
Hofstadter Moiré Butterfly in Twisted Trilayer Graphene

Muhammad Imran,1 Paul M. Haney,2 and Yafis Barlas1

1Department of Physics, University of Nevada, Reno, Nevada 89557, USA
2Physical Measurement Laboratory, National Institute of Standards and Technology; Gaithersburg, MD 20899, USA

(Dated: August 14, 2023)

Mirror symmetric twisted trilayer graphene (tTLG) is composed of even parity twisted bilayer
graphene (tBLG)-like bands and odd parity Dirac-like bands. Here, we study the mirror-symmetric
and mirror-asymmetric Hofstadter moiré (HM) fractal bands of tTLG. A novel quantum parity Hall
state is identified in mirror-symmetric tTLG at experimentally accessible charge densities. This
mirror symmetry-protected topological phase exhibits simultaneous quantized Hall and longitudinal
resistances. The effects of the displacement field on the HM fractal bands of tTLG and topological
phase transitions are also studied. The application of an electric displacement field results in an
emergent weakly dispersive band at the charge neutrality point for a range of twist angles. This
zero-energy state resides in the middle layer. It is isolated from the HM spectrum by an energy
gap that scales proportional to the applied displacement field, making it a prime candidate to host
correlated topological states.

Moiré superlattices possess a periodicity much larger
than the underlying crystal lattice spacing, and for this
reason, provide an ideal test bed for investigation of the
various topological phases of Hofstadter moiré fractal
patterns.1–8 These fractals are significantly influenced by
twist angles and substrate interactions.2–4 More impor-
tantly, electron-electron interactions in the Hofstadter
moiré bands can result in correlated9 and exotic topo-
logical phases.10 Such “twistronic” engineering of flat
bands in twisted 2D crystals is a promising route to dis-
cover novel interaction-driven correlated and topological
phases.11–26 A recently discovered class of these systems
is alternating twist multilayer graphene. These systems
consist of m ≥ 3 graphene monolayers with a twist an-
gle (θ) that alternates between +θ and −θ between each
successive pair of layers.27–33 In alternating twisted mul-
tilayer graphene, electric fields perpendicular to the sam-
ple, in addition to twist angles and substrate interactions,
can significantly modify the Hofstadter moiré fractal pat-
terns. This tunability of the Hofstadter moiré fractals
can result in emergent regimes that might be ideal for
realizing novel correlated and topological phases.9,10,25,26

In this paper, we report on the topological proper-
ties and energy bands of Hofstadter moiré fractals in
twisted trilayer graphene (tTLG). Without a displace-
ment field, tTLG obeys mirror symmetry.34–37 This al-
lows for decomposition into tBLG-like even-parity bands
and monolayer graphene (MLG)-like Dirac odd-parity
bands.27,28,33 At high magnetic fields, this results in
the co-existence of a tBLG-like Hofstadter moiré pattern
with an MLG-like Landau level (LL) spectra in mirror-
symmetric tTLG. The resultant even parity tTLG Hofs-
tadter moiré patterns at zero displacement field are con-
sistent with earlier studies of the Hofstadter moiré pat-
terns in tBLG.2–4 However, the tTLG Hofstadter moiré
patterns exhibit a different sequence of Chern numbers
due to the simultaneous presence of the odd parity MLG-
like LLs.

More importantly, the mirror symmetry stabilizes a
symmetry-protected topological phase, which we call the
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FIG. 1. (a) Lattice structure of twisted trilayer graphene with
the top and bottom layer rotated by θ/2 while the middle
layer is rotated by −θ/2. (b) moiré pattern in twisted trilayer
graphene with local AA and AB stacking regions.

quantum parity Hall state. It originates from counter-
propagating branches of even and odd parity edge states
with different numbers of branches and opposite signs of
the Hall conductivity in each parity sector. This state is
present in the angle regimes θ ≈ 1.6◦ to 2.5◦ at accessible
charge densities in tTLG. Since mirror symmetry forbids
backscattering between different parity sectors, this state
exhibits simultaneous quantization of the Hall and longi-
tudinal resistances. Similar quantum Hall parity states
have been identified in ABA-stacked trilayer graphene at
neutral charge density.37,38

In a displacement field, the Hofstadter moiré pattern
is significantly modified due to the hybridization of the
tBLG-like band with the MLG-like Landau levels (LLs).
The system exhibits a fractured Hofstadter moiré butter-
fly pattern, followed by an emergent zero-energy weakly
dispersive band. This weakly dispersing flat band is
pinned to the charge neutrality point and separated from
the rest of the spectrum by a band gap. In the angle
regime θ ≈ 1.7◦ to 2.5◦, the band gap increases linearly
with the applied displacement field energy ∆⊥. This is
accompanied by a slight increase in the bandwidth for
the range ∆⊥ = 5 meV to 30 meV. This zero-energy
band resides primarily in the middle layer. Its energetic
and topological properties can be tuned by the applied
displacement field, making it a promising candidate for
hosting many-body interacting ground states.10
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FIG. 2. Hofstadter moiré butterfly patterns in tTLG for zero displacement field. Energy eigenvalue dispersion as a function
of the applied magnetic field at the angles (a) θ = 2◦, (b) θ = 1.6◦ and (c) θ = 1.51◦(magic angle) with w = 97.50 meV and
η = 0.82. In (a), (b), and (c), the even parity bands are denoted by black/blue, while the odd parity bands are denoted by red.
The values in the spectral gaps indicate the Hall conductivity σxy in units of e2/h. For clarity, the details of the central band
regions in (a), (b), and (c), depicted in blue for even parity bands and red for the odd parity bands, are magnified in (d), (e),
and (f).

