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Increasingly higher demand in chip area and power consumption for more sophisticated artificial neural networks has catalyzed 

efforts to develop architectures, circuits, and devices that perform like the human brain. However, many novel device technologies suffer 

from non-idealities such as device variation, or circuit sneak paths that reduce network accuracy. Here, we report that an array of 

magnetic tunnel junction devices integrated with complementary metal oxide semiconductors (CMOS) greatly reduces the impact of 

non-idealities in the circuit and performs inference with accuracies nearly identical to software. 
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I. INTRODUCTION 

S ARTIFICIAL neural networks scale to improve their 

potential for training computers to perform like the human 

brain, increasingly larger chip area and power budgets pose an 

issue for embedded applications. This issue arises from an 

architecture mismatch between neural networks and computers, 

leading to research in devices, circuits, and architectures that 

resemble the nature of the brain and demonstrate a potential for 

compact efficient artificial neural networks. One promising 

system is the binary neural network, reported to perform 

comparably to precise software-based models [1], mapped onto 

conventional computer memory to process and store in the same 

location [2-5]. A recent work demonstrated inference accuracy 

of 95.3 % on a binary neural network mapped onto a 15×15 

crossbar array of magnetic tunnel junctions (MTJ) [5], the key 

component of magnetoresistive random access memory 

(MRAM).  

One challenge that novel technologies face is the impact of 

non-idealities in the hardware on neural network performance. 

In the MTJ crossbar used in [5], line resistance and potential 

sneak paths resulted in high levels of variation in the effective 

device conductance and incorrect operation of the neural 

network. Operating the physical network requires a conversion 

factor, Gnorm, between device conductance and network weights. 

Due to non-idealities, different values of the conversion factor 

are required to optimize accuracy of inference or reduce the 

error of the written weight matrix than the value approximated 

for the nominal properties of the array. 

In this work, we report on a similar 15×15 MTJ crossbar this 

time integrated with CMOS to reduce line resistance and avoid 

sneak paths. We demonstrate that the reduced impact of these 

non-idealities results in the same Gnorm for both optimizing 

accuracy and weights and report an improvement in accuracy 

of the network from 95.3 % to nearly identical accuracy with 

the software model (99.3 %). 

II. DEVICE PREPARATION AND SETUP 

Experiments are carried out on a 15×15 array of MTJs 

integrated with a 180 nm CMOS process. MTJ stacks for 

patterning perpendicular easy-axis devices are deposited above 

exposed vias connected to the topmost CMOS metal layer and 

processed into 50 nm (nominal) diameter pillars using electron 

beam lithography and Ar+ ion milling. A final Cr/Au 

metallization process is then performed to connect the top 

electrodes of the devices to the select transistors in the array. 

The 2 transistor 1 resistor (2T1R) array is fabricated without 

control circuitry; all measurements are through port-to-port 

measurements by a probe card connected to a 4-channel source 

measure unit and a switch matrix, contained in a single chassis. 

Single device measurements are performed by connecting the 

probes to the row, column, and gate (3.3 V) of the 

corresponding 2T1R cell. Due to the channel number limitation 

of the source measure unit, inference on the neural network is 

performed by accessing each device separately and sequentially. 

III. NEURAL NETWORK OPERATION 

Similar to the work in [5], the Wine dataset [6] is used for 

classification, which includes 178 test samples with 13 input 

parameters each. A two-layer neural network with 13 input 

neurons, 6 hidden neurons, and 3 output neurons is used, 

resulting in a 13×6 and 6×3 weight matrix for layers 1 and 2, 

respectively. Ternary weights [-1, 0, 1] are implemented with 

two MTJs, where the conductance difference between the two 

proportional to the weight allows for implementation of 

negative weights. The network is first trained offline using 148 

of the 178 samples to produce 300 unique weight matrix 

solutions using different weight initializations. Each solution is 

then written to the MTJ array to perform inference. 

A 



 

 

The crossbar is used to perform the vector-matrix 

multiplication (VMM) operation of the network by mapping the 

inputs of each layer to the corresponding read voltages at each 

row. We take advantage of Kirchhoff’s laws to obtain the output 

of each layer as the resulting current on the column. The 

currents are then normalized into layer outputs by Vread×Gnorm, 

where Vread is the read voltage of the MTJ, and Gnorm is 

approximated as GON-GOFF, the MTJ ON-state average 

conductance and the MTJ OFF-state average conductance, 

respectively.  

IV. RESULTS 

Figure 1 shows inference accuracy and root-mean-squared 

(RMS) deviation between the ideal and measured weight 

matrices versus Gnorm for the passive array from [5] and the 

CMOS-integrated array. A large contribution to a reduction in 

accuracy in the previous work originated from the array’s line 

resistance, approximated to 6 Ω per square. This line resistance 

increased variation between devices, resulting in a large 

discrepancy between the approximated Gnorm, the Gnorm that 

optimizes accuracy, and the Gnorm that minimizes the RMS 

deviation between the written weight matrix in hardware and 

the ideal one.  
 

 
 

Fig. 1. Inference accuracy and RMS deviation between the ideal and written 
weight matrices as a function of the normalized Gnorm, Gnorm/(GON-GOFF) for the 

passive MTJ array of [5], and the integrated array reported in this work. In the 

ideal case, Gnorm = GON-GOFF. Points and error bars represent the median and 
standard deviation, respectively, across 300 weight matrix solutions for each 

measurement. 

 

In addition to a reduction in the impact of sneak paths, the 

integrated array shows a line resistance as low as 80 mΩ per 

square, two orders of magnitude less than the previous work. 

An average ON-state conductance of 106 μS and average OFF-

state conductance of 47.5 μS results in an approximated Gnorm 

= 58.5 μS. From the plots for both accuracy and RMS deviation, 

the approximated Gnorm maximizes both parameters. 

The overall accuracy of the network at an optimized Gnorm is 

shown in Fig. 2. While the passive array shows a large variation 

in accuracies with a median of 95.3 %, the integrated array 

makes on average one more misclassification per solution and 

performs nearly as well as the software model at 98.7 % vs. 

99.3 %. 
 

 
 

Fig. 2. Inference accuracy on the training dataset for all 300 weight matrix 

solutions when performed in software, previously reported passive array, and 
the integrated array reported in this work. 

V. CONCLUSION 

In this work we show that reducing line resistance and 

removing sneak paths by integrating with CMOS can 

drastically improve performance of hardware-based binary 

neural networks that can expedite the research and development 

of even larger networks based on MTJs.   
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