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Abstract
This work shows that it is possible to obtain faster MPI image reconstructions by implementing the algorithms in
parallel in Graphics Processing Units (GPUs) using NVIDIA’s CUDA (Compute Unified Device Architecture). While
the parallel Kaczmarz’s algorithm was slower than its serial version running in the Central Processing Unit (CPU),
the parallel version of the Conjugate Gradient Normal Residual (CGNR) algorithm was about 58 times faster than its
serial implementation, and about 10 times faster than the serial implementation of Kaczmarz’s.

I. Introduction

Image reconstruction is a fundamental step in Magnetic
Particle Imaging (MPI). It allows translating the remotely
detected signals from magnetic nanoparticle (MNP) trac-
ers into intelligible 1, 2 or 3D concentration maps [1].
Usually, the reconstruction process consists of solving
large systems of equations [2] and, depending on the
size of the problem — the number of measurements and
image resolution — this computation can be extremely
intensive and time-consuming.

Recently, a number of publications suggested the pos-
sibility of accelerating the reconstructions by implement-
ing the algorithms to run in parallel in Graphical Process-
ing Units (GPUs) [3–5]. Even though GPU-accelerated im-
age reconstructions are already a reality for other biomed-
ical imaging methods such as MRI or CT, no significant
progress in this direction has been reported for MPI so
far in the literature. One of the reasons may be the fact
that Kaczmarz’s is not easily run in parallel, in contrast
to other algorithms. A comprehensive study compared

the performance of several iterative methods, including
the Kaczmarz’s algorithm and the Conjugate Gradient
Normal Residual (CGNR), reporting that the Kaczmarz’s
algorithm may not be the best one to be run in GPU,
while the parallel CGNR has shown a speedup of more
than 30 times in GPU when compared to its serial version
run in CPU [6]. The study, however, does not compare
the implemented parallel algorithms against the serial
implementation of Kaczmarz’s.

This work describes a first attempt to speedup the
execution of MPI image reconstruction algorithms by
running them in parallel in GPU using NVIDIA’s CUDA
(Compute Unified Device Architecture) [7], comparing the
performance of them against their serial implementa-
tions in CPU.

II. Methods and materials
The following two sections briefly describe the architec-
ture adopted, as well as the algorithms studied in this
work.
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II.I. Brief description of CUDA

CUDA is an architecture adopted in NVIDIA’s GPUs con-
sisting of a hardware specialized in performing massive
numerical computations in parallel (such as image pro-
cessing), and a software package that allows developing
applications that take advantage of the Single-Instruction
Multiple-Thread (SIMT) architecture model. The compu-
tation over large sets of data is performed simultaneously
by thousands of cores built within Streaming Multipro-
cessors (SMs) which can access different memory levels
and run sets of instructions called kernels in parallel.

II.II. Algorithms

All the algorithms studied in this work are designed to
numerically find the solution of the system of equations

K · c = s (1)

typically adopted for MPI image reconstructions. The
convolution matrix K ∈R n×m is analogous to the system
matrix, and contains the measurement system response
in such a way that each row contains the point spread
function (PSF) evaluated over the whole grid for a given
field-free point (FFP) position, and each of the n columns
contains one full scan signal for a delta sample placed
in each grid voxel. The vector c ∈R m is the unknown
concentration grid and the vector s ∈ R n contains the
measured signal. Both the convolution matrix and the
signal vector may contain data either in time or frequency
domain (such as in the system matrix method). For sim-
plicity, the signal s is real-valued, contains no noise, and
the following algorithms do not apply regularization or
any constraints, such as non-negativity.

II.II.1. Kaczmarz’s algorithm

The Kaczmarz’s algorithm is an iterative row projection
method that works by, at each iteration i , projecting the
current estimate onto the (i )th row of the convolution
matrix and then correcting the estimate. The (i + 1)th
estimate is given by:

c (i+1) = c (i )+
si −Ki · c (i )

||Ki ||2
K T

i (2)

where Ki is the (i )th row of the convolution matrix and
si is the (i )th measurement. This equation has limited
matrix-vector operations, and the only operations that
could be run in parallel are the dot product and the norm
calculation. Since the algorithm works in a way such that
each iteration depends on the previous one, it has to be
executed serially over all the rows of K , compromising
the potential for speedup.

II.II.2. Cimmino’s algorithm

The Cimmino’s algorithm works almost the same way as
Kaczmarz’s, but instead of updating the unknown esti-
mate one row at a time, it averages the correction esti-
mates of all the rows of K . The next estimate is given
by:

c (i+1) = c (i )+
1

m

m
∑

l=1

sl −Kl · c (i )

||Kl ||2
K T

l (3)

This small change turns the algorithm into a great
candidate to be run in parallel, since each thread could
operate over a single row of the convolution matrix simul-
taneously. The averaging also can be run in parallel, with
each thread operating over a single column of K , com-
puting the new voxel estimate. This algorithm is proven
to converge to the least-squares solution, but as will be
seen, the convergence of this algorithm is very slow.

