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Abstract

Broadband microresonator frequency combs are being intensely pursued for deploy-

able technologies like optical atomic clocks. Spectral features such as the dispersion

in their coupling to an access waveguide are critical for engineering these devices for

application, but optimization can be computationally intensive given the number of

different parameters involved and the broad (octave-spanning) spectral bandwidths.

Machine learning algorithms can help address this challenge by providing estimates for

the coupling response at wavelengths that are not used in the training data. In this

work, we examine the accuracy of three neural network architectures: fully-connected
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neural networks, recurrent neural networks, and attention-based neural networks. Our

results show that when trained with datasets that are prepared by including upper

and lower limits of each design feature, attention mechanisms can predict the coupling

rate with over 90 % accuracy for spectral ranges 6× wider than the spectral ranges

used in training data. Consequently, numerical optimization for the design of ring

resonators can be carried out with a significantly reduced computational burden, po-

tentially resulting in a six-fold reduction in compute time. Furthermore, for devices

with particularly strong correlations between design features and performance metrics,

even greater acceleration may be achievable.

Introduction

With their ability to unravel complex relationships between the inputs and outputs of non-

linear systems, machine learning (ML) methods have become a focal point of research and

development during the past decade in almost all areas of science and engineering. The field

of photonics also has seen a surge of interest in the use of artificial intelligence, particularly

neural networks, to enhance the understanding and application of light-matter interactions.

In particular, neural networks have already shown promise in a variety of photonics applica-

tions such as inverse photonic design,1–12 material and device characterization,1,3,13–19 opti-

cal sensing,20 image processing and classification,21 and optical communication.22 In inverse

photonic design,1–12 the goal is to design optical components or devices with specific desired

properties such as the desired transmission spectrum, scattering properties, bandwidth, or

quantum efficiency. This goal can be achieved using numerical optimization algorithms that

iteratively adjust the design parameters until the desired performance is achieved. However,

there are also some other techniques that follow completely different strategies to do pho-

tonic inverse design. For example, in the adjoint method,4–10 the gradient of an objective

function with respect to the design parameters of a device is calculated first. Then, this

gradient is used to optimize the device design through a process of iterative refinement. The
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adjoint method has successfully been used to design waveguides,7 beam splitters,4–6 cou-

plers,10 and metamaterials.6,7 Another successful strategy is using two neural networks. In

generative adversarial networks (GANs),11,12 for example, two neural networks, the generator

and the discriminator, are trained together in an adversarial way. The generator is trained

to create photonic structures that perform a specific function. The discriminator is then

trained to identify whether the generated photonic structures perform the desired function

or not. Through this adversarial process, the generator becomes better at designing photonic

structures that perform the desired function, while the discriminator becomes better at iden-

tifying whether a given structure performs the desired function. Back-to-back (BtB) neural

networks also employ two neural networks.23,24 The first network is trained using a dataset

of desired device performance metrics (such as transmission, reflection, quantum efficiency,

dispersion, etc.) and corresponding design parameters (such as the dimensions and materi-

als of the device). The second network is trained using a dataset of design parameters and

corresponding device structures, typically generated using a physics-based simulator. Once

the two networks are trained, they can be used together to perform photonic inverse design

by specifying the desired device performance as input to the first network, which produces

the corresponding design parameters as output. These design parameters can then be input

to the second network, which generates the corresponding device structure.

For the forward problems in photonics, such as predicting the reflectance spectrum of

nanoparticles,13 optical properties of photonic crystals14 and photonic crystal fibers,15 or

device performance metrics from device parameters,16–19 fully connected and recurrent neu-

ral networks (FCNNs and RNNs, respectively) are two of the most common deep learning

architectures. Due to the relative simplicity of forward problems compared to the inverse

problems, neural networks can make predictions with very high accuracy, typically 98 % or

even higher, e.g. in13 and.19 This high accuracy is beneficial for several types of problems

in photonic design. As a concrete example, we may consider a small-scale device design

problem that is tackled using numerical simulations in which there are only four parameters
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to be optimized. If we try to implement a simple grid-based approach and try 20 unique

values for each parameter, then we need to run 204 = 160, 000 simulations. Even if each sim-

ulation takes one second, the entire study would take almost two days. Through a machine

learning-based approach, we can pick fewer unique values, let’s say eight for each parameter,

carry out 84 = 4096 simulations, then train a neural network and make predictions for those

160,000 unique designs in only two hours (approximately). This scenario, of course, assumes

a weak nonlinearity, i.e., there is a moderate correlation between the inputs and outputs.

However, in photonics, we do not always deal with these kinds of weakly non-linear prob-

lems. For example, the evanescent coupling of light that propagates in a waveguide into an

adjacent microring resonator requires a more sophisticated approach, which is the subject

of this work.

