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Abstract
The Laplace equation in three-dimensional Euclidean space is R-separable in
bi-cyclide coordinates leading to harmonic functions expressed in terms of
Lamé–Wangerin functions called internal and external bi-cyclide harmonics.
An expansion for a fundamental solution of Laplace’s equation in products
of internal and external bi-cyclide harmonics is derived. In limiting cases this
expansion reduces to known expansions in bi-spherical and prolate spheroidal
coordinates.

Keywords: Laplace’s equation, fundamental solution,
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(Some figures may appear in colour only in the online journal)

1. Introduction

The Laplace equation∆u= 0 is separable in various coordinate systems in three-dimensional
Euclidean space, among them the bi-cyclide coordinate system. In the theory of separation
of variables for Laplace’s equation in separable coordinate systems, one may obtain a basis
of solutions with a corresponding set of quantum numbers which allows one to expand arbit-
rary solutions of the homogeneous equation as a sum of separated eigenfunctions over the set
of quantum numbers. Once you have obtained this basis, one of the most natural functions to
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expand in terms of this basis is a fundamental solution of Laplace’s equation because it satisfies
the homogeneous equation almost everywhere. For Laplace’s equation in three-dimensions, a
fundamental solution of Laplace’s equation is proportional to the reciprocal distance between
two points. The expansions of the reciprocal distance between two points in terms of the har-
monics in separable coordinate systems has a rich full history going back to the 1800s. Such
expansions are known for many Laplace separable coordinate systems, but not for all of them.
In two previous papers [3, 4], the expansion of the reciprocal distance was given in flat-ring
coordinates for the first time. In this paper we derive the expansion of the reciprocal distance
in terms of harmonic functions separated in bi-cyclide coordinates.

Bi-cyclide coordinates were originally introduced byWangerin [25]. They can also be found
in Miller [18, p 211, system 14] and Moon and Spencer [19, p 124] (the connection between
these forms of bi-cyclide coordinates is made in appendix A). In these references the ordinary
differential equations obtained by applying the method of separation of variables to∆u= 0 in
bi-cyclide coordinates are given. However, formulas for the internal and external harmonics as
well as the corresponding expansion of the reciprocal distance using these harmonic functions
are missing. It is the purpose of this paper to supply these missing results.

In section 2 we define bi-cyclide coordinates in the form given by Miller and carry out the
process of separation of variables to the Laplace equation. The form of the bi-cyclide coordin-
ates used by Miller has the advantage that two of the separated ordinary differential equations
appear in the standard form of the Lamé equation. This is not the case if the coordinates are
given as in Wangerin or Moon and Spencer. In section 3 we review Lamé–Wangerin functions
that appear in the definitions of internal and external bi-cyclide harmonics. Lamé–Wangerin
functions are particular solutions of Lamé’s differential equation that have recessive behavior
at two neighboring regular singularities. Moreover, an estimate for Lamé–Wangerin functions
is given that is needed to prove convergence of various series expansions. In section 4 internal
and external bi-cyclide harmonics are introduced and their main properties are established.
In section 5 various results involving internal and external bi-cyclide harmonics are proved.
These results include the solution of a Dirichlet problem and an integral representation of
external harmonics in terms of internal harmonics. Finally, as the main result of this paper,
the expansion of the reciprocal distance between two points in a series of internal and external
bi-cyclide harmonics is given. As corollaries we find an addition theorem and integral rela-
tions for Lamé–Wangerin functions in terms of zero order toroidal harmonics of the second
kind. In section 6 we introduce a second kind of internal and external bi-cyclide harmonics.
In contrast to corresponding results in flat-ring coordinates, these internal and external bi-
cyclide harmonics of the second kind can be reduced to the ones of the first kind by a Kelvin
transformation. In the final two sections 7.1 and 7.2 we show that limiting cases of bi-cyclide
coordinates include bi-spherical and prolate spheroidal coordinates. We connect the expansion
of the reciprocal distance in bi-cyclide coordinates to the known expansions in bi-spherical and
prolate spheroidal coordinates.

2. Bi-cyclide coordinates

Bi-cyclide coordinates are orthogonal curvilinear coordinates on R3 which are one of the sev-
enteen conformally inequivalent coordinate systems which allow for separation of variables
of Laplace’s equation in three-dimensions (see [18, tables 14 and 17]). All of these coordinate
systems are triply-orthogonal coordinate systems in that all two-dimensional coordinate equal
constant surfaces in R3 intersect at right angles. This coordinate system is also rotationally-
invariant about the z-axis, of which there are a total of nine out of these seventeen coordinate
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systems. Another interesting property of these seventeen conformally inequivalent coordin-
ate systems is that eleven of these have coordinate equal constant surfaces which are second
order quadrics (three-dimensional generalizations of the conic sections) and the remaining six
coordinate systems have coordinate equal constant surfaces which are fourth-order surfaces
referred to as cyclides. Bi-cyclide coordinates are one of the rotationally-invariant coordin-
ate systems which are cyclidic with two fourth-order coordinate equal constant surfaces (not
including the half-planes which correspond to a fixed angle about the z-axis) referred to as
bi-cyclides and apple-shaped cyclides respectively.

