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Abstract—This paper studies an online service caching prob-
lem, where an edge server, equipped with a prediction window of
future service request arrivals, needs to decide which services to
host locally subject to limited storage capacity. The edge server
aims to minimize the sum of a request forwarding cost (i.e., the
cost of forwarding requests to remote data centers to process)
and a service instantiating cost (i.e., that of retrieving and setting
up a service). Considering request patterns are usually non-
stationary in practice, the performance of the edge server is
measured by dynamic regret, which compares the total cost with
that of the dynamic optimal offline solution. To solve the problem,
we propose a randomized online algorithm with low complexity
and theoretically derive an upper bound on its expected dynamic
regret. Simulation results show that our algorithm significantly
outperforms other state-of-the-art policies in terms of the runtime
and expected total cost.

I. INTRODUCTION

Edge computing is a paradigm shift from cloud computing,
where computation and data storage are brought closer to end
users instead of offloading to a central cloud. This is done
through the deployment of edge servers that can host (or
cache) some popular services and process the corresponding
computation tasks directly without having to forward them to
remote clouds. Such close proximity provided by edge com-
puting not only reduces bandwidth consumption in backhaul
links, but also is critical for supporting various services and
applications that require real-time data processing, such as
augmented reality, virtual reality, and autonomous vehicles.

To fully realize the potential of edge computing in prac-
tice, several challenges in designing efficient service caching
algorithms running on edge servers must be dealt with. First,
edge servers can often host only a small number of services
due to their limited storage capacity. Second, user requests
are typically time-varying, and it is usually infeasible to
fully predict future requests. Third, reconfiguring edge servers,
which involves downloading necessary data and setting up
virtual machines or containers, can incur significant delay and
communication cost.

Existing studies for addressing these challenges typically
design online policies that aim at learning and adopting an
optimal static offline policy, e.g., Paschos et al. [1] and Zhang
et al. [2]. Here, a static offline policy is one that knows all
future requests but only caches the same set of services at all
times, and the cost difference between an online policy and the

optimal offline counterpart is known as static regret. Clearly,
by focusing on learning the optimal static offline policy, these
studies ignore potential gains from dynamically reconfiguring
edge servers in response to changes in request arrival patterns.
As a result, static regret is deemed less applicable when the
environment is constantly changing. This motivates the notion
of dynamic regret, where an online algorithm is compared
against optimal dynamic solutions in hindsight. Few recent
studies [3], [4] investigate dynamic regret for different applica-
tions but only design online algorithms that produce fractional
solutions. Since service caching decisions are required to be
integers, these algorithm cannot be applied directly.

In this paper, we propose an online service caching policy
with provably low dynamic regret by combining the strengths
of two recently proposed algorithms, one is an online gradient
algorithm [4] that has low dynamic regret but only produces
fractional solutions and the other is a randomized algorithm
[5] that turns fractional solutions into integer ones but has no
bounds on dynamic regret. We point out that this combination
is not trivial because simply applying these two algorithms to
our cost function does not readily lead to low dynamic regret
due to the accumulated error from the randomization step.
Thus, in order to bridge the gap between these two algorithms,
we carefully construct an auxiliary function that not only
admits fractional solutions but also explicitly incorporates the
additional costs due to the randomized algorithm. Specifically,
in each time slot, our algorithm first applies a projected
gradient descent method to the auxiliary cost function using a
customized efficient projection step. The output of this step
is then treated as the probabilities of caching services at
the edge server. Finally, a randomized algorithm is used to
determine actual integer caching decisions. We also note that
both algorithms in [4] and [5] do not provide low complexity
implementations of their projected gradient steps.

Our contributions in this paper are as follows. First, we
develop an online service caching algorithm that yields integer
solutions with provably low dynamic regret. In particular, we
establish an upper bound of the regret that is sublinear in time
when the path length, a measure of how frequently request
arrival patterns change, is also sublinear in time. We prove
that this upper bound can be further reduced when a finite
window of request arrival predictions is available to the edge
server. In addition, we develop a new algorithm for computing



exact projection onto a bounded simplex in nearly linear time;
existing methods either run in quadratic time or only compute
an approximate. This projection algorithm not only leads to an
efficient implementation of our online caching algorithm, but
is also of independent interest in other applications. Finally,
simulation results show that our policy outperforms other state-
of-the-art online algorithms under a variety of settings.

The rest of the paper is organized as follows. Section II
reviews closely related work. Section III introduces our system
model and the online caching problem of interest. Section IV
provides details of our randomized online service caching
algorithm. Section V analyzes the expected dynamic regret of
the algorithm. Section VI proposes an efficient projection al-
gorithm and analyzes the complexity of our randomized online
algorithm. Some simulation results are given in Section VII.
Finally, Section VIII concludes the paper.

II. RELATED WORK

The majority of studies on the online caching problem are
focused on static regret, which is evaluated by comparing with
a static offline policy. For example, Paschos et al. [1], Zhang
et al. [2], Salem et al. [6] and Tan et al. [7] form caching
problems into online convex optimization and apply gradient
method to obtain algorithms with sublinear static regret. Fan
et al. [5] consider the problem of jointly optimizing service
caching and routing and show that an online gradient descent
method can achieve a sublinear static regret. Considering
competitive ratio, Chen et al. [8] proposes an online algorithm
based on LASSO, while Lin et al. [9] and Shi et al. [10]
modify receding horizon control algorithm. All these studies
focus on comparison with static optimal policy.

Dynamic regret is first introduced by Zinkevich [11]. Chen
et al. [3] proposes an adaptive online saddle-point method and
studies its dynamic regret. By allowing temporary constraint
violation, Jin et al. [12], [13] proposes different online learning
models with a dynamic regret bound. However, these studies
do not consider instantiating costs.

