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Abstract 

Flory-Huggins (FH) theory is foundational to understanding macro-phase separation in polymer 

solutions; however, its predictions often quantitatively disagree with experiment. Recent 

machine-learning (ML) methods have generated predictive models of phase behavior across a 

broad range of chemistries and state variables with uncertainty comparable to experiment, but 

they lack interpretability. In this work, we develop several hybrid frameworks that combine 

Flory-Huggins theory with ML to (i) further improve interpolation and extrapolation with less 

experimental data, as well as (ii) provide interpretability of the ML model. Using the well-

studied binodal of polystyrene-cyclohexane as a case study, we compare data-derived ML 

models to hybrid models where the prediction is confined by a theoretical expression (theory-

constrained model), or the feature vector input incorporates theoretical expressions (theory-

informed model). Even though Flory-Huggins theory is imperfect, its incorporation improves 
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performance when only 2 or 3 molecular masses are in the training set. However, the theory-

constrained formulation requires significantly more data than the theory-informed models. 

Neither however provides advantages in accuracy or computational efficiency when greater 

coverage of the parameter space or quantities of experimental data are available, likely due to 

limitations of the theory. Even so, these hybrid models provide physical relationships, such as 

the molecular mass dependence of the critical point or of the coefficients within a FH expression. 

This aspect of physics-incorporated ML models not only enhances trust in predictions, but also 

provides a systematic means to identify anomalous behavior, and subsequently assess 

experimental data quality or reveal unanticipated correlations among factors. 
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1. Introduction 

Polymer materials are often synthesized, processed, or purified in solution where solvent 

selection is based on experimental intuition or practices such as comparing Hansen solubility 

parameters (HSPs).1–3 These methods provide estimates well below or above the critical point for 

binary component solutions. However, fractionation, self-assembly, and structure directing 

processing methods rely on transitions through the binodal phase boundary. For instance, 

specific solvents may be used to cast polymer films and membranes in which the resulting 

morphology depends on navigating the phase diagram during thermally-induced phase 

separation,4,5 or introducing a non-solvent.6,7 This phase behavior not only depends on 

configurational statistics and local pair-wise interactions, but also on chain interactions and 

conformations spanning multiple length scales that vary with constituent composition, 

concentration (𝜙), mass-average molecular mass 𝑀!, polydispersity (PDI), temperature (T), and 

pressure (p). 

The ability to quantitively predict the solution phase behavior of polymers a priori has 

been investigated extensively since the first well-known theory by Flory and Huggins (FH),8–11 

which assumes a temperature-dependent constant, 𝜒, to describe monomer-level pair-wise 

enthalpic interactions. Unfortunately, predictions show large disagreement with experiments 

away from the critical point, indicating additional influencing factors.12 Extensive modifications 

to Flory-Huggins13–15 in addition to other lattice-fluid models, such as the Sanchez-Lacombe 

model16–18 or the Lattice Cluster Theory by Freed and co-workers,19 have resulted in better 

predictions for upper critical solubility, lower critical solubility, and closed-loop phase behavior. 

Many of these more rigorous models rely on best fit parameters that are ultimately chemistry-
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specific and require multiple optimization processes to make predictions for each polymer 

molecular mass and polymer-solvent system. This complexity grows exponentially as the 

number of components increase (e.g., ternary, etc.). Thus, establishing these theoretical 

parameters for every polymer-solvent system is intractable due to the number of experimental 

data points and fitting procedures it would require.  

Recently, the utilization of machine learning (ML) models in polymer property prediction 

has shown promise.20–22 Several studies have discussed the use of ML to aid the prediction of a 

polymer’s solubility in a solvent, such as regression models predicting solubility parameters23 or 

classification models predicting compatibility with a solvent/nonsolvent.24,25  Universal models 

providing complete phase diagrams for arbitrary polymer-solvent pairs with upper critical 

solution (UCS), lower critical solution (LCS), and closed loop behavior have also been 

developed using regression ML models trained on a data set of binary cloud points.26,27 The 

performance of these models, especially for new inputs, relies on the amount of available data, 

featurization strategies, model training procedure, similarity of the new inputs, and model 

hyperparameters among other factors. For instance, predictions on unseen cloud points are within 

2-3 °C and extrapolating to new polymers requires as little as 20 additional training data to 

predict cloud points within 5 °C. The predicted phase behavior agrees well with known phase 

behavior in the literature, but can sometimes result in unphysical curve shapes for composition 

extrapolations (and interpolation) beyond available experimental cloud point data.27 Adding 

known thermodynamics into the model may improve this accuracy, reduce training data 

necessary to generalize to new polymer-solvent systems, and provide physical insight between 

features and predictions.   
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Physics-informed machine learning, which integrates physical relationships into the 

model, has recently been shown to improve accuracy and generalization relative to data-derived 

ML models.28 These hybrid models provide interpretability, can utilize databases containing 

experimental data and theoretical model predictions, and even identify new physical 

relationships between output and features.29  Physics-informed models can also help solve 

complex physics, for instance, physics-informed neural networks (PINNs) have been developed 

to solve partial differential equations which have been implemented in polymer self-consistent 

field theory.30 Numerous approaches to leverage theory in machine learning models have been 

developed.31–34 One is to utilize theoretical expressions to engineer the feature vector, in lieu of 

raw experimental descriptors or dimensionally reduced inputs (e.g., principal component 

analysis). For instance, in our previous work we chose physics-based features predicated on the 

thermodynamics of polymer solubility (composition, log𝑀!, 𝜙, T, p, PDI, etc.).26,27 Theoretical 

expressions can also be directly integrated into the feature vector. For example, Audus et al. 

recently demonstrated prediction of polymer radius of gyration by combining scaling theory with 

MD simulation data.31 They showed significant improvement to model predictions even when an 

imperfect theory was used. Alternatively, the ML model can be trained to predict the parameters 

of a theoretical expression, and thus capture complex relationships between features and 

parameters.  