Ring resonators are widely used in optics and photonics as critical elements of opti-

cal modulators, filters, switches, sensors, and lasers.26,27 Light is typically coupled in and

out of ring resonators via an adjacent waveguide through evanescent coupling. Resonator-

waveguide coupling is quantified by introducing a coupling quality factor (Qc), which is

inversely proportional to the rate of coupling between the two elements, and depends on

spatial mode overlap, phase mismatch, and coupling length. The coupling quality factor Qc

is wavelength-dependent, as both the spatial mode overlap and the phase mismatch vary

with wavelength. Point coupling and pulley coupling are two common coupling configura-

tions in use. A benefit of the pulley-type coupling is that the waveguide is wrapped around

the resonator in order to increase the coupling length, as opposed to the traditional approach

wherein straight waveguides provide a single-point coupling.28,29 It has recently been shown

that pulley-type coupling is particularly important in the context of broadband optical fre-

quency combs based on microring resonators,30 where it can be engineered to realize targeted

values in different frequency bands of interest across an octave of spectral bandwidth. Such

octave-spanning frequency combs that are based on integrated microring resonators are be-

ing intensely pursued for many applications, including the development of new generations
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of optical atomic clocks and frequency synthesizers.31–33

After determining the electric field profiles inside the waveguide and ring resonator for

a chosen frequency, Qc can be calculated using the coupled mode theory (CMT) formalism

of Ref.30 This procedure can then be followed for a wide range of frequencies, e.g., over an

octave, and for a variety of different waveguide geometries (parameterized by the waveguide

width, resonator-waveguide gap, and pulley coupling length), in order to build a library of

results for Qc for a given ring resonator. As it is previously mentioned, this approach is

laborious and computationally intensive. Thus, it is natural to seek more efficient methods,

such as neural networks, to ease these challenges and yield a significant improvement. How-

ever, when running the CMT calculations, one can see that Qc may change by ten orders

of magnitude or even more across the octave of spectral bandwidth. This radical behavior

of Qc poses serious challenges for the task of predicting the coupling quality factor solely

from geometric parameters and the wavelength. This extremely nonlinear behavior of the

coupling quality factor cannot entirely be captured by even today’s most advanced machine

learning algorithms.

A more tractable approach is to use a portion of the Qc values, e.g., the ones calculated

at low frequencies, as the input of the model and then aim to predict the Qc values at other

frequencies (e.g., at high frequencies). If high accuracy is obtained, then this procedure can

be used to reduce the computation time typically spent during device design and optimization

studies. Considering the proven success of deep learning in forward applications,13–19 high

accuracy can be obtained with different types of neural networks such as FCNNs and RNNs.

Noting that FCNNs require a fixed input size by design, if one wants to work with varying size

inputs such as Qc values calculated at varying frequency values and ranges, then RNNs would

be the more appropriate choice. However, RNNs also suffer from their own disadvantages

and limitations,34 e.g., they get slower with increasing input size and their accuracy may

drop significantly with decreasing input size. With their ability to pay attention to certain

parts of the input, an attention mechanism is proposed as an alternative solution method to
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address and resolve the issues of RNNs.

In this work, we compare the performances of these three NN implementations (FC-

NNs, RNNs, and neural networks with an attention mechanism) in a brief yet systematic

study focusing on two different scenarios. In the first scenario, we split the original dataset

randomly into two to be used as training and testing datasets. In the second scenario,

we split the original dataset in such a way that two unique values of the design features

(ring width and waveguide width) are never used in the training, and more importantly,

these values are beyond the original training range, e.g. RWtest /∈ [RWmin
training, RWmax

training] and

Wtest /∈ [Wmin
training,W

max
training]. Hence, we call these two scenarios interpolation and extrapo-

lation problems, respectively. Once the neural networks are trained and a sufficiently high

accuracy is achieved, the interpolation can be used for reducing the computation time and

resources used for the design of microresonators meeting the required specifications within

the predefined physical parameter space, while the extrapolation can be used to achieve the

same for microresonators with physical parameters that are new to the neural network.

The organization of this manuscript is as follows. First, we provide a brief theoretical

background for the physics of the resonator-waveguide coupling. Next, we quickly go over the

fundamental concepts related to neural networks and present the detailed mechanics of the

attention mechanism used in the context of deep learning. We then illustrate how we employ

the additive attention mechanism as a tool to predict the Qc values at higher frequencies

based on the device design parameters and the Qc values at low frequencies. We investigate

how the accuracies of the designed networks change with the input length and the choice

of optimizer, first for the interpolation problem and later for the extrapolation problem.

Our numerical results indicate for the interpolation problem that even with quarter-octave

data (i.e., Qc values given for the frequencies ranging from ν to 1.25ν, with ν being the

starting frequency of the low frequency band), we can predict Qc at higher frequencies (e.g.,

1.25ν to 2.5ν) with accuracies above 90 % using the attention mechanism, which means an

83% reduction in computation time. For extrapolation problems, high accuracy requires
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larger training data compared to interpolation problems but still, 90 % accuracy and a 33 %

reduction in computation time are possible. This implies that once the designed neural

networks are trained with a sufficiently wide frequency range of data for Qc values, the

machine learning methods turn out to be a valuable source in reducing the consumed time

and memory used to evaluate photonic device performance. Our study suggests that the

same idea can be applied to estimate the characteristics of moderately non-linear devices

when a large multi-dimensional dataset over a sufficiently broad frequency range is used for

training.

