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Abstract

Computer vision techniques have immense potential for materials design appli-

cations. In this work, we introduce an integrated and general-purpose AtomVision

library that can be used to generate, curate microscopy images (such as scanning

tunneling microscopy and scanning transmission electron microscopy) datasets and

apply a variety of machine learning techniques. To demonstrate the applicability of

this library, we 1) generate and curate an atomistic image dataset of about 10000

materials with large structural and chemical diversity, 2) develop and compare con-

volutional and atomistic line graph neural network models to classify the Bravais

lattices, 3) develop fully convolutional neural networks using U-Net architecture to

pixelwise classify atom vs background, 4) use a generative adversarial network for

super-resolution, 5) curate a natural language processing based image dataset using

open-access arXiv dataset, and 6) integrate the computational framework with exper-
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imental microscopy images for Rh, Fe3O4 and SnS systems. AtomVision library is

available at the https://github.com/usnistgov/atomvision.

Introduction

Only a few experimental techniques allow a materials scientist to “see” the local atomic

structure of a sample. Atomistic imaging techniques such as scanning tunneling microscopy

(STM), atomic force microscopy (AFM), transmission electron microscopy (TEM) and their

variants provide insights into the local atomic structure, defects and their dynamics, which

are critically linked to the functionality and performance of the materials.1 Due to rapid

growth in computer-vision techniques,2,3 its application to atomic scale image data is natural.

These data can be obtained from experimental as well as computational methods and recently

their usage has become widespread.4–20 Nevertheless, an integrated library to capture, curate,

generate datasets and apply data-analytics methods is still needed.

Such libraries can be useful for microscopy image tasks such as image classification,7,21–23

pixelwise learning (e.g., semantic segmentation),17,24–30 object/entity recognition, localiza-

tion, super-resolution31–35 etc. The application of such libraries encompasses multiple science

domains such as materials science, condensed matter physics, biology etc.5,8,36

Computationally, there are several methods for simulating STM and scanning transmis-

sion electron microscopy (STEM) images. STM images can be computationally simulated

using Bardeen,37 Tersoff-Hamman38 and Chen39 methods. STM images can be either con-

stant height or constant current based. For standard high angle annular dark field (HAADF)

STEM, methods such as convolution, Bloch wave and multislice approximations40–43,43,44 can

be used. The convolution approximation is one of the fastest ways to simulate STEM im-

ages. It is based on an incoherent linear image model that convolves the probe point-spread

function with simple atomic potentials for the specimen and is usually used for thin films.

Bloch wave and multislice methods are computationally heavy but are more generalizable.
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Some of the major libraries (experimental and computational) based on microscopy im-

ages include ab initio Transmission Electron Microscopy (abTEM),45 EXtraction, Separa-

tion, and Caption-based natural Language Annotation of IMages (EXCLAIM),23 AtomAI,46,47

Prismatic48 and Quantitative TEM/STEM Simulations (QSTEM).49 Deep learning tech-

niques such as convolutional neural network (CNN) are commonly applied to atomistic im-

age data. There have been several previous works on the application of deep-learning (DL)

techniques5 to atomistic image data. In Ref24 pixelwise DL was applied to detect atoms

in simulated atomic-resolution TEM images of graphene. A neural network model was de-

veloped to detect the presence of atoms as well as predict its height. Ref25 demonstrated

atomistic defect recognition and tracking across sequences of atomic-resolution STEM im-

ages of WS2. In ref26 U-net architecture was used to detect vacancies and dopants in WSe2

in STEM images with high model accuracy. In ref27 DefectSegNet was developed to auto-

matically identify defects in transmission and STEM images of steel including dislocations,

precipitates, and voids. Ziatdinov et al. applied DL techniques to learn surface molecular

structures.29 In ref.,50 artificial neural networks (ANN) were applied to classify eight types of

2D materials (in both monolayer and bilayer forms) and enumerate interface characteristics

of 2D in-plane and vdW heterostructures. More details about previous works on atomistic

imaging and machine learning techniques can be found elsewhere.5,8,36

In this work, we present the AtomVision library, which can be used to generate a sim-

ulated STM/STEM dataset using several levels of approximation, as well as using natural

language processing to collect images from literature and experiments. We also provide

generalized scripts that can be used for a broad level of image machine learning tasks

such as identifying five 2D-Bravais lattices,51 atomistic segmentation to distinguish be-

tween background and images and later applying convolutional neural network (CNN)/graph

neural network (GNN) on the segmented images, and generative design of atomistic im-

ages using generative adversarial network (GAN) techniques. This library is a part of

the NIST-JARVIS (Joint Automated Repository for Various Integrated Simulations) in-
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frastructure52 for accelerated materials design using electronic structure, force-field, ma-

chine learning calculations and experiments. The atomvision library is publicly available at

https://github.com/usnistgov/atomvision.