Some recent studies explore using predictions to improve
the performance of online algorithms. Considering precise
request predictions, Chen et al. [14] and Goel et al. [15]
study an online caching problem with 2-norm instantiating
costs and propose different algorithms with low competitive
ratios. In addition, Comden et al. [16] and Li et al. [4]
propose online caching algorithms and analyze their dynamic
regret. Furthermore, Chen et al. [17] and Li et al. [18]
consider noisy predictions and analyze dynamic regret of their
proposed algorithms. These studies, however, do not guarantee
to produce integer solutions, and hence are not applicable to
service caching when the services are indivisible.

III. SYSTEM MODEL

We consider a system with multiple clients, an edge server,
and a remote data center providing N different services. The
edge server is located near the clients and can cache a small
subset of services. Any request from clients sent to the server
can be processed immediately if the corresponding service is

cached locally, otherwise it is forwarded to the remote center
for processing.

Assume that time is slotted, and the total number of time
slots is T . The edge server can dynamically adjust the set
of services it caches. However, changing the set of cached
services involves time-consuming operations such as down-
loading and setting up new services. Hence, we assume that the
edge server can only adjust its cached services at the beginning
of each time slot.

Let xn,t ∈ {0, 1} denote the caching decision for service
n at time t. Let Xt := [x1,t, x2,t, . . . , xN,t] be the caching
decision at time t and Xa:b := [Xa, Xa+1, . . . , Xb]. Since the
edge server often has limited storage, we assume that at most
M services can be cached at any time, that is,

N∑
n=1

xn,t ≤M, ∀t. (1)

Whenever the edge server caches a new service, it needs
to download and install the said service. We model the cost
of downloading and installing service n by imposing an
instantiating cost of βn. Thus, the total instantiating cost at
time t is

N∑
n=1

βn|xn,t − xn,t−1|+,

where |x|+ := max{x, 0} for any x ∈ R.
Next, we discuss the model for request arrivals and pro-

cessing. Denote the total number of requests for service n
in time slot t as λn,t. Let Λt = [λ1,t, λ2,t, . . . , λN,t] and
Λa:b := [Λa,Λa+1, . . . ,Λb]. We make the following mild
assumption about Λt: If service n and service m are both
among the top M + 1 most popular services at time t, then
λn,t ̸= λm,t. This mild assumption is to ensure that the
ordering of the top M services is always unique.

The edge server can process all requests for its cached
services locally. For services not cached at the edge, i.e.,
xn,t = 0, the edge server must forward all associated requests
to the remote data center for processing, which inevitably leads
to larger delays. The round-trip time between the edge server
and the remote data center is determined by the conditions
of the backbone network and the remote data center, and is
little impacted by the edge server’s caching decisions. Hence,
we assume that there is a constant delay for requests that are
processed by the remote data center, and say that the system
suffers a constant forwarding cost of α for each forwarded
request. The total forwarding cost in time slot t is then

α

N∑
n=1

λn,t(1− xn,t).

Therefore, the total cost in time slot t can be written as

Ft(Xt, Xt−1) :=

N∑
n=1

(αλn,t(1− xn,t) + βn|xn,t − xn,t−1|+).



The goal of the edge server is to solve the problem of
minimizing the total cost, which is shown below.

min
X1:T

T∑
t=1

Ft(Xt, Xt−1), (2)

s.t. xn,t ∈ {0, 1}, ∀n, ∀t, (3)
N∑

n=1

xn,t ≤M, ∀t. (4)

Note that solving this problem exactly is already challenging
in the offline setting (i.e., all request arrivals are known in
advance) due to the binary constraint in (3). It is even more so
(if not impossible) in the online setting, where the edge server
needs to determine caching decision Xt at the beginning of
each time slot t given limited knowledge about future request
arrivals. We assume that the edge server employs an online
algorithm and has exact predictions of request arrivals only
in next W time slots at any time t. Note that setting W = 0
would correspond to the case where the edge server has no
prediction ability; the case of using imprecise predictions is
left for future work. The concept of an online algorithm is
formally defined as follows:

Definition 1. An online service caching algorithm is one that,
after knowing X1:t−1 and Λ1:t+W−1, determines, possibly at
random, Xt at time t.

The expected cost of an online algorithm ξ is denoted by
C(ξ) := E[

∑T
t=1 Ft(Xt, Xt−1)|ξ], where E[·] denotes the

expectation function over all possible randomness.
To measure the performance of ξ, we compare the total cost

of algorithm ξ to that of an optimal dynamic offline policy,
which is formally defined as follows.

Definition 2 (Optimal Dynamic Offline Policy (OPT)). An
optimal dynamic offline policy is one that produces optimal
solution X∗1:T for the problem in (2)–(4).

Note that we allow any offline algorithm to cache different
services in different time slots. This feature makes our work
different from most existing studies on service caching that
only consider optimal static offline policies, where the same
set of services is cached in all time slots.

The difference between the expected cost of ξ and the cost
of optimal dynamic offline policy, denoted by C(OPT ), is
called expected dynamic regret, i.e.,

Reg(ξ) := C(ξ)− C(OPT ). (5)

Obviously, the expected dynamic regret of any online policy
depends on the request arrivals Λ1:T . We characterize Λ1:T by
its path length. Specifically, let θn,t be the indicator function
that service n is among the top M services with the most
requests in time slot t. Then, the path length of Λ1:T is defined
as

∑T
t=1

∑N
n=1 |θn,t−θn,t−1|. Let Θt := [θ1,t, θ2,t, . . . , θN,t].