Miller [18, p 211, (6.28)] introduces bi-cyclide coordinates α,β,ϕ in R3 by

x= Rcosϕ, y= Rsinϕ, z= ikRsn(α,k)sn(β,k), (2.1)

where
1
R
=

i
k′
(dn(α,k)dn(β,k)− kcn(α,k)cn(β,k)) .

Note that we corrected a typo in the definition of R. These coordinates depend on a given
modulus k ∈ (0,1), and involve the Jacobian elliptic functions cn,sn,dn [21, chapter 22]. We
also use the complementary modulus k ′ =

√
1− k2 and the complete elliptic integrals of the

first kind K= K(k) and K ′ = K ′(k) = K(k ′). The complex coordinates α and β vary in the
segments α ∈ (iK ′,2K+ iK ′), β ∈ (2K− iK ′,2K+ iK ′) and ϕ ∈ (−π,π].

Bi-cyclide coordinates can also be seen as a coordinate system in the (R, z)-plane, where
R= (x2 + y2)1/2 denotes the distance of a point (x,y,z) in R3 to the z-axis. Three-dimensional
bi-cyclide coordinates are then obtained by adding the rotation angle ϕ about the z-axis.

We prefer a real version of bi-cyclide coordinates. Setting α= s+K+ iK ′, β = 2K+ it
with s ∈ (−K,K), t ∈ (−K ′,K ′), we obtain

R=
cn(s,k)cn(t,k ′)

1− sn(s,k)dn(t,k ′)
, (2.2)

z=
dn(s,k)sn(t,k ′)

1− sn(s,k)dn(t,k ′)
. (2.3)

In the derivation of (2.2) and (2.3), standard identities for Jacobian elliptic functions are used
[21, sections 22.4 and 22.6].

The mapping (s, t) ∈ (−K,K)× (−K ′,K ′) 7→ (R,z) ∈ (0,∞)×R is bijective, (real) ana-
lytic and its inverse is also analytic. The proof that the coordinate mapping (s, t) 7→ (R,z) is
bijective is similar to the corresponding proof in flat-ring coordinates [3]. In fact, planar bi-
cyclide and planar flat-ring coordinates are closely related as can be seen as follows.

Letting s= σ−K, σ ∈ (0,2K) and t= K ′ − τ , τ ∈ (0,K ′), we obtain

z= T−1, R= (x2 + y2)1/2 =− ik
T
sn(σ,k)sn(iτ,k),

where

T=
1
k′
dn(σ,k)dn(iτ,k)+

k
k′
cn(σ,k)cn(iτ,k).

Thus σ,τ are exactly the planar flat-ring coordinates (coordinates on R2, see for instance [19,
figure 2.16]) treated in [3, section 2.2] except that (x,y) = (R,z) are interchanged. Therefore,
we can say that planar flat-ring and planar bi-cyclide coordinates are the same (in the first quad-
rant) but their three-dimensional versions become different because we rotate about different
coordinate axes.
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Figure 1. The rectangle [−K,K]× [−K ′,K ′] of coordinates s, t.

Figure 2. Bi-cyclide coordinates on the z-axis.

We extend planar bi-cyclide coordinates to the z-axis as follows. We note that the denom-
inator on the right-hand sides of (2.2) and (2.3) is positive on the rectangle (s, t) ∈ [−K,K]×
[−K ′,K ′]with the exception of the point s= K, t= 0. Therefore, R,z are continuous functions
on this rectangle with the point (K,0) removed. The points on the boundary of the rectangle
are mapped to R= 0. As we go around the boundary of this rectangle in a clockwise direction
as shown in figure 1, z transverses the z-axis from −∞ to +∞. The segments γj are mapped
to Γj for each j = 1,2,3,4,5 as shown in figure 2 using the notation

b=
1− k
k ′

=
k ′

1+ k
∈ (0,1). (2.4)

For s0 ∈ (−K,K) and t0 ∈ (−K ′,K ′) we introduce the polynomials

P1(x,y,z) = sn2(t0,k
′)(R2 + z2 + 1)2 − k2 sd(t0,k

′)2(R2 + z2 − 1)2 − 4z2, (2.5)

P2(x,y,z) = sn2(s0,k)(R
2 + z2 + 1)2 − (R2 + z2 − 1)2 − 4k ′2 sd2(s0,k)z

2, (2.6)

where we used Glaisher’s notation for the Jacobi elliptic functions [21, (22.2.10)]. If s, t are
bi-cyclide coordinates of (x,y,z) then

R2 + z2 + 1=
2

1− sn(s,k)dn(t,k ′)
, R2 + z2 − 1=

2sn(s,k)dn(t,k ′)
1− sn(s,k)dn(t,k ′)