The paper is organized as follows. In section A, we dis-
cuss the mirror-symmetric Hofstadter moiré butterfly, its
band dispersion, and topological properties as a function
of twist angles. Section B studies the origin and proper-
ties of the emergent zero-energy weakly dispersive band
induced by electric fields in tTLG. Finally, in section C,
we discuss the relevance of our results to experiments on
tTLG at high magnetic fields. The details of the calcu-
lations, model Hamiltonian of tTLG, and methods are
relegated to the Appendices.

A. Mirror symmetric tTLG Hofstadter moiré
butterfly

The lattice structure of the tTLG lattice exhibits mir-
ror symmetry about the middle layer, as indicated in
Fig. 1 (a). This facilitates a description of energy bands
in terms of parity eigenstates.33,35,36 We denote sublat-
tice A(B) on layer i with Ai(Bi). The even parity or-
bital combinations are then given by (A+, B+, A2, B2)
while the odd parity orbitals are (A−, B−), where A± =

(A1 ± A3)/
√
2, B± = (B1 ± B3)/

√
2. We take the rel-

ative in-plane displacement, d = 0, and denote the top

(bottom) layers angle θ/2, while the middle layer angle,
−θ/2. The band dispersion due to the moiré pattern
formed at small twist angles can be captured by exten-
sions of the Bistritzer-MacDonald (BM) Hamiltonian.11

The BM model captures the effect of the periodic tunnel-
ing between the layers in the AA and AB stacked regions
(see Fig. 1 (b)), denoted by wAB = w = 97.5 meV and
wAA = ηw with η = 0.82, respectively (see Appendix
A for the tTLG Hamiltonian). At zero displacement
fields, due to mirror symmetry, the Hamiltonian can be
decomposed into tBLG-like Hamiltonian with enhanced
tunneling parameter w →

√
2w, and an MLG-like Dirac

band.28,33

The large moiré periodicity of twisted 2D crystal re-
sults in a fractal Hofstadter moiré (HM) bands at high
magnetic fields. We used the parity eigenstate basis to
calculate the HM-bands of tTLG with the gauge choice
A = B(−y, 0). The Hamiltonian was expressed in the ba-
sis set, {|n, Yi, α, σ⟩}, where n denotes the Landau level
(LL) index at the guiding center positioned at Yi, (which
corresponds to a lattice site in the unit cell) on the sub-
lattice α. The index σ = 1, 2, 3 denotes the parity eigen-
spinors with the assignments 1 = (A+, B+), 2 = (A2, B2)
and 3 = (A−, B−). The details of the calculation are pre-
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FIG. 3. Quantum parity Hall phase in the Hofstadter moiré
butterfly patterns of tTLG for (a) θ = 2◦, (b) θ = 1.6◦. The
number of edge states associated with the even-parity tBLG-
like bands is in blue, while the MLG-like bands are in red, in
units of e2/h. (c) Edge state schematic of the quantum parity
Hall phase in a six-terminal Hall-bar geometry at positive
charge densities.

sented in Appendix A.
Our calculations for tTLG exhibited rich structures in

the HM spectrum, which can be tuned by the electric
field and twist angles. Fig. 2 shows the HM butterfly
for mirror-symmetric tTLG at three representative angles
(θ = 2◦, 1.6◦ and 1.5◦). The Hall conductivity, in units
of e2/h, is shown in the spectral gaps. In Fig. 2, the even
parity bands are depicted in blue or black, while the odd
parity bands are shown in red. The Landau bands orig-
inating from the odd parity sector can be distinguished
by ϵn ∝

√
B, while the energy of the even parity bands

exhibit a tBLG HM fractal pattern. Similar HM butter-
fly patterns for tBLG have been reported in Ref. 3. Our
even parity band HM butterfly patterns are consistent
with these reports but now occur at twice the magnetic
fields due to the

√
2 enhancement of the twist angle in

the tTLG even parity sector. The HM bands of tTLG
exhibit unitary particle-hole symmetry27,39 resulting in a
symmetric spectrum with respect to the neutral charge
density point (see Appendix A for a discussion of this
symmetry).