Loosely speaking, the path length measures the variation of the
request distribution over time. We assume that the path length
of Λ1:T is upper-bounded by HT , i.e.,

∑T
t=1 ∥Θt−Θt−1∥1 ≤

HT , and the edge server knows the value of HT .

The goal of this work is to develop an online service caching
algorithm whose expected dynamic regret is o(T ) whenever
HT = o(T ).

IV. RANDOMIZED ONLINE SERVICE CACHING
ALGORITHM

In this section, we propose a randomized online service
caching algorithm. Our algorithm mainly consists of two
components. The first component determines the probability
of caching a service n at time t with the goal of minimizing an
auxiliary cost function. The second component is a randomized
algorithm that determines which service to be cached at the
edge based on the result of the first component while limiting
the resulting instantiating cost. As we will show in the next
section, combining these two components gives rise to an
upper bound on the expected dynamic regret.

To express the probability distribution of Xt, we construct
K sample paths, each representing a probability mass of 1

K .
At the beginning of the whole process, the edge server chooses
a number k∗ uniformly at random from {1, 2, . . . ,K}. Then,
it uses the sample path k∗ at time t as the caching decision
in time t.

For sample paths designed above, the portion of sample
paths that cache a service is the same as the probability
we cache this service. Let pn,t be the probability that the
edge server caches service n at time slot t, and let Pt :=
[p1,t, p2,t, . . . , pN,t] and Pa:b := [Pa, Pa+1, . . . , Pb]. Due to
(1), Pt is restricted to be in the following feasible set

D :=
{
[p1, . . . , pN ] | 0 ≤ pn ≤ 1,∀n,

N∑
n=1

pn ≤M
}
. (6)

For decisions in sample paths, we use sk,n,t ∈ {0, 1} to de-
note the indicator function that service n is cached on sample
path k at time t, and let Sk,t := [sk,1,t, sk,2,t, . . . ]. Then, the
edge server sets Xt = Sk∗,t in each time slot t as caching de-
cisions. Thus, a randomized online service caching algorithm
is effectively one that determines S1,t, S2,t, . . . , SK,t, in each
time slot t.

As described above, our algorithm consists of two parts
in each time slot t. In particular, we first determine caching
probability Pt based on previous probabilities and request
arrivals Λt−1:t+W−1. Then, we use Pt and sample paths at
t − 1, i.e., [S1,t−1, S2,t−1, . . . , SK,t−1], to determine sample
paths at t. The overall algorithm is shown in Algorithm 1
and detailed steps are given in the next subsections. Here, to
simplify notation, we let our algorithm start from t = −W +1
with Λt, Sk,t, Pt set to zero for all t ≤ 0.

A. Caching Probability Update

Let us now discuss in detail our approach for determining Pt

in the first part of our algorithm. Define the following auxiliary



Algorithm 1 Randomized Online Service Caching (ROSC)
Parameter: K

1: Choose k∗ uniformly at random from {1, 2, . . . ,K}
2: P̄−W+1:T ← 0
3: for t = −W + 1 to T do
4: Obtain parameter Λt+W−1
5: Apply HeapSort on Λt+W−1 to calculate Θt+W−1
6: Pt+W ← Θt+W−1
7: if W > 0 then
8: Pt:t+W−1, P̄t:t+W−1←Algo. 2(Λt:t+W−1, Pt−1:t+W ,

P̄t:t+W−1, t)
9: if t ≥ 1 then

10: [S1,t, . . . , SK,t]← Algo. 3(Pt, S1,t−1, . . . , SK,t−1)
11: Xt ← Sk∗,t

cost function F̂t, which will be used as our surrogate objective
function.

F̂t(Pt, Pt−1) :=
∑

j : 0≤pj,t−pj,t−1≤γ

3βj

γ
(pj,t − pj,t−1)

2+

∑
i : pi,t−pi,t−1>γ

3βi(pi,t − pi,t−1) + α
∑

1≤n≤N

λn,t(1− pn,t),

(7)

where γ > 0 is a parameter whose value will be discussed
in the next section. By comparing F̂t with Ft, one can see
that the only difference is in the instantiating cost component.
Here, the quadratic term is to ensure that F̂t is differentiable
everywhere, and a factor of 3 is added in order to bound
the expected dynamic regret introduced by the randomized
algorithm that will be discussed in the next section.

At each time t, after obtaining the prediction Λt+W−1, the
edge server first sets Pt+W = Θt+W−1, i.e., pn,t+W = 1
if service n is among the top M most requested services
in time slot t + W − 1, and pn,t+W = 0, otherwise. If
W > 0, we will further update Pt:t+W−1 so as to reduce∑t+W−1

τ=t F̂τ (Pτ , Pτ−1) through projected gradient descent
with step size η.

Note that each Pτ only appears in F̂τ and F̂τ+1. Thus, we
obtain the gradient of

∑t+W−1
τ=t F̂τ (Pτ , Pτ−1) with respect to

Pτ , denoted as ∇Pτ
(F̂τ (Pτ , Pτ−1)+ F̂τ+1(Pτ+1, Pτ )), where

∂

∂pn,τ

(
F̂τ (Pτ , Pτ−1) + F̂τ+1(Pτ+1, Pτ )

)
(8)

=

{
gn(pn,τ−1, pn,τ )− αλn,τ − gn(pn,τ , pn,τ+1) if τ < T

gn(pn,τ−1, pn,τ )− αλn,τ if τ = T

and the value of gn(a, b) is set to be 0 if b− a < 0, set to be
6βn

γ (b− a) if 0 ≤ b− a ≤ γ, and set to be 3βn if b− a > γ.
Then, we update Pτ from τ = t+W −1 down to τ = t. To

ensure the gradient of
∑t+W−1

τ=t F̂τ (Pτ , Pτ−1) with respect to
Pτ is obtained based on Pτ−1, Pτ , and Pτ+1 with the same
update times, we use the updated Pτ+1, the original Pτ and
the Pτ−1 in the previous iteration before its update, which is

denoted as P̄τ−1, to calculate the gradient. Thus, we update
Pτ by

Pτ = ΠD(Pτ − η∇Pτ
(F̂τ (Pτ , P̄τ−1) + F̂τ+1(Pτ+1, Pτ )),

where ΠD(·) is the projection operator onto set D given in (6).
This distinction is important for establishing an expected
dynamic regret bound, as will be discussed in Section V.
Algorithm 2 shows the detail of updating Pt:t+W−1.