, (2.7)

so a computation gives

P1(x,y,z) =
4(sn2(t0,k ′)− sn2(t,k ′))(dn2(t0,k ′)− k2 sn2(s,k))

dn2(t0,k ′)(1− sn(s,k)dn(t,k ′))2
, (2.8)

P2(x,y,z) =
4(sn2(s0,k)− sn2(s,k))(dn2(t,k ′)− k2 sn2(s0,k))

dn2(s0,k)(1− sn(s,k)dn(t,k ′))2
. (2.9)
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Figure 3. Coordinate lines s=± 3
5K,±

2
5K,±

1
5K,0 in blue and

t=± 4
5K

′,± 3
5K

′, 25K
′,0 in red for bi-cyclide coordinates with k= 0.7.

Therefore, P1(x,y,z) = 0 if and only if t= t0 or t=−t0, and P2(x,y,z) = 0 if and only if s= s0
or s=−s0.

Figure 3 depicts coordinate lines of planar bi-cyclide coordinates. The coordinate lines
s= s0 and t= t0 are shown in blue and red, respectively. The coordinate line t= 0 is the posit-
ive R-axis, and the coordinate line s= 0 is half the unit circle. The mapping (s, t)→ (s,−t) cor-
responds to (R,z)→ (R,−z), and (s, t)→ (−s, t) corresponds to (R,z)→ (R2 + z2)−1(R,z),
the inversion at the unit circle. The rectangle (s, t) ∈ (0,K)× (0,K ′) corresponds to the region
{(R,z) : R,z> 0,R2 + z2 > 1}. Figure 3 also shows the position of the four points (0,±b),
(0,±b−1) on the z-axis.

2.1. The inverse mapping

Let R⩾ 0, z ∈ Rwith corresponding bi-cyclide coordinates s, t. Then P1 = P2 = 0 with s= s0,
t= t0 imply that η1 =− k ′2

k2 cn2(s,k) and η2 = cn2(t,k ′) are solutions of the quadratic equation

Eη2 +Fη+G= 0,
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where

E=
k′2

k2
(R2 + z2 + 1)2, F=

k′2

k2
(
4z2 − (R2 + z2 + 1)2

)
+ 4(R2 + z2), G=−4R2.

Therefore, if η1 ⩽ η2 denote the solutions of this quadratic equation, then we find

s=

{
s1 if R2 + z2 ⩾ 1,

−s1 if R2 + z2 < 1,
t=

{
t1 if z⩾ 0,

−t1 if z< 0,

where

s1 = arccn

(
k′

k

√
−η1,k

)
∈ [0,K], t1 = arccn(

√
η2,k

′) ∈ [0,K′].

These formulas apply to every point (x,y,z) ∈ R3.

2.2. R-separation of variables for Laplace’s equation in bi-cyclide coordinates

Wangerin showed [25] that in rotationally-invariant coordinate systems, the Laplace equation
∆u= 0 can be solved by functions

u(x,y,z) =R(x,y,z)u1(s)u2(t)u3(ϕ), (2.10)

where R is a known elementary function called the modulation factor, following Morse and
Feshbach [20], and u1, u2, u3 solve ordinary differential equations. Here R= R−1/2, where
R is the distance to the axis of rotation. In the literature, this is referred to as R-separation
of variables, and we say that Laplace’s equation is R-separable. See [18, section 3.6] for a
detailed description of R-separation of variables for the three-variable Laplace equation. In
bi-cyclide coordinates one has R-separated solutions

u(x,y,z) = R−1/2u1(α)u2(β)e
imϕ, R= (x2 + y2)1/2,

where u1 and u2 satisfy the ordinary differential equation

d2w
dζ2

+
(
λ− (m2 − 1

4 )k
2 sn2(ζ,k)

)
w= 0. (2.11)

This is stated in [18, p 211, (6.28)] and will be confirmed in theorem 2.1 below.
The Lamé equation is

d2w
dζ2

+(λ− ν(ν+ 1)k2 sn2(ζ,k))w= 0. (2.12)

So (2.11) is the Lamé equation with ν = |m| − 1
2 .

If we write v1(s) = u1(s+K+ iK ′) and v2(t) = u2(2K+ it), we obtain the differential
equations

d2v1
ds2

+(λ− (m2 − 1
4 )dc

2(s,k))v1 = 0, (2.13)

d2v2
dt2

− (λ+(m2 − 1
4 )k

2 sc2(t,k ′))v2 = 0. (2.14)

Using dc2(s,k) = 1+ k ′2 sc2(s,k) we see that equation (2.13) is the same as (2.14) with k
replaced by k

′
and λ replaced by ν(ν+ 1)−λ. We summarize the result in the following

theorem.