Resonator-Waveguide Coupling Calculations

Figure 1 (a) illustrates the geometry studied in this work. The Si3N4 microring with an outer

radius R and ring width RW is separated by a gap G from the coupling waveguide of width

W . To increase the interaction length between the waveguide and the ring, the waveguide

is wrapped around a portion of the microring, resulting in a pulley coupling design, where

Lc represents the length of the pulley. To achieve an octave-spanning frequency comb for

optical clock applications, the height of the ring is fixed to 410 nm and the ring width is

chosen to be around 855 nm.33 The ring radius is fixed to 80 µm to target a 275 GHz

repetition rate, which would potentially be directly detectable through recent advances in

high-speed photodetection.35 5750 unique devices are studied by changing the dimensions in

a systematic fashion. Table 1 lists the minimum, maximum, and step size values for RW , W ,

G, and Lc. The substrate (lower optical cladding) is SiO2, while the top and side claddings

are air.

The resonator-waveguide coupling can be calculated using the spatial coupled mode the-

ory (CMT) formalism in an integrated planar geometry by considering only the region over

which their fields interact.30 This approach essentially calculates a coupling rate per each
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Figure 1: (a) Schematic illustration of the pulley-coupled microring resonator. (b) Qc vs. fre-
quency for the design where RW = 865 nm, W = 650 nm, G = 300 nm, and Lc = 38 µm. Note
that along the region between the dashed black lines, the gap between the waveguide and ring is
constant. Low frequency Qc values (depicted with blue) are calculated via the coupled mode theory
(CMT) and used as input along with design parameters. The objective of the neural network is to
predict the high frequency Qc values (depicted in red). The curve shown by the yellow dashed line
represents the gap region that is not used during training or testing.

Table 1: Simulation parameter space includes 5 unique values of RW , W , and G, and 46 distinct
Lc values, for a total of 5750 unique devices.

Parameter Minimum Step Size Maximum
RW 855 nm 10 nm 895 nm
W 550 nm 25 nm 650 nm
G 100 nm 50 nm 300 nm
Lc 5 µm 1 µm 50 µm

round trip of the intracavity field, from which the coupling quality factor Qc is given as:

Qc = ω
nR
g

c0

2πR

|κ|2
, (1)

where ω is the angular frequency, nR
g is the group index of the ring resonator, and κ is the

coupling coefficient between the microring and waveguide given by:

κ =

∫
L

Γ(ω, l)eiϕdl, (2)

with L being the optical path over which the ring and resonator fields spatially overlap,
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ϕ = l
√
(δβ/2)2 + Γ2 the relative accumulated phase term between the light propagating in

the waveguide and the microring, δβ the propagation constant difference between the ring

and the waveguide modes, and Γ the overlap of the ring mode projected onto the waveguide

mode described as:

Γ(ω, l) =
iω

4

∫
S

(ϵwg − ϵR)E
∗
R · Ewg drdz, (3)

with ϵwg/R and Ewg/R being the dielectric permittivity and electric field of the waveguide

and ring modes (in absence of each other), respectively. We focus on fundamental transverse

electric (TE) polarized modes of the waveguide and ring throughout this study, though our

approach (both CMT calculations and NN predictions) can be readily appliedto other cases

as well. An example output of the CMT-based Qc calculation is plotted in Fig. 1(b) for

the frequency range of 200 THz to 500 THz for the design with RW = 865 nm, W = 650

nm, G = 300 nm, and Lc = 38 µm. The main goal of this work is to construct an accurate

deep model that receives the geometric features and Qc values at lower frequencies (e.g., the

blue part of the curve in Fig. 1(b)) as the input and predicts the values of Qc at higher

frequencies (e.g., the red part of the curve in Fig. 1(b)). When we use traditional machine

learning methods such as linear regression or random forests to achieve this goal, we observe

that the accuracy is low, ≈ 70 %. With fully-connected or recurrent neural networks, a

much higher accuracy, e.g. ≈ 90 %, can be obtained as discussed in the Numerical Results

section below. Before we dive into such analysis, first, let us provide a brief introduction to

neural networks and go over the attention mechanism1.

1The dataset and all the codes to build and test the neural networks studied in this work can be found
at https://github.com/simsekergun/QcPrediction.
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A Brief Introduction to Neural Networks

A neural network is a type of machine learning algorithm that is inspired by the structure

and function of the human brain. Neural networks are composed of layers of artificial

neurons that are interconnected in a specific way to enable the network to learn from

data. Here, a neuron refers to a computational unit that is responsible for performing

a computation on the input data and producing an output. A neuron typically receives

input from multiple other neurons or external sources, which are multiplied by their

corresponding weights and summed together. This weighted sum is then passed through

an activation function, which determines the neuron’s output. The activation function

is a (nonlinear) function that is responsible for introducing nonlinearity in the neural

network. The output of one neuron is typically connected to the input of another neuron,

creating a network of interconnected neurons. The output of the final layer of neurons

is the output of the neural network.

Activation functions are typically continuous functions, which are used to introduce

nonlinearity into the network, so that the network can learn more complex and intricate

patterns in the input data. There are several different types of activation functions

that are commonly used in neural networks, including sigmoid, Tanh, ReLU (rectified

linear unit), Leaky ReLU, and softmax. The choice of activation function depends on the

problem being solved and the characteristics of the data.