Herein, we use the well-studied binodal of polystyrene-cyclohexane (PS/CH) as an 

exemplar to develop several hybrid frameworks that combine Flory-Huggins (FH) theoretical 

expressions with machine learning to (i) further improve accuracy and generalization with less 

experimental data, as well as (ii) provide interpretability of the ML model. The hybrid models 
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range from theory-constrained, where the predictions are confined by a theoretical model, to 

theory-informed, where theoretical expressions are solved to generate a “meta” feature that 

augments or replaces the traditional feature vector input to the ML model. The former utilizes a 

neural network (NN) to learn the parameters in a theoretical expression for the enthalpic pair-

wise interaction parameter (𝜒) given experimental cloud point temperatures. These parameters 

are then used to calculate binodal curves at new conditions. The latter trains a NN to learn the 

mapping from physics-informed features (𝑀!, PDI, etc.) and/or theory-guided features (𝜒) to 

temperature. Following a description of these theoretical expressions, their incorporation into the 

ML workflow, and required data curation, we compare the prediction accuracy of the hybrid 

models to that of previous ML models and discuss the interpretability afforded by the theoretical 

relationships. 

2. Models 

2.1 Theory 

2.1.1 Original Flory-Huggins Theory 

To clarify how theory is integrated into the ML model, we briefly review how FH lattice theory 

is used to compute the binodal curve which is found in many examples in literature.13–15,35 For a 

binary mixture of components A and B on a lattice with 𝑛" total sites, the FH expression for the 

Gibbs free energy of mixing is given as,12 

Δ𝐺
𝑛"𝑘#𝑇

=
𝜙$
𝑁$
ln 𝜙$ +

𝜙#
𝑁#

ln 𝜙# + 𝜒$#𝜙$𝜙# (1) 
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where 𝑘# is the Boltzmann constant, 𝜙% is the volume fraction of component i, 𝜙$ + 𝜙# = 1 due 

to the incompressibility assumption¸ 𝑁% is the number of repeat unit segments (𝑁% = 1 for 

solvents), and 𝜒$# is the FH interaction parameter. For polymer solutions where component A is 

taken to be the polymer, 𝑁$ can be determined from the mass-average molecular mass 𝑀! and 

repeat unit molecular mass 𝑀1! as, 

𝑁$ =
𝑀!

𝑀1!

𝜈$
𝜈#
	 (2) 

where 𝜈$ and 𝜈# are the monomer and solvent molecule volumes, respectively. The use of the 

mass-average molecular mass provides a means to estimate the impact of polydispersity. The 

first two terms of equation 1 express the configurational entropy of two components mixing, and 

the final term captures the enthalpic contribution from the change in interactions among the 

components. The simplest form of FH assumes pair-wise interactions, which are normalized by 

the thermal energy and expressed as 𝜒$#. This implies monomer-solvent interactions are purely 

enthalpic, and for a specific constituent composition (chemistry), 𝜒$# scales as  

χ&' = ν&
δ&'(

k'T
 (3) 

where 𝛿$# is a constant that captures the magnitude of the pair-wise A-B interaction, which is 

sometimes experimentally expressed as the difference of Hildebrand solubility parameters of the 

polymer and solvent.36  

2.1.2 Extended Flory-Huggins Theory 

Component interactions depend on many state variables. This implies that the separation 

of entropic and enthalpic contributions in equation 1 is not strictly correct. This may be 
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accounted for by replacing 𝜒$# with a semiempirical term 𝑔(𝑇, 𝜙$) which is a function of both 

temperature and concentration. With this ansatz, the extended FH expression for the Gibbs free 

energy can be written as, 

Δ𝐺
𝑛"𝑘#𝑇

=
𝜙$
𝑁$
ln 𝜙$ +

𝜙#
𝑁#

ln 𝜙# + 𝑔(𝑇, 𝜙$)𝜙$𝜙# (4) 

The relationship between 𝑔(𝑇, 𝜙$) and 𝜒$# is determined from the chemical potential to be,15 

𝜒$#(𝑇, 𝜙$) = 𝑔 − 𝜙#𝑔′ (5) 

where 𝑔) = (𝜕𝑔/𝜕𝜙$)", and integration at constant temperature yields, 

B 𝜒$#(𝑇, 𝜙)𝑑𝜙 = (1 − 𝜙$)𝑔(𝑇, 𝜙$)
*

+!
 (6) 

Therefore, 𝑔(𝑇, 𝜙$) becomes 𝜒$# only if 𝑔 is independent of concentration. In most cases, a 

functional form for 𝜒$# is chosen and fit to experimental data. As in previous work,15 we 

separate the functional dependency of 𝜒$#(𝑇, 𝜙) as, 

𝜒$#(𝑇, 𝜙) = 𝐷(𝑇)𝐵(𝜙) (7) 

where  

𝐷(𝑇) = 𝑑, +
𝑑*
𝑇  (8) 

𝐵(𝜙) = 1 + 𝑏*𝜙 + 𝑏(𝜙( (9) 

Note that the constant 𝑑, implies an entropic contribution to the monomer-solvent interaction 

parameter. Additionally, equation 4 becomes equation 1 when 𝑑, = 𝑏* = 𝑏( = 0. From 

equations 4-6, we can rewrite the free energy expression as, 

Δ𝐺
𝑛"𝑘#𝑇

=
𝜙$
𝑁$
ln 𝜙$ +

(1 − 𝜙$)
𝑁#

ln(1 − 𝜙$) + 𝜙$B 𝜒$#(𝑇, 𝜙)𝑑𝜙
*

+!
 (10) 
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Inserting equations 7-9 into equation 10 yields the final expression used to determine the binodal 

from extended FH theory,  

Δ𝐺
𝑛"𝑘#𝑇

=
𝜙$
𝑁$
ln 𝜙$ + (1 − 𝜙$) ln(1 − 𝜙$)

+ 𝜙$ H𝑑, +
𝑑*
𝑇 IJ1 − 𝜙$ + 𝑏* K

1
2 −

𝜙$(

2 M + 𝑏( K
1
3 −

𝜙$-

3 MO 

 
 

(11) 

We note that other functional forms for 𝐵(𝜙$) have been proposed, such as 𝐵(𝜙$) = 1/(1 −

𝑏𝜙$).14 These forms have been shown to predict the upper critical solution binodal for PS/CH. 