Although the methods discussed in the work are applied to STEM/STM images mainly,

the deep-learning methods emphasized in the later sections can be applied to image datasets

from other microscopy techniques also. The AtomVision package provides scripts to train

various deep-learning models (e.g. U-net segmentation, classifier, autoencoder, generative

adversarial network) on generic image datasets. The user simply needs to provide paths to

the directories containing the training and test set of images. The user can also modify the

default configuration settings used to train the model (e.g. batch size, number of epochs) as

discussed later.

Moreover, the AtomVision package provides a large diversity in structure and chemistry

of materials using both theoretical and experimental techniques in comparison to existing

atomic image datasets with fixed chemistry such as graphene, FeTe etc. only. The application

of graph neural networks (atomistic line graph neural network (ALIGNN)53) and generative

models (such as Super-Resolution Generative Adversarial Networks (SRGAN)) also provides

promising aspects for atomistic image tasks which were not carried out previously to the best

of our knowledge.

Methods

Dataset generation and curation

We use Tersoff-Hamann (TH) technique38 to calculate the STM images of 2D materials. TH

is a simple model of an s-wave STM tip.

n(r, E) =
∑
µ

|ψ(r)2|δ(ϵµ − E) (1)
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∫ EF+eV

EF

n(r, E) dE (2)

In this approach, the tunneling current I, which depends on the tip position r and the

applied voltage V , is proportional to the integrated local density of states (ILDOS). The

ILDOS is calculated from the Kohn-sham eigenvectors, ψµ, and eigenvalues, ϵµ, where µ

labels different states. EF is the Fermi-energy. Different experiments will choose different

applied voltages, but we concentrate on two values, 0.5 eV for positive bias and -0.5 eV

for negative bias, which require integrating from EF to EF±0.5eV. We choose 0.5 eV range

for the sake of simplicity, and other values usually produce qualitatively similar images for

metals or small gap semiconductors. However, simulations for other voltages should also be

possible with the method and tools discussed in this work. This method is readily available

in DFT software such as Vienna ab initio simulation package (VASP).54,55

The STEM images40–43,43,44 were generated with the convolution approximation (based

on fast Fourier transform based convolutions) following:

I(r) = R(r, Z)⊗ PSF (r) (3)

where r is a 2D vector in the image plane, I(r) is the image intensity,

R(r, Z) =
N∑
i

Z1.7
i δ(r − ri) (4)

R(r, Z) is the transmission function of the N atoms at position ri, and includes informa-

tion about the atomic potential of the system given by Zi, the atomic number of the atom.

Rutherford scattering from the nuclear charge predicts a Z2 dependence of the intensity, but

the exponent is reduced by core electron screening, and depends on the detection collection

angles. The power value of 1.7 is an approximate value that represents a compromise between

these many factors. In previous works, the power values of 1.3-1.756 have also been used to
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match experiments, however, for the sake of generality, we use 1.7 for all the systems. We

note that for such STEM images only crystallographic coordinates and atom-type informa-

tion are needed. The optimized geometries for the 2D materials were obtained from density

functional theory calculations. We generate STEM images with an output size of 256x256

pixels for at least 2.5 nm x 2.5 nm size. The microscope point spread function (PSF) is

modeled as a normalized Gaussian with a width of 0.5 Å. We use the 2D materials available

in the JARVIS-DFT-2D,52,57 Computational 2D Materials Database (C2DB)58 and 2DMat-

Pedia59 datasets, leading to 9150 systems with unique chemical compositions and structural

spacegroup information.

For the natural language processing (NLP) related dataset, we use the open access arXiv

dataset, which consists of 1.8 million articles starting from 1986 to 2020. We use ChemNLP60

to extract chemistry information from the arXiv articles. We search for keywords such as

STEM, STM, microscopy, HRTEM, scanning tunneling microsopy and scanning transmission

electron microscopy in the abstract and figure captions of articles, and if the system has that

info, we further find out if the article contains clear STM/STEM images to curate an image

dataset. The figure caption parsing was carried out with the BeautifulSoup package.

