Navigating Ventilation in Schools

Andrew Persily National Institute of Standards and Technology Gaithersburg, Maryland USA andyp@nist.gov

Navigating Mature and Emerging Technologies in Your Schools for COVID and Beyond

> EPA IAQ for Schools Webinar 8 December 2022

Outline

Very quick overview of IAQ and Ventilation

Ventilation basics

Buildings, ventilation systems & ventilation rates vary; these variations matter Performance often doesn't match design intent Standards & regulations exist, but ... adoption, compliance, enforcement

How to navigate ventilation

Assess ventilation performance Consider options to improve but understand what you got first CO_2 monitoring: What it does and doesn't mean

Bottom line messages

Navigating ventilation important for infection control; also for "everyday" IAQ CO_2 is a tool but not the answer to every question Understand your building; what you can do depends on what you got Don't neglect the neglected buildings

Indoor Air Quality and Ventilation

IAQ control principles

Source control: elimination, substitution, local removal Ventilation – with clean air, outdoor or recirculated Air cleaning/filtration

Indoor vs outdoor sources Indoor: Materials, activities, people Outdoor: Regional, local, site

Ventilation

A mature technology, but can do better Emerging technologies exist, but 1st operate as intended

Application to COVID-19 and Beyond

Manage the sources, i.e., the people Ventilation is important – what does that mean? Clean/filter/disinfect – listen to next speakers and other sound guidance

Ventilation basics - with schools in mind

Buildings Age; Size; Condition; Resources; TLC

Ventilation strategies <u>Mechanical ventilation</u> Central, rooftop, ... <u>Infiltration</u> Unintentional and uncontrolled <u>Natural ventilation</u> Windows or designed? <u>Local filtration</u> Portable air cleaners <u>Local exhaust</u> Toilets & kitchens <u>In-room ventilator</u> Outdoor air?

Ventilation strategies

More ventilation basics

Ventilation rates vary

Weather; system controls; system condition Easily over a range of 5 to 1; 1 measurement doesn't tell you much

Performance often doesn't match design

O&M critical but resources not always there

Ventilation rates required by standards ASHRAE Standard 62.1 applies to educational spaces Issues of adoption, enforcement, existing buildings Compliance – actual rates often below standards

Measured ventilation rates in schools

	Median OA ventilation rate (L/s per person)
Mendell et al. 2013, Indoor Air, 23.	
Permanent	5.2
Portable	3.1
Natural ventilation	6.0
Mechanical – no AC	7.6
Mechanical with AC	2.8
Haverinen-Shaughnessy et al. 2011, Indoor Air, 21.	3.6

ASHRAE Standard 62.1	6.7 to 7.4 (depends on grade level)
----------------------	-------------------------------------

Navigating Ventilation: What's been recommended

Inspect systems; verify operation per design & standards

MORE: outdoor air, filtration, open windows, humidity Change standards for more air, more filtration, ...

Monitor indoor CO₂ Concentrations below X ppm_v indicate good ventilation/low risk

Improve air distribution for air delivery & aerosol removal

MISC: Longer ventilation operation (e.g., 24/7), Flushing before/after occupancy; Disable demand control ventilation

Ventilation recommendations

Increase outdoor air ventilation rates

System capacity Outdoor air quality Moisture management Assuming good HVAC control

More efficient filtration

System capacity Maintenance

More ventilation recommendations

Change relative humidity

Do we know the right number? System capacity Condensation potential/microbial growth

Open windows

Outdoor air quality Moisture, noise, security Direction, magnitude, distribution?

Change air distribution

System configuration Options may be limited

Simulation Study in Educational Spaces

Ng, et al. 2021. Single-Zone Simulations Using FaTIMA for Reducing Aerosol Exposure in Educational Spaces. NIST Technical Note 2150-upd. <u>https://doi.org/10.6028/NIST.TN.2150-upd</u>

Employed NIST FaTIMA online tool

https://www.nist.gov/services-resources/software/fatima

To evaluate <u>relative</u> exposure reduction from HVAC and non-HVAC controls

Impact depends on HVAC system type

And how controls are implemented

Fit of face coverings Portable air cleaner setting Filter fit and maintenance

Results used in CDC Interactive School Ventilation Tool

https://www.cdc.gov/coronavirus/2019-ncov/community/schoolschildcare/interactive-ventilation-tool.html

NIST Technical Note 2150 Single-Zone Simulations Using FaTIMA for Reducing Aerosol Exposure in Educational Spaces				
NIST MULTECHII MCORLANS				
Fare and Desegont of Index Manuschindigstrad American (In 2004) We Collin-Line scheme fare and constrained means all colling to an overview of the set methods. We colling the set of the Other Manusching and all colling to an overview of the set				
na na mar mar na series de la series				
Tender Part of the second seco				
Management Annual Annua				
Constructions (Sec.) (Sec.) (Sec.)				
Restations Benefits to Principle (Baller)				
Anna Paparina Dia ana ana ana ana ana ana ana ana ana a				
Command frame (in the command frame (in the command frame) (in the command frame (in the command frame) (in the co				
Lisa Ng Dunin Poppendicek Brinn Polidoro W. Shart Dols Suevez Emmerich Andrew Peralty				
This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2150				
Figure 1 and the set of the set o				