6
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Theorem 2.1. If m ∈ Z, λ ∈ R, v1 solves (2.13) on (−K,K) and v2 solves (2.14) on (−K ′,K ′).
Then

u(x,y,z) = R−1/2v1(s)v2(t)e
imϕ (2.15)

is a harmonic function in R3 \ {(0,0,z) : z ∈ R}.

Proof. The metric coefficients of bi-cyclide coordinates are given by hϕ = R and

hs = ht = R(dc2(s,k)+ k2 sc2(t,k ′))1/2. (2.16)

In circular cylindrical coordinates R,z,ϕ, the Laplace equation ∆u= 0 takes the form

∂2v
∂R2

+
∂2v
∂z2

+R−2

(
∂2v
∂ϕ2

+
1
4
v

)
= 0,

where u= R−1/2v. Using hs = ht this equation transforms to

∂2v
∂s2

+
∂2v
∂t2

+R−2h2s

(
∂2v
∂ϕ2

+
1
4
v

)
= 0.

We now easily confirm that v1(s)v2(t)eimϕ satisfies this equation.

3. Lamé–Wangerin functions

We recall the Lamé–Wangerin eigenvalue problem. The Lamé equation (2.12) has regular
singular points at ζ = iK ′ and ζ = 2K+ iK ′ with exponents −ν and ν+ 1 at both points.
The eigenvalue problem asks for solutions of (2.12) (with ν ⩾− 1

2 ) on the segment ζ ∈
(iK ′,2K+ iK ′) which belong to the exponent ν+ 1 at both end points iK

′
and 2K+ iK ′. In

[13, section 15.6] the eigenfunctions of this eigenvalue problem are denoted by F n
ν(ζ,k

2).
Alternatively, in [4] we used the notation W n

ν(s,k) = F n
ν(s+K+ iK ′,k2).

We list the most important properties of the Lamé–Wangerin functions W n
ν(s,k), ν ⩾− 1

2 ,
n ∈ N0. See [24] for further details.

(a) The functionW n
ν(s,k) is real-valued on the interval s ∈ (−K,K) and has exactly n zeros in

this open interval. In addition, W n
ν(s,k)→ 0 as s→±K.

(b) For s<K close to K we have the expansion

W n
ν(s,k) =

∞∑
ℓ=0

cℓ(K− s)ν+1+2ℓ, (3.1)

with real coefficients cℓ and c0 6= 0.
(c) The function W n

ν(s,k) is even/odd with n:

W n
ν(−s,k) = (−1)nW n

ν(s,k). (3.2)

(d) For every fixed ν ⩾− 1
2 and k ∈ (0,1), the sequence of functions {W n

ν(s,k)}n∈N0 forms an
orthonormal basis of the Hilbert space L2(−K,K). See also appendix B for some of the
details relating to this fact. Note that one may also find relevant information about this in
the appendix of the Bi thesis [2, p 43] and also in [26, chapter 14].

(e) The function W(s) =W n
ν(s) satisfies differential equation

d2W
ds2

+
(
Λn
ν(k)− ν(ν+ 1)dc2(s,k)

)
W= 0, (3.3)

7
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where Λn
ν(k) denotes an eigenvalue. Some properties of these eigenvalues are given in [4,

section 2].
(f) The functionW n

ν(s) can be continued analytically to an analytic function in the strip |=s|<
2K ′ with branch cuts (−∞,−K] and [K,+∞) removed.

It should be mentioned that there are no explicit formulas for the Lamé–Wangerin functions
W n

ν nor for the eigenvalues Λn
ν . However, efficient methods for their numerical computation

are available.
In the application to bi-cyclide coordinates we use Lamé–Wangerin functionsW n

ν(s,k) not
only for s ∈ (−K,K) but also for complex s with real part −K or K. This is an important
difference to the application of Lamé–Wangerin functions to flat-ring coordinates [4]. In that
case,W n

ν(s,k) was used for purely imaginary s. The following two lemmas state a property of
Lamé–Wangerin functions with complex argument that is required in the subsequent analysis.

Lemma 3.1. Let ν ⩾ 0, n ∈ N0, k ∈ (0,1).

(i) W n
ν(K+ ir,k) 6= 0 for all r ∈ (0,2K ′).

(ii) If 0< r1 < r2 < 2K ′ then

0<
W n

ν(K+ ir1,k)
W n

ν(K+ ir2,k)
⩽ 2e−ω(n+ν+1)(r2−r1), where ω :=

π

2K
.

Proof. The function W n
ν(K+ ir,k), r ∈ (0,2K ′), is usually not real-valued. However, it fol-

lows from (3.1) that we can write W n
ν(K+ ir,k) = Cw(r) with a suitable complex constant C

such that w is real-valued and has the expansion

w(r) =
∞∑
ℓ=0

dℓr
ν+1+2ℓ with dℓ ∈ R, d0 = 1, (3.4)

for small r> 0. We will replace W n
ν(K+ ir,k) by w(r) in the proof. Now (3.3) gives

w ′ ′ = q(r)w, q(r) = Λn
ν(k)+ ν(ν+ 1)cs2(r,k ′). (3.5)

Using ν ⩾ 0 and by Sturm’s comparison theorem [15, section 10.4] (see also [4, lemma 2.3]),
we find

q(r)⩾ Λn
ν(k)⩾ γ2, γ := ω(n+ ν+ 1)> 0.