Neural networks follow an optimization procedure to adjust the parameters of the

model during the training in order to minimize the errors between the predicted outputs

and the actual outputs. The parameters of the model are then updated based on the

gradient of the error function with respect to those parameters. An optimizer can be used

to control how fast the iterative steps of the gradient descent algorithm are traversed in

the parameter space, and can have a significant impact on the convergence and accuracy
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of the neural network. There are many different optimizers available, each with their

own advantages and disadvantages. Some popular optimizers include stochastic gradient

descent (SGD), which updates the parameters in small batches; Adam, which adapts the

learning rate based on the past gradients; and Adagrad, which adapts the learning rate

for each individual parameter based on its history.

The learning rate in neural networks is a hyperparameter that determines the strength

of the iterative adjustments of the weights of the network throughout the training pro-

cess. Roughly speaking, the learning rate controls the step size in the gradient descent

optimization algorithm, which is used to update the weights of the network during train-

ing. A high learning rate means that the weights are updated more aggressively, leading

to larger changes in the model’s predictions with each iteration. However, if the learning

rate is too large, the weights may overshoot the optimal values, causing the model to

diverge and perform poorly. On the other hand, a low learning rate means that the

weights are updated more slowly and the model takes longer to converge. This slower

convergence can be useful for models with many parameters, as it helps prevent the

model from getting stuck in local minima of the loss function.

In the context of neural networks, an epoch refers to one single step in the iterative

procedure of the gradient descent algorithm during the training process. During an

epoch, the neural network updates its parameters, such as weights and biases, based on

the training data it has just processed. This process allows the network to gradually

learn to recognize patterns and make predictions based on the input data. After each

epoch, the neural network evaluates its performance on a separate validation dataset,

which helps to prevent overfitting (i.e., the network becoming too specialized to the

training data and performing poorly on new, unseen data). Neural networks typically

undergo multiple epochs of training, with each epoch helping to refine the network’s

ability to make accurate predictions. The number of epochs required depends on the

complexity of the problem and the size and quality of the training dataset. Typically,
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when the training loss becomes sufficiently small and stable, one can declare that the

training process is complete. Having very small training and testing losses that are very

close to each other is always desirable because in that case, it indicates that the neural

network sufficiently learns from the data without an under or overfitting problem.

Additive Attention Mechanism

Attention mechanisms have proven to be efficient tools to construct accurate deep models

when the features are given in sequential forms. For concreteness, let us assume that features

are given by the sequence ⟨x1,x2, · · · ,xn⟩, where xi ∈ Rd for all i. As shown in Fig. 2,

every attention-based model consists of two separate neural networks. The first network,

which we refer to as the backbone network Fb(·), receives the sequence ⟨x1,x2, · · · ,xn⟩ as

the input and constructs a sufficiently rich representation of it. The output of the backbone

network is a new sequence ⟨h1,h2, · · · ,hn⟩ where hi = Fb(xi) for all i, and hi ∈ Rd̃. The

dimension d̃ of the new vector space is in general different from the original dimension d.

Typically, d̃ is much larger than d.

The second neural network in an attention-based model is the score network, denoted

by Fs(·), whose output is a scalar (i.e. Fs(hi) ∈ R). The score network is trained to assign

scores to elements of the input sequence. The basic idea is that the score network learns

to dynamically assign higher scores to those elements of the input sequence that contribute

to the final output of the model more significantly. Once the scores associated with the

elements of the input sequence are determined, they are then passed to the softmax function

to determine a discrete probability distribution. The standard softmax function is defined

by the following continuous map from Rn to the standard (n− 1)-simplex ∆n−1

softmax : Rn → ∆n−1 =
{
(z1, · · · , zn) ∈ Rn | zi ≥ 0,∀i ,

n∑
i=1

zi = 1
}

softmax(z1, · · · , zn) =

(
ez1∑n
i=1 e

zi
, · · · , ezn∑n

i=1 e
zi

)
.
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Figure 2: An illustration of the neural network implemented. In the beginning, each member of
the input is equally important. A neural network is applied to each item independently, creating a
new sequence representation hi. A score function is applied to every input which gives each item a
single value indicating its importance. The softmax function is applied to all the scores, creating
a probability distribution. An attention mechanism multiplies each softmax score by the original
item from the input and adds them all together.

Passing the attention scores to the softmax function, we can then define the weights of the

discrete probability distribution by the following vector α⃗

α⃗ = softmax(Fs(h1), · · · , Fs(hn)) = softmax
(
Fs(Fb(x1)), · · · , Fs(Fb(xn))

)
. (4)

The final output of the attention-based model is then given by

y = α⃗ · ⟨h1,h2, · · · ,hn⟩ =
n∑

i=1

αi Fb(xi) . (5)

Score networks of attention-based models, Fs(·), fall into two general categories, namely

the simple attention-based networks and attention-based networks with a context vector.

For the former, the score, Fs(hi), for the i-th element of the sequence solely depends on that

element of the sequence. For the latter, Fs(hi) is affected by all elements of the sequence.