Additional terms may also be added to 𝐷(𝑇), such as 𝑑(/𝑇( and 𝑑- ln 𝑇, to incorporate other 

types of phase behavior like lower critical solution and closed-loop behavior.15 The workflows 

developed here can include these additional terms if the phase behavior is unknown and/or 

insight into the different phase diagrams are required. To afford our assessment of various 

methods to integrate theory with ML, we will focus on equations 1 and 11, and restrict PS/CH 

co-existence data to upper critical solution behavior.  

2.1.3 Binodal  

Typically, the binodal curve is determined from the free energy expressions by 

determining the chemical potentials of the solvent-rich and polymer-rich phases (phase I and II, 

respectively) and solving the equations simultaneously. This can be calculated using root-finding 

methods, where if 𝜒$# is known then the concentrations in phase I and II can be found. 

However, this can be computationally challenging if the initial guesses for the concentrations are 

poor, causing issues in the numerical solver. Hence, we implement a mathematically equivalent 

numerical approach by minimizing the total intensive free energy Δ𝑔" with respect to the 
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polymer concentration in both phases. First, the total intensive free energy Δ𝑔" can be written as 

a function of the total extensive free energy Δ𝐺" as, 

Δg" =
Δ𝐺"

𝑉" = 𝜈Δg.(𝜙.) + (1 − 𝜈)Δg..(𝜙..) (12) 

where Δ𝑔.(𝜙.) and Δ𝑔..(𝜙..) are the intensive free energies in phases I and II respectively and 𝜈 

is the volume fraction of phase I, 𝜈 = 	𝑉./𝑉". In this case, 𝑉. is the total volume in phase I and 

𝑉" is the total volume. For simplicity, we drop the subscript A in 𝜙$ and recall that 𝜙. = 𝑉$./𝑉.. 

To determine 𝜈, we use the incompressibility constraint so that the total polymer volume is 

conserved in both phases and therefore, 

𝜙" = 𝜈𝜙. + (1 − 𝜈)𝜙.. (13) 

𝜈 =
𝜙" − 𝜙..

𝜙. − 𝜙..  (14) 

Inserting equation 14 into equation 12 obtains the final expression,  

Δ𝑔" = K
𝜙" − 𝜙..

𝜙. − 𝜙..MΔ𝑔
.(𝜙.) + K1 −

𝜙" − 𝜙..

𝜙. − 𝜙..MΔ𝑔
..(𝜙..) (15) 

The terms Δ𝑔. and Δ𝑔.. are then replaced with the original (eq. 1) or extended Flory-Huggins 

(eq. 11) expressions and total free energy equation Δ𝑔" is minimized to solve for 𝜙. and 𝜙.. 

given 𝜒$#. 

We note that a total polymer concentration 𝜙" in equation 14 must be selected such that 

it is inside the binodal for the minimization approach to work. We choose 𝜙" to be the critical 

concentration 𝜙/, as the critical point can be analytically determined from, 

𝜕(Δ𝐺
	𝜕𝜙( =

𝜕-Δ𝐺
𝜕𝜙- = 0 (16) 
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The complete derivatives are shown in section S1 of the Supporting Information. Once the 

theoretical critical concentration 𝜙/ and critical 𝜒/ are found, the binodal concentration values 

(𝜙. and 𝜙..) are determined by minimizing Δ𝑔" for a range of 𝜒$# values (or 𝐷(𝑇) values for 

the extended FH theory) between 𝜒/ (the minimum 𝜒$# value) and 1.5𝜒/, which is large enough 

to cover the experimental temperature range for this system. Specifically, given a 𝜒$# value 

within [𝜒/ , 1.5𝜒/], equation 15 is minimized using the modified Powell algorithm37 to determine 

𝜙. and 𝜙... For the ML models that use FH theory, 𝜒$# (or 𝐷(𝑇)) at experimental 

concentrations 𝜙 are interpolated from the theoretical binodal and implemented in the machine 

learning workflow as described below.  

2.2 Machine Learning Workflow 

 We adopt the feature vector introduced in prior reports for polymer phase behavior (see 

section S2 of the Supporting Information).26,27 For each cloud point temperature datum, we 

ascribe an array of values consisting of structure (𝑀!, PDI, etc.) and composition characteristics 

(Hansen solubility parameters or molecular descriptors) for each component, along with state 

variables (𝑝, 𝑇) and additional experimental factors (𝑛-phase temperature direction). This array 

is structured with features that are known from thermodynamics to be crucial to phase behavior 

and is generalizable to any polymer/solvent system, albeit it does not incorporate any 

relationships among the features or between features and output. For the 

polystyrene/cyclohexane (PS/CH) system discussed herein, we reduce the generalized feature 

vector to only include mass-average log𝑀!, PDI, and V𝜙, referred to as the Baseline ML 

Model. Figure 1 and 2 summarizes how FH theory is integrated into the ML model workflow for 

informing the model via feature augmentation or replacement (theory-informed), or constraining  



11 

 

Figure 1. Schematic of the theory-informed ML model training workflow depicting how inputs are 
processed and sent through the NN to predict the cloud point temperature and calculate a loss value. The 
ML model is outlined in black and the procedure to calculate the theoretical 𝜒!" values is outlined in red. 
The ML model consists of a NN with a single hidden layer and 100 units in the layer. The 𝜒-informed 
model incorporates 𝜒#$ in the feature vector, whereas the baseline ML model uses only the NN and 
eliminates 𝜒#$ from the feature vector. The Chi2T ML model has a feature vector only containing 𝜒#$. 

 

the model predictions (theory-constrained), respectively. Furthermore, we employ a shallow NN 

with only a single hidden layer with 100 units commensurate with the reduced number of 

features. Each ML model maps the features as input to an output temperature 𝑇W , which is then 

compared to experimental cloud point temperature 𝑇 to calculate a loss function ℒY𝑇, 𝑇WZ. This is 

backpropagated through the NN to train the ML model to minimize the loss function. 