Currently, the experimental STEM image dataset consists of images of nanoparticles. As

an example experimental dataset we use TEM images of Iron oxide (Fe3O4), rhodium (Rh),

and tin(II) sulfide (SnS) nanoparticles. In the future, we plan to expand this dataset to

multiple systems, especially for the materials available in the JARVIS-DFT dataset. Iron

oxide, rhodium, and tin(II) sulfide nanostructures were synthesized using previously reported

solution strategies based on the thermal decomposition of elemental precursors. All synthe-

ses were carried out under Ar using standard Schlenk techniques. Briefly, Fe3O4 spherical

nanoparticles were synthesized by heating iron oleate in benzyl ether to 300 °C and then

centrifugally washing twice before dispersing the collected product in hexanes.61 Rh tri-

angular nanoplates were synthesized by heating RhCl3.xH2O and 40,000 molecular weight

poly(vinylpyrrolidone) in triethylene glycol to 135 °C before then centrifugally washing twice
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and redispersing the product in ethanol.62 α-SnS micron-sized nanoribbons were synthesized

by heating SnCl2 and sulfur powder in oleylamine to 180 °C and then centrifugally washing

twice before redispersing the product in toluene.63 Transmission electron microscopy (TEM)

images were collected using a Phillips EM-400 operating at an accelerating voltage of 120 kV

and high-resolution TEM (HRTEM) images were obtained with an FEI Titan 80-300 oper-

ating at 300 kV. Samples were prepared by casting one drop of dilute nanomaterial solution

onto 300-mesh Formvar and carbon-coated copper grids (Ted Pella). Please note that com-

mercial products used in this work are identified to specify procedures. Such identification

does not imply recommendation by National Institute of Standards and Technology (NIST).

Machine learning model

For the machine learning models, we primarily use the STEM dataset developed with the

convolution approximation. We use several machine/deep learning approaches such as clus-

tering, classification with convolution and graph convolution neural network, fully convo-

lutional neural network using U-Net and generative adversarial network.4–20 We provide a

brief description of these methods, and more details can be found elsewhere.5

For clustering analysis, we use t-distributed stochastic neighbor embedding (t-SNE),

which is a statistical method for visualizing high-dimensional data in a two- or three-

dimensional map. The t-SNE plot was generated with the help of Scikit-learn library.64

The images were flattened into a python numpy array and then their dimensionality was

reduced using nonlinear t-SNE for visualization purposes. We also use the features of graphs

based on the image samples for generating t-SNE plot details of which are given in the later

section.

The pixelwise classification/semantic segmentation task was performed with segmentation-

models-with-pytorch (SMP)65 package using U-Net66 pretrained model using Binary cross-

entropy with logits loss (BCELogitLoss) function. All the supervised ML tasks used 75:25

training:testing of samples during training.
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For the Bravais lattice classification task, we use DenseNet (Dense Convolutional Net-

work)67 with pre-trained model available in PyTorch.68 We use a uniform size of 256x256

images for each material. We use Pytorch-Ignite library to setup the training run with Adam

optimizer, 0.001 learning rate and negative log likelihood loss (NLLLoss) for 100 epochs.

After pixelwise classification, we convert the images into networkx and deep graph library

graphs,69 which are then used along with atomistic line graph neural network (ALIGNN)53

for image classification tasks as well. We use maximum, minimum and mean intensity of

blobs in the images as the node features, while a 4 Å cutoff is used to generate neighborlist

and generate bond-angles of different nodes. We use a batch size of 32, learning rate of

0.001, AdamW optimizer, negative log likelihood loss (NLLLoss) and 50 epochs for ALIGNN

training. We used the original hyperparameters of the ALIGNN model as used in ref.53

We create a synthetic dataset of STEM images with low resolution (4 times lower reso-

lution, i.e. 64x64 pixel images instead of 256x256) and high-resolution (as generated with

convolution approximation) images and train a generative adversarial network (GAN) for

image super-resolution (SR) using SR-GAN model.70 In SR-GAN, we use the 4th layer of

VGG19 (visual geometry group convolutional neural network that is 19 layers deep)71 as

feature-extractor. We use a perpetual loss function during SR-GAN training, which is a

combination of both adversarial loss and content loss. We train the model for 50 epochs,

learning rate of 0.00008 and Adam optimizer during training.