Since attention-based models with context incorporate all elements of the input sequence

in assigning the attention scores to elements of the sequence, they perform stronger than
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simple attention-based models. We define the context vector hc to be the simple average of

all elements of the sequence ⟨h1,h2, · · · ,hn⟩

hc =
1

n

n∑
i=1

hi . (6)

To show the dependence of the attention scores on the context vector, hc, we use the notation

Fs(hi;hc) to display attention scores in the presence of a context. One can design the

score network in a variety of ways. Several prominent and common score networks have

been enumerated in.37 For our problem, we found that the additive attention score network

performs the strongest among the existing score networks. The additive score network can

be described by the following formula:37

Fs(hi;hc) = V T
(1×d̃)

G
(
W(d̃×2d̃)[hi;hc]

)
. (7)

In (7), [hi;hc] ∈ R2d̃ stands for the vector obtained by concatenating vectors hi and hc,

and W(d̃×2d̃) is a fully-connected linear layer with the input dimension 2d̃ and the output

dimension d̃, followed by an activation function G. Finally, V T
(1×d̃)

in (7) represents a linear

layer with the input dimension d̃ and the output dimension 1.

Implementation of the Attention Mechanism

In order to apply the attention mechanism to our problem, we need to organize the input

of the model in a sequential form. First, we notice that for the frequency band 200 THz

≤ ν ≤ 500 THz (consisting of 601 distinct frequencies with step size 0.5 THz, which is

small enough to catch the anti-resonances as discussed below), a finite value for Qc has

been calculated for these 601 distinct frequencies for all 5750 unique devices. Moreover, to

ease the calculations, instead of working with Qc directly (see Figure (1)-(b)), we consider
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its base 10 logarithm2. The target variable of the model is set to be the vector yi whose

components are the values of log10Qc for the frequency band 420 THz < ν ≤ 500 THz (i.e.

high frequencies). Note that the subscript i indicates the device number, and yi ∈ R160

for all i. For the explanatory variables (i.e. features) of the model, we take a subset Iν

of the frequency band 200 THz ≤ ν ≤ 400 THz (i.e. lower frequencies). To organize the

features of the model in the sequential form, we first divide the frequency interval Iν into Ns

uniform subintervals, Iν,j, where j = 1, 2, · · · , Ns. Taking 20 samples over an octave-wide

data is a common practice in computational electromagnetics to adequately grasp the main

characteristics of spectral features.36 Since we deal with a slightly wider band, we set Ns to

25. For each subinterval Iν,j, we collect the values of log10Qc in a vector qi,j ∈ RT , where

the subscript i indicates the device number, subscript j refers to the subinterval Iν,j, and

T = Nν/Ns, where Nν is the number of frequencies at which we calculate the Qc values to be

used in the training data. We then concatenate the geometric features (in Table (1)) with

each qi,j

x̃i,j =
[
⟨RW,W,G,Lc⟩i ; qi,j

]
, (8)

where x̃i,j ∈ RT+4. For each device i, we can then arrange a sequence of input variables of

the form ⟨x̃i,1, x̃i,2, · · · , x̃i,Ns⟩. All these data can be represented through a (B,Ns, T + 4)-

tensor X, where the first index specifies the device (i.e. the batch number). Note that the

last dimension is T + 4, which corresponds to the n in Fig. 2 such that n = T + 4, because

in each case, we input 4 parameters (RW , W , G, and Lc) and T values of Qc calculated at

T different frequencies. As is customary in deep learning, the input data can be fed in two

different ways, namely through X or XT. We note that XT is the transpose of X along its

last two dimensions, and hence is a (B, T + 4, Ns)-tensor. When X is fed to the attention-

based model, the attention is inclined towards the frequency subintervals, whereas for XT,

the attention is inclined towards the feature types. We found that for our problem, the

2There are some missing data points in the original datasets. Those are replaced with zeros after taking
logarithms of Qc values
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attention-based models perform much stronger when XT is fed to the model as the input.

The last ingredient to specify is the exact structure of the backbone network Fb(·) for

the problem at hand. In our study, the backbone network consists of 4 hidden layers with

256, 256, 512, and 512 neurons. The input of each layer passes a batch normalization before

reaching the fully-connected linear layer. The output of each hidden layer passes a standard

ReLU (rectified linear unit) activation function.

Numerical Results

Interpolation

First, we consider the following scenario: the four geometric parameters ⟨RW,W,G,Lc⟩ and

Qc values for the frequency range 200 THz to 400 THz are given as the input of the model,

and our goal is to predict the Qc values for 160 distinct frequencies ranging from 420 THz

to 500 THz, i.e., Iν : 200 ≤ ν ≤ 400 THz and y : 420 THz < ν ≤ 500 THz. We randomly

split the dataset into two disjoint subsets so that 4750 of the 5750 distinct designs are used

for training and the remaining 1000 designs are used for testing.

