
Sub Topic: Fire

13th U.S. National Combustion Meeting
Organized by the Central States Section of the Combustion Institute

March 19–22, 2023
College Station, Texas

Classification of Airborne Firebrand Combustion State Using a
Convolutional Neural Network

Savannah S. Wessies1, Nicolas Bouvet1,*, and Eric D. Link1

1National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
*Corresponding author: nicolas.bouvet@nist.gov

Abstract: In wildland fire scenarios, firebrand transport allows for further propagation of the fire
away from the main fire front. A better understanding of the number of firebrands and various char-
acteristics of the firebrands would provide a more accurate assessment of the hazards associated with
a given firebrand shower or flow. In recent years, NIST has designed and developed the Emberome-
ter to characterize firebrand showers in the field. This device combines two imaging techniques, 3D
Particle Velocimetry and 3D Particle Shape reconstruction, to characterize the firebrand showers in
both time and space. By utilizing the NIST emberometer to monitor an airborne firebrand flow in an
outdoor experiment, individual firebrands can be tracked and characterized over the duration of the
test. In this work, we primarily focus on the methodology for determining the firebrands’ combus-
tion state: flaming or smoldering. Based on recorded video during testing, the differences between
flaming and smoldering firebrands are readily apparent to the viewer. However, to code an algorithm
for this task is nontrivial. The resulting program would be highly dependent on the features and deci-
sion thresholds the programmer deems important. Additionally, with these classification algorithms,
it can be difficult to determine if the optimal solution has been found. However, convolution neural
networks (CNNs), a type of machine learning tool, are widely used to classify images and do not
have the same issues with arbitrary programmer-specific choices and optimization. Appropriately
trained CNNs allow for the rapid classification of large image data sets, which greatly reduces the
time required for classification compared to human sorting. In this work, two different approaches
were utilized to determine the optimal CNN. First, a lightweight CNN (CNN A-D) was developed
from the ground up. Second, transfer learning was applied to a set of pretrained, previously struc-
tured CNNs (CNN E-I). The CNNs were evaluated on an unseen subset of the data for accuracy,
precision, recall, and f-measure. With the lightweight, newly developed CNNs, the optimal solu-
tion, based on a parametric study, had an accuracy of approximately 92 %. In general, the pretrained
CNNs had higher accuracies around 95 %. Considering the other metrics and balancing concerns
of overfitting and machine resource requirements, the optimal CNN was determined to be the case
with transfer learning applied to CNN F.
Keywords: Firebrands, Machine learning, Image classification, Combustion state

1. Introduction

Firebrands, or combusting particles of vegetation or structural materials carried by the wind, help
propagate wildland and Wildland-Urban-Interface (WUI) fires through the generation of spot fires.
Over the past two decades, post-fire investigations have steadily identified firebrands as the pri-
mary cause of a significant number of structural losses at the WUI. In a case study of the Trails
community (Rancho Bernardo, CA) affected by the Witch and Guejito fires in 2007, Maranghides
and Mell identified that out of 274 residences, 74 were completely destroyed with an additional
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16 sustaining various degrees of damage [1]. They found that two-thirds of the destroyed homes
were ignited directly or indirectly by firebrands. Cohen and Stratton led post-burn investigations
of residential destruction following the 2007 Grass Valley Fire near Lake Arrowhead in the San
Bernardino Mountains [2]. Out of 199 destroyed or damaged homes examined, only 6 were iden-
tified as possibly ignited (directly) by the wildfire front. Most home ignitions were attributed to
firebrands, either via direct assault onto structures or via generation of spot fires subsequently
spreading to homes. Similar qualitative findings were outlined by Graham et al. in their investi-
gation of the Fourmile Canyon fires that occurred in 2010 near Boulder, CO [3]. They concluded
that 83 % of the home destroyed were due to direct firebrand ignition and/or surface fire spreading
to homes.