It follows from (3.4) that w(r)> 0 and w ′(r)> 0 for small r> 0 so (3.3) and q(r)> 0 imply
w(r)> 0 and w ′(r)> 0 for all r ∈ (0,2K ′). Now u= w ′/w satisfies the Riccati equation u ′ +
u2 = q(r), so by comparison with the equation v ′ + v2 = γ2,

u(r)⩾ γ tanh(γ(r− r1)) for r⩾ r1.

Integrating from r= r1 to r= r2 gives

ln
w(r2)
w(r1)

⩾ lncosh(γ(r2 − r1))⩾ ln
(

1
2e

γ(r2−r1)
)
,

as desired.

The proof of lemma 3.1 does not work for negative ν. When working with bi-cyclide
coordinates we only use ν of the form ν = m− 1

2 with m ∈ N0, so it is sufficient to treat the
case ν =− 1

2 in the following lemma.

8
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Lemma 3.2. Let k ∈ (0,1).

(i) For each n ∈ N0, r ∈ (0,2K ′), W n
−1/2(K+ ir,k) 6= 0.

(ii) Let 0< r1 < r2 < 2K ′. Then there exist positive constants N such that

0<
W n

−1/2(K+ ir1,k)

W n
−1/2(K+ ir2,k)

⩽ 2e−
√
3
2 ω(n+ 1

2 )(r2−r1) for n⩾ N.

Proof. As in the proof of lemma 3.1 we replaceW n
−1/2(K+ ir,k) by the function wn(r)which

satisfies differential equation (3.3) with ν =− 1
2 and admits the expansion (3.4) with ν =− 1

2 .
We abbreviate λn = Λn

−1/2(k).

(i) We set wn(r) = sn1/2(r,k ′)un(r), r ∈ (0,2K ′). Then equation (3.3) transforms to

u ′ ′
n + ds(r,k ′)cn(r,k ′)u ′

n− p(r)un = 0, (3.6)

where

p(r) = λn− 3
4k

′2 sn2(r,k′)+ 1
4k

′2 + 1
2 .

By [4, lemma 2.3], λn ⩾ 1
2ω

2 − 1
4 . Since ω

2 > k ′ > k ′2, this gives

p(r)⩾ 1
2k

′2 − 1
4 −

3
4k

′2 + 1
4k

′2 + 1
2 =

1
4 > 0 for r ∈ (0,2K′).

Now (3.6) yields un(r) = 1+ cr2 + . . . for r close to 0 with c= 1
16 (2+ 4λn+ k ′2)> 0, so

un(r)> 0, u ′
n(r)> 0 for small positive r. Since p(r)> 0, equation (3.6) shows that un(r)>

0, u ′
n(r)> 0 for all r ∈ (0,2K ′). Therefore, wn(r)> 0 for r ∈ (0,2K ′) and w ′

n(r)> 0 for
r ∈ (0,K ′). Note that we cannot show thatw ′

n(r)> 0 for all r ∈ (0,2K ′) becausewn(r)→ 0
as r→ 2K ′ (the regular singularity r= 2K ′ of (3.5) has two negative exponents − 1

2 ,−
1
2 ).

This proves (i).
(ii) We are using equation (3.5). Let N be so large that λn > 1 for n⩾ N. For n⩾ N, we con-

sider the interval

In :=
[
λ−1/2
n K′,2K′ −λ−1/2

n K′
]
.

Since sn(r,k ′) is a concave function of r ∈ [0,2K ′], we have sn(r,k ′)⩾ r
K ′ for r ∈ [0,K ′].

Therefore,

q(r)⩾ λn+
1
4 −

K′2

4r2
for r ∈ (0,K′].

This implies that

q(r)⩾ 3
4λn+

1
4 > 0 for r ∈ In. (3.7)

In (i) we proved that wn and w ′
n are positive on the interval (0,K

′], so (3.3) and (3.7) show
thatwn andw ′

n are positive on (0,K
′)∪ In. Now chooseN so large that r1,r2 ∈ In for n⩾ N.

Arguing as in the proof of lemma 3.2, we obtain from (3.3) and (3.7) that

9
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0<
wn(r1)
wn(r2)

⩽ 2exp
(
−

√
3
2 (λn+

1
4 )

1/2(r2 − r1)
)
.

This together with [4, lemma 2.3] yields the desired estimate.