Algorithm 2 Projected Gradient Descent
Input: Λt:t+W−1, Pt−1:t+W , P̄t−1:t+W , t
Parameter: γ, η

1: for τ = t+W − 1 to max{1, t} do
2: Calculate ∇Pτ

(F̂τ (Pτ , P̄τ−1) + F̂τ (Pτ+1, Pτ )) by (8)
3: P̄τ ← Pτ

4: Pτ← ΠD(Pτ−η∇Pτ
(F̂τ (Pτ , P̄τ−1)+ F̂τ+1(Pτ+1, Pτ ))

Output: Pt:t+W−1, P̄t:t+W−1

B. Sample Path Update

Our algorithm for determining [Sk,t] employs that in Fan
et al. [5], which studies online randomized algorithm for a
different setting without establishing expected dynamic regret
bound. The first step is to quantize every pn,t in Pt into a
multiple of 1

K , denoted as pQn,t. Let PQ
t := [pQ1,t, . . . , p

Q
N,t].

Note that each service n in [Sk,t] needs to be cached in exactly
KpQn,t sample paths. Set sample path Sk,t = Sk,t−1 for all
k at time t. Then, for each n, randomly choose K(pQn,t −
pQn,t−1) sample paths without service n to cache service n if
pQn,t > pQn,t−1, and delete service n from K(pQn,t−1 − pQn,t)

randomly chosen sample paths with service n if the pQn,t <

pQn,t−1. Finally, for each sample path k that caches more than
M services, find another sample path k′ with less than M
cached services, and randomly choose a service n that k caches
and k′ does not. Delete service n from k and cache it in the
k′. Detailed steps are shown in Algorithm 3. This algorithm
is designed so that the number of changes, which corresponds
to the instantiating cost at time t, can be bounded.

V. EXPECTED DYNAMIC REGRET

In this section, we analyze the regret of ROSC. The main
result is the following.

Theorem 1. Let γ =
√

HT

T and η = γ
12β∗ with β∗ :=

maxn βn. If the number of requests in each time slot is upper-
bounded by U , that is,

∑N
n=1 λn,t ≤ U, ∀t, then

Reg(ROSC) ≤
(6√2Mβ∗(α+ 3β∗)

αW
+ 3β∗N

)√
HTT

+
(αU + 6β∗N)T

K
+ 2β∗HT . (9)

In particular, Reg(ROSC) = o(T ) if HT = o(T ) and K =√
T .

We will prove this result in two steps. First, let P
′

1:T

be the final value of P1:T in Algorithm 1 and let P ∗1:T be



Algorithm 3 Randomized Caching
Input: Pt, S1,t−1, S2,t−1, . . . , SK,t−1

1: PQ
t ← quantize every pn,t in Pt into a multiple of 1

K

2: PQ
t−1 ← 1

K

∑K
k=1 Sk,t−1

3: ∆t := [δ1,t, . . . , δN,t]← PQ
t − PQ

t−1
4: S1,t, S2,t, . . . , SK,t ← S1,t−1, S2,t−1, . . . , SK,t−1
5: for n = 1, 2, . . . , N do
6: if δn,t > 0 then
7: Find the set {sk,n,t|sk,n,t = 0}, randomly pick Kδn,t

elements in it and set to 1
8: else if δn,t < 0 then
9: Find the set {sk,n,t|sk,n,t = 1}, randomly pick

|Kδn,t| elements in it and set to 0

10: while ∃
∑N

n=1 sk,n,t > M do
11: Find k′ that

∑N
n=1 sk′,n,t < M

12: Randomly choose a service n′ from the set {n|sk′,n,t =
0, sk,n,t = 1}

13: sk′,n′,t ← 1, sk,n′,t ← 0
Output: S1,t, S2,t, . . . , SK,t

the optimal vector for minimizing the auxiliary cost function∑T
t=1 F̂t(Pt, Pt−1) under the constraint (4). We will derive

an upper bound on
∑T

t=1 F̂t(P
′

t , P
′

t−1)−
∑T

t=1 F̂t(P
∗
t , P

∗
t−1).

Second, we will show that Reg(ROSC), which is defined with
respect to Ft(·) instead of F̂t(·), can actually be bounded by
a function of

∑T
t=1 F̂t(P

′

t , P
′

t−1)−
∑T

t=1 F̂t(P
∗
t , P

∗
t−1).