II.II.3. Hybrid Cimmino’s/Kaczmarz’s

This algorithm is meant to benefit from the fast-
converging properties of the Kaczmarz’s algorithm and
the highly parallel structure of Cimmino’s. The idea is
to break the m rows of the system of equations into
runs that would execute Cimmino’s algorithm over this
smaller subset. The runs are executed serially, which
compromises parallelization but increases the conver-
gence rate. For optimum performance, the number of
rows processed in each run is the same as the number of
GPU cores, and in the limit where the number of rows per
run is equal to one the algorithm reduces to Kaczmarz’s.

II.II.4. Conjugate Gradient Normal Residual -
CGNR

The conjugate gradient (CG) method is an iterative
method used for solving systems with a symmetric posi-
tive definite matrix. For MPI image reconstruction, the
CGNR method is applied to solve the normal equation
(K T K · c = K T · s ) by iterating over a sequence of basis
vectors p i that are mutually conjugate with respect to
(K T K ). Each iteration computes the new estimate

c (i+1) = c (i )+
||K T · r (i )||2

||K ·p (i )||2
p (i ) (4)

p (i ) = K T · r (i )+
||K T · r (i )||2

||K T · r (i−1)||2
p (i−1) (5)

and the residual r i = s −K ·c i . The dominance of matrix-
vector multiplications over other operations suggests a
good potential for parallelization.

III. Experiments
The experiments were performed on a laptop equipped
with an Intel(R) i7-7700HQ processor, 32 GB of RAM
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Figure 1: Reconstruction results after 1 iteration (top line), 20
iterations (middle line) and 50 iterations (bottom line). The
color scale on the right side describes the relative reconstructed
concentrations.

memory, and a NVIDIA GeForce GTX 1060 GPU contain-
ing 10 SMs with 128 cores each, and 6 GB of dedicated
RAM memory. Simulated signal data was generated us-
ing an analytical model [8] for a hypothetical 51x51 el-
ement phantom grid with a "?" shape, totaling 20,000
measurements for a full scan following a Lissajous FFP
trajectory. With this configuration, the size of the convo-
lution matrix is about 416 MB.

Both serial and parallel versions of the Kaczmarz’s
algorithm were tested, as well as the parallel Cimmino’s
algorithm, the parallel hybrid one, and the serial and par-
allel implementations of CGNR. For performance com-
parison purposes, one iteration is considered a set of
operations that cover all the rows of the system of equa-
tions, and there was no row selection, meaning that all
of them were covered by all algorithms at each iteration.
The execution times reported are averages of five exe-
cutions of each algorithm, and the mean square errors
(MSE) were computed with relation to the input signal
to assess the accuracy of the reconstructions. The values
were taken for 1, 10, 20, 30, 40 and 50 iterations.

IV. Results and discussion

Figure 1 shows the reconstruction results for the algo-
rithms studied in this work. The Kaczmarz’s algorithm
shows good reconstructions after only a few iterations,
a performance followed by CGNR and the Hybrid Cim-
mino’s/Kaczmarz’s algorithm. The Cimmino’s algorithm,
on the other hand, shows a very poor convergence rate.

A comparison of the algorithms’ convergence as func-
tion of time (Figure 2) shows that the parallel CGNR im-
plementation performs better than the other algorithms.
In comparison to its serial implementation, the parallel
CGNR has show an average speedup of 58.2x, and when
compared to the serial Kaczmarz implementation (the
second in performance) it ran nearly 10x faster in aver-
age. The quality of the reconstruction, however, has to
be taken into account when comparing the performance
of two algorithms that converge at different rates, so con-

Figure 2: Convergence of the different algorithms, denoted by
the MSE as function of time. The points represent the relative
MSE values for 1, 10, 20, 30, 40 and 50 iterations.

sidering the time taken to reach a relative MSE lower
than 10−5, we find a speedup of 11.2x, against 8.3x when
considering the time taken to reach less than 5 ·10−4. It
happens because the Kaczmarz’s algorithm converges
very quickly in the first iterations but the convergence
speed slows down as the estimate gets closer to the opti-
mal solution. The parallel implementation of Kaczmarz
algorithm has shown a poor performance, running 17.5x
slower than its serial version, while Cimmino’s algorithm
has shown no speedup and the worst reconstruction re-
sults. The Hybrid Cimmino’s/Kaczmarz’s resulted in an
execution 2.5x faster than the serial Kaczmarz’s algorithm
in average, but delivered less accurate reconstructions.

V. Conclusion
This work has demonstrated the possibility of obtain-
ing faster MPI image reconstructions by implementing
the algorithms in parallel using CUDA-enabled GPU
cards. While the parallel Kaczmarz’s algorithm has
shown poor performance in GPU, the parallel CGNR per-
formed much better than the other algorithms studied.
Future studies will assess the performance of these and
other algorithms when operating over noisy data, by em-
ploying regularization, weights, row selection and matrix
preconditioning to reach better convergence.
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