4. Harmonics of the first kind

The coordinate surface t= 0 is the plane z= 0. If t0 ∈ (0,K ′) then the closed coordinate surface
t= t0 is the part of the cyclidic surface P1(x,y,z) = 0 with P1 defined in (2.5) which lies in the
half-space z> 0. Similarly, if t0 ∈ (−K ′,0) then the coordinate surface t= t0 is given by the
part of the surface P1(x,y,z) = 0 which lies in the half-space z< 0. These surfaces are shown
in red in figure 4 (see also figure 5).

Let t0 ∈ (0,K ′). Then the bounded domain D1 interior to the surface t= t0 is given by
t ∈ (t0,K ′] in bi-cyclide coordinates and by

D1 = {(x,y,z) : P1(x,y,z)< 0,z> 0}

in Cartesian coordinates. Its boundary is the coordinate surface t= t0.
We now introduce harmonic functions u(x,y,z) of the separated form (2.15) which are har-

monic in the union of all D1 with t0 ∈ (0,K ′). In particular, these functions must be harmonic
on the positive z-axis. For m ∈ Z, n ∈ N0, we define internal bi-cyclide harmonics of the first
kind by

Gm,n(x,y,z) = R−1/2W n
|m|− 1

2
(s,k)W n

|m|− 1
2
(it−K− iK ′,k)eimϕ. (4.1)

Theorem 4.1. The internal bi-cyclide harmonic Gm,n(x,y,z) is harmonic on all of R3 with the
exception of the segment {(0,0,z) :−b−1 ⩽ z⩽−b}, where b is given by (2.4).

Proof. Using (3.3) we see that v1(s) =W|m|− 1
2
(s,k), v2(t) =W n

|m|− 1
2
(it−K− iK ′,k) sat-

isfy (2.13), (2.14) with λ= Λn
|m|− 1

2
(k) in both equations. It follows from theorem 2.1 that

Gm,n(x,y,z) is harmonic on all of R3 minus the z-axis. Using (2.2), (3.1) and (3.2), we see that
the function

(s, t) 7→ R−1/2W n
|m|− 1

2
(s,k)W n

|m|− 1
2
(it−K− iK′,k)

is locally bounded at every point on the boundary of the rectangle (s, t) ∈ (−K,K)× (−K ′,K ′)
with the exception of the closed segment γ2 (defined in figure 1) and the point (K,0). Since
the map (R,z) 7→ (s, t) is continuous, we obtain that Gm,n(x,y,z) is locally bounded at every
point of the z-axis with the exception of the closed segment Γ2 (defined in figure 2). Note
that we cannot claim that Gm,n(x,y,z) is locally bounded at the points of the closed segment
Γ2 because the function W n

ν is a solution of (3.3) which belongs to the exponent ν+ 1 at the
regular singular points −K and K but possibly not at K− 2iK ′ (actually, it cannot belong to
the exponent ν+ 1 there). The local boundedness of Gm,n at a point on the z-axis implies that
the function Gm,n can be continued to an harmonic function in a neighborhood of this point
according to the following lemma. This completes the proof.

Lemma 4.2. Consider the ball

Br = {(x,y,z) : x2 + y2 + z2 < r2},

10
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Figure 4. Coordinate surfaces s= 0.2K in blue and t=±0.5K ′ in red of system (2.1)
with k= 0.5.

Figure 5. For k= 0.7 this figure depicts a three-dimensional visualization of
rotationally-invariant bi-cyclides for t ∈ {±0.29K ′,±0.38K ′,±0.70K ′,±0.90K ′}
(respectively green, yellow, red, blue) and orthogonal bi-concave disk cyclides
s ∈ {−0.6K,0,0.48K,0.66K,0.74K} (respectively green, yellow, red, blue and dark
blue). Note that biconcave disk at s= 0 (rendered in yellow) corresponds to the unit
sphere.

11



J. Phys. A: Math. Theor. 56 (2023) 325203 B Alexander et al

and a bounded continuous function

u : B∗
r := Br \ {(0,0,z) : z ∈ R}→ R

such that u is harmonic on Br \ {(0,0,z) : z ∈ R}. Then u has a harmonic extension to Br.

Proof. Using the Poisson integral [17, p 241] we solve the Dirichlet problem on Br with
boundary values u. We obtain a solution U which is harmonic on Br, continuous on Br \
{(0,0,r),(0,0,−r)} and agrees with u on ∂Br \ {(0,0,r),(0,0,−r)} [17, p 243, remark].
Define a function v by

v(x,y,z) =− ln

√
x2 + y2

r
.

This function is harmonic on R3 minus the z-axis. Let ϵ> 0. Consider the function

w= ϵv− (u−U).

Then w⩾ 0 on ∂Br \ {(0,0,r),(0,0,−r)}. There is a constant M such that |u|⩽M on B∗
r .