We primarily focused on three angles, each indicative
of three distinct regimes of the HM butterfly. A de-
tailed version of these central bands of the HM butter-
fly is shown in Fig. 2 (d), (e), and (f). The θ = 2◦

HM butterfly is representative of the twist angle range
θ ≈ 1.7◦ to 2.5◦. In this regime, we found an emergent
Hofstadter pattern similar to the Hofstadter pattern of
the tight-binding model for graphene. This feature has

been observed in previous studies,3, and this duality can
be proved in the weak tunneling or high magnetic field
limit, where LL mixing becomes negligible. This duality
survives even in the presence of LL mixing for this angle
regime, most likely associated with the underlying sym-
metries of the moiré lattice potential. A more detailed
description of this duality will be provided elsewhere.
In contrast, for θ = 1.6◦, we found a spectral gap for

all magnetic fields. Similar results were obtained for the
range of angles θ ≈ 1.65◦ to 1.55◦, after which the pattern
changed significantly. At the magic angle θ = 1.51◦,
the HM pattern is modified and bears no resemblance
to the Hofstadter pattern in monolayer graphene. The
bandwidth of the central bands decreases nearly an order
of magnitude when compared to the HM pattern at θ =
2◦. Below the magic angle at θ = 1.45◦ another pattern
reemerged similar to θ = 1.6◦.
In Fig. 2, the integers in the spectral gaps of the HM

butterflies denote the Hall conductivity, σH in units of
e2/h. The numerically attained eigenfunctions were em-
ployed with the Wilson loop procedure40 to calculate the
Chern numbers and Berry flux (see Appendix B for de-
tails of this method). We calculated the Hall conductivity
within the larger spectral gaps≈ 5 ⩾ meV. The Hall con-
ductivity at the charge neutrality point σH(ϵF = 0) = 0
was regularized to zero and included the spin and valley
degeneracy. The Chern numbers and Hall conductivity
of the emergent HM pattern for θ = 2◦ in the even parity
sector of tTLG are the same as the monolayer graphene
Hofstadter butterfly. This aspect of the duality for tBLG
has been reported in Ref. 3. However, in tTLG, the Hall
conductivity is the sum of the Hall conductivity of tBLG
even-parity HM bands and the MLG-bands odd parity
LLs.

B. Quantum Parity Hall effect

A consequence of mirror-symmetry in tTLG is a
symmetry-protected topological (SPT) phase with simul-
taneous quantization of the longitudinal and Hall resis-
tance. This mirror-SPT (mSPT) phase, which we call
the quantum parity Hall phase, was identified at neutral
charge density in ABA trilayer graphene.37,38 In tTLG,
this state occurs at finite charge density. It is marked by
unequal branches of counterpropagating even-parity and
odd-parity edge modes associated with tBLG-like HM
bands and MLG-like LL bands. In Fig. 3 (a) and (b), we
label the regions where the quantum parity Hall state ap-
pears by the number of edge states associated with each
parity sector, blue(red) for even(odd)-parity.

The Hall conductivity is positive(negative) for nega-
tive(positive) energies in these regions. Since the neutral
charge density is defined at zero energy, this corresponds
to a positive(negative) sign of Hall conductance for hole-
like(electron-like) charge densities. This is an essential
feature of this quantum Hall parity state in tTLG. From
our calculations of Chern numbers, we only found one in-
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FIG. 4. Hofstadter moiré butterfly patterns in tTLG for an electric displacement field strength ∆⊥ = 10 meV at the angles
(a) θ = 2◦, (b) θ = 1.6◦ and (c) θ = 1.51◦(magic angle) with w = 97.50 meV and η = 0.82. The values in the spectral gaps
indicate the Hall conductivity σxy in units of e2/h.

stance of this state. Still, other types of mSPT phases can
be realized in regions with smaller spectral gaps⪅ 5 meV.
They can be identified by negative(positive) even-parity
tBLG-bands Chern numbers at positive(negative) charge
densities.

Fig. 3 (c) shows the edge states for the quantum par-
ity Hall phase in a six-terminal Hall bar geometry for
positive charge densities. 2 edge modes originate from
the odd parity LL bands (shown in red), and 4 counter-
propagating edge modes arise from the even-parity Hof-
stadter bands (shown in blue). Since the edge states in
the mirror sectors have unequal branches of edge modes,
they exhibit simultaneous quantized Hall and longitudi-
nal resistances. The edge modes are protected from back-
scattering by mirror symmetry. The resistances in the
Hall bar geometry can be calculated from the Landauer-
Buttiker approach41 (see Appendix C) for the quantum
parity Hall state, giving

R14,26 =
h

6e2
; R14,32 =

h

9e2
; R14,14 =

4h

9e2
, (1)

where Rij,kl is defined as the ratio of the voltage to the
current measured between the kth and the jth, with cur-
rent applied from the ith to the jth lead. The edge states
of the quantum parity Hall phase and their stability to
disorder are discussed in what follows.

The effect of bulk and edge mirror asymmetry on the
quantum parity Hall state can be estimated from general
arguments. To observe the quantum parity Hall states,
the bulk gap ∆QPH must be larger than the energy asso-
ciated with mirror asymmetry in realistic samples. This
energy scale is ℏvkD∆θ ∼ 62.2∆θ meV, where ∆θ is the
difference between the angle of the top and bottom layer.
For the quantum parity Hall state at θ ∼ 20, we estimate
that the bulk gap will survive for ∆θ ≤ 0.10. This esti-
mate decreases as the QPH band gap reduces when the
twist angle approaches the magic angle.

To estimate the effect of edge asymmetry, we model

the inter-parity channel mixing as disorder along a one-
dimensional bosonic edge, which can be characterized by
a localization length.42 It determines the sample dimen-
sions for which the quantum parity Hall state can be ob-
served. If the distance between the leads in Fig. 3 (c) is
smaller than the localization length, the transport chan-
nel becomes ballistic, and the conductance will be given
by Eq. 1. The calculation of the localization length and
its dependence on the disorder strength will be provided
elsewhere. Alternately, sharp local gates can be used to
define an electrostatic edge inside the sample, thus pre-
serving the requirement of mirror symmetry along these
gate-defined edges.