To calculate the accuracy of the attention-based neural network, we use the standard

mean squared error (MSE) as the loss function. The learning rate is set to 0.001. The

standard ReLU is taken as the choice of the activation function G in (7) under the AdamW

optimizer.39 At the end of 100 epochs, the test R2-score and the test loss reach (96.7 ± 0.4) %

and (3.6 ± 0.4) %, respectively. Figure 3 shows comparisons of the true (solid curves) vs.

the predicted (dashed curves) behavior of Qc for four randomly chosen devices. There are

a few comments in order. In the upper plot of Figure (3), neither design has a peak in the

true Qc values in the selected frequency range. In this case, the prediction of the attention-

based network agrees with the ground truth values of Qc for the selected designs with a

remarkably high level of precision. However, this is not true for the devices chosen for the

second plot in Figure (3), where we observe an anti-resonance in the high-frequency range.
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This anti-resonance is a location whereQc exhibits a (sharp) peak and the coupling coefficient

(κ) between the resonator and waveguide tends towards zero, due to a perfect anti-phase

condition in Eq. 2. In such cases, the attention-based model accurately identifies the position

of the peak, but the model typically predicts a shorter height for the peak. This behavior of

the model can be explained by noting that a (sharp) peak in the behavior of Qc represents an

extreme nonlinear behavior. Neural networks, on the other hand, incorporate nonlinearity

through well-behaved activation functions which all fall into the class of regularly varying

functions. In order to capture the height of the peaks accurately, the neural network must

be capable of incorporating extreme nonlinear behaviors of the target variable but this is not

necessary from a photonic design point of view because the most important point is that Qc

is very high, rather than its specific value. In particular, for a resonator coupled by a single

bus waveguide, the power coupled into the resonator Pc is given by:42

Pc = Pin
4Qi/Qc

(1 +Qi/Qc)2
, (9)

where Pin is the input power in the waveguide and Qi is the resonator’s intrinsic quality

factor, i.e., the quality factor in absence of waveguide coupling and due to other loss mech-

anisms, such as scattering and absorption. As intrinsic quality factors for these types of

resonators are typically limited to ≲ 108,43 from a practical point of view, once the Qc ex-

ceeds the intrinsic loss by more than a couple orders of magnitude, there is not much need to

distinguish between further orders-of-magnitude increases since the power coupled into the

resonator is nearly zero regardless. Thus, although the model is not capable of capturing the

anti-resonance behavior completely, it is capable of estimating where Qc exceeds the intrinsic

loss by more than an order of magnitude or so. This is a more important attribute from the

design perspective, where an understanding of the location of the coupling anti-resonances

is needed to ensure that they are in regions of frequency space where efficient coupling is not

needed.30

We now comment on the choice of the optimizer for our neural networks. One of the most
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Figure 3: True (CMT-determined) vs. predicted Qc values for two devices without (top) and with
(bottom) a peak (referred in the main text as a coupling anti-resonance) in the frequency range
of interest. Here, the geometric parameters defining the resonator-waveguide coupler and the Qc

values between 200 THz and 400 THz are given as inputs in order to predict Qc between 420 THz
and 500 THz.

commonly used optimizers in deep learning has been the Adaptive Momentum Estimation

(Adam), which was first introduced in.38 In updating the parameters of the model at each

step of the learning process, Adam considers the variance of the gradients and normalizes the

momentum with its variance. However, it was shown in39 that in order to implement the

regularization of Adam in a consistent manner, the weight decay of the learning process must

be decoupled from the gradient-based update. This variant of Adam optimizer is known as

the AdamW optimizer. Another variant of Adam – known as the Nesterov Adam (NAdam)

that was introduced in40 – incorporates the Nesterov momentum instead of the usual velocity

vector in the parameter space of the model. In certain cases, NAdam outperforms Adam and

AdamW. A relatively recent paper,,41 introduces another variant of the Adam optimizer

known as the Rectified Adam (RAdam). In Adam (also in AdamW and NAdam), in order

to calculate the variance of the gradients, one simply approximates the variance with the

square of the gradients. In RAdam, however, a deeper analysis of the variance is performed,
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and the variance of the gradients is modified41 by a factor rt at each timestamp t of the

learning process. The inclusion of the rectified factor, rt, leads to more stable performance of

adaptive learning. In this work, we consider three of the aforementioned variants (AdamW,

NAdam, and RAdam) of the Adam optimizer as different choices for the optimizer of our

neural networks. Table 2 summarizes the mean R2 score of the model (calculated across

1000 randomly chosen devices that are not used during the training) for the train and test

subsets under each choice of the optimizer. To calculate the uncertainty associated with the

result, we have executed the network over five randomly train/test splits. The uncertainty

associated with the R2 scores has been depicted in Figure (4), where the uncertainty is a

one standard deviation value.

Table 2: Accuracies of the attention-based model under different choices of optimizers.

Accuracies of the Model

Under Different Optimizers

optimizer train R2-score (%) test R2-score (%)

AdamW 94.0 ± 0.4 96.7 ± 0.4

NAdam 93.6 ± 0.4 96.4 ± 0.4

RAdam 93.7 ± 0.4 96.6 ± 0.4

It is observed that the performances of AdamW, NAdam, and RAdam are very close to

each other but the first choice (AdamW) offers a slightly higher R2-scores for the train and

test subsets. Hence, AdamW is fixed as our preferred choice of optimizer for the rest of the

work carried out in this paper.