Next, we analyze the reconstruction of image capabilities using an autoencoder model

with PyTorch. We take the 256x256 image, and use an auto-encoder of dimension 1120. The

decoding part of the model reconstructs the image in 256x256 size. We train the models for

200 epochs, with mean squared loss function, Adam optimizer, and a learning rate of 0.001.
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Figure 1: A Schematic overview of the AtomVision library. AtomVision presents an inte-
grated library of dataset and AI/ML tools for atomistic images. The tool can be used for
generating and curating microscopy dataset in a systematic manner as well as apply machine
learning tools on the image dataset. This work aims to provide a software toolkit with inte-
grated and diverse dataset and comprehensive AI/ML tools for expanding computer vision
technique applications to atomistic images which include image quality resolution, image
classification, segmentation and inverse design etc.

Results

A schematic overview of the AtomVision library is shown in Fig. 1. Usually, any image

analytic technique application would require a large dataset. In AtomVision, the dataset

can be obtained from density functional theory, convolution approximation, natural language

approximation, and experiments. For instance, STM images for 2D materials in both positive

and negative biases was obtained from the Tersoff-Hamann approach as implemented in the

JARVIS-Tools. The STM image database consists of 1400 images for 2D materials in the

JARVIS-DFT dataset. Although the application has been carried out for 2D materials, it

can be applied to other non-2D systems as well. The STEM image dataset for 2D materials

was obtained with the convolution approximation for systems in JARVIS-DFT, C2DB and
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2DMatPedia computational datasets. While STM techniques require charge densities and

wavefunctions to obtain integrated DOS values, the STEM dataset using the convolution

approximation can be directly obtained with atomic types and coordinates information only.

(a) DenseNet (b) U-Net (c) AE

(d) ALIGNN (e) SRGAN

Figure 2: A few example machine learning architectures for images available in the Atom-
Vision library. a) DenseNet is based on convolutional neural networks, b) U-net is a fully
convolutional neural network, c) autoencoder, d) atomistic line graph neural network, e)
super-resolution generative adversarial neural network.

We also show some of the machine learning architectures adopted in AtomVision in Fig. 2.

These models are based on well-known deep learning models such as convolution neural

network (CNN), graph neural network (GNN), and generative models such as auto-encoders

(AE) and generative adversarial networks (GAN). The applications of these architectures

and their performances are discussed in detail below.

Validation of dataset

We compare the STM and STEM simulated images of a few example 2D materials: graphene,

FeTe and MoS2, with experimental images in Fig. 3. The left panel (panels a,e,i) show
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C
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Figure 3: Comparison of our computational and previously reported experimental STM and
STEM images for a few examples such as graphene, C (JVASP-667), FeTe (JVASP-6667),
MoS2 (JVASP-664). a) experimental STM image of graphene [Reproduced with permission
from ref.72 Copyright 2019 American Physical Society], b) simulated STM image of graphene,
c) experimental STEM image of graphene [Reproduced with permission from ref.73 Copyright
2021, OLeary et al. Authors under Creative Commons Attribution 4.0 International License
(CC BY 4.0)], d) simulated STEM image of graphene, e) experimental STEM image of FeTe
[Reproduced with permission from ref.74 Copyright 2015, Watashige et al. Authors under
Creative Commons Attribution 4.0 International License (CC BY 4.0)], f) simulated STEM
image of FeTe, g) experimental STEM image of FeTe [Reproduced with permission from ref75

Copyright 2021, Kang et al. Authors under Creative Commons Attribution 4.0 International
License (CC BY 4.0)], h) simulated STEM image of FeTe, i) experimental STM image of
MoS2 [Reproduced with permission from ref.76 Copyright 2016 AIP Publishing], j) simulated
STM image of MoS2, k) experimental STEM image of MoS2 [Reproduced with permission
from ref.77 Copyright 2016 AIP Publishing], l) simulated STEM image of MoS2.

experimental STM images, while DFT based images are shown in the next column (in

panels b,f,j). Similarly, we show the experimental STEM images for graphene, FeTe, and

MoS2 in Fig, c,g,k and corresponding convolution approximation based images are shown

in Fig. d,h,l. Clearly, we find excellent qualitative agreement between the simulated and

experimental images. Furthermore, we note that theoretical image datasets are larger and

can be generated in a very controlled way compared to experimental images. Hence, a
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comparison of a few samples gives a qualitative idea that computer vision techniques applied

to a theoretical image dataset should indicate similar confidence with respect to experiments.