Then also |U|⩽M on B∗
r , so |u−U|⩽ 2M on B∗

r . Choose δ > 0 so small that ϵv⩾ 2M if
x2 + y2 ⩽ δ2. Then w⩾ 0 on the boundary of the set A := Br \ {(x,y,z) : x2 + y2 ⩽ δ2}. By the
maximum principle for harmonic functions, w⩾ 0 on A. We can choose δ > 0 as small as we
want, so w⩾ 0 on B∗

r . Since ϵ> 0 is arbitrary, we get U− u⩾ 0 on B∗
r . In a similar way, we

get U− u⩽ 0 on B∗
r . Therefore, u=U on B∗

r , so U is the desired extension of u.

Let

σ(r) = ‖r‖−2r

denote the inversion at the unit sphere in R3. Then the corresponding Kelvin transform of a
harmonic function u(r) is

û(r) = ‖r‖−1u(σ(r)) (4.2)

and this function is also harmonic. The inversion at the unit sphere is expressed by s 7→ −s in
bi-cyclide coordinates. It follows from (3.2) and

x2 + y2 + z2 =
1+ sn(s,k)dn(t,k′)
1− sn(s,k)dn(t,k′)

,

so that the Kelvin transformation (4.2) of Gm,n satisfies

Ĝm,n(r) = (−1)nGm,n(r).

For m ∈ Z, n ∈ N0, we define external bi-cyclide harmonics of the first kind by

Hm,n(x,y,z) = R−1/2W n
|m|− 1

2
(s,k)W n

|m|− 1
2
(−it−K− iK ′,k)eimϕ. (4.3)

The definition of Hm,n is the same as that of Gm,n except that we replaced t by −t. Therefore,

Hm,n(x,y,z) = Gm,n(x,y,−z). (4.4)

By theorem 4.1, H(x,y,z) is harmonic on all ofR3 except the segment {(0,0,z) : b⩽ z⩽ b−1}.
Note that the notions ‘internal’ and ‘external’ refer to the surfaces t= t0 with t0 ∈ (0,K ′).

12
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5. Applications of bi-cyclide harmonics of the first kind

We solve the Dirichlet problem for the region D1 given by t ∈ (t0,K ′], where t0 ∈ (0,K ′). We
say that a harmonic function u defined in D1 attains the boundary values f on ∂D1 in the weak
sense if R1/2 u (expressed in terms of bi-cyclide coordinates s, t,ϕ) evaluated at t1 ∈ (t0,K ′)
converges to R1/2f in the Hilbert space

H1: = L2((−K,K)× (−π,π))

as t1 → t0. As in [3, section 5.2], one can show that the solution of the Dirichlet problem is
unique.

Theorem 5.1. Let f be a function defined on the boundary ∂D1 of the region D1 given by
t ∈ (t0,K ′] for some t0 ∈ (0,K ′). Suppose that f is represented in bi-cyclide coordinates as

f(r) = R−1/2g(s,ϕ), s ∈ (−K,K), ϕ ∈ (−π,π],

such that g ∈ H1. For all m ∈ Z and n ∈ N0 define

cm,n :=
1
2π

ˆ π

−π

e−imϕ
ˆ K

−K
g(s,ϕ)W n

|m|− 1
2
(s,k)dsdϕ

=
1

2πW n
|m|− 1

2
(it0 −K− iK′,k)

ˆ
∂D1

1
hs(r)

f(r)G−m,n(r)dS(r),

where hs is given in (2.16). Then the function

u(r) =
∑
m∈Z

∞∑
n=0

dm,nGm,n(r), dm,n := cm,n{W n
|m|− 1

2
(it0 −K− iK ′,k)}−1, (5.1)

is harmonic in D1 and it attains the boundary values f on ∂D1 in the weak sense. The infinite
series in (5.1) converges absolutely and uniformly in compact subsets of D1.

Proof. Since dS(r) = Rhs(r)dsdϕ, the two formulas for cm,n agree. The system of functions
W n

|m|− 1
2
(s,k)eimϕ, m ∈ Z, n ∈ N0, are orthogonal with respect to the scalar product

〈f,g〉H1 =

ˆ K

−K

ˆ π

−π

f(s,ϕ)g(s,ϕ)dϕds,

where f,g ∈ H1, with corresponding norm

‖f‖H1 =

(ˆ K

−K

ˆ π

−π

|f(s,ϕ)|2 dϕds
)1/2

.

and complete in the Hilbert space H1. Therefore one has the corresponding Fourier expansion

g(s,ϕ)∼
∑
m∈Z

∑
n=0

cm,nW
n
|m|− 1

2
(s,ϕ)e−imϕ.

In particular, the sequence {cm,n} is bounded: |cm,n|⩽ C1. We use the Weierstrass M-test
to show uniform convergence of the series in (5.1) on the compact set t⩾ t1 > t0. Using
the maximum principle for harmonic functions it is sufficient to find bounds Mm,n such

13
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that |dm,nGm,n(r)|⩽Mm,n for t= t1 and
∑

m∈Z
∑

n∈N0
Mm,n <∞. Using (2.2) we find for

s ∈ (−K,K) and t= t1,

1
R
=

1− sn(s,k)dn(t1,k′)
cn(s,k)cn(t1,k′)

⩽ 2
cn(s,k)cn(t1,k′)

⩽ 2
k′
dc(s,k)nc(t1,k

′).