2.2.1 Theory Integration 

Figure 1 summarizes the workflow used to integrate theoretical relationships into the 

feature vector. First, 𝑀! is converted to 𝑁$ via equation 2. Then, FH theory (equation 1) is used 

to compute the binodal as a function of 𝜒$# for the given 𝑁$ (see section 2.1.3 and FH binodal  
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Figure 2. Schematic of the extended FH model training workflow depicting how inputs are processed and 
sent through the NN to predict the theory coefficients for 𝜒!"(𝑇, 𝜙) in equations 7-9. The predicted cloud 
point temperatures 𝑇' are determined by solving the extended FH equations (section 2.1.3) and solving for 
𝑇'  in 𝐷(𝑇'). Each coefficient is predicted using a NN with a single hidden layer and 100 units in the layer.  

 

plot in Figure 1). The plot of the binodal is then used to read off the specific value of 𝜒$# that 

corresponds to a given experimental concentration value 𝜙/0. We denote this specific 𝜒$# as 

𝜒/0. Therefore, we inform our ML model with 𝜒/0 as an additional “meta” feature which 

establishes a theoretical relationship between other features, referred to as the 𝜒-informed ML 

Model. This approach is inspired by hierarchical ML38 and transfer learning39. If FH theory was 

perfect, then the NN would only need 𝜒/0 as an input. Therefore, we create another model, 

referred to as the Chi2T ML Model where we remove 𝑀!, PDI, and 𝜙 since both 𝑀! and 𝜙 are 

used to determine the value of 𝜒/0, reducing the NN features down to a single value that maps 

𝜒/0 to 𝑇. Note that for Chi2T ML Model, the temperature dependence of 𝜒/0 is not prescribed, 

but determined by the NN. As structured, it imposes the original FH theory’s constraints that 𝜒$# 

(i.e., free energy of component interactions) is only a function of temperature. Thus, by 
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removing the other features, the NN incorporates the same imperfect assumptions of the FH 

theory.  

Figure 2 summarizes the extended FH model (Section 2.1.2), where cloud point data is 

used to determine the coefficients of a theoretical expression for 𝜒$#, motivated by recent 

physics-constrained models.29,34 Four independent NNs established the relationship between 𝑀! 

and PDI and the coefficients 𝑑,, 𝑑*, 𝑏* and 𝑏(. Thus, instead of training the ML model to predict 

individual cloud points (i.e., 𝑀!, PDI, and 𝜙 for each T), each ML model maps a unique feature 

pair {𝑀! , PDI} to a theory parameter. The theoretical binodal as a function of 𝑇 is solved 

numerically via equations 11 and 15 before the predicted cloud point temperature 𝑇W is 

determined by interpolating the temperature for a given 𝜙/0. The loss is determined by 

comparing the experimental cloud point temperature to 𝑇W . Finally, the gradient of the loss is 

backpropagated through the NNs, training the weights to optimize the mapping of feature inputs 

to theoretical parameters. Note that the workflow is not restricted to equations 8 and 9 and can be 

reformulated for different expressions for 𝜒$#. However, the model predictions are 

fundamentally constrained by the choice of the functional form of the theoretical expression, and 

thus accuracy and precision are ultimately limited by these dependencies. Also, training is 

significantly more computationally expensive than for the previously discussed 𝜒-informed 

model as the free energy expression (equation 11) is dependent on 𝜙 and thus the binodal must 

be recomputed, which entails free energy minimization to get the compositions, at every training 

iteration.  
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2.2.2 ML Models 

A description of each model introduced above is summarized in Table 1. For the input 

features listed, the training data is first sent through a preprocessing pipeline that normalizes 

them to be within the range [0, 1]. We choose to normalize the inputs instead of standardizing (or 

Z-score normalization) as the distribution of 𝑀! and PDI values used in the extended FH model 

are not normally distributed (see section S2.2 of the Supporting Information). Standardizing the 

data significantly increases the prediction error for this model and thus, all models are trained on 

normalized inputs for consistency. Training consists of updating model weights for 2000 total 

epochs with the Adam optimizer40 and a learning rate of 0.001. Lastly, a ‘L2’ regularization 

penalty is applied to the hidden layer with a penalty value of 0.01 to help reduce overfitting. 

 

Table 1. Summary of the ML models compared in this work: baseline ML, 𝜒-informed, Chi2T, and 
extended FH model. Listed are the names, input features, and descriptions of each model.  

Model Input Features Description 

Baseline log𝑀%, PDI, -𝜙#$ 
NN that maps input 

features to 𝑇	for each 
individual cloud point 

𝜒-informed 
log𝑀%, PDI, 
-𝜙#$,	𝜒#$ 

Baseline input features 
+ theoretical value 𝜒#$ 

at the experimental 
concentration 𝜙#$ 

Chi2T 𝜒#$ Maps 𝜒#$ to 𝑇 

Extended FH Model log𝑀%, PDI 

Maps unique 𝑀% and 
PDI pairs to theory 

coefficients 𝑑&, 𝑑', 𝑏' 
and 𝑏(. 𝜙#$ and 𝑇 are 

used in training the 
NNs. 
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For all models except the extended FH model (Figure 1), the NN is constructed using 

Keras Tensorflow, the ReLU activation function is used for the hidden layer, and all weights are 

initialized using He (uniform) initialization. The extended FH model (Figure 2) is constructed in 

PyTorch, where we choose to train multiple NNs rather than a multi-output NN as this allows us 

to constrain each output layer separately without affecting the other output layers. Each NN 

model is constructed as described above, except that weight initialization uses default PyTorch 

values and ‘L2’ regularization is removed. The output of each NN (𝑑,, 𝑑*, 𝑏*, 𝑏() is then 

concatenated and sent to a custom PyTorch Function class to calculate the binodal and extract 

the binodal temperatures (see sections 2.1.2 and 2.1.3) before backpropagating the loss to train 

the models (see Figure 2). As noted above, each model’s output layer in the extended FH model 

can be individually constrained and hence, we apply constraints on 𝑑*, 𝑏*, and 𝑏( using a 

sigmoid activation function, which constrains the parameters between 0 and 1, to allow faster 

training and prevent the critical point concentration from becoming too large during training. 