A. Bounding
∑T

t=1 F̂t(P
′

t , P
′

t−1)−
∑T

t=1 F̂t(P
∗
t , P

∗
t−1)

We first compare ROSC with an offline policy and then
bound

∑T
t=1 F̂t(P

′

t , P
′

t−1)−
∑T

t=1 F̂t(P
∗
t , P

∗
t−1). Consider an

offline policy that knows Λ1:T and employs the projected
gradient descent algorithm to minimize

J(Q) :=

T∑
t=1

F̂t(Qt, Qt−1)

subject to the constraint Q = [Q1, . . . , QT ] ∈ H, where
Qt := [q1,t, q2,t, . . . , qN,t] and H := {Q | 0 ≤ qn,t ≤
1,∀n, t,

∑N
n=1 qn,t ≤ M,∀t}. Following a projected gradient

descent algorithm, the offline policy first initializes Q0
t = Λt−1

and then updates its caching decisions Q in each iteration
w = 1, . . . ,W as follows

Qw ← ΠH

(
Qw−1 − η∇J(Qw−1)

)
. (10)

Note that the following has been shown in Li et al. [4].

Lemma 1. For update (10), we have QW
t = P

′

t ,∀t.

Using this result, we can prove the following.

Lemma 2. Consider ROSC with step size η = γ
12β∗ . Then

T∑
t=1

F̂t(P
′

t , P
′

t−1)−
T∑

t=1

F̂t(P
∗
t , P

∗
t−1)

≤ 6β∗

γW

T∑
t=1

∥Θt−1 − P ∗t ∥22.

Proof: First, it can be seen that J(·) is 12β∗

γ smooth. Then
the result follows by simply applying [19, Theorem 10.21] to
the offline policy (10) and then using Lemma 1.

Next, we bound the term
∑T

t=1 ∥Θt−1 − P ∗t ∥22. In fact,

Lemma 3. We have
T∑

t=1

∥Θt−1 − P ∗t ∥22 ≤
√
2M(α+ 3β∗)

α
HT . (11)

Proof: First, note that if 0 ≤ pj,t − pj,t−1 ≤ γ, then
3βj

γ (pj,t − pj,t−1)
2 ≤ 3βj(pj,t − pj,t−1). Using this and the

definitions of F̂t, we have F̂t(Θt,Θt−1) ≤ α
∑N

n=1 λn,t(1 −
θn,t) + 3

∑N
n=1 βn|θn,t − θn,t−1|+.

Since P ∗1:T minimizes
∑T

t=1 F̂t(Pt, Pt−1), we
have

∑T
t=1 F̂t(P

∗
t , P

∗
t−1) ≤

∑T
t=1 F̂t(Θt,Θt−1) ≤∑T

t=1

∑N
n=1

(
αλn,t(1 − θn,t) + 3βn|θn,t − θn,t−1|+)

)
.

Plugging in the definition of F̂t(P
∗
t , P

∗
t−1) and then

rearranging this relation yields α
∑T

t=1

∑N
n−1 λn,t(θn,t −

p∗n,t) ≤ 3
∑T

t=1

∑T
n=1 βn|θn,t − θn,t−1|+ ≤ 3β∗HT .

Without loss of generality, we can assume that λ1,t ≥ λ2,t ≥
· · · ≥ λN,t for a given t. Then, λn,t ≥ λn+1,t + 1 for 1 ≤
n ≤ M . Combining this with the fact that θ1,t = θ2,t =
· · · = θM,t = 1 and θM+1,t = θM+2,t = · · · = θN,t = 0, we
have

∑N
n=1 λn,tθn,t −

∑N
n=1 λn,tp

∗
n,t ≥

∑N
n=1 |θn,t − p∗n,t|.

Therefore,
T∑

t=1

N∑
n=1

|θn,t − p∗n,t| ≤
T∑

t=1

N∑
n=1

λn,t(θn,t − p∗t ) ≤
3β∗HT

α
.

Next, using the triangle inequality, we have

T∑
t=1

||Θt−1 − P ∗t ||2 ≤
T∑

t=1

||Θt−1 −Θt||2 +
T∑

t=1

||Θt − P ∗t ||2

≤
T∑

t=1

||Θt−1 −Θt||1 +
T∑

t=1

||Θt − P ∗t ||1

≤ HT +
3β∗HT

α
=

α+ 3β∗

α
HT .

Since the caching limit is M , it follows that ∥Θt−1−P ∗t ∥2 ≤√
2M . As a result,

T∑
t=1

||Θt−1 − P ∗t ||22 ≤
√
2M

T∑
t=1

||Θt−1 − P ∗t ||2

≤
√
2M(α+ 3β∗)

α
HT .



This completes the proof of the lemma.
Now, by combining Lemma 3 and Lemma 2, we obtain

T∑
t=1

F̂t(P
′

t , P
′

t−1)−
T∑

t=1

F̂t(P
∗
t , P

∗
t−1)

≤ 6
√
2Mβ∗(α+ 3β∗)

αγW
HT . (12)

B. Bounding Reg(ROSC)

We now analyze the cost introduced by the auxiliary objec-
tive function and the randomized algorithm, and then bound
Reg(ROSC).

Considering the structure of the auxiliary cost function and
the analysis of the randomized algorithm in [5], we can show
the following.

Lemma 4. By choosing 0 < γ < 1,

Reg(ROSC) ≤
T∑

t=1

F̂t(P
′

t , P
′

t−1)−
T∑

t=1

F̂t(P
∗
t , P

∗
t−1)

+ 3γβ∗NT +
(αU + 6β∗N)T

K
+ 2β∗HT . (13)

Proof: It has been shown in [5] that, under ROSC,
E[xn,t] = pQn,t and E

[∑T
t=1

∑N
n=1 |xn,t − xn,t−1|+

]
≤

3
∑T

t=1

∑N
n=1 |p

Q
n,t − pQn,t−1|+, where pQn,t is the quantized

version of p
′

n,t. Hence, we have

E[

T∑
t=1

Ft(Xt, Xt−1)] ≤
T∑

t=1

N∑
n=1

αλn,t(1− pQn,t)

+ 3

T∑
t=1

N∑
n=1

βn|pQn,t − pQn,t−1|+.

