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We demonstrate a method to compute the dielectric spectra of fluids in molecular dynamics by directly applying electric
fields to the simulation. We obtain spectra from molecular dynamics simulations with low magnitude electric fields
(≈ 0.01 V/Å) in agreement with spectra from the fluctuation dissipation method for water and acetonitrile. We examine
this method’s tradeoff between noise at low field magnitudes and nonlinearity of the response at higher field magnitudes.
We then apply the Booth equation to describe the nonlinear response of both fluids at low frequency (0.1 GHz) and
high field magnitude (up to 0.5 V/Å).

We develop a model of the frequency-dependent nonlinear response by combining the Booth description of the static
nonlinear dielectric response of fluids with the frequency-dependent linear dielectric response of the Debye model.
We find good agreement between our model and the molecular dynamics (MD) simulations of the nonlinear dielectric
response for both acetonitrile and water.

I. INTRODUCTION

Dielectric spectroscopy is a sensitive probe of the behav-
ior of collections of molecules and individual species in so-
lution. Experimental broadband dielectric spectroscopy can
measure solution spectra across a broad frequency range from
103 Hz to 1016 Hz1. These spectra have peaks caused by
molecular-level processes ranging from ion pairing and sim-
ple rotations of species in solution to disruptions of hydrogen
bond networks and distortion of ionic clouds2–5. Molecular
dynamics simulations provide a unique opportunity to resolve
the molecular origin of these peaks, but the usual method
for simulating dielectric spectra, the fluctuation dissipation
theorem6–10, has numerical limitations at low frequencies.

The fluctuation dissipation theorem relates the autocorre-
lation of polarization fluctuations to the frequency dependent
dielectric susceptibility χ(ω)11,12

χ(ω) =− 1
3V kBT ε0

∫
∞

0
e−iωt

〈
P⃗(0)

∂ P⃗(t)
∂ t

〉
dt (1)

where V is the volume, kb is Boltzmann’s constant, T is the
temperature, ε0 is the dielectric permittivity of free space, ω

is the angular frequency (i.e., ω = 2π f ), P⃗(0) is the initial po-
larization of the system, and P⃗(t) is the polarization at time t.
The fluctuation dissipation method allows for the calculation
of the entire spectrum using a single simulation. However,
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this method requires simulation times on the order of hun-
dreds of nanoseconds to obtain sufficient statistics13,14, and
suffers from accuracy problems with decreasing frequency, as
we demonstrate in this paper.

Here, we first describe our direct applied field approach for
simulating the dielectric response, and develop a model for the
nonlinear, frequency-dependent dielectric response of a liquid
of dipoles. We then compare the direct electric field method to
the fluctuation dissipation theorem for both water and acetoni-
trile, describing how the dielectric response varies with elec-
tric field magnitude. We demonstrate that at high electric field
strengths, the response becomes nonlinear, saturating at low
frequencies. Lastly, we compare the results of our model with
those from our molecular dynamics simulations as a function
of frequency for both water and acetonitrile.

II. METHODS

A. Computational details

We model the real and imaginary dielectric response of
water and acetonitrile with molecular dynamics using the
Large-scale Atomic/Molecular Massively Parallel Simula-
tor (LAMMPS)15. Each solvent is simulated with 1500
molecules (4,500 atoms and 9,000 atoms for the water and
acetonitrile simulations, respectively), using the extended sin-
gle point charge (SPC/E) model for water16, and an all-atom
force field for the acetonitrile17. Electrostatic interactions are
computed by the Particle-Mesh-Ewald method, collecting the
electric dipole vector and total electric dipole. The Lennard-
Jones interactions cut-off was set to 1.2 nm for all simulations.
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The system sizes have been kept identical for both direct elec-
tric field and fluctuation dissipation theorem methods.

All equilibration simulations were run at 298.15 K and
1 atm for 2 ns under the isothermal–isobaric ensemble (NPT).
This was sufficient time to minimize the volumetric fluctua-
tions of the materials studied. The resulting density of wa-
ter used in further simulations is 0.992 g/cm3, and the ace-
tonitrile reached a density of 0.779 g/cm3. These results
are in excellent agreement with previously reported compu-
tational values6,17. We find the bulk dielectric constant for
water of 71.8, in good agreement with previously reported
values for SPC/E water (69.9 from Ref. 6) and less than the
average experimental value of 78.318–21. For acetonitrile,
we find the bulk dielectric constant of 22.0 (experimental
value of 35.9522), and a Debye relaxation time of 4.14 ps,
in good agreement with the experimentally reported value of
3.51 ps23. The equilibrated systems were then used for pro-
duction runs using the canonical ensemble (NVT).