C. Emergent zero-energy state in tTLG

The displacement field breaks mirror symmetry, hy-
bridizing the Dirac LLs with the even parity HM bands
of the tBLG-like even parity sector. Fig. 4 (a), (b), and
(c) shows the HM pattern in the presence of a displace-
ment field of strength ∆⊥ = 10 meV. The most striking
feature in Fig. 4 (a), (b), and (c) is the emergence of two
spectral gaps adjacent to the charge neutrality point. For
all three angle regimes, we observed this fractured frac-
tal pattern in a displacement field when compared to the
HM fractal patterns in Fig. 2 (d), (e), and (f). This is
accompanied by the emergence of a weakly dispersing
zero-energy band pinned at the charge neutrality point.
This zero-energy band disperses with a small bandwidth
≈ 0.1 meV to 0.4 meV for the twist angle θ = 2◦. How-
ever, its bandwidth slightly increases at smaller twist an-
gles as a function of the magnetic field. The spectral gap
at zero-energy is given by ≈ ∆⊥/2 for θ = 2◦, and it is
independent of the magnetic field within numerical ac-
curacy. This spectral gap results from a level repulsion
mechanism, as discussed below.
Another striking feature in a displacement field is a
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topological phase as a function of the twist angle. This
is evident in the Hall conductivity at θ = 20, 1.60 of the
gapped state above the charge neutrality point which
changes from σxy = 2e2/ to σxy = −2e2/ at θ = 1.510.
This is accompanied by a similar change in Hall conduc-
tivity below the charge neutrality point. This topologi-
cal transition indicates a significant band reconstruction
between the twist angles θ = 1.6◦ and θ = 1.51◦. These
transitions are associated with the Berry curvature’s tun-
ability and band dispersion as a function of the electric
field. This phase transition is evident in the correspond-
ing Wannier plots for tTLG (see Appendix B).

The most striking feature is the emergence of a zero-
energy flat band multiplet in the angle regimes θ = 1.7◦

to 2.5◦ under a displacement field. This zero-energy flat
band multiplet entirely resides in the middle layer and is
q-fold degenerate, where ϕ = p/q is the inverse magnetic
flux per unit cell. The emergent zero-energy state results
from the level repulsion of the LL states in the top and
bottom layers induced by the displacement field, which
leaves an isolated state derived from the N = 0 LL in the
A2 orbital. Below, we describe the origin of this state in
more detail for the K valley. Key to this argument is the
observation that the displacement field leads to level re-
pulsion between A− and A+ states which is much greater
than the interlayer tunneling-induced modification of the
A2 LL energy. The argument for the other valley K′ can
be attained by interchanging the sublattices.

We first discuss the influence of interlayer tunneling
on the n = 0 LLs on the A sublattice. We assume zero
displacement field and consider the chiral limit (η = 0),
corresponding to the absence of tunneling between the
same orbitals (i.e. wA+A2 = wB+B2 = 0) in the even par-
ity tBLG-like bands.24 In a magnetic field when η = 0,
the N = 0 LL in valley K lies on the sublattice A+, A2 in
the even parity sector, and A− in the odd parity sector.
Since the N = 0 LLs are localized on the A sublattice,
there is no direct coupling between the N = 0 LLs, as
indicated in Fig. 5 (a). The N ̸= 0 LL are perturbatively
coupled to the N = 0 LL due to wA+B2

and wB+A2
tun-

neling. The effect of this tunneling can be captured by an
effective coupling λt ∝ (w/(ℏvkθ))ϕ exp(−2πϕ/

√
3). In

Fig. 5 (a), this mixing is indicated by the dashed lines,
where we only show the coupling in valley K.

We next consider the impact of the displacement field
on LL energy levels. When a displacement field is ap-
plied, the A+ orbital hybridizes with the A− orbital in
the odd-parity sector. This direct coupling is shown in
the solid line in Fig. 5 (a). These states gap out due
to level repulsion, with the energy separation scaling as
λ∆ ≈ ∆lB/(ℏv) ∝

√
ϕ. This level repulsion mechanism

leaves behind the zero-energy state on the middle layer
on the orbitals A2 at zero energy. Therefore, in the chi-
ral limit η = 0, the emergent zero-energy state in the
HM pattern at θ = 2◦ is localized in the middle layer
on sublattice A2 in the K valley. The zero-energy level
has components N ̸= 0 LL due to mixing induced by
the wA+B2

and wA2B+
interlayer tunneling terms, as de-
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FIG. 5. (a) Schematic representation of the coupling in the
chiral limit (η = 0) in valley K for the N = 0 with the
N ̸= 0 LLs. The direct coupling in N = 0 LL due to the
displacement field is represented by the solid black line, while
the perturbative coupling due to tunneling between the A
and B sublattices is denoted by the dashed line. (b) Band
gap as a function of the displacement field for different values
of inverse flux per unit cell ϕ = p/q, all energies are in meV.
All results are for the twist angle θ = 2◦.

scribed in the previous paragraph. The ratio of the in-
terlayer tunneling λt to the displacement field-induced
coupling λ∆ scales as