Since the difference between pQn,t and p
′

n,t is at most 1
K

according to the design of Algorithm 3, we have

E[

T∑
t=1

Ft(Xt, Xt−1)] ≤
T∑

t=1

N∑
n=1

αλn,t(1− p
′

n,t) +
αUT

K

+ 3

T∑
t=1

N∑
n=1

βn|p
′

n,t − p
′

n,t−1|+ +
6β∗NT

K

≤
T∑

t=1

F̂t(P
′

t , P
′

t−1) + 3β∗γNT +
(αU + 6β∗N)T

K
.

Then, by comparing F̂t(·) and Ft(·), we have

C(OPT ) =

T∑
t=1

Ft(X
∗
t , X

∗
t−1)

≥
T∑

t=1

F̂t(X
∗
t , X

∗
t−1)− 2

T∑
t=1

N∑
n=1

βn|x∗n,t − x∗n,t−1|.

Thus,

Reg(ROSC) = E[

T∑
t=1

Ft(Xt, Xt−1)]− C(OPT )

≤
T∑

t=1

F̂t(P
′

t , P
′

t−1) + 3γβ∗NT +
(αU + 6β∗N)T

K

− C(OPT )

≤
T∑

t=1

F̂t(P
′

t , P
′

t−1)−
T∑

t=1

F̂t(X
∗
t , X

∗
t−1) + 3γβ∗NT

+ 2

T∑
t=1

N∑
n=1

βn|x∗n,t − x∗n,t−1|+
(αU + 6β∗N)T

K

≤
T∑

t=1

F̂t(P
′

t , P
′

t−1)−
T∑

t=1

F̂t(P
∗
t , P

∗
t−1) + 3γβ∗NT

+ 2

T∑
t=1

N∑
n=1

βn|x∗n,t − x∗n,t−1|+
(αU + 6β∗N)T

K
.

Note from the definitions of Θt and X∗1:T that

T∑
t=1

N∑
n=t

(x∗n,t − x∗n,t−1) ≤
T∑

t=1

N∑
n=t

(θn,t − θn,t−1).

Therefore,

Reg(ROSC) ≤
T∑

t=1

F̂t(P
′

t , P
′

t−1)−
T∑

t=1

F̂t(P
∗
t , P

∗
t−1)

+ 3γβ∗NT +
(αU + 6β∗)NT

K
+ 2

T∑
t=1

βn∥Θn,t −Θn,t−1∥1

≤
T∑

t=1

F̂t(P
′

t , P
′

t−1)−
T∑

t=1

F̂t(P
∗
t , P

∗
t−1) + 3γβ∗NT

+
(αU + 6β∗N)T

K
+ 2β∗HT .

This completes the proof of the lemma.
We are now ready to prove Theorem 1.

Proof of Theorem 1: By combining Lemma 4 and (12),
the expected dynamic regret is bounded by

Reg(ROSC) ≤6
√
2Mβ∗(α+ 3β∗)

αγW
HT + 3γβ∗NT

+
(αU + 6β∗N)T

K
+ 2β∗HT .

By taking γ =
√

HT

T , we obtain (9) as desired.

VI. AN EFFICIENT IMPLEMENTATION FOR ROSC

In this section, we propose a projection algorithm to effi-
ciently implement ROSC and then analyze the complexity of
ROSC. The main result is shown below.

Theorem 2. Using Algorithm 5 below for projection, the
complexity of ROSC is O(max{WN log(N),KMN}) per
time slot.



An important bottleneck of the complexity when imple-
menting ROSC is the projection step in step 4 of Algorithm 2.
In previous works, Wang [20] proposes an O(N2) algorithm
for computing exact projections, and Beck et al. [19, p. 150]
demonstrates an algorithm based on a bisection method for
computing an approximate projection onto a bounded simplex.
Based on these ideas, we develop an efficient O(N log(N))
projection algorithm for computing exact projection onto the
set D in Algorithm 2. That is, given Z ∈ RN , find Y =
ΠD(Z). The idea of our projection algorithm is based on the
following lemma.

Lemma 5. If Z is sorted in a descending order and Y =
ΠD(Z), then Y is also sorted in the same fashion, and
there exists an index i∗ ∈ [0, N ] such that Y1:i∗ = 1 and
Y(i∗+1):N < 1 is the projection of Z(i∗+1):N onto the simplex
Si∗ = {V ∈ [0,∞)N−i

∗ |
∑N−i∗

j=1 vj = M − i∗}.

Proof: First, it is clear that yi = 0 if zi ≤ 0. Thus,
Y = ΠD([Z]+) where [Z]+ = max{Z,0}. Moreover, if the
projection of Z onto [0, 1]N , denoted by Y

′
= Π[0,1]N (Z), is

such that ⟨1, Y ′⟩ ≤M , then Y = Y
′
. Thus, w.l.o.g., we will

consider

Z ≥ 0, ⟨1,Π[0,1]N (Z)⟩ ≥M. (14)

A consequence of (14) is that ⟨1, Z⟩ ≥ M and ⟨1, Y ⟩ = M .
Thus, we instead consider the following problem:

Y = argmin
Y ∈[0,1]N

{1
2
∥Z − Y ∥22 | ⟨1, Y ⟩ = M

}
(15)

Let us introduce a Lagrangian of (15)

L(Y, µ, ν, ρ) =
1

2
∥Z − Y ∥22 + ⟨ν, Y − 1⟩ − ⟨µ, Y ⟩

+ ρ(⟨1, Y ⟩ −M),

where µ, ν, ρ are the corresponding Lagrange multipliers.
Since the problem is convex, the KKT conditions are necessary
and sufficient for optimality, i.e.,

yi − zi − µi + νi + ρ = 0,∀i (16)
µiyi = 0, νi(yi − 1) = 0,∀i (17)

0 ≤ yi ≤ 1,
∑N

i=1 yi = M (18)
µ ≥ 0, ν ≥ 0, ρ ∈ R. (19)

Clearly, if 0 ≤ yi ≤ 1, then it must hold that yi = zi − ρ.
As a result, the optimal solution can be partitioned as:

I1 = {i|yi = 1}, I2 = {i|yi = zi − ρ}, I3 = {i|yi = 0}.