In the direct electric field method we developed here, a si-
nusoidally oscillating external electric field was applied after
the 2 ns of equilibration. Each simulation was run with an
electric field of a different frequency, in the range of 0.1 GHz
to 1000 GHz. All production runs were done using a 2 fs time
step, and systems ran for 50 ns with data collection performed
at each step. The fluctuation dissipation theorem simulations
were also done with a 2 fs timestep and the data for dipoles
were collected every 4 fs. The dipole components of each time
series are Fourier transformed via Fast Fourier Transformation
(FFT) to obtain the dielectric spectra.

Note: Certain software are identified in this paper to foster
understanding. Such identification does not imply recommen-
dation or endorsement by the National Institute of Standards
and Technology, nor does it imply that the software identified
is necessarily the best available for the purpose.

B. Direct electric field method

We apply a time-varying electric field E⃗(t) = E sin(ωt)ẑ
along the z-direction of the simulation box and measure the
corresponding induced polarization density Pz(t) (total simu-
lation cell dipole moment per unit volume). For each electric
field amplitude E and frequency ω , we fit Pz(t) to a series of
harmonics,

Pz(t) = ∑
n odd

[RePn sin(nωt)− ImPn cos(nωt)] (2)

where the coefficients Pn depend on E and ω , and here we an-
alyze up to the n = 5 harmonic order. From the first harmonic
n = 1, we extract the complex susceptibility,

χ(E,ω) =
P1(E,ω)

ε0E
, (3)

where ε0 is the permittivity of free space. This frequency-
dependent response is nonlinear with E in general and reduces
to the linear susceptibility accessed by fluctuation-dissipation
calculations as E → 0.

C. Nonlinear response model

To explore the physics underlying the simulated polariza-
tion in different solvents, we develop a model for the nonlinear
frequency-dependent response of an idealized dipolar fluid.
The static limit of the nonlinear response is well-developed
for solvation models,24 especially for those applied to electro-
chemical systems that introduce significant electric fields at
the interface.25,26

The nonlinear response can be derived from a competition
between the internal free energy function A(P⃗), in terms of
the polarization density P⃗, and the interaction energy with the
external field E in classical density functional theory within
a local polarization density approximation.24,27,28 Going for-
ward, we drop the vectors for response along a single direc-
tion for simplicity. Specifically, from the partition function of
a liquid with number density N of dipoles p0 each in exter-
nal field E, the free energy function A(P) can be shown to be
given implicitly by

A =−N
β

log
(

2sinh(β p0cE)
β p0cE

)
(4)

and P = N p0L(β p0cE), where β = 1/(kBT ), L(x) ≡
coth(x)− 1/x is the Langevin function and c is a factor that
corrects the external field to the local field experienced by the
dipole (accounting both for Kirkwood dipole correlations29,30

and Clausius-Mossoti cavity fields31).
We extend this nonlinear response model from the static

limit to polarization dynamics,

γ
∂P(t)

∂ t
= E(t)− ∂A(P)

∂P
, (5)

where the dipole scattering rate with damping coefficient γ on
the left side is driven by a net force combining the external
field and the restoring force due to the internal free energy
A(P). We neglect inertial effects with a term proportional to
∂ 2P/∂ t2 above,32 and show in Figure S3 of the supplemen-
tal material that this only impacts the response at frequencies
much higher than the Debye peak that we focus on below.

From Eq. 4, we can solve for the restoring force in terms of
the polarization as

∂A
∂P

=
1

β p0c
L−1

(
P

N p0

)
. (6)

Next, we define the relaxation time in the low-field limit,
τ ≡ γχ0, where χ0 ≡ limE→0(∂P/∂E) = βN p2

0c/3 is the lin-
ear susceptibility (using L(x) ≈ x/3 for x ≪ 1). Using these
relations, we can rearrange Eq. 5 as

τ
∂P(t)

∂ t
+

N p0

3
L−1

(
P(t)
N p0

)
= χ0E(t), (7)

a nonlinear first-order differential equation in P(t) with exter-
nal forcing E(t).