√
ϕ exp(−ϕ), which exhibits expo-

nential suppression at low fields. This indicates that the
level repulsion mechanism dominates for B ≲ 40 T and
results in the localization of the zero-energy state on the
middle layer.
In the chiral limit, the calculated projected weight of

the emergent zero-energy state averaged over the BZ-
mesh on the N = 0 LL orbital in the middle layer was
≈ 80 %, indicating some mixing with higher LL in the
middle layer. This mixing can be characterized by λt and
results in ≈ 20 % mixing with N ̸= 0 LL in the middle
layer. While our arguments are valid for lower magnetic
fields, they had to be numerically verified at higher values
of the magnetic fields or smaller values of ϕ. Although we
considered the chiral limit in our description above, we
find that in both the chiral limit and for η = 0.82, the cal-
culated projected weight of the zero-energy state on the
middle layer was ≈ 1 and independent of the value of ϕ.
The same results are obtained for various displacement
fields. Furthermore, the calculated projected weight of
the emergent zero-energy state averaged over the BZ-
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mesh on the N = 0 LL orbital in the middle layer was
≈ 60 %, indicating significant mixing ≈ 40 % with N ̸= 0
LLs in the middle layer.

More evidence of the level repulsion mechanism can be
inferred from the behavior of the energy gap above the
zero-energy state ∆g as a function of the displacement
field. The energy gap ∆g ≈ ∆⊥/2 grows linearly as a
function of the displacement field (see Fig. 5 (b). The
bandwidth of the zero-energy state ∆w ≈ 0.1 meV to
0.4 meV is much smaller than the bandgap and varies
slightly with the electric field. We also found that the
Berry curvature deviation of the zero-energy state de-
creases as a function of the displacement field strength
∆⊥. This tunability of the Berry curvature and isolation
of the emergent zero-energy state provide ideal conditions
for realizing various interesting many-body interacting
ground states.10 Since the emergent zero-energy state has
significant components of higher LL wavefunction, it is
anticipated that the ground state at fractional filling will
most likely be a Wigner crystal or charge density wave
state.43–47 Due to the complexity of the computational
basis, these studies must be performed on lattice analogs
of the HM pattern of tTLG.

D. Conclusion and Outlook

In conclusion, the displacement field provides an ex-
ternal knob to manipulate the topological phase and en-
ergy spectrum in the HM butterfly. The most striking is
the emergence of a zero-energy state at the charge neu-
trality point within an accessible range of doping den-
sities, whose separation from the energy spectrum can
be tuned by the displacement field. The narrow band-
width of the zero-energy band indicates the possibility of
strongly correlated phases such as quantum Hall ferro-
magnetism,48–51 possible charge density waves,43–47 and
fractional topological insulators.10,52–56 Furthermore, the
electric field can be used to access topological transitions.
This makes it possible to probe the HM butterfly patterns
in tTLG in transport or via scanning probe experiments.

In addition, we discovered a symmetry-protected topo-
logical phase for the mirror-symmetric case due to un-
equal counter-propagating edge modes exhibiting simul-
taneous Hall and longitudinal resistances. Interactions
within each sector of the quantum parity Hall phase
will most likely result in analogs of the exotic correlated
quantum Hall phases detected in the ABA stacked tri-
layer graphene.37,38 Interactions within the Hofstadter
bands will also result in topological and correlated phases
when the bandwidth is smaller than the interaction en-
ergy scale, which generally occurs for larger values of q.
However, due to the non-monotonic behavior as a func-
tion of the magnetic fields, as evidenced by the fractal
nature of the HM butterfly patterns, the role of interac-
tions requires detailed theoretical calculations for every
value of ϕ, which is beyond the scope of this paper.

ACKNOWLEDGMENTS

M. I. and Y. B. acknowledge the support of
UNR/VPRI startup grant PG19012. Y. B. acknowledges
support from the Aspen Center for Physics, which is sup-
ported by NSF grant PHY-1607611, where part of this
work was performed.

Appendix A: tTLG Hamiltonian

The continuum Hamiltonian of the tTLG,11 which is
valid for small angles, θ ≈ 3◦, can be expressed in terms

of a six-component spinor, ψ†
K = (ϕ†1,K, ϕ

†
2,K, ϕ

†
3,K), at

the Dirac point K+

H =

 hθ +∆1 T (r) 0
T †(r) h−θ +∆2 T †(r)
0 T (r) hθ +∆3

 , (2)

where, h±θ = D(θ)[−ıℏv(ξσx∂x + σy∂y)]D
†(θ), denotes

the Dirac Hamiltonian on the rotated Brillouin zone
(BZ), with D(θ) = exp(ıσzθ/2), σi, denotes the Pauli
matrix acting on the sublattice degree of freedom. ξ =
±1 denotes the Dirac points corresponding to different
valleys at the BZ momentum Kξ = 4π/3a(ξ, 0).The
momentum space tunneling matrix elements, T (r) =∑3

n=1 T̂ne
ıqn·r, can be expressed in terms the matrices,

T̂n, with,

T̂n = w(ηÎ+ cos((n− 1)ϕ0))σ̂x + sin((n− 1)ϕ0)σ̂y) (3)

where, ϕ0 = 2π/3, and the tunnelling parameters are,
wAB = w = 97.5 meV, wAA = ηw with η = 0.82.
The tunnelling matrices are related by C3z symmetry of
the lattice via unitary operator, U3z(ϕ0) = exp(iσzϕ0/2).
The momentum transfer vectors associated to the honey-
comb moiré lattice q1 = kθ(0,−1), q2 = kθ(

