,” in 2012 34th International
Conference on Software Engineering (ICSE),
2012, pp. 1074–1083. DOI: 10.1109/ICSE.2012.
6227112.

[3] D. Malzahn, Z. Birnbaum, and C. Wright-Hamor,
“Automated vulnerability testing via executable
attack graphs,” in 2020 International Conference

January/February 2023 IT Professional 5

https://doi.org/10.1109/ICSE.2012.6227112
https://doi.org/10.1109/ICSE.2012.6227112


DEPARTMENT

on Cyber Security and Protection of Digital Ser-
vices (Cyber Security), IEEE, 2020, pp. 1–10.

[4] NIST, The Bugs Framework, Accessed: 2023-
01-06, 2023. [Online]. Available: https://samate.
nist.gov/BF/.

[5] T. A. Omri Ben-Bassat, “ERROR: BadAlloc! -
Broken Memory Allocators Led to Millions of Vul-
nerable IoT and Embedded Devices,” Slideshow
presented at Blackhat USA 2021, 2021.

[6] CISA, ICS Advisory (ICSA-21-119-04), Multiple
RTOS (Update E), Accessed: 2022-09-08, 2022.
[Online]. Available: https://www.cisa.gov/uscert/
ics/advisories/icsa-21-119-04.

[7] I. Bojanova, C. E. Galhardo, and S. Moshtari,
“Data type bugs taxonomy: Integer overflow, jug-
gling, and pointer arithmetics in spotlight,” in
2022 IEEE 29th Annual Software Technology
Conference (STC), 2022, pp. 192–205. DOI: 10.
1109/STC55697.2022.00035.

[8] Joint Task Force Transformation Initiative, “NIST
Special Publication 800-30 revision 1: Guide
for Conducting Risk Assessments,” US Dept. of
Commerce, 2012.

[9] NIST, NIST Vulntology, Accessed: 2023-01-18,
2023. [Online]. Available: https : / / github . com /
usnistgov/vulntology.

[10] R. Chillarege, I. S. Bhandari, J. K. Chaar, et
al., “Orthogonal defect classification-a concept
for in-process measurements,” IEEE Transac-
tions on software Engineering, vol. 18, no. 11,
pp. 943–956, 1992.

[11] I. Bojanova, C. E. Galhardo, and S. Moshtari,
“Input/output check bugs taxonomy: Injection er-
rors in spotlight,” in 2021 IEEE International
Symposium on Software Reliability Engineering
Workshops (ISSREW), 2021, pp. 111–120. DOI:
10.1109/ISSREW53611.2021.00052.

[12] B. Parhami, “Defect, fault, error,..., or failure?”
IEEE Transactions on Reliability, vol. 46, no. 4,
pp. 450–451, 1997.

[13] T. Yellman, “Failures and related topics,” IEEE
Transactions on Reliability, vol. 48, no. 1, pp. 6–
8, 1999. DOI: 10.1109/TR.1999.765921.

[14] A. Avizienis, J.-C. Laprie, B. Randell, and C.
Landwehr, “Basic concepts and taxonomy of
dependable and secure computing,” IEEE trans-
actions on dependable and secure computing,
vol. 1, no. 1, pp. 11–33, 2004.

6 IT Professional January/February 2023

https://samate.nist.gov/BF/
https://samate.nist.gov/BF/
https://www.cisa.gov/uscert/ics/advisories/icsa-21-119-04
https://www.cisa.gov/uscert/ics/advisories/icsa-21-119-04
https://doi.org/10.1109/STC55697.2022.00035
https://doi.org/10.1109/STC55697.2022.00035
https://github.com/usnistgov/vulntology
https://github.com/usnistgov/vulntology
https://doi.org/10.1109/ISSREW53611.2021.00052
https://doi.org/10.1109/TR.1999.765921

	DEFINITIONS
	VULNERABILITY MODEL
	EXAMPLE
	DISCUSSION
	RELATED WORK
	CONCLUSION
	Biographies
	Irena Bojanova,
	Carlos E. C. Galhardo,