We solve Eq. 7 numerically to extract the nonlinear
frequency-dependent polarization response of the dipole
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model fluid at general field strengths and frequencies to com-
pare with molecular dynamics simulations. Before analyzing
these numerical results, note that Eq. 7 reproduces two well-
known analytical limits by construction. First, in the static
(low-frequency) limit, ∂P(t)/∂ t is negligible and Eq. 7 re-
duces to P = N p0L(β p0cE), the standard Langevin satura-
tion response or Booth equation.29 Next, in the low-field limit,
L−1(x) ≈ 3x, reducing Eq. 7 to τ∂P/∂ t +P = χ0E. This can
be solved readily in the frequency domain to yield the Debye
model susceptibility, χ(ω)≡ P/E = χ0/(1− iωτ).

III. RESULTS AND DISCUSSION

A. Linear response

Figure 1a compares the calculated frequency-dependent
susceptibility from the fluctuation dissipation theorem and the
direct electric field approaches. Across the entire spectrum
the two methods are in very good agreement, indicating that
the response for water is sufficiently linear at an applied field
strength of 0.01 V/Å. Simulations of water perturbed by a 0.01
V/Å static electric field have been shown by others to have an
approximately linear response7,33 as well. Fitting the data to
the Debye model, the Debye relaxation times (direct electric
field method: 10.3 ps; fluctuation dissipation theory method:
9.7 ps, standard deviation of 0.1 ps) are in good agreement
with simulation results from sufficiently long runs (10.72 ps,
Cole-Cole fit)6. We note that the convergence challenges of
fluctuation dissipation theorem have resulted in a wide range
of water relaxation times in the literature34.

Despite the level of agreement in the resulting spectra, the
variance differs between the approaches. Figure 1a depicts
the average signal for both methods, with variance calculated
from five separate simulations of 100 ns (FDT) and five 10
ns simulation intervals (from a 50 ns simulation) at each fre-
quency (direct electric field).

The fluctuation dissipation variance for the imaginary sus-
ceptibility peaks around 10 GHz. This data is collected from
autocorrelations and is constrained to be zero at low fre-
quency. Depending on the length of the run, very little to no
autocorrelation data is collected at such low frequencies. This
causes the variance displayed in Figure 1a to be low, while not
representing all sources of the uncertainty.

Above approximately 10 GHz, the variances in the direct
electric field method decrease with frequency, although this
specific value may depend on the solvent. Therefore, to pro-
duce similar signal to noise for each frequency, one could
scale the individual simulation times by 1

ω
.

Variable length runs, coupled with a modified collection
frequency of the polarization density, have been used with the
fluctuation dissipation theorem to produce data more evenly
across a broad frequency range35.

To compare the convergence between the direct electric
field method and the fluctuation dissipation theorem, Fig-
ure 1c plots the average and variance of the low frequency
(f=1 GHz) dielectric constant from the two methods as a func-
tion of simulation time. The variances in the fluctuation dis-

(a)

(b)

(c)

FIG. 1. (a) Dielectric spectrum of water using the direct electric
field method (E = 0.01 V/Å) and the fluctuation dissipation the-
orem. (b) Real variances (filled symbols; solid lines), imaginary
variances (open symbols; dashed lines) and covariances (×; dashed-
dotted lines). (c) Average value and variance of the low-frequency (1
GHz) response from both methods over 5 runs.

sipation method simulations are larger than those from the di-
rect electric field method, and they converge slower with sim-
ulation time.

One way to further reduce the variance in the spectrum col-
lected with the direct electric field method is to increase the
magnitude of the applied electric field so that the signal to
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(a)

(b)

FIG. 2. (a) Real and (b) imaginary dielectric spectrum of water with
decreasing applied electric field. Results from the fluctuation dissi-
pation theorem are also provided.

noise is larger. However, if the field is too large the water
response will be nonlinear.

To explore the effects of the electric field magnitude on the
polarization response, we have simulated the dielectric spec-
trum of water with applied field magnitudes ranging from
0.0001 V/Å to 0.01 V/Å. The resulting real and imaginary
dielectric spectra are shown Figure 2a and Figure 2b, respec-
tively.