Ventilation assessment: To understand system & options before making changes

Persily. 2021. Evaluating Ventilation Performance, Handbook of Indoor Air Quality. <u>https://www.nist.gov/publications/evaluating-ventilation-performance</u>

System Design

- Documentation exist? Is it current? What standard used?
- Outdoor air intake rate; Recirculation; Local mixing boxes; Filter efficiency; Heat/enthalpy recovery; Operating schedule; Controls

Actual performance

- System status: on/off, mode of operation, ...
- System airflows: Supply, outdoor air, exhaust
- Whole building outdoor air change rates
- Pressure differences, air distribution/ventilation effectiveness

Other important factors

- Condition of system components
- Operations & Maintenance programs

CO₂ monitoring can be useful

Understand technical basis Measure and interpret with care

History of confusion and misinterpretation More measurement & less expensive sensors Guidance not always clear

Reasons to monitor CO₂

Verify design or protective ventilation rate Indicator of transmission risk Prioritize spaces/systems for inspection/repair

Critical to understanding concentration data Building & system, occupancy schedule, sensor location & accuracy, outdoor concentration

ASHRAE Position Document on Indoor CO₂

Courtesy of David Meyer, Shenandoah University

CO₂ as a metric of adequate ventilation

A single value for all spaces doesn't make sense Must consider timing of occupancy & measurement, occupants, target ventilation rate, ...

Space-specific CO₂ ventilation metric

QICO2: On-Line Calculator (Search on: NIST CO2 tool)

 Commercial/Institution 	al	 Residentia 	u	Model Type Predefined		O User-Defined	
Predefined Resi	denti	al Buildi	ngs				
Large House, Baseline Fa	mily, Wha	ole House, ASH	HRAE Standard	62.2-2019			•
Jutdoor CO2 Concentratio 400 ppm	<u>n</u>	Building Floor 250.0 m ²	Area	Ceiling Height 2.74 m		Time To Metric 2.0 h	
Jumber of Decupants in House 0.2.2 Worliation Rate of Person 0.2.2 Worliation Rate of Person 1.2 Worliation Rate per Person 2.3 Unit 1.5 U/s 1.2 Worliation Rate per Person 3.5 U/s 1.2 Worliation Rate per Person 3.5 U/s 1.2 Worliation Rate per Person 3.5 U/s 1.3 Unit 1.5 U/s							
Person: 5 0 sL/s Predefined Occupants	¢						
Predefined Occupants Number of Occupants	¢ Sex	Mass (kg)	Age Group	Activity Level (met)	CO2 Genera	ttion Rate Per Person (L/s)	
Predefined Occupants Number of Occupants 1	¢ Sex M	Mass (kg) 85	Age Group 30 to 59	Activity Level (met)	CO2 Genera 0.0053	tion Rate Per Person (L/s)	
Predefined Occupants Number of Occupants 1 1	¢ Sex M F	Mass (kg) 85 75	Age Group 30 to 59 30 to 59	Activity Level (met) 1.3 1.3	CO2 General 0.0053 0.0042	ttion Rate Per Person (L/s)	
Predefined Occupants Number of Occupants 1 1 1 1	 Sex M F M 	Mass (kg) 85 75 23	Age Group 30 to 59 30 to 59 3 to 9	Activity Level (met) 1.3 1.3 2	CO2 General 0.0053 0.0042 0.0045	tion Rate Per Person (L/s)	