In spite of the known hazards firebrands pose to structures in the WUI, there are relatively few
studies on airborne firebrand flows [4–7]. There is even less known about the thermal/combustion
characteristics of the firebrands in these flows. Understanding the proportion of flaming versus
smoldering firebrands is essential in order to determine how severe a firebrand exposure may be.
Although some information has been reported for the firebrand temperature [6–8], there is cur-
rently no approach performing systematic distinction of airborne firebrand combustion state. The
combustion state is fundamental for two reasons: i) a flame anchored to a firebrand complicates
contour detection, thus compromising accurate sizing operations, and ii) flaming firebrands have
been shown to elicit ignition propensities in target fuels as compared to their smoldering counter-
parts [9].

This paper intends to help alleviate the current limitations in the literature related to firebrand
combustion state. To do so, it leverages data collected using a measurement system called the
Emberometer [10]. This system was designed to characterize airborne firebrand flows and allows
for motion tracking of burning particles in full 3D space and time. The device was used to study
an artificially generated firebrand shower that produced mixed amounts of smoldering and flaming
particles. A sub-set of 3D-tracked firebrand images was used to develop a method to classify
firebrand combustion state in an airborne setting.

While the differences between flaming and smoldering firebrand images are often apparent to
the human eye, the task of coding an algorithm to classify them using traditional image processing
tools is non-trivial. Such an approach typically requires hand-crafted feature extraction, known to
be an arduous task [11], on which the classification step would entirely depend. As both feature
extraction and classification decisions bear some arbitrariness due to programmer-specific choices
(e.g., important feature to be retained, decision threshold to be applied), it is usually difficult to
assess if the algorithm developed is well suited to/optimized for the problem to be tackled. To
circumvent those difficulties, we turn towards machine learning tools, and more specifically Con-
volutional Neural Networks (CNNs), which are widely utilized in the field of visual imagery that
routinely uses image and video data as inputs [12]. CNNs have been shown to be particularly well
suited for complex image classification problems, including in recent years, fire-related issues such
as fire detection [13–15] and firebrand cluster detection in wildfires [16]. Additionally, adequately
trained CNNs may perform classification tasks extremely rapidly which represents significant time
savings as compared to human screening when very large datasets need to be processed (over
71,000 individual firebrand images in the current dataset). Here, we present the approach used
to develop/choose the CNNs of interest, including some details on network architectures, training
procedures, and selected performance metrics. To the authors’ knowledge, this is the first time
such an approach is leveraged to determine if individual airborne firebrands are in the flaming or
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(a) (b)

Figure 1: (a) Labeled picture of Emberometer, and (b) An example of an acquired frame, camera
#4 view

smoldering combustion state.

2. The Emberometer

The Emberometer system1 is devoted to the characterization of airborne firebrand flows typically
encountered in wildland/WUI fires. The system merges two optical techniques, 3D Particle Track-
ing Velocimetry (3D-PTV) as well as 3D Particle Shape Reconstruction (3D-PSR), in a single field-
deployable device. A brief summary is provided here. Further details can be found in [10, 17, 18].
The system shown in Figure 1 is composed of four compact cameras (Sony DSC-RX10M3, ≈ 20
Megapixels) with large diameter built-in lenses. To enhance firebrand detection, the cameras have
undergone full spectrum conversion and are equipped with infrared filters (Hoya R72) ensuring
light transmission above 760 nm. A sample image is provided in Figure 1a. The cameras (and con-
trolling electronics) are embedded in hard shells equipped with dedicated optical windows made
of quartz. Shells are attached to the extremities of a collapsible X-shaped aluminum stand using
custom multiaxial mounts. Using microcontrollers embedded in the camera shells and custom-
developed control hubs, the mechanical initialization operations and long range system control can
be conducted remotely in field settings. Additionally, video feedback to the user is provided via a
5 GHz long range, low latency HD video transmitter.

The video streams acquired by the system are rendered into high bit depth color image se-
quences by extracting individual video frames via a commercial software. Frame synchronization
is performed using an in-house MATLAB code that also transposes the sequences into low bit

1Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the ex-
perimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified
are necessarily the best available for the purpose.