With decreasing electric field magnitude, the real and imag-
inary components of the susceptibility become noisier. For
electric field magnitudes greater than 0.0001 V/Å, the noise
appears to have the same frequency dependence noted for
0.01 V/Å. For 0.0001 V/Å, the signal is so close to the noise
floor that this dependence is no longer clear, and the response
of the fluid to the field is almost completely obscured by nat-
ural fluctuations in the fluid. When no field is applied, the
polarization exhibits the inherent statistical noise of the water
box. This noise fluctuation can be used to produce the dielec-
tric spectrum via the fluctuation dissipation theorem, Eq. 1.

TABLE I. Booth equation parameters
Solvent εb εn αE (Å/V)
Water 71.83 3.38 75.9
Acetonitrile 21.97 0.18 26.3
Water Ref. 36 72.18 3.27 85.7

B. Low frequency nonlinear response

We evaluate the low frequency nonlinear dielectric response
of water and acetonitrile to develop guidance for choosing a
perturbing electric field magnitude.

We first evaluate the nonlinear dielectric response of water
at a frequency well below that of the Debye peak, 0.1 GHz.
Figure 3a shows the polarization of a box of water molecules
simulated with molecular dynamics in response to an applied
sinusoidal electric field at a field strength of 0.1 V/Å. This
applied field strength results in a nonlinear polarization of
the water and including harmonics beyond the first order im-
proves fitting of the response.

Figure 3b plots the response up to 5th order as a function of
electric field magnitude. At the lowest field strengths, noise

(a)

(b)

FIG. 3. (a) Polarization of water with an electric field at 0.1 GHz and
magnitude of 0.1 V/Å with resulting fits up to 5th order harmonics.
(b) Electric field magnitude versus complex absolute value of the fit
parameters from the 1st, 3rd and 5th order harmonics.
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(a)

(b)

FIG. 4. Real susceptibility of as a function of electric field magni-
tude with a direct electric field frequency of 0.1 GHz for (a) water
including data from perturbation by a static electric field (Rezaei et
al., Ref. 36), and (b) acetonitrile. The red line is the Booth equation
fit (Eq. 8) of the direct electric field data.

obscures the contributions of P3 and P5. When the field mag-
nitude is sufficiently low, the polarization fitting captures the
response from the natural fluctuations in the fluid rather than
a response from an external field. These contributions will
create an effective floor to the fit values for the direct electric
field method, as seen for the lowest field strength 5th order
harmonics in Figure 3b.

At slightly larger field strengths, the contributions of P3
and P5 appear to be linear on log-log axes. This is expected
when a Taylor series of the form Pn = cnEn + cn+2En+2 + · · ·
is valid for the polarization response, leading to Pn ∝ En for
small enough E. With increasing field strengths, terms be-
yond the leading order become important and the higher-order
responses also exhibit saturation. This general behavior has
been observed experimentally across a broad range of materi-
als and electronic circuits37.

Figure 3b illustrates how the magnitudes of the nonlinear
components increase with E. However, the statistical noise
is expected to increase with decreasing applied electric field
magnitude. To balance between the statistical noise and the
nonlinearity, one could select a value for E where the magni-
tude of the error is roughly equal to the size of the next order

term. If this error is too large, the statistical noise will need to
be reduced e.g., through increasing the number of molecules
in the simulation.

To predict the nonlinear behavior of the dielectric response
from the first order harmonic fits, we model the low-frequency
nonlinear response of water and acetonitrile with the Booth
equation29,30,36, following the approach of Ref. 31

εE(E) = εn +
3(εb − εn)

αEE

[
coth(αEE)− 1

αEE

]
, (8)

where εn is the high frequency limit of the dielectric constant,
εb is the low frequency limit of the bulk dielectric constant,
and the fit parameter αE = β p0c is related to the molecular
dipole moment and dipole correlation factor c discussed in
section II C. The extracted αE corresponds to c= 4.0 and 0.89
for water and acetonitrile respectively, in agreement with pre-
vious simulations.17,29–31 The nonlinearity of the response of
water at low frequency, 0.1 GHz, agrees well with data from
perturbation of SPC/E water by a static electric field36, Fig-
ure 4. The parameters for the Booth equation fit for water and
acetonitrile are in Table III A.

The Booth equation parameters can provide an estimate for
the nonlinear error in the response as a function of applied
field strength.