Received: 31 December 2021 Revised: 2	5 March 2022 Accepted: 19 May 2022	
DOI: 10.1111/ma.13059		
ORIGINAL ARTICLE	WILEY	
		NIST Technical Note 2213
Development and	application of an indoor carbon dioxide	
metric		
Andrew Persily O		Indoor Carbon Dioxide Metric
		Analusia Teol
National Institute of Standards and Technology, Gaithersburg, Maryland, USA	Abstract	Analysis 1001
Correspondence	Indoor carbon dioxide (CO ₂) concentrations have been considered for decades in eval-	
Andrew Persily, National Institute of Standards and Technology, Gaithersburg	uating indoor air quality (IAQ) and ventilation, and more recently in discussions of the risk of althorne infectious discose transmission. However, many of these applications	
MD, USA. Email: and openist, pov	reflect a lack of understanding of the connection between indoor CO, levels, ventila-	
Funding information	tion, and IAQ. For example, a single indoor concentration such as 1000 ppm, is often	Andrew Persily
This work was performed by the author as part of his remular assimoid duties as	used as a metric of IAQ and ventilation without an understanding of the significance	Brian J. Polidoro
an employee of the National Institute of Standards and Technology with no other	a single concentration will not serve as a ventilation indicator for spaces with different	This sublication is available free of charge from:
funding in support of his efforts.	occupancies and ventilation requirements. An approach has been developed to esti-	https://doi.org/10.6028/NIST.TN.2213
	mate a space-specific CO ₂ level that can serve as a metric of outdoor ventilation rates.	
	The concept is to estimate the CO ₂ concentration that would be expected in a specific space gluon its intended or expected usefiletion rate, the number of essentiation the	
	rate at which they generate CO., and the time that has transpired since the space was	
	occupied. This paper describes the approach and presents example calculations for	
	several commercial, institutional, and residential occupancies.	
	KEYWORDS	
	carbon dioxide, indoor air quality, metrics, occupancy, standards, ventilation	
1 INTRODUCTION	have become widely accepted. ¹⁻³ though recent discussions, analy-	
Indoor air quality (IAQ) is characterize	d by the chemical and phys- Many discussions of IAQ metrics have included indoor CO2	
ical constituents of air that impact oc	cupant health, comfort, and concentrations. In fact, indoor CO ₂ has been featured in discus-	
and equipment. The number of airbor	re contaminants in most in- suggested that CO2 build-up rather than oxygen depletion was re-	
door environments is quite large, and t	he impacts on occupants are sponsible for "bad air" indoors. ³⁰ About one hundred years later, von	
known for only a limited number of con of contaminants and their wide variation	tammarks. The large number Pettenkofer suggested that biological contaminants from human oc- s among and within buildings cuparts caused indoor air problems, not CO ₅ , though he proposed	
makes it extremely challenging to quar	tify IAQ, let alone to distinuousing CO ₂ as an indicator of vitiated air. Since that time, discussions	
gush between good and bad IAQ bas have been efforts to define IAQ metric:	ed on a single metric. There of CO ₂ in relation to IAQ and ventilation have evolved, focusing on the impacts of CO ₂ on building occupants, how CO ₃ relates to occu-	
to fully capture the multiple health an	d comfort impacts of IAQ or pant perception of bioeffluents, the use of indoor CO ₂ as a tracer pas	National Institute of
		U.S. Deportment of Commerce
Published 2022. This article is a U.S. Govern	ment work and is in the public domain in the USA.	
Indoor Air. 2022;32:e13059. https://doi.org/10.1111/ina.13059	wileyonineibrary.com/journal/ina 1 of 13	

Emerging Technology

Do the right things

Make sure systems operating per design Understand before making changes We know how to do this!

New stuff? Localized or personal ventilation Sensors Ventilation control approaches Revise ventilation/IAQ standards to address operation, existing buildings and airborne infection more directly

Wrap-up

Navigating ventilation is nontrivial, but it's not rocket science

Each building/system is unique and dynamic We have the knowledge and the tools

CO₂ is a tool; not everything is a nail Measure and interpret with thought and care

Want innovation?

Operate and maintain systems as intended Then get fancy with sensors, air distribution, ...

Don't neglect the neglected buildings Existing; Older; Without budgets and plaques

Persily and Siegel. 2022. Improving Ventilation Performance in Response to the Pandemic. *The Bridge* 52(3).

https://www.nae.edu/281412/Improving-Ventilation-Performance-in-Response-to-the-Pandemic

Persily. 2021. Evaluating Ventilation Performance. In Handbook of Indoor Air Quality. Springer Singapore.

10.1007/978-981-10-5155-5_20-1; https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=932281

ASHRAE. 2022. Position Document on Indoor CO₂

https://www.ashrae.org/file%20library/about/position%20documents/pd_indoorcarbondioxide_2022.pdf

Persily. 2022. Development and Application of an Indoor Carbon Dioxide Metric. Indoor Air. DOI: 10.1111/INA.13059

Persily and Polidoro. 2022. Indoor Carbon Dioxide Metric Analysis Tool. NIST Technical Note 2213.

https://pages.nist.gov/CONTAM-apps/webapps/CO2Tool/#/

Ng, et al. 2021. Single-Zone Simulations Using FaTIMA for Reducing Aerosol Exposure in Educational Spaces. NIST Technical Note 2150-upd.

https://doi.org/10.6028/NIST.TN.2150-upd

Persily. 2021. Using CO₂ Monitoring to Manage Ventilation in Buildings. EPA Indoor Air Quality Science Webinar. <u>https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=933724</u>;

https://www.youtube.com/watch?v=88XCmW8yIhs

Persily and Ng. 2020. Ventilation Impacts on Indoor Aerosol Transport and Current HVAC Recommendations for Re-Opening Buildings. Federal Interagency Committee on IAQ.

https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=930680