3



Sub Topic: Fire

depth grayscale color space. Grayscale image sequences are then processed by the PTV software,
and raw particle tracking outputs are subsequently handled by a series of in-house FORTRAN
routines, used to gather the complete time history of a particle’s 3D motion. The routines include
an algorithm that identifies and patches particle broken trajectories. The firebrand combustion
state analysis developed below uses firebrand high bit depth color images (background subtracted),
cropped and numbered according to the final tracking outputs.

The Embrometer was deployed in an outdoor setting at the Frederick County Public Safety
Training Facility in Frederick, MD. The Emberometer was set downstream of a firebrand gener-
ator composed of a centrifugal blower connected in line with cylindrical stainless-steel duct ele-
ments (see additional details in [17]). The fuel was 350 g ± 1 g of dry (moisture content < 6 %)
birch/maple dowels (diameter 6.4 mm ± 0.1, length 51 mm ± 0.4 mm) with chamfered edges. The
background of the test was a mix of asphalt, forested areas (mixed vegetation), and clear sky.

3. Methods

The Emberometer utilizes four different camera views to track individual airborne firebrands in
3D. Accordingly, there may be up to four separate images available for a single firebrand at a
given time. The combination of the four images into a single image is referred to as a firebrand
quadview. Samples of firebrand quadview images are provided in Fig. 2. A firebrand may be
visually identified as: flaming on the four available quadrants (column 1), smoldering on the four
available quadrants (column 2), or a combination of flaming and smoldering depending on the view
considered (column 3). In all cases, firebrand images span a wide range of visual appearances, with
various particle sizes, shapes, and colors. As each quadrant may be independently rated “flaming”
or “smoldering,” each individual view is fed independently to the CNN in the form of a RGB image
with dimensions (71 x 71) pixels, for both model training and routine classification purposes. Note
that not all firebrand quadviews provide useful information. If, for some reason, the firebrand has
not been detected for a specific view and time step (i.e., firebrand is not visible, or is detected
but the particle correspondence step has failed), the corresponding quadrant will be entirely black
(see lower left quadrant in upper right quadview in Fig. 2). These quadrants are automatically
identified, labelled accordingly, and subtracted from the CNN analysis.

Two approaches, each with trade offs, were considered. First, design a lightweight CNN from
the ground up. The classification task only entails two categories (“smoldering” or “flaming”),
so the network architecture can presumably be kept very simple, but training of the network must
be performed from scratch. Second, implement transfer learning on a set of pretrained, previously
structured CNNs[19]. In this case, training is facilitated by prior learning at the expense of network
footprint/complexity. In the present work, both approaches are compared to identify the CNN
with the best overall performance. The newly designed and previously structured CNNs were
implemented using the Deep Learning Toolbox in MATLAB (2022).

The architecture for the new CNNs (CNN A-D) is summarized in Figure 3. To optimize this
network, parametric testing was conducted, and variables including filter size and number of filters
per convolutional layer were considered. It was found that adding additional convolutional layers
had little effect on the CNN’s performance. Additionally, transfer learning was implemented on
five previously structured CNNs, pretrained on the ImageNet dataset [20]. The five selected net-
works were chosen due to availability, prevalence in the literature, and variation in architecture.
The first, CNN E, consists of 5 convolution layers and 3 fully connected layers with 61 million pa-
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Figure 2: Quadview image samples (background subtracted) for flaming, smoldering, and mixed
conditions firebrands. Each quadview represents a single firebrand at a single time step. A com-
pletely black square (see lower left quadrant of upper right quadview) indicates that the firebrand
was not detected for that specific view/timestep combination.

rameters. The network utilizes overlapping pooling and local response normalization to optimize
image classification accuracy. With 22 layers and 7 million parameters, CNN F had an optimal
sparse structure with dense units. This network had a less traditional structure with 9 inception
modules to improve computational resource allocation. CNN G followed a bottleneck design with
18 layers and 11.7 million parameters. This network uses residual mapping, skip connections, and
heavy batch normalization in its architecture. Also with 18 layers, CNN H had only 1.24 million
parameters. By down sampling later in the network architecture, this network had large activation
maps in convolutional layers. Additionally, this network utilized 8 fire modules which consisted
of squeeze layers followed by expand layers. The final CNN (CNN I) had the highest number of
parameters at 138 million and 16 layers. This CNN followed the traditional, uniform architecture,
and all convolutional layers had 3x3 filters.