In our setup, the target variable is a vector with 160 components (y ∈ R160). An

important question in this context is how the accuracy of the predictions depends on the

frequency bandwidth (i.e. length of Iν) for the feature variables. To provide a quantitative

answer to the dependence of the accuracy of the model on the width of the frequency band

Iν , we proceed as follows. We execute the model for four different frequency bands. The first

frequency band (I
(1)
ν : 200 THz ≤ ν < 250 THz) consists of 100 distinct frequencies, and any
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Figure 4: The R2 scores for the attention-based neural network under different choices of opti-
mizers have been depicted. The top, middle and bottom plots depict R2 scores for the AdamW,
NAdam, and RAdam optimizers, respectively. The green curve represents the mean R2 score for
the train dataset, while the purple curve represents the mean R2 score of the test data per epoch.
The semi-transparent filled regions associated with the green and purple curves represent the un-
certainties in R2 scores per epoch for five randomly formed train/test splits.

subsequent band increases the number of distinct frequencies by including 100 new points. In

this study, in addition to the attention-based NN, we also implement two other architectures:

FCNN and RNN. The FCNN consists of 6 hidden layers. The first two, the second two, and

the last two layers of the FCNN model include Nn, 2Nn, and 4Nn neurons respectively, where

Nn = 512. As before, the standard ReLU is used as the choice of the activation function

for hidden layers. The optimizer is set to AdamW. The step size, learning decay rate, and

learning rate are chosen to be 10, 0.3, and 0.001, respectively. The RNN model consists of

5 layers with 256 neurons for each layer. The step size, learning decay rate, and learning

rate are chosen to be 10, 0.5, and 0.001, respectively. The sequence length is 25. Figure 5

plots the accuracy (test R2-scores) for FCNN, RNN, and an attention-based NN model. For
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long input sequences, all three networks have high accuracies, ≥ 95%. When the sequence

length gets shorter, the accuracy of the RNN implementation drops much faster than the

FCNN and attention-based NN. It should be noted that even for the shortest interval that we

consider here (i.e. I
(1)
ν ), the attention-based NN model performs fairly well, with R2 ≈ 88 %.

It is not shown here for the sake of brevity but we can predict the Qc values from 250 THz

to 500 THz almost at the same accuracy level with I
(1)
ν : 200 ≤ ν < 250 THz. This means

that once we complete the training, we need to spend n-hours of computing time instead of

6n-hours and we ask neural networks to predict the Qc values at higher frequencies, which

takes only a few milliseconds. This 83 % reduction in computing time could be a tremendous

saving, especially for computationally intensive studies and applications.

Figure 5: The R2 scores for the FCNN (blue), RNN (red), and the attention-mechanism (orange)
models for the interpolation problem with different frequency bandwidths for the feature variables.

Error bars represent standard errors. From I
(1)
ν : 200 THz ≤ ν < 250 THz to I

(4)
ν : 200 THz

≤ ν < 400 THz, corresponding to training datasets with the increasing length of input from 100 to
400.

Based on the results depicted in Figure (5), we confidently claim that the implementation

of an attention mechanism indeed increases the accuracy of RNN-type neural networks for

interpolation problems. However, when we take into account the training time spent by each

of the established models – 3 minutes for the FCNN and an hour for the attention-based
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NN using the 32 GPUs that come with Apple’s M1 Max processor 3 – the FCNN could be

a more practical choice for the interpolation applications that must be completed in short

periods of time, where the lack of extremely high accuracy is not a crucial matter. As we

increase the training dataset size from I
(1)
ν to I

(4)
ν , the amount of memory used is increased

from 0.8 GB to 1.2 GB.

Note that for the method outlined above, the purpose is neither the inverse photonic

design nor extremely accurate Qc prediction. If the goal is the inverse design of a ring

resonator with a pulley-type coupling, then the proper choices would be GANs and BtB

networks to determine the optimum parameter. If the goal is to efficiently couple the light

at multiple widely separated wavelengths from a waveguide to a ring resonator, then using

the adjoint method to identify scatterers between the ring resonator and the waveguide, such

as it is done in,10 would be an appropriate choice. If the goal is to determine the coupling

efficiency with very high accuracy, then one needs to calculate the electric field distributions

inside the waveguide and ring resonator and follow the CMT formalism for the desired set

of design parameters (dimensions, refractive indices of the materials, wavelengths, etc.). We

emphasize that when the goal is to design a ring resonator with a pulley-type coupling via

numerical optimization or a grid-based approach, appropriately chosen machine learning

algorithms can accelerate this process. One should calculate the entire Qc spectrum (or

in practice, M1 unique values) for N devices. Then for the rest, one can rely on machine

learning algorithms and calculate Qc values for M2 values only, where M1 ≪ M2 for as

many as new devices one desires, as long as the physical parameters of these new devices

are covered in the training dataset. Roughly speaking, one obtains a reduction by a factor

of M2/M1 in the overall computation time.

3Certain commercial items are identified to foster understanding, and do not constitute an endorsement
by NIST.
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Extrapolation

To study extrapolation, we change the way we create our training and test datasets. Here

instead of a random splitting, we use certain values of RW and W for training and for

testing, we choose RW and W values that are beyond the ranges used in training. Table 3

lists the corresponding RW and W values. In this case, the training and testing datasets

have 3680 and 230 devices, respectively.