Semantic Segmentation and Graph Generation

(a) (b)

(c) (d)

Figure 4: Application of semantic segmentation model to identify atoms and background
from defective graphene system. a) Generate atomic structure for defective graphene
(JVASP-667) with vacancies using JARVIS-Tools, b) STEM image for the atomic structure
c) use the semantic segmentation model, d) blob detection algorithm to find the number of
atoms.

A common first deep-learning image analysis task is to perform a pixelwise classification

to differentiate bodies of interest in the image from the background. We use the U-Net model

to perform atom vs. background classification tasks using the HAADF-STEM datasets. U-
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net is a fully convolutional neural network with a U-shaped architecture consisting of a

specific encoder-decoder scheme (as shown in Fig. 2). The encoder reduces the spatial

dimensions in every layer and increases the channels. On the other hand, the decoder

increases the spatial dimensions while reducing the channels. We use the pretrained U-Net

model in the SMP library and fine tune with the HAADF-STEM dataset generated in this

work for pixelwise classification of atom vs background classes. We find that high accuracy

of 93.0 % for the pixelwise classification of atom vs. background task. As an application for

this model, we first generate synthetic graphene HAADF-STEM images with vacancies and

use the semantic segmentation model to localize the atoms in the image as shown in Fig. 4.

We find that the model can accurately identify atom and background from the image. Later,

using scikit-image78 based blob detection we can find the number of atoms in the image.

The blob detection algorithm identifies features in the image by fitting a Gaussian to the

intensity profile, and the blob radius is related to the standard deviation. With scikit-image,

we can also get various statistics of the blobs (atoms) such as the maximum, minimum, and

mean intensities in the blob.

Once the atom positions are identified in the image, there is an opportunity to construct

a non-Euclidean, undirected graph representation of their arrangement. The nodes of the

graph come from the detected blobs (atoms) and are featurized by the blob features such as

max intensity and radius. To determine the edges of the graph, which represent bond vectors

between the atoms, a nearest neighbor search is performed using the k-d tree algorithm

implemented in scipy. Finally, the linegraph is constructed using the dgl package on top

of the original graph. The linegraph encodes bond vectors as the node features, while the

edges represent triplets of atoms and encode bond angle cosines. The establishment of the

graph and linegraph representations of the micrographs will allow us to apply graph neural

networks for image analysis tasks.
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(a) Direct Pixel Data (b) Triplet Graph Features 

Figure 5: t-SNE visualization of the samples in the combined dataset including the JARVIS-
DFT-2D and C2DB databases. In panel (a), the samples are featurized directly using the
256x256 pixel image intensity data. In contrast, in panel (b), the samples are featurized
using their triplet (bond angle cosine) features in graph construction. The distribution of
triplet features is expressed as a 200-bin histogram ranging from -1 to 1. Here, we denote
hexagonal, square, rectangle, rhombus and parallelogram classes as 0,1,2,3,4 respectively.
We observe clusters of individual classes in both t-SNE figures.
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Clustering analysis

Prior to performing machine learning tasks, we applied clustering techniques and dimen-

sionality reduction to visualize and understand the distribution of images in the synthetic

dataset. We apply the t-SNE (t-distributed stochastic neighbor embedding) algorithm, which

is commonly applied to visualize high-dimensional data such as our 256x256 pixel images by

performing non-linear dimensionality reduction operations. The Euclidean distance between

datapoints in a t-SNE plot relates to their similarity, however, these distances should only

be interpreted qualitatively. Therefore, images which cluster together in the t-SNE plot will

tend to be more similar in their featurization.

We first apply the t-SNE visualization directly to the simulated 256x256 pixel-based

STEM image data for the 2D materials. These image array values for all the 2D materials in

the dataset are converted into two-dimensions and are visualized in Fig. 5a. Each scatterpoint

therefore represents an image in the dataset and is colored by the 2D Bravais lattice of the

material in the image. From this visualization, it is clear that hexagonal class 0), square

(class 1), and rectangle (class 2) systems segregate into islands in the pixel space, while

the rhombus (class 3) and parallelogram (class 4) systems show greater overlap with other

classes, suggesting more likely misclassifications.