Moreover, the sign of 𝑑* dictates the shape of the curve (e.g., positive for UCS or negative for 

LCS) and therefore we keep this parameter positive in the range [0, 1000] by multiplying the 

output layer by 1000, although this parameter can be left unconstrained if the phase behavior is 

unknown (i.e., UCS, LCS, or closed-loop).  

In all models, we define the loss function to be the mean squared error between the 

predicted temperature 𝑇W  and experimental temperature 𝑇, 

ℒY𝑇, 𝑇WZ =
1
𝑛_Y𝑇1 − 𝑇21Z

(
3

1
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where n is the number of cloud points in the training set. 𝑇W  is determined from the data-driven 

ML model (Figure 1) or the extended FH model (Figure 2). The gradient of the loss with respect 

to 𝑇W  is backpropagated through the network to update the NN weights (one training iteration). 

For the extended FH model (Figure 2), the loss is initially backpropagated through the custom 

PyTorch function, sending the gradients of the loss with respect to the parameters to the output 

layer of each NN, before backpropagation through the NNs. We note that the gradients for the 

parameters in 𝐷(𝑇) are handled analytically, while gradients for the parameters in 𝐵(𝜙) are 

handled numerically using forward finite differences with a step size of 𝛿𝑏 = 0.0001 (see 

section S3 of the Supporting Information). Since each coefficient is predicted from a separate 

NN, we train the temperature-dependent and concentration-dependent coefficients separately, 

allowing the model to predict the correct temperature region before learning the concentration 

dependence. This is because the gradients in each parameter are handled differently and 

therefore, using a single learning rate to train all parameters at once poses numerical difficulties 

in finding the global minimum in the loss function. Hence, we first freeze the NNs predicting 𝑏* 

and 𝑏( with initialized values, set their outputs to 0, then train the NNs to predict 𝑑, and 𝑑*. 

These models are trained for 500 epochs using an Adam optimizer and learning rate of 0.001. 

The learning rate is then increased to 0.01 for another 500 epochs before unfreezing the 𝑏* and 

𝑏( networks. Lastly, all coefficient models are trained with a reduced learning rate of 0.0001 for 

500 epochs and subsequently trained with an increased learning rate of 0.001-0.01 for up to 2000 

epochs, or until the training loss value stops decreasing over 50 epochs.  
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2.2.3 Data Curation 

Cloud point data for polystyrene in cyclohexane was extracted from the CRC Handbook of 

Liquid-Liquid Equilibrium Data of Polymer Solutions41 and is a subset of the data published on 

the Polymer Property Predictor and Database (3PDb) website (https://pppdb.uchicago.edu/). In 

total, 55 unique mass-average molecular mass with a specified PDI were selected from the 

tabulated data (Section 3.2 of the CRC Handbook) and graphical data (Section 3.3 of the CRC 

Handbook) sections. Graphical data was extracted using a plot digitizer.42 We note that graphical 

data extracted from plot digitizers is susceptible to user error from inaccurate markings, but we 

estimate these errors to be less than 0.5 °C. To reduce the risk of training the models on poor 

experimental data, and thus decreasing prediction performance, the data set was curated further 

by looking for any noticeable discrepancies in the data by (i) comparing cloud point curves from 

various literature sources and (ii) analyzing large model prediction errors in the training set. For 

instance, some cloud point temperatures conflicted with reported coexistence curves, likely due 

to differences in the reported concentrations. Additionally, some data resulted in large prediction 

error and were found to be a result of conflicting trends. For example, decreasing 𝑀! resulted in 

an increase in cloud point temperature (see section S4 of the Supporting Information). Thus, 

manual review of the data sources for both literature and model consistency was necessary to 

improve quality of the data set.  

The total data set is split into a training set and a test set for training the NN weights and 

determining prediction error on unseen data, respectively. Initially, the training set consists of 2 

distinct 𝑀! (e.g., 20 kDa and 13,200 kDa) that bracket the available polymers. Additional cloud 

point data for the molecular mass with the largest root mean square error (RMSE) in the test set 
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is then added subsequentially. This is similar to an active learning approach for minimizing 

model uncertainty (exploration); however, typically the prediction uncertainty as opposed to the 

test RMSE is required for pure exploration algorithms. Our approach forces the models to 

converge more quickly and establish the best interpolation behavior for comparing 

interpretability of the models. However, this also biases the generalization of the trained model 

and reduces the test RMSE even before retraining. For instance, the third 𝑀! added to the 

training set consists of the largest PDI value, due to large extrapolation error in the test set, and 

therefore all data in the subsequent test sets are within the range of available 𝑀! and PDI values. 

Random selection of molecular masses in the training set are also compared between models (see 

Figure S4 in the Supporting Information). To establish the impact of the distribution of 

molecular mass on model performance, we also develop models trained on the minimum, 

maximum, and uniformly distributed molecular masses in the database.  

3. Results 

3.1 Model Accuracy 

In most cases, ML models require large data sets for good generalization, but the model 

performance also highly depends on the data itself (including its distributions) and number of 

features. To assess the impact of theory integration, we determined the minimum number of 

molecular masses required to reduce the test prediction error below 3 °C, which is the 

uncertainty observed in many experimental measurements. Figure 3a compares the test RMSE as 

a function of number of 𝑀! (with 3 or more cloud points) added to the training set for the 3 

theory-ML hybrid models and baseline ML model. Recall that the addition of cloud points with 
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new 𝑀! to the training set are based on the largest test prediction error for each model, 

respectively. Therefore, after adding cloud points from the third 𝑀! (which consists of the 

largest PDI value), the training sets for each model are not the same, containing cloud points 

with a different set of 𝑀! values. This also implies the number of cloud points in each case are 

slightly different due to the difference in the available data per molecular mass. However, the 

test RMSE trends are the same as a function of number of cloud point data (see Figure S5 in the 

Supporting Information).  