Table 3: RW and W values used for the training and testing datasets for the extrapolation
problem.

Parameter Training Dataset Testing Dataset

RW (nm) 855, 865, 875, 885 895

W (nm) 550, 575, 600, 625 650

Figure 6 shows comparisons of the true (solid curves) vs. the predicted (dashed curves)

behavior of Qc for four randomly chosen devices among the 230 test devices used in the

extrapolation study. Similar to the results presented in Fig. 3, the accuracy is high in

the absence of an anti-resonance peak and when there is a peak, the model is capable

of estimating the anti-resonance width (defined, for example, as the frequency range with

Qc > 1010) accurately.

Figure 7 plots the accuracy (testR2-score) for FCNN, RNN, and an attention-based NN in

a similar fashion to Figure 5. Again, the accuracy of FCNN and attention-based NN increases

steadily with increasing training dataset size and the attention-based NN outperforms the

FCNN when the training data is sufficiently large. However, we do not observe a similar

steadiness in the performance of the RNN model. In fact, the performance of the RNN

model does not improve until the number of samples (devices) used in the training reaches

at least 300.

Unlike the interpolation problem, here we have to use a large number of samples in the

training data to achieve high accuracy in the context of extrapolation problems. Due to
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Figure 6: True (CMT-determined) vs. predicted Qc values for two devices without (top) and with
(bottom) a peak (referred in the main text as a coupling anti-resonance) in the frequency range
of interest. In contrast to Fig. 3, here we perform an extrapolation study where training is done
using CMT-based Qc calculations for certain values of RW and W , and testing is done for RW
and W values outside of the testing range.

Figure 7: The R2 scores for the FCNN (blue), RNN (red), and the attention-mechanism (orange)
models for the extrapolation problem with different frequency bandwidths for the feature variables.
Error bars represent the standard deviation observed in the last five epochs.

its stable performance, we again recommend attention-based NN models for extrapolation

applications that typically require high accuracy.
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If we take the case where we use the 200 THz to 400 THz dataset for training and

achieve to predict the Qc values for the 400 THz to 500 THz range with a 91 % accuracy as

an example, we can conclude that there is a 33 % reduction in computation time. This is not

a reduction as significant as the one we see in the interpolation problem. Considering the

fact that if one chooses geometric parameters far from the ones used for the training, then

the accuracy is very likely to decrease for this kind of non-linear device characterization.

The amount of decrease highly depends on the correlation between the input parameter and

output, which is the Qc value in our case. A safer approach would be preparing training data

that (i) spans the entire testing design space and (ii) has the parameters that are sampled

at moderate-enough rates. The rules regarding how to choose the optimum sampling rate

are beyond the scope of this paper and the reader is referred to.44 The amount of possible

reduction in computing time while maintaining accuracy heavily depends on the non-linearity

level of the design under investigation. The training data needs to be large enough to learn

the influence of each feature on the output and wide enough (in the frequency domain) to

carry the unique signature of each device. In our interpolation study, a quarter-octave was

enough to distinguish these moderately nonlinear structures but for devices with a weaker

nonlinearity, training data covering smaller fractions of an octave could be enough and an

even higher amount of acceleration could be achieved.

In our future studies, we plan to add new parameters such as tapering of the gap and

waveguide to the parameter space and use attention-based neural networks as a forward-

solver feeding a numerical optimization algorithm to achieve qualitatively new coupling

regimes beyond what has thus far been shown with constant waveguide width and constant

gap pulley couplers. In particular, rather than demonstrating desirable coupling levels in

targeted spectral bands within the octave bandwidth of a microresonator frequency comb,30

the ability to flatten the Qc across the entire octave will be studied.
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Conclusion

In this work, we employ a number of well-known deep learning architectures such as the

fully-connected and recurrent neural networks to establish successful predictive models for

the behavior of the frequency-dependent coupling quality factor of pulley-coupled microring

resonators. In addition to the aforementioned architectures, we also take the advantage of a

more recent deep learning architecture, namely the attention mechanism, in order to establish

deep learning models with even higher accuracies. Due to its recentness, the implementation

of attention mechanisms to construct predictive deep learning models is explained in detail.

Predictions of the established models are treated as either interpolation or extrapolation

problems, based on how the training and testing datasets are arranged. In both situations

(i.e. interpolation and extrapolation), and among the constructed deep models in this study,

the attention mechanism yields the most accurate and stable results in predicting the cou-

pling quality factor of the pulley-coupled microring resonators. We explored the dependence

of the precision of the predicted results on the bandwidth of the input frequencies and found

that the accuracy of the attention-based models increases steadily with increasing the size of

the training dataset. We numerically show that for the interpolation problem, the attention

mechanisms can achieve predicting the coupling efficiency with over 90 % accuracy for spec-

tral ranges six times wider than the spectral ranges used in training data, which means a six

times reduction is possible during a large-scale numerical optimization study. We conclude

that once models are trained with sufficiently large datasets, the deep learning models can

offer a new promising avenue to accelerate spectral studies in electromagnetics, photonics,

and acoustics, as the approach advertised in this work is physics-agnostic and can thus be

applied to a wide range of problems.
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