We then perform a similar visualization for the features obtained through the graph

generation process described in Section . As described previously, these graph features

represent atom positions (nodes), bond vectors (edges), and bond angles (triplets of atoms)

in the image. In Figure 5b, we use the t-SNE algorithm to visualize the dataset once again

with the images now labelled using the set of graph triplet features, or the bond angle

cosine values. Here, the list of bond angle features for each image is encoded in a 200-bin

histogram before applying the t-SNE operation to investigate clustering. Once again, we find

a noticeable separation of the hexagonal and square clusters, but a significant overlap between

the hexagonal and rhombus classes as well as the rectangle and parallelogram classes, which

may lead to misclassifications. Such analysis provides a visualization of large dimensional
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data in a compact way to suggest that both image pixel values and graph features contain

information about the Bravais lattices.

CNN Classifier

Now, we use a supervised classification technique to classify images into the five 2D Bravais

lattices: hexagonal, square, rectangular, rhombus (rectangular centered), and oblique (par-

allelogram).51 We use a well-known computer vision model: DenseNet to perform this task.

In a DenseNet architecture, each layer is connected to every other layer, hence the name is

given as Densely Connected Convolutional Network. For L layers, there are L(L+1)/2 direct

connections. For each layer, the feature maps of all the preceding layers are used as inputs,

and its own feature maps are used as input for each subsequent layers. DenseNet was de-

veloped to improve the vanishing gradient issues in deep convolutional neural networks. We

fine-tune the DenseNet model67 for 5 Bravais lattice classes using the STEM image dataset.

We find that DenseNet provided an accuracy of 83.0 %. We note that the baseline model for

such classification task in 1/5 = 20 %, so using machine vision techniques is clearly justified.

In addition to the overall accuracy of the model, confusion matrix of the classification task

provide details for individual class performance as shown in Fig. 6a. Here, we denote hexag-

onal, square, rectangle, rhombus and parallelogram classes as 0,1,2,3,4 respectively. We find

that the trained model is highly accurate for hexagonal and square lattice but less accurate

for rhombus and parallelogram classes, which can be attributed to less training data and

higher complexity for these classes.

ALIGNN-based GNN classifier

In the previous section, an image classifier was trained directly on the pixelated images. Here,

we instead convert the image data into a non-Euclidean graph, which infers the connectivity

of the objects in the image, allowing the usage of a graph neural network. Graph neural

networks have been widely applied in the field of materials science as they allow for the
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Figure 6: Confusion matrix for classifying STEM images into five Bravais lattices using
a) convolution neural network based Densenet, b) graph neural network based ALIGNN
models. Here, we denote hexagonal, square, rectangle, rhombus and parallelogram classes
as 0,1,2,3,4 respectively.

structure of the material, along with composition-based features to be used in the prediction.

Typically, graph neural networks are used to predict a material property from its structure,

including both scalar quantities such as formation energy, bulk modulus, or band gap, or

more recently, spectral quantities such as electron and phonon density-of-states or measured

optical spectra (e.g. X-ray, infrared, Raman).5 To our knowledge, a graph neural network has

not yet been applied to materials science image data, as it is in this work. The atomistic line

graph neural network (ALIGNN)53 was used, as it allows a hierarchy of structural features

corresponding to single objects (i.e., atoms), pairs of objects (i.e., bond vectors), and pairs

of bonds (i.e., bond angles). ALIGNN uses edge-gated graph convolution for updating nodes

as well as edge features. One ALIGNN layer composes an edge-gated graph convolution on

the bond graph with an edge-gated graph convolution on the line graph. The line graph

convolution produces bond messages that are propagated to the atomistic graph, which

further updates the bond features in combination with atom features.
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Figure 7: Computed STEM images (right) and overlaid graph construction (left) for three
example materials in the hexagonal crystal system (class 0) and (001) orientation. Although
the lattices are visually diverse, the DenseNet and ALIGNN crystal system classifiers cor-
rectly categorize over 90 % of the class 0 samples.
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After the pixelwise classification, we can convert the data into graph that can capture

non-Euclidean information of the images and can be used for advanced ML techniques such

as the application of graph neural network. Examples of three systems with hexagonal

symmetry (Pb2I, GaTe and Nb3Br8) are shown in Fig. 7. After the graph conversion,

we use the ALIGNN model for lattice classification and find a reasonable accuracy of 78

%. Note that, unlike the original ALIGNN model which uses atomic attributes such as

electronegativity as node features, we use the blob-statistics (such as maximum, minimum

and mean intensities in a blob) as the node attributes. Therefore, knowledge of chemistry is

not required to train and execute the model. The confusion matrix for the model is shown in

Fig. 6b. Although, the GNN-based models do not beat CNN models such as DenseNet, the

framework for applying GNNs on images could be a powerful alternative tool for futuristic

materials design because GNN-based methods can incorporate additional relationships and

parameters that are not strictly related to the appearance of the image. Additionally, from

Fig. 6, we find that both the CNN and GNN models work well for hexagonal and square

lattices but they are less accurate for rhombus lattices.