The baseline ML model without any theory-informed features in Figure 3a shows test 

prediction error within 3 °C by 5 distinct 𝑀! curves, with slight improvement for subsequent 

training data, in agreement with what has been previously reported for PS/CH.26 Interestingly, 

the simplest hybrid model, Chi2T model, shows the lowest prediction error (≈5 °C) for just 2 

𝑀! values, indicating that using only the theory-derived “meta” feature, even from a limited 

theory, can reduce interpolation error between molecular masses under extreme data scarcity 

conditions. This is likely due to the simplicity of the model combined with qualitatively correct 

trends embedded in the theory. However, the test RMSE remains above 3 °C for all training set 

sizes, due to the imperfect assumptions behind FH theory that make it quantitatively incorrect. 

The extended FH model is more complex, therefore requiring more data. Hence, we find that this 

model requires roughly 9 distinct 𝑀! values to reduce the test prediction error to within 3 °C. 

However, since the additional complexity does not correspond to the input data itself (e.g., there 

are only 9 training instances, one for each 𝑀!, as opposed to the individual cloud points input to 

the other models), it is difficult to determine the precise number of data required for each 𝑀!. 

Overall, theory integration improves interpolation of new molecular masses relative to the  
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Figure 3. Test prediction root mean square error (RMSE) comparing theory-informed and theory-
constrained models to the baseline ML model (a) as a function of the number of mass-average molecular 
masses (𝑀%) in the training set and (b) various molecular masses selected from the data set: 10 random, 
10 largest, 10 smallest, 5 uniformly selected between 20kDa and 1560kDa, 5 and 9 with the largest MSE 
in the test set. All NNs have a single hidden layer with 100 units.  

 

baseline ML model with the same NN architecture when training data is limited (see 3 𝑀!) and 

incorporates the limits of the parameter space (𝑀! and PDI); however, as the available training 

data increases, the benefit of incorporating theory is lost, with the baseline ML and 𝜒-informed 

models providing the lowest test RMSE. For the 𝜒-informed model, the more complex 

relationships missing in the FH theory is captured by the additional inputs to the NN and not 
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biased or constrained by the imperfect theoretical expressions. These trends are also seen when 

randomly sampling the 𝑀! in the training set (see Figure S4 in the Supporting Information). 

The ability to interpolate within and extrapolate outside of the molecular mass range is 

examined by comparing the effect of various molecular masses in the training set on the 

prediction error. In Figure 3b, we compare the following selection of 𝑀! from the data set: (i) 10 

random, (ii) 10 largest, (iii) 10 smallest, and (iv) 5 uniformly distributed, to the results in Figure 

3a (i.e., each new training molecular mass was based on the molecular mass with the largest 

RMSE).  

Extrapolation error is reflected in (ii) and (iii), where one half of the molecular mass 

distribution is used for training and the other for testing. Specifically, we train the models on the 

largest molecular masses to predict the smallest and vice versa. The models perform in the 

following order from best to worst: 𝜒-informed, baseline, Chi2T and extended FH theory, 

demonstrating how overall model generalization is affected by theory integration. 𝜒-informed 

likely performs the best since it provides a useful representation of the data in the form of 𝜒$# 

but unlike Chi2T, still includes the same features as the baseline model. Even if FH theory was 

not beneficial, with enough data it should ultimately perform similar to the baseline model as the 

model would ignore contributions from 𝜒$#. The extrapolation RMSE for the theory-informed, 

data-driven models (Chi2T, 𝜒-informed, and baseline) are within 5 °C, whereas the theory-

constrained model (extended FH model) performs poorly (RMSE > 50 °C), suggesting that its 

increased complexity results in increased sensitivity to the choice of 𝑀! in the training set. The 

predicted theory parameters are nonlinear as a function of 𝑀! (see below) and likely the reason 

for the model’s large extrapolation error. 
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Predicted binodals based on training sets of 5 and 9 𝑀! values in Figure 3a are shown in 

Figures 4 and 5, respectively. The extended FH model performs well on trained 𝑀! values (e.g., 

20 & 13200 kDa), but with limited training data (Figure 4a) interpolates poorly (e.g., 110 kDa). 

With more training 𝑀! values, the overall precision increases, and the binodals agree with 

typical UCS behavior (Figure 5a). The concentration-dependent 𝜒$# in the extended FH model 

allows more flexibility in the curve shape, and hence the predictions are more sensitive to the 

range of concentrations in the data set. If only a narrow range of concentrations are available, the 

extrapolated binodal shape is incorrect, as seen for the high molecular masses (13,200 kDa) 

where predictions show a weak temperature dependence with increasing concentration (Figure 

5a). In contrast, the binodal curves from the Chi2T model are poor even for the training 𝑀! 

values, irrespective of the total number of 𝑀! values in the training set (Figure 4b & 5b). It 

generally misses the shape and exhibits a discontinuous shift in the binodal at temperatures 

below roughly 12 °C, due to an abrupt change in the NNs mapping of 𝜒/0 to T at low 

temperatures (see Figure S6 in the Supporting Information). This is consistent with the above 

supposition that the relationships embodied within 𝜒$# by the simple FH theory alone is 

insufficient to capture detailed characteristics of phase separation in experimental systems.  

Finally, the 𝜒-informed and baseline ML models provide reasonable UCS behavior with 

improved accuracy as training data increases (Figure 4c, 4d, 5c, and 5d). The 𝜒-informed model 

offers slightly smoother UCS curve shapes, indicating that the addition of a theory-informed 

“meta” feature (𝜒) improves the model’s ability to capture concentration dependency of the 

cloud point temperature (e.g., 20 & 110 kDa, Figure 4c & d). However, in both cases, some of 

the binodals deviate from experiment even with additional training data (1,560 kDa, Figure 5c; 
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Figure 4. Select molecular mass predictions comparing the following ML models: (a) extended FH (theory-
constrained), (b) Chi2T, (c) 𝜒-informed, and (d) baseline. All NN models are trained on the 5 molecular 
masses shown in Figure 3a (e.g., largest MSE in the test set). Legend shows 𝑀% and PDI for each binodal 
prediction with training data as squares and test data as triangles. Experimental data are shown from various 
literature sources in the CRC Handbook. 