Since M =
∑N

i=1 yi = |I1|+
∑
I2(xi − ρ), we have

ρ|I2| =
∑
i∈I2

zi − (M − |I1|).

Next, observe that
• On I1: µi = 0 and zi = µi + ρ+ 1 ≥ ρ+ 1.
• On I2: µi = νi = 0 and ρ < zi < ρ+ 1.
• On I3: νi = 0 and zi = ρ− yi ≤ ρ.

The above facts imply that if Z is sorted decreasing, then
Y is also sorted decreasing and can be expressed as

Y = [11:i∗ , Ȳ ]

where i∗ = |I1| and

Ȳ = [z(i∗+1):(i∗+|I2|) − ρ,0(i∗+|I2|+1):N ] < 1. (20)

Assume Z is sorted decreasing and Ẑ := [zi∗+1, . . . , zN ].
Then, the projection of Ẑ onto the simplex Si∗ is given by

Ỹ = arg min
Ỹ ∈S

{1
2
∥Ẑ − Ỹ ∥22 | ⟨1, Ỹ ⟩ = M − i∗

}
. (21)

It is easy to verify that by using (Y, µ, ν, ρ) satisfying (16)-
(19), (Ȳ , {νi}i≥i∗ , ρ) satisfy the KKT conditions of problem
(21), and hence Ȳ is the projection of Ẑ onto simplex Si∗ .

By using this lemma, we can further show that i∗ is indeed
the smallest index i ∈ [0, N ] such that the projection of
Z(i+1):N onto the simplex Si is strictly less than 1; the proof is
straightforward and thus skipped for brevity. As a result, when
Z is sorted in a descending order, we can use a binary search to
find the index i∗. Note that in each step of the search, we need
to find the projection onto a simplex, which can be computed
efficiently, e.g., using the algorithm in [21]. We recall this
algorithm below.

Algorithm 4 Πsimplex(A, c): Projection onto a Simplex
Input: A ∈ Rm, c > 0 s.t. a1 ≥ a2 ≥ · · · ≥ am

1: I ← maxi≥1{i | (
∑m

j=1 aj − c)/i < ai
2: τ ← (

∑m
j=1 aj − c)/I

3: for j = 1 to m do
4: a∗j ← max{aj − τ, 0}

Output: A∗

The runtime of Algorithm 4 is linear in the input size.
Therefore, by using a binary search and applying Algorithm 4
repeatedly, we can find index i∗ in nearly linear time; the
details are given in Algorithm 5 below.

We now show that Algorithm 5 has low complexity.

Lemma 6. By using HeapSort as the sorting method, the time
complexity of Algorithm 5 is O(N logN).

Proof: We analyze the time complexity of Algorithm 5
line by line. First, the complexity of lines 1–4 is O(N). Then,
the sorting operation in line 6 can be finished in O(N logN)
using HeapSort. Finally, the loop in binary search runs at most
logM times, each of which calls Algorithm 4 once and thus
takes only O(N). Therefore, the overall time complexity of
Algorithm 5 is O(N logN).

We are ready to prove Theorem 2.
Proof of Theorem 2: In each time slot, ROSC’s pro-

cedures include a single run of initialization, Algorithm 2,
Algorithm 3 and assignment of Xt.

We first analyze the time complexity of Algorithm 2.
According to (8) and Lemma 6, line 2, 3 and 4 in Algorithm 2



Algorithm 5 ΠD(Z): Projection onto a Bounded Simplex

Input: Z ∈ RN ,M > 0
1: Z ← max{Z,0}
2: V ← min{Z,1}
3: if ⟨V,1⟩ ≤M then
4: Y ← V
5: else
6: [Z, Id]← sort(Z, ′descend′)
7: V ← 0, l← 0, r ←M
8: for n = 0 to ⌈log2(M)⌉ do
9: i∗ ← ⌊(r + l)/2⌋

10: Y
′ ← Πsimplex(Z(i∗+1):N ,M − i∗)

11: if i∗ == l then
12: if any y

′

i ≥ 1 then
13: V ← [11:r,Πsimplex(Z(r+1):N ,M − r)]
14: else
15: V = [11:l, Y

′
]

16: break
17: if any y

′

i ≥ 1 then
18: l← i∗

19: else
20: r ← i∗

21: Y (Id)← V
Output: Y

run in O(N), O(N) and O(N logN), respectively. Since the
for-loop in Algorithm 2 runs at most W times, the complexity
of Algorithm 2 is O(WN log(N)).

Next, Fan et al. [5] shows that the complexity of Algo-
rithm 3 is O(KMN). For initialization and assignment in
ROSC, it is easy to verify that the complexity is O(N).

Therefore, the total complexity of ROSC per time slot is
O(max{WN log(N),KMN}).

VII. EVALUATION

In this section, we evaluate the performance of ROSC
through various simulations and compare it to that of other
state-of-the-art policies. We also evaluate the case when the
prediction of future arrivals can be inaccurate.