√
3/2, 1/2),

q3 = kθ(
√
3/2,−1/2), where kθ = 4π/(3aM ) is the

distance between the mini-Dirac points and, aM =
a0/(2 sin(θ/2)), is the moiré lattice spacing, with a0 =
0.246 nm.
In the parity basis, the tTLG Hamiltonian becomes,

H(w, η,∆±) =

 hθ +∆+

√
2T (r) ∆−√

2T †(r) h−θ +∆2 0
∆− 0 hθ +∆+

 ,

(4)
where, ∆± = (∆1 ± ∆3)/2 and from now on we
take ∆2 = 0. The above Hamiltonian in Eq. 4 is
expressed in terms of a six-component spinor basis
(A+, B+, A2, B2, A−, B−), where A± = (A1 ± A3)/

√
2

and B± = (B1 ± B3)/
√
2, have even (+) and odd (−)

parity with respect to this mirror symmetry, while the
middle layer, A2, and, B2, orbitals have even(+) parity.
For all our calculations, we make the zero-angle ap-

proximation, which corresponds to the choice D(θ) ∼ I
valid for small angles θ ≲ 50. This gives h±θ =
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FIG. 6. Mirror symmetric bands of tTLG at the magic angle
(a) θ = 1.51◦ and (b) θ = 2◦ with even parity tBLG-like
bands in blue and the monolayer-Dirac like bands in red at
∆− = 0. The dashed line corresponds to the same angles with
mirror symmetry broken (∆− = 10 meV) by the presence of
the electric field.

−ıℏv(ξσx∂x + σy∂y), with a small (1 %) change in
the accuracy of the energy eigenvalues for small an-
gles. The Hamiltonian in Eq. 4 exhibits a unitary
particle-hole symmetry. This unitary particle-hole sym-
metry ΓPH is generated by ıτy ⊗ I, where τy acts on
the even-parity tBLG component of the Hamiltonian.
This unitary particle-hole symmetry can be expressed
as ΓPHH(r)Γ−1

PH = −H(−r). This unitary particle-hole
symmetry must be distinguished from the chiral sym-
metry at η = 0. This chiral symmetry is expressed as
ΓCHΓ−1

C = −H, where ΓC = ⊗3
i=1σz, and σz acts on

the sublattice degrees of freedom in each layer. We re-
fer the reader to Ref. 39 for a complete discussion of the
discrete symmetries of tBLG.

Due to the enhanced tunneling in the tBLG-like sector,
the first magic angle occurs at θM = 1.51◦ = 1.05◦

√
2,

with a bandwidth ≈ 0.5 meV. Fig. 6 (a) and (b) show the
energy bands of tTLG at the first magic angle θ = 1.51◦

and θ = 2◦. In Fig. 6 (a) and (b), the even parity en-
ergy bands are plotted in blue, and the odd parity energy
bands are plotted in red. The odd parity band exhibits a
Dirac-like dispersion, while the even parity bands exhibit
the energy dispersion of tBLG. When the mirror symme-
try is broken, for instance, by applying a displacement
field, ∆⊥ = 10 meV the even and odd parity bands hy-
bridize, as indicated by the black dashed line in Fig 6 (a)
and (b).

To calculate the HM-bands of tTLG, we worked in
the parity eigenstate basis, and the Landau gauge, A =
B(−y, 0), with the basis choice, {|n, Yi, α, σ⟩}, where n
denotes the Landau level (LL) index at the guiding cen-
ter positioned at, Yi, (which corresponds to a lattice
site in the unit cell) on the sublattice α. The index
σ = 1, 2, 3 denotes the even(odd) parity eigenspinors
with the assignments 1 = (A+, B+), 2 = (A2, B2) and
3 = (A−, B−).

The moiré hopping pattern determines the Hamil-
tonian periodicity as opposed to the moiré unit cell.2

The moiré hopping pattern has a larger periodicity, ex-

actly six times the periodicity of the moiré unit cell,
AMh = 3

√
3a2M ,

2 where aM ≊ a0/θ for small angles,
with a0 = 0.246 nm. The HM bands are calculated for
rational values of flux per unit cell; with our choice of
the unit cell, the inverse flux per unit cell is given by
ϕ = 2πl2B/(3

√
3a2M ) = p/q, where p and, q are co-primes.