 

13,200 kDa, Figure 5d). We believe these issues at specific 𝑀! values are related to insufficient 

distribution training data at these high 𝑀!. Overall, we conclude that imperfect theory, when 

used to inform the feature vector, can aid ML models in learning polymer-solvent phase behavior 

when data is scarce, but using the theory as a constraint requires complex theory and additional 

data to map polymer properties to the theoretical parameters. 
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Figure 5. Select molecular mass predictions comparing the following ML models: (a) extended FH (theory-
constrained), (b) Chi2T, (c) 𝜒-informed, and (d) baseline. All NN models are trained on the 9 molecular 
masses shown in Figure 3a (e.g., largest MSE in the test set). Legend shows molecular mass and 
polydispersity for each binodal prediction with training data as squares and test data as triangles. 
Experimental data are shown from various literature sources in the CRC Handbook. 

 

3.2 Model Interpretability  

3.2.1 𝜒$# Dependence 

The theory-informed ML models incorporate 𝜒/0 as a feature and therefore provide a 

mapping between FH 𝜒$# and the binodal (cloud point) 𝑇. Figure 6 summarizes this relationship, 

comparing the theoretical 𝜒$# values to both experimental 𝑇 and predicted 𝑇W  from the Chi2T 

model. Here, the Chi2T model is trained on all available data to maximize the model’s 

interpretability, however the same plot for the model trained on 9 𝑀! values from Figure 3a can  
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Figure 6. 𝜒!" as a function of (a) inverse experimental temperature 1/𝑇 and (b) 1/𝑇'	predicted from the 
Chi2T model trained on all available data. The model consists of a NN with a single hidden layer and 100 
units in the layer. The symbols in (a) are colored by the normalized log 𝑀% value. 

 

be found in Figure S6 in the Supporting Information. Figure 6a plots the input 𝜒/0 as a function 

of the experimental 𝑇, showing highly nonlinear behavior and confirming that 𝜒$# contains 

additional influential factors other than temperature as assumed in FH theory (equations 1 and 3). 

Using the predicted temperatures 𝑇W  from the Chi2T model (Figure 6b), we observe a weak 

nonlinear dependence of 1/𝑇W, as shown by the linear fit on the smallest 10 temperature values. 

When the Chi2T model is trained on less data we see two linear regions of 𝜒$# as a function of 

1/𝑇W  (see Figure S6 in the Supporting Information), likely due to the cloud point behavior at low 

𝑀!, which explains the change in slope in the cloud point curves in Figures 4 and 5. Since the 

mapping of 𝜒$# to 𝑇 is not constrained by a functional form such as in equation 3, the 1/𝑇 
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dependence may not be linear. This is observed in Figure 6b, where we see a small change in the 

slope at higher molecular masses (left side of the plot). Nonetheless, despite training on all 

available data, the predictions of the Chi2T model are poor (MSE of 8.9 and 𝑅( of 0.62) and the 

model is unable to capture the complex relationship observed in Figure 6a.  

As expected, the 𝜒-informed model captures the complex relationship in Figure 6a, since 

the model is able to predict experimental 𝑇 accurately (see Figure S7 in the Supporting 

Information). To further investigate the importance of 𝜒/0 in the 𝜒-informed model, we examine 

the model’s feature importance, where the inputs of the model are ranked based on impact on the 

output prediction. We apply a game theoretic approach called Shapley Additive Explanations 

(SHAP)43 to explain the impact each feature has on the predicted temperature (see Figures S8 

and S9 in the Supporting Information) for the 𝜒-informed model. While the addition of 𝜒/0 to the 

baseline model shows small improvements in the predictions (e.g., Figures 3-5), the impact on 

the predicted temperature remains significant, especially at large 𝜒/0 values. This suggests that 

𝜒/0 values provide valuable knowledge of the binodal shape away from the critical point. 

Interestingly, this is where FH theory fails the most, yet it is still improving the ML model 

accuracy likely due to capturing the overall binodal shape. We expect this importance to increase 

as other binodal shapes are included in the training set (including LCS and closed-loop 

behavior).  

The theory-constrained ML framework in the extended FH model inherently provides 

correlations between the theoretical parameters and experimental features. In Figure 7, we show 

the ML-estimated theoretical coefficients as a function of log 𝑀!. To the best of our knowledge, 

no such trends have been established and only tabulated values have been reported in the  
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Figure 7. Theory coefficients from equations 8 and 9 predicted from ML models trained on 9 𝑀% values 
plotted as a function of log𝑀% and colored by the normalized PDI value. Training data (squares) consist 
of 9 𝑀% values added from the test set based on its RMSE, with the remaining 𝑀% values predicted from 
the test set (triangles). NNs consisting of a single hidden layer and 100 units are used to predict the 
coefficients.  

 

literature. Overall, we see that the theoretical coefficients show a nonlinear dependence on 

log𝑀! for each parameter. Compared to reported values in the literature, we find our values for 

𝑑, and 𝑑* are similar for PS/CH.14 Our ML models can also estimate the effect of PDI in the 

predicted parameters. As seen in Figure 7, the large deviations observed in some of the predicted 

coefficients are due to the highly polydisperse samples, implying that the value of the theory 

coefficients are sensitive to polydispersity. Additionally, plotting the coefficients can determine 

when terms in the functional form can be removed. For instance, at high 𝑀! (log 𝑀! > 14) the 
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second term in equation 9 becomes negligible. This also implies that the 𝜙 dependence on the 

value of 𝜒$# becomes linear for large 𝑀!. 

3.2.2 Critical Points 

Lastly, the critical point is often used to determine the maximum (or minimum for lower critical 

solubility) temperature in which a polymer is miscible in solvent at all concentrations, making it 

valuable for purification processes in which decreasing temperature (or increasing temperature 

for LCS) past the critical point (at the critical concentration) will cause macro-phase separation. 

Moreover, knowing the critical point is useful for other processes in which it is important to keep 

the polymer stable in solution. We next examine the scaling of the predicted critical point 

temperatures as a function of 𝑁 for the monodisperse molecular masses (PDI < 1.2), dropping 

the subscript A for simplicity. In Figure 8, we plot the critical temperature 𝑇/ determined from 

the extended FH model (Figure 8a), which assumes 𝐷(𝑇) = 𝑑, + 𝑑*/𝑇, and the 𝜒-informed 

model, which determines 𝑇/ by interpolating to the largest predicted temperature. We note that 

the value of 𝐷(𝑇) at the critical point is also a function of 𝜙/ and therefore dependent on 𝑏* and 

𝑏( (see section S1, equation S7 in the Supporting Information).  