For the purposes of training and transfer learning of the CNNs, a subset of the airborne fire-
brand population tracked with the Emberometer (Sect. 2) was considered. A total of 293 different
particles were carefully reviewed and hand labeled as smoldering or flaming. The review process
included all time steps and quadrant views available for a firebrand (excluding black quadrants as
described above and quadrants for which large flames attributed to the firebrand generation device
were visible). The labeling was performed on color images without background subtraction allow-
ing for detailed dynamic examination of the firebrand silhouettes across time steps. This process
resulted in 23,873 firebrand images classified as either flaming or smoldering. The majority of
the hand labeled images (88.8 %) fell in the smoldering category, an observation consistent with
the firebrand generation process. To ensure the trained CNNs did not become biased towards the
smoldering classification, a subset of the smoldering images was selected at random. This subset
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Figure 3: Architecture of the lightweight CNN developed in this work. A, B, C and D correspond
to the different filter configurations specified in Table 1

had the same number of images as the flaming image subset (approx. 2,700). These hand classified
images were separated randomly into training (80 %), validation (10 %), and test (10 %) datasets,
which were held constant to allow for comparison between different CNNs.

The learning rate was the first parameter considered during training. Based on the validation
loss trends, 0.0001 was selected as the optimal value. The number of iterations was determined
by a validation patience of 5. Additionally, for the transfer learning cases, the learning rate for
the weights and biases was increased by a factor of ten to decrease required training time, and the
mini-batch size was varied between 5 and 15. The majority of the training of the CNNs occurred
on a hexa-core platform (Intel(R) Core (TM) i7-8700 CPU @ 3.2 GHz) equipped with a NVIDIA
Quadro P1000 GPU (4.0 GB). One of the pretrained networks, CNN I, seemed to somewhat exceed
available resources and was trained using an octa-core platform (Intel(R) Xeon (R) W-1370P @
3.6 GHz) equipped with a NVIDIA Quadro RTX 4000 GPU (8 GB).

3.1 Performance Metrics

Several metrics are used to compare the performances of the different CNNs implemented in this
work. The most common metric is the network Accuracy, defined as:

Accuracy =
true predictions

total number o f predictions
(1)

The Accuracy reflects the overall success of the classification task, independently of class
awareness. The Precision and Recall metrics were used for deliver class-dependent information:

Precision =
T P

T P + FP
and Recall =

T P
T P + FN

(2)

where TP (true positive) stands for the number of cases with an identical hand label and CNN
prediction within a specified class, FP (false positive) is the number of cases identified by the CNN
as part of a class but actually belonging to the other (e.g., for the flaming class, the firebrand is
predicted as flaming by the CNN but is actually smoldering per the hand label), and FN (false neg-
ative) is the number of cases identified by the CNN as part of the other class but actually belonging
to the class considered (e.g., for the flaming class, the firebrand is predicted as smoldering by the
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CNN but is actually flaming per the hand label). Both Precision and Recall can be combined in a
single metric, the F-measure or F-score, hereby noted F, which represents their harmonic mean:

F = 2
(

Precision · Recall
Precision + Recall

)
(3)

Accuracy, derived for both the validation and test sets, was closely monitored to ensure over-
fitting of the training data did not occur. F-measures for both smoldering and flaming classes were
monitored to identify any possible classification bias towards one of the categories.

4. Results and Discussion

The CNNs were trained and validated on a subset of the available flaming and smoldering firebrand
images. The newly designed CNN varied in filter size and number of filters per convolutional layer.
A representative subset of the Accuracy and F-measure results for these CNNs is shown in Table 1.
Additional combinations of filter size and numbers were trained, but the performance metrics were
lower than those presented. For these simple 3-layer CNN variations, the best Accuracy for the
validation and test sets was just under 92 %. These results were obtained for the CNN with filter
size 3x3 and the number of filters, from the first convolutional layer to the last, equal to 64, 128, and
256. For this case, the Precision and Recall for the flaming class were 0.93 and 0.91 whereas the
Precision and Recall for the smoldering class were 0.91 and 0.93, respectively. Adding additional
layers or larger numbers of filters did not elicit a marked improvement to the performance metrics.