A. Setup

Data. We conduct experiments on two different data sets.
The first data set is based on a random replacement model
presented by Elayoubi et al. [22]. The requests in this data
set follow a Zipf distribution, while the ranking of services
changes frequently according to real-world measured statistics.
We call this the Replacement data set. The second data set
follows the model introduced by Traverso et al. [23]. Services
are divided into 5 groups in which services share the same
lifetime in the same group. The beginnings of the services
follow a Poisson process determined by their group. We
call this the Poisson data set. Table I summarizes important
parameters of data sets.

Default parameters. Throughout the evaluation, we set
K = 100 for ROSC and assume β1 = β2 = · · · = βN = β∗.

TABLE I
REQUEST MODEL PARAMETERS

Model N T U Ranking Lifetime∗

Replacement 103 104 200 Follow Table 2 in [22]
Poisson 103 104 Follow Trace 1 in [23]

∗ Represent how often the popularity of each service changes

Since the forwarding cost and instantiating cost per service
vary for different edge servers, we fix α = 0.05 and then
evaluate the total cost using different β∗

α . For the auxiliary
function, we set γ = 0.05 as T and HT are not available to
the online algorithm. We also set the step size to be η = γ

12β∗

as suggested in Theorem 1.
Comparison schemes. We compare ROSC with four other

algorithms:
• Receding Horizon Control (RHC): RHC is introduced

in [16], [24], [25]. In each time slot t, it chooses
to cache Xt by solving the optimization problem
argminXt:t+W−1

∑t+W−1
τ=t Fτ (Xτ , Xτ−1).

• Committed Horizon Control (CHC): CHC is generalized
RHC and has been proposed in [16], [17]. It’s caching
decision in time slot t is the average of RHC solutions
Xt in the previous W time slots.

• Static Optimal Offline Algorithm (SOPT): This is an
offline policy that has knowledge of all future requests
and caches the same services in all time slots that
minimize

∑T
t=1 Ft(Xt, Xt−1). Specifically, it caches the

same M services with the largest total requests with∑T
t=1 λn,t ≥ β∗

α in all time slots.
• ROSC, W=300: Lemma. 1 has proven that results of

ROSC with W prediction window size are the same as
the results of applying offline projected gradient descent
algorithm with W update times. Hence, we can approx-
imate the optimal dynamic offline algorithm by using
ROSC with a large W = 300.

Noisy prediction model Considering predictions are im-
perfect in practice, we use the the prediction error model in
Chen et al. [17] to simulate predictions with noisy errors. In
detail, the error at time τ for the prediction of service n at
time t is calculated by λn,t

∑t
s=τ Ren(s), where R is a noise

weight and en(s) is per-step noise for service n at time s.
In the simulations, we let en(s),∀n, s follow standard normal
distribution and simulate on various R.

B. Evaluation Results

We present results of our simulations in Table. II, Fig. 1
and Fig. 2. Throughout the simulations, parameters are set as
β∗

α = 200, M = 10, W = 10 and R = 0 if they are not
specified. We run 10 independent simulations for each setting
and report the average.

Table. II evaluates the runtimes of algorithms. It can be seen
that ROSC runs much faster than RHC and CHC, and it is less
influenced by the increment of the prediction window size W .
Both RHC and CHC require solving a complex finite-horizon
optimization problem with size O(NW ), which is why their
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Fig. 1. Simulation results of cost per time slot on the Replacement data set.
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Fig. 2. Simulation results of cost per time slot on the Poisson data set.

runtimes increase nearly exponentially as W increases. In
contrast, under our ROSC, the runtime is linear in W .

TABLE II
AVERAGE RUNTIME OF ALGORITHMS

Algorithm W = 1 5 10 15 20
RHC 426∗ 739 1499 2585 4036
CHC 855 1463 2979 5100 8072

ROSC 124 130 137 144 150
∗ Results are measured in seconds.

Figs. 1a – 1d and 2a – 2c compare the costs incurred under
different algorithms over various settings. It can be observed
that RHC and CHC both perform much worse than our ROSC
in most cases, especially when W is small. Based on the
algorithm design, RHC and CHC will only change their caches
to host a service n at time t if

∑t+W−1
τ=t λn,τ > β∗

α . Hence,
when W is small, RHC and CHC are not responsive to gradual
changes in long-term trends. It can also be observed that ROSC
performs better than the static optimal offline algorithm in the
Poisson data set, and has a close performance to SOPT in the
replacement data set. In the Poisson data set, the popularity of
services changes over time, and no service is always popular.
The offline algorithm performs worse than ROSC as it cannot
catch the changes in popularity.

Finally, Fig. 1d and Fig. 2d show the result of ROSC
with different W under different R. It should be noticed that
the standard deviation of the prediction error at time t is
WRλn,t, which increases with both W and R. Simulation
results show that ROSC is very robust against prediction
errors. For example, even when W = 10 and R = 0.03, under
which case the prediction error is 30% of the arrival rate,
ROSC still outperforms RHC and CHC without prediction
error in both data sets.

VIII. CONCLUSION

This paper studies an online service caching problem with
predictions and analyzes the performance of the proposed
algorithm with expected dynamic regret and complexity. In
detail, we introduce an auxiliary cost function and then pro-
pose a randomized online algorithm, ROSC. ROSC applies
an online projected gradient descent step with respect to the
auxiliary cost function and uses a randomized algorithm to
obtain integer solutions. We show that the expected dynamic
regret of ROSC is bounded by the total time horizon and
the path length of the requests, which represents changes
in requests over time. We further prove that this bound is
sublinear with the length of time horizon when the path length
is sublinear and parameters are properly chosen. Simulations
with two different data sets have shown that ROSC has much
better performance than two state-of-the-art algorithms, RHC
and CHC, under various parameter settings.
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