 The inverse of the critical temperature is shown as a function of 1/√𝑁 + 1/2𝑁 (i.e., 

Shultz-Flory plot) with a linear fit in Figure 8, in agreement with the scaling of experimental 

critical points reported in other work.12,44 We note that in this work, the models are trained on 

experimental cloud points, and not critical point data, which are more easily measured 

experimentally. Hence, the predicted critical points are estimated from the fits to the cloud point 

curves. From the linear fits, the 𝜃 temperature, the temperature at which a polymer behaves as an  
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Figure 8. Inverse critical temperature, 1/𝑇'  as a function of 1/√𝑁 + 1/2𝑁 and log𝜙# vs. log𝑁 predicted 
from (a,b) the extended FH theory-constrained model trained on 9 distinct 𝑀% from Figure 1a and (c,d) 
the 𝜒-informed model trained on all available data, respectively. Critical points are estimated (a,b) from 
equations S6 through S9 in the Supporting Information using the ML-predicted theory parameters and 
(c,d) from the maximum predicted temperature in the cloud point curve. All trained NNs consist of a 
single hidden layer and 100 units in the layer. Critical points are colored by whether N was used in the 
training set (gray) or test set (red) and dashed lines represent best fit lines.  

 

ideal random walk chain, can be determined for the polymer-solvent system. This is estimated 

from the critical point at infinite molecular weight (e.g., the intercept of the linear fit). The 

extended FH theory and 𝜒-informed models predict 𝜃 to be 305.8 K and 306.3 K, respectively. 

These values are slightly lower than the experimentally reported 𝜃 temperature of ~307.2 K45,46 

but are within experimental error indicating that the ML models can capture the scaling behavior 

of a polymer-solvent system by training on cloud point data. We note that the small discrepancy 

in the predicted 𝜃 temperature is likely due to inherent model uncertainty. Nonetheless, this 
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allows new physics insight from the models when trained on polymer-solvent systems in which 

the 𝜃 temperature is unknown.    

We next show the scaling of log𝜙/ as a function of log𝑁 predicted by the theory-

constrained and theory-informed models as before. Similar to the critical temperature estimates, 

the training data does not include critical point values. According to FH theory, 𝜙/~𝑁4 where 

𝛼 = −1/2. However, experimentally it has been shown that 𝛼 = −0.38.47–49 In Figure 9, we 

show log𝜙/ vs. log𝑁 with linear fits to the region log𝑁 > 3.5. We observe a linear region at 

large N with a slope of -0.39 and -0.36 for the extended FH model and 𝜒-informed model, 

respectively, which is in agreement with the scaling behavior reported in the literature. However, 

we also observe deviation at lower N, consistent with the fact that the scaling of 𝜙/~𝑁4 only 

applies to large N. Figure 9b shows a significantly larger deviation, likely due to the method of 

estimating 𝜙/ numerically. For instance, the slope at the critical point is 0 and therefore small 

changes in the estimated 𝑇/ can result in large changes in 𝜙/. Furthermore, we plot theoretical 

log𝜙/ vs. log𝑁 using the extended FH model with 𝑏* = 𝑏( = 0.5 as well as 𝑏* = 0.5, 𝑏( = 0 in 

Figure S10 in the Supporting Information. These values were estimated from Figure 7 for a 

log𝑀! around 12 and 14, respectively. Overall, the 𝜙/ behavior is captured by the model when 

𝑏* = 𝑏( = 0.5, especially at low 𝑀!. The high 𝑀! is better captured by the model when 𝑏* =

0.5 and 𝑏( = 0. Hence, the extended FH model can quickly estimate 𝜙/ for any 𝑀! with just a 

single set of parameters.  

Overall, our theory-integrated models predict critical points as a function of 𝑀! that 

agree with the trends observed experimentally, therefore demonstrating valuable insight for new 
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𝑀!. Additionally, the analysis of the extended FH model resulted in providing quick critical 

point estimates that can be determined without further fitting or training the model.  

4. Conclusions 

Leveraging theory with machine learning to construct theory-ML hybrid models shows 

benefits over traditional ML models, including better generalization when data is scarce as well 

as providing physics-interpretable models. Even though Flory-Huggins theory is imperfect, we 

show that incorporation of its relationships in the ML model improves interpolation when only 2-

3 molecular masses are in the training set. The prediction of the upper critical solubility for 

PS/CH is also improved with the 𝜒-informed model even with additional data. However, 

advantages in performance or computational efficiency diminishes as greater quantities of 

experimental data are available, likely because of limitations to the FH formulation. 

Nevertheless, the physical relationships, such as the molecular mass dependence of the critical 

point or of the coefficients within a FH theoretical expression, provide valuable insight from the 

predictions. For instance, the ability to examine the coefficient values implies that our theory-

constrained model, which contains functional forms for the mapping of 𝜒$# to T, can be used to 

determine an optimal functional form for 𝜒$#. Furthermore, we demonstrate that the critical 

points can be extracted from our theory-informed models and are consistent with experimental 

trends, allowing the theory-informed model to provide physical insight with less experimental 

data. These models can also be applied to any polymer-solvent system in which the physics are 

unknown, enabling the use of ML to aid in our understanding of binary polymer solution phase 

behavior.  
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Overall, we show that our data-rich ML models incorporate physical insights, which 

enhances trust in the predictions and is expected to be used to assess data quality or anomalous 

behavior. These models are a first step in developing physics-interpretable models for predicting 

polymer solution phase behavior. Future work will aim to develop these ML models further, 

incorporating other polymer-solvent chemistries and utilizing methods to develop or refine the 

theory for better interpretability and generalization. For instance, since the form of 𝑔(𝑇, 𝜙) is 

semiempirical, symbolic regression may be used to add or remove additional terms to determine 

the optimal functional form of 𝜒$#. Future work will aim to use this approach to develop a 

method in which test metrics can be used to derive an optimal function for mapping 𝜒$# to T. 
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