Table 1: Comparison of the different performance metrics for the CNNs trained to classify the
images as flaming or smoldering. For the newly designed CNNs in the first 4 rows, FS stands for
Filter Size, and NF for Number of Filters. The first number corresponds to the number of filters
in the first convolutional layer, and so on. The CNNs trained via transfer learning presented in the
last five rows of the table had a mini-batch size of 5.

CNN Architecture Accuracy F-measure Size on
Validation Test Flaming Smoldering Disk (MB)

N
ew

ly

D
es

ig
ne

d A. FS: 3x3| NF: 28, 22, 16 88.9 89.1 0.89 0.89 0.07
B. FS: 3x3| NF: 64, 128, 256 91.8 92.0 0.92 0.92 1.84
C. FS: 5x5| NF: 28, 22, 16 90.2 90.4 0.90 0.91 0.16
D. FS: 7x7| NF: 28, 22, 16 91.2 90.8 0.90 0.91 0.23

Tr
an

sf
er

L
ea

rn
in

g

CNN E 94.76 95.30 0.95 0.95 202
CNN F 95.1 95.1 0.95 0.95 21.2
CNN G 95.3 93.8 0.94 0.94 39.7
CNN H 93.8 92.5 0.92 0.93 2.59
CNN I 95.9 95.7 0.96 0.96 477

A distinct improvement to the performance criteria was noticed when transfer learning was
applied to the pretrained CNNs. The last 5 rows of Table 1 represent the transfer learning cases,
which generally performed a few percentage points better for each metric as compared to the
newly designed CNN. The results presented in the table were found using a mini-batch size of 5.
Training was also conducted with mini-batch sizes equal to 10 and 15, however, the results were
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observed to be marginally worse for every pretrained CNN. Using transfer learning on CNN H
produced an improvement of the performance metrics as compared to the newly designed CNN.
However, the performance was not as high as the other pre-trained networks. In general, the other
transfer learning cases had validation and test accuracies around 95 %. The transfer learning on
CNN G had high accuracy with the validation data, but the test accuracy was 1.5 % lower than the
validation set, possibly indicating some overfitting. For the remaining networks, F-measures for
both smoldering and flaming classes were found to be identical. Based on the various performance
metrics and the memory requirements (those of CNN E and CNN I were approximately 10 and
22 times higher than that of CNN F, CNN I requiring additional computing resources), the CNN
trained using transfer learning on CNN F was adopted as the firebrand classification model and
was further used to process the leftover smoldering firebrand images (approx. 18,500) previously
set apart during the training dataset generation step. An accuracy of 95.4 % was obtained, a value
consistent with those reported in Table 1 for the validation and test datasets.

5. Conclusions

Leveraging machine learning tools and Emberometer-acquired firebrand images, a methodology
for firebrand combustion state (smoldering/flaming) identification was presented. A set of Convo-
lutional Neural Networks (CNN), including a custom lightweight and several pretrained networks,
were trained on labeled images and individual network performances were compared. The highest
accuracy resulting from the simple, newly designed CNN was approximately 92 %. In general,
implementing transfer learning improved the classification accuracy compared to the lightweight
CNNs. It was found that the pretrained CNN F (22 layers, 7 million parameters) offered the
best compromise (based on accuracy, F-measure, and size metrics), with predictions systemati-
cally exceeding 95 % accuracy for the validation and test sets considered. The use of this CNN
greatly reduces the total time required for combustion state classification and drastically reduces
the necessary man hours after the initial training of the CNN. Moving forward, the combustion
state classification could be used to improve size classification of tracked firebrands. Addition-
ally, the flaming/smoldering data could help quantify the exposure hazard of a given firebrand
flow. Finally, as more experiments are conducted with the Emberometer, additional data can be
added to the training set leading to an increase in the accuracy of the classification and expanded
applicability of the CNN.
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