The magnetic field is B = 4B0θ
2/ϕ, where B0 = 1 T and

θ is expressed in degrees.
The matrix elements in the basis set can be calculated

from the Hamiltonian, H. The matrix element associated
to the diagonal Hamiltonian defined as H0 = H(0, 0, 0),
are given by,

⟨n, Yi, A, σ|H0|m,Yj , B, σ′⟩ = ϵ0
√
nδn,m+1δijδσσ′ , (5)

where, ϵ0 =
√
2ℏv/lB . It is important to point out that

since the nth LL on sublattice A couples to the (n+1)th

LL on sublattice B, for a finite LL cutoff N , the N th LL
on sublattice A shows up at zero energy, due to numerical
truncation of the Hilbert space. To circumvent this issue,
we used an asymmetric cutoff in our calculations and in-
cluded the LL orbitals, n = 0, · · · , N−1, on sublattice A
and n = 0, · · · , N , on sublattice B. Of course, the situa-
tion is reversed in the other valley, and the Hamiltonian
is just the transpose of the Hamiltonian in the valley, K.
The tunneling matrix elements are only non-zero for

LL wavefunctions between the spinors σ = 1, 2. Fur-
thermore, due to the spatial dependence of the tunneling
matrix elements, different guiding centers, Yj are coupled
with different σ indices. The tunneling matrix elements
T (r) in the LL basis can then be expressed as,

T (r) =
∑
j,k

∑
n,m

[
T̂1;α,βΓ1;nm(j,k)|n, Yj , α, 1⟩⟨m,Yj , β, 2|

+ T̂2;αβΓ2;nm(j,k)|n, Yj , α, 1⟩⟨m,Yj+1, β, 2|

+ T̂3;αβΓ3;nm(j,k)|n, Yj , α, 1⟩⟨m,Yj−1, β, 2|
]
, (6)

where

Γ1;nm(j,k) = Fnm

(
q1lB√

2

)
e
− 4πıp

q j−ı 2√
3
k1 , (7)

Γ2;nm(j,k) = Fnm

(
q2lB√

2

)
e

πıp
q (2j+1)+ ı√

3
k1+ık2 , (8)

Γ2;nm(j,k) = Fnm

(
q3lB√

2

)
e

πıp
q (2j−1)+ ı√

3
k1−ık2 , (9)

where k = (k1, k2) is defined in units of ∆ =

(
√
3/2)kθl

2
B = 3(p/q)aM . With this parametrization, the

magnetic BZ (mBZ) is given by k1 ∈ [0, 6π/(
√
3ϕ)) and

k2 ∈ [0, 2π/q) in units of ∆ = 3(p/q)aM .
The LL form factors Fn,n′(x), are given by

Fn,n′(z) =

{ √
n′!
n!

(
ız⋆

)n−n′

Ln−n′

n′ (z2)e−z2/2 n ≥ n′,√
n!
n′!

(
ız
)n′−n

Ln′−n
n (z2)e−z2/2 n′ > n,

(10)
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where, z = zx+ ızy with z2 = z2x+ z
2
y and Ln−n′

n′ , are the
associated Laguerre polynomials. The scaling of the tun-
neling matrix elements is primarily determined by the
exponential factor exp(−(kθlB)

2/4) ∼ exp(−2πϕ/
√
3),

where ϕ is the inverse flux per unit cell. The diagonal fac-
tors scales as Fnn ∝

√
ϕ exp(−2πϕ/

√
3), whereas the off-

diagonal factors obey Fnm ∝ ϕ(|n−m|)/2 exp(−2πϕ/
√
3).

Even though LL mixing is suppressed at low magnetic
fields (or equivalently at higher values of ϕ), the LL spac-
ing also reduces as 1/

√
ϕ. Therefore, several LLs must

be included to achieve convergence.
To achieve convergence, our LL cutoff was determined

by N = 20(max(w, ℏvkθ)/ϵ0)2, where ϵ0 =
√
2ℏv/lB

with ℏv ≈ 596 meV · nm. The dimension of the ma-

trix for tTLG graphene for a given value of ϕ per valley
is Ndim = 6q(N + 1/2). The tTLG Hamiltonian was di-
agonalized over a 10×10 discrete mBZ mesh to calculate
topological properties and a smaller mesh to generate the
HM butterfly patterns.

Appendix B: Topological Properties of tTLG HM
butterfly

Here, we review our procedure for calculating the topo-
logical properties. The Bloch function for the λthi HM
bands in tTLG can be expressed as,

uλi
(k) =

q,N∑
m=1,n

gλi,n,m(k)
∑
l

ϕn(x− k2l
2
B −∆(m+ lq)) exp(ı

∆y

l2B
(m+ lq)) exp(−ık1(x−∆m− q∆l)), (11)

where ϕn corresponds to the Harmonic oscillator wave-
function and gλi,m,n(k)’s are obtained numerically. The
Chern number of the bands is calculated using the lat-
tice gauge theory method introduced in Ref. 40. For
the case of Eq. 11, there are two contributions to the
Chern number, one associated with the lattice eigenvec-
tors gλi,m,n(k), the lattice Chern number C̃λ. In con-
trast, the other is associated with the band-folded LL
wavefunctions ϕn.
The lattice Chern number for M-band multiplet with

collection of bands with indices, λM = (λ1, λ2, . . . , λM )
and M-mulitple Bloch wavefunctions (uλ1

, uλ2
, . . . , uλM

)

we calculated the Bloch band Chern number C̃λM
of the

multiplet

C̃λ =
1

2πı

∑
ki

∏
□

det

[
GλM

(ki)GλM
(ki + µ̂)

det |GλM
(ki)GλM

(ki + µ̂)|

]
,

(12)
where GλM

(ki) = (gλ1
(ki), gλ2

(ki), . . . , gλ1
(kM )) is the

Nd ×M matrix composed of the amplitude of the Bloch
band wavefunction. Since our basis set comprises LLs,
each band folded LL contributes to the Chern number
by 1/q. The total Chern number is the sum of the lattice
Chern number and LL contribution associated with the
multiplet,

Cλ = C̃λ +
M

q
. (13)

The total Chern number Cλ is always an integer.