Autoencoders

Autoencoders (AE) are a special type of neural network especially suited for learning low-

dimensional representations of high-dimensional data. We can think of autoencoders as

being composed of two networks, an encoder and a decoder. The encoder learns a non-

linear transformation from the original high-dimensional input space to a lower-dimensional

latent space. A decoder learns a non-linear transformation that projects the latent vectors

back into the original high-dimensional input space. We develop an auto-encoder to reduce

the large pixel-dimension. Usually an image taken as 256x256 if flattened leads to 50176

(i.e., 256x256) dimension, which is quite high. According to the manifold hypothesis, the

underlying structure of the data can be sufficiently described using only a few dimensions,

and auto-encoders are well-known for such dimensionality reduction tasks. We take the
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Figure 8: Autoencoder Reconstructed Images while varying the dimensionality of the latent
space (M). Four randomly sampled images from the JARVIS-DFT-2D STEM database,
corresponding to images of Tl2SnAs2S6, CdCl2, Ba2N, and NiH2O2, are shown in row (a).
Rows (b)-(d) show the images after reconstruction using autoencoder models, where three
values for the latent dimensionality (M) are trialled: M = 448, 1120, or 1568. In panel
(e), we show the final value of the MSE loss function after 200 training cycles (epochs)
versus the number of latent features in the autoencoder model. Performance of the model,
as determined by MSE loss as well as the visual quality of reconstructed images, improves
when increasing from 448 to 1120 latent features, but does not significantly change when
increasing to 1568 latent features. The MSE loss starts to increase at a larger number of
latent features.
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256x256 image, and use an auto-encoder of dimension 1120. In Fig. 8, we highlight the

ability of the auto-encoders to reconstruct a few example images in the test dataset. We

carried out AE training with dimensionalities of 64, 128, 256, 512, 1024, 1120, and 1568

features and an optimal value of 1568 was chosen. Moreover, the 1568 feature case visually

appeared to yield reasonably reproduced images, while going to a larger number of latent

features yielded a plateau in the quality of the reproduced images. Also, we note that the

baseline loss (i.e. assuming an average of all the pixel values for the training set and using

that average prediction on test set) is 77.006 which is much higher than the loss values we

obtain. The reconstructed images bear a lot of similarity to the original images suggesting

that the autoencoders developed in this work can be used for AE-related tasks such as

dimensionality reduction.

Super-resolution GAN

The task of estimating a high-resolution (HR) image from its low-resolution (LR) counterpart

is termed as super-resolution (SR).70 SR is an active area of research in the field of com-

puter vision. There have been several works in this field such as learned iterative shrinkage

and thresholding algorithm (LISTA),79 bicubic interpolation with CNN,80 deeply-recursive

convolutional network (DRCN),81 super-resolution variational autoencoder82 etc. However,

such SR tasks are yet to be tackled in detail by the atomistic imaging community.5,31,32

Here, we use a generative adversarial network (GAN) for enhancing the resolution of

STEM images. We generate a dataset of 4-times low resolution (i.e., 64x64 instead of 256x256

size images) and using Super-Resolution Generative Adversarial Networks (SRGAN)70 archi-

tecture, we develop a model to enhance resolution. A GAN model also has two components:

namely generator, and discriminator. GAN’s generator generates fake/synthetic data that

could fool the discriminator. Its discriminator tries to distinguish fake data from real ones.