C. Frequency-dependent nonlinear response

We next evaluate the nonlinear dielectric response as a
function of frequency and identify its molecular origins. Fig-
ure 5 plots the polarization of a model (Section II C) solvent
and MD-simulated water and acetonitrile in response to a si-
nusoidal applied electric field. The polarization is plotted for
frequencies below, at, and above the Debye peak at several
electric field strengths. At a frequency below the Debye peak,
the linear response is approximately sinusoidal, and at larger
field strengths, the response saturates for all solvents. At this
low frequency, the model solvent describes this saturation be-
havior well for both water and acetonitrile because the pri-
mary source of this saturation is the rotational saturation of
the molecules as described by the Booth equation.

At the frequency of the Debye peak, the polarization re-
sponse first sharply increases with time as the electric field
strength increases until the response saturates, and then the
response decreases smoothly as the applied electric field
strength decreases. This behavior is seen for the model and
the MD simulated solvents.

At a frequency above the Debye peak, the linear and nonlin-
ear responses are out of phase from the applied field. The re-
sponse does not appear to saturate even at large field strengths.
However, the behavior of the model is not fully consistent with
that of the molecular dynamics solvents. In both MD solvents,
the polarization response is not fully phase shifted to match
that of the model. This disagreement may be caused by both
the acetonitrile and the water dielectric spectra containing fea-
tures that are not fully Debye-like4. A more complex model
for the linear response of the fluid could improve the agree-
ment between the model and the MD simulation results.
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Theory (Section II C) Water Acetonitrile

FIG. 5. Normalized Polarization data (P̃z =
Pz

N po
, where N po is the saturation polarization of the system as defined in Section II C) at different

field strengths from the model solvent (column 1), water (column 2) and acetonitrile (column 3), for frequencies below (row 1), at (row 2),
and above (row 3) ωD, where ωD/(2π) is the approximate frequency of the Debye peak of the given solvent (20 GHz for water, 100 GHz
for acetonitrile). The molecular simulation results (columns 2 and 3) are averaged over ωt waves, where t = 50 ns, to reduce the noise in the
polarization. ε ≡ E/E0 is the non-dimensionalized electric field.

An additional disagreement between the model and MD
simulation results can be found for the high field strength ace-
tonitrile simulation. The zero crossing of the water polariza-
tion is roughly consistent across a large range of applied field
strengths, whereas the acetonitrile polarization shifts with
field strength. The acetonitrile force field includes flexibility
at the molecular level, whereas the water force field is rigid.
When the acetonitrile is simulated as a rigid molecule, we find
that this shift reduces significantly, as seen in Figure 6.

Lastly, we evaluate the harmonic components of the nonlin-
ear response of the model and compare it to that of the water
and acetonitrile simulations, Figure 7. We note the excellent

agreement between the linear and nonlinear response of the
model and both the water and acetonitrile.

IV. CONCLUSIONS

In this work we demonstrate a direct method for calculating
the dielectric spectrum of solvents using an alternating current
electric field. By using the direct electric field approach, we
can focus on specific frequencies, more easily collect data at
low frequencies, and investigate the nonlinearity of the dielec-
tric response. We find that a field strength of 0.01 V/Å pro-
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FIG. 6. Polarization of a box of flexible (dashed lines) and rigid
(solid lines) acetonitrile molecules at a frequency of 10,000 GHz.
Normalized as in Figure 5.

vides good agreement with the fluctuation dissipation results
for water and acetonitrile, with a primarily linear response at
this field strength. At higher field strengths, the response be-
comes more nonlinear.

We develop a numerical model combining the frequency-
dependence of the Debye response with the nonlinearity of
the Booth equation. We apply this model and demonstrate
that the nonlinear components of the water and acetonitrile
responses are in good agreement with our predictions. Specif-
ically, we find that the response becomes more linear at fre-
quencies above the Debye peak, although the model predicts
a fully Debye linear response, and both the water and acetoni-
trile have deviations from that linear response. Our numeri-
cal model could be further developed to include other features
of the linear response, such as resonances (e.g., bond vibra-
tions), electronic polarization response, and more complex re-
laxations (e.g., Cole-Cole and Havriliak-Negami38, using the
framework of memory functions39). This will also require sig-
nificant advances in describing the nonlinear response associ-
ated with those spectral features, and is expected to be highly
molecule-specific.

This work opens new research possibilities for both simu-
lating dielectric spectra with the direct field method and mod-
eling the frequency dependence of the nonlinear response of
polar fluids.
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