Appendix C: Wannier diagrams

Fig 7 a) and b) show the Wannier plots in the ab-
sence of any displacement field, where mirror symmetry

1

-1

lo
g(
!)
/|
lo
g(
!)
| m

ax

d)c)

a)

c)

b)
(a) (b)

(c) (d)

B (T) B (T)

FIG. 7. Wannier plots for θ = 2◦ a) and c) and θ = 1.51◦ b)
and c), with displacement field ∆⊥ = 0, 10 meV, respectively.
The straight blue lines are drawn from the Streda formula. We
have only shown them for hole-HM bands. The sharp density
of state features at the charge neutrality point is associated
with the LL of odd parity Dirac band of tTLG. As the gate
voltage is applied, these sharp features in the density of states
disappear due to mixing with Hofstadter energy bands. The
absence of a white gap in the wedge-shaped region at the
charge neutrality point indicates this.

is exact, for θ = 2◦and θ = 1.51◦, respectively. The
slope of the straight lines corresponds to the Hall con-
ductivity as indicated by Streda’s formula, n̄ = σϕ̄ + c,
where n̄ = n/n0, refers to the normalized number den-
sity (n0 is the total density that includes the spin and
valley degeneracy), and ϕ̄, refers to the tight binding al-
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V1

V2 V3

V4

V5V6

n
m

FIG. 8. Edge state schematic of the quantum parity Hall
phase in a six-terminal Hall-bar geometry. The m-right mov-
ing electrons are indicated in blue, and the n-left moving elec-
trons are shown in red.

pha ϕ̄ = 1/(6ϕ), σ denotes the Hall conductivity, and c
denotes the intercept. The blue lines guide the eye and
indicate Streda’s formula applied to the HM pattern of
tTLG. The high density of states in the wedge-shaped re-
gion Fig 7 a) and b) is due to the simultaneous presence
of the odd parity zeroth LL.

Fig 7 c) and d) show the Wannier plots for ∆⊥ = 10
meV for θ = 2◦and θ = 1.51◦, respectively. The wedge
shape region at charge neutrality has reduced intensity,
indicating a gap opening in the presence of a displace-
ment field. Additionally, the odd parity Landau bands
become weakly dispersive due to mixing with the even
parity tBLG energy bands. A displacement field can
tune this topological transition; it can be identified in
the Wannier plots as a more prominent downward slop-
ing −2(2) lines on the electron(hole) regions at the magic
angle in Fig. 7 d).

Appendix D: Landauer-Buttiker theory

Consider a quantum parity Hall phase with m-right
moving and n-left moving channels protected by mir-
ror symmetry in a Hall bar geometry setup, as shown in
Fig 8. The current into the ith-lead Ii can be expressed

as

Ii =
e2

h

∑
j

(TijVj − TjiVi), (14)

where Tij is the transmission probability of the current
from the jth lead to the ith and Vi is the potential asso-
ciated with the ith lead.41

We assume perfect contacts i.e. Tij = 1, and that
the current is applied to the 1st-lead and drained from
the 4th lead. The rest are floating contacts and act as
voltage probes giving I2 = I3 = I5 = I6 = 0. We can
write I1 = −I4 = I because of the charge conservation.
The voltages in terms of the current can be determined
by solving the linear system of equations,

V1 = − h

e2

(
n2

m3 + n3

)
I, (15)

V2 =
h

e2

(
m− n

m2 −mn+ n2

)
I, (16)

V3 =
h

e2

(
m2 +mn− n2

m3 + n3

)
I, (17)

V4 =
h

e2

(
m

m2 −mn+ n2

)
I, (18)

V5 =
h

e2

(
mn

m3 + n3

)
I, (19)

with V6 = 0. The resistance Rij,kl is defined as the ratio
of the voltage to the current measured between the kth

and the jth, with current applied from the ith to the jth

lead gives,

R14,26 = R14,35 =
h

e2

(
m− n

m2 −mn+ n2

)
, (20)

while

R14,32 = R14,56 =
h

e2

(
mn

m3 + n3

)
, (21)

and

R14,41 =
h

e2

(
m2 +mn+ n2

m3 + n3

)
. (22)
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41 M. Büttiker, Phys. Rev. B 38, 9375 (1988).
42 C. L. Kane and M. P. A. Fisher, in Perspectives in Quan-

tum Hall Effects, edited by S. D. Sarma and A. Pinzuk
(John Wiley and Sons, John Wiley and Sons, 1997)
Chap. 4, pp. 109–157.

43 A. A. Koulakov, M. M. Fogler, and B. I. Shklovskii, Phys.
Rev. Lett. 76, 499 (1996).

44 M. M. Fogler, A. A. Koulakov, and B. I. Shklovskii, Phys.
Rev. B 54, 1853 (1996).

45 M. M. Fogler and A. A. Koulakov, Phys. Rev. B 55, 9326
(1997).

46 M. P. Lilly, K. B. Cooper, J. P. Eisenstein, L. N. Pfeiffer,
and K. W. West, Phys. Rev. Lett. 82, 394 (1999).
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