This process is also termed as: min-max two-player game. Using the STEM image dataset,

we train the generator-discriminator model and then generate high-resolution images in the
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test set and show the results for one of the images in Fig.9. We note that unlike other neural

networks, the losses in GANs can be counter-intuitive because the generator and discrimi-

nator are competing against each other. Nevertheless, we keep on training until we notice

a plateau in the losses. Moreover, GAN’s performances can be viewed based on generated

samples for which we show examples below. The low-resolution image is shown as LR while

the high-resolution image is shown as HR. SRGAN uses VGG19 (visual geometry group

convolutional neural network that is 19 layers deep)71 as feature extractor, however we no-

tice that using shallow VGG19 feature extractor such as 4th layer (Fig. c) is equivalent to

deeper layers such as Fig. d. Hence, a lower level feature extractor in VGG19 should be

enough for resolution enhancement purposes. Note that though we demonstrate inverse de-

sign techniques such as auto-encoders and GANs in the present work, we plan to implement

more advanced techniques such as variational auto-encoders,83 stable-diffusion models84 in

the library as well soon.

Extracting images from arXiv dataset

Next, we use natural language processing with the open access arXiv dataset to curate

datasets of STM and STEM images from the available literature. The arXiv dataset was

previously used for ChemNLP project and has chemistry based information for the systems

as well. We found more than 500 STM and 1500 STEM images from a simple search of STM,

STEM in abstracts for the condensed-matter physics articles in arXiv. We further searched

for such entries in the figure captions of the dataset and found more than 1000 such images

that can be useful for image analytics. We show a few of the images obtained from the arXiv

dataset in Fig.10. We provide the list of links to the images and corresponding papers in

the AtomVision library.
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Figure 9: SR-GAN for enhancing image resolution. Examples for a) LR (low resolution),
b) actual HR (high-resolution), c) SR-GAN VGG19’s 18th layer prediction, d) SR-GAN
VGG19’s 4th layer prediction. We observe shallower layers of VGG19 gives similar predic-
tions in terms of resolution enhancement as that of deeper layers.

Experimental image dataset

In addition to computational and NLP based microscopy image datasets, we also develop our

own experimental image dataset in AtomVision. AtomVision provides a flexible and easy

to use metadata capture template that can capture experimental set up across various mi-
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(a) (b)

(c)
(d)

Figure 10: Example micrographs retrieved from the arXiv dataset. These figures are taken
from: a) arXiv:0708.2306 for Dy,85 b) arXiv:0805.3416 for FeC32H16N8

86 c) arXiv:0807.3875
for Si87 d) arXiv:0902.0626 for La0.67Ca0.33MnO3.

88

croscopy instruments. This is motivated by previous works in this field such as refs.16,89 Such

infrastructures provide frontend and backend meta-data capture schema and frameworks to

capture and curate microscopy image data. Having an integrated framework for both exper-

imental, computational and image based datasets in AtomVision will allow the investigation

of several important challenges such as reproducibility, ground truth data and uncertainty in
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Figure 11: TEM and corresponding HRTEM images of solution-synthesized nanostructures.
(a,b) Fe3O4 spherical nanoparticles, (e,f) Rh triangular nanoplates, and (i,j) SnS micron-
sized nanoribbons. Regions of the HRTEM image indicated by dashed lines were magnified
and analyzed by fast Fourier transform revealing crystallographic assignments of (c,d) Fe3O4

(311), (g,h) Rh (111), and α-SnS (400).

measurements. We show a few examples of TEM image dataset of nanoparticles in Fig.11.

These nanoparticles TEM images are labelled by their different facet orientations leading

to huge variability in the dataset for the same material. Currently, the experimental image

dataset contains a few hundred of TEM images for various materials and their facets includ-

ing Pt, Pd, Rh, Au, Fe2O3, SnS etc. and we plan to continuously grow the dataset. We can

integrate the AtomVision framework with NIST’s and other microscopy measurement labs

in the future to leverage several tools and datasets available in the library.
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Conclusion

In summary, we have developed an integrated and general-purpose machine-vision library,

especially for atomistic images. The dataset in AtomVision consists of both computational,

experimental and literature based images providing a wide variety for general applications

including machine/deep learning applications. The dataset mainly consists of scanning tun-

neling microscopy (STM) and scanning transmission electron microscopy (STEM) images

and the framework would allow other atomic image datasets as well. There are numerous

image machine learning techniques and we demonstrated applications of a few of them in-

cluding convolution neural network, graph neural network, fully convolution neural network,

generative adversarial network etc. Especially, the application of graph neural network such

as ALIGNN on atomistic images provide a new paradigm for atomistic image analysis. The

well-curated image dataset from experiments as well as the computational images can serve

as a reference for many scientific applications.
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