Using [4, lemmas 2.4 and 2.5] and lemmas 3.1, 3.2, we estimate∣∣∣∣∣W
n
|m|− 1

2
(it1 −K− iK′,k)

W n
|m|− 1

2
(it0 −K− iK′,k)

R−1/2W n
|m|− 1

2
(s,k)eimϕ

∣∣∣∣∣⩽ C2p
|m|+n(1+ |m|+ n),

where the constants C2 and p ∈ (0,1) are independent of m,n,s,ϕ. Therefore, we can take
Mm,n = C1C2p|m|+n(1+ |m|+ n) and the proof of convergence is complete. Hence u(r)
defined by (5.1) is a harmonic function on D1. We show that u attains the boundary values
f on ∂D1 in the weak sense by the method based on Parseval’s equality as used in the proof of
[3, theorem 5.3].

Define the WronskianW(U,V) by

W(U(t),V(t)) :=wm,n := U(t)V ′(t)−U ′(t)V(t), (5.2)

where U(t) :=W n
|m|− 1

2
(it−K− iK ′,k), V(t) := U(−t). External harmonics admit an integral

representation in terms of internal harmonics.

Theorem 5.2. Let t0 ∈ (0,K ′), m ∈ Z, n ∈ N0, and let r∗ be a point outside D1, where D1 is
the region given by t ∈ (t0,K ′]. Then

Hm,n(r∗) =
wm,n

4π{W n
|m|− 1

2
(it0 −K− iK ′,k)}2

ˆ
∂D1

Gm,n(r)
hs(r)‖r− r∗‖

dS(r). (5.3)

We omit the proof of this theorem which is very similar to the proof of [3, theorem 5.5]. It
follows from (5.3) that wm,n 6= 0.

We obtain the expansion of the reciprocal distance of two points in internal and external
bi-cyclide harmonics by combining theorems 5.1 and 5.2.

Theorem 5.3. Let r,r∗ ∈ R3 have bi-cyclide coordinates (s, t,ϕ) and (s∗, t∗,ϕ∗), respectively.
If −K ′ < t∗ < t< K ′ then

1
‖r− r∗‖

= 2
∑
m∈Z

∞∑
n=0

1
wm,n

Gm,n(r)H−m,n(r∗). (5.4)

Proof. If t> 0 we choose t0 ∈ (0,K ′) such that t∗ < t0 < t, and consider the regionD1 interior
to the surface t= t0. Then we apply theorem 5.1 to the function f(u) = ‖u− r∗‖−1 which is
harmonic on an open set containing the closure of D1 (because r∗ lies outside the closure of
D1). Using theorem 5.2 to evaluate the Fourier coefficients, we obtain (5.4).

If t⩽ 0, we replace r and r∗ by their reflections at the plane z= 0. Then t, t∗ are replaced
by −t,−t∗. Now we apply the result from the first part of the proof to the reflected points (in
reversed order) and obtain again (5.3) observing (4.4).

As a corollary we obtain the following addition formula for Lamé–Wangerin functions in
terms of zero order toroidal harmonics of the second kind. The key insight which provides
meaning for the following addition theorem for Lamé–Wangerin functions is the azimuthal

14
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Fourier expansion of the reciprocal distance between two points expressed in circular cyl-
indrical coordinates r= (R,ϕ,z), r∗ = (R∗,ϕ∗,z∗), R,R∗ ∈ [0,∞), ϕ,ϕ∗,z,z∗ ∈ R [8, (15)]

1
‖r− r∗‖

=
1

π
√
RR∗

∞∑
m=−∞

Qm− 1
2
(χ)eim(ϕ−ϕ∗), (5.5)

where

χ =
R2 +R∗2 +(z− z∗)2

2RR∗ .

Expansions of the reciprocal distance between two points on R3 expressed in rotationally-
invariant coordinate systems which separates Laplace’s equation can all be represented as
separated eigenfunction expansion with azimuthal Fourier basis eim(ϕ−ϕ ′). These include cir-
cular cylindrical, spherical, oblate & prolate spheroidal coordinates, parabolic coordinates,
toroidal coordinates and all the remaining rotationally invariant coordinate systems which
separate Laplace’s equation in three-dimensions. Corresponding addition theorems in terms
of toroidal harmonics of the second kind therefore exist in all these coordinate systems and
we have presented many of these addition theorems in previous publications. The following
addition theorem in terms of the toroidal harmonic of the second kind with vanishing order is
its representation in the rotationally-invariant bicyclide coordinate system.

Toroidal harmonics represent solutions to Laplace’s equation in R3 expressed in toroidal
coordinates [1, p 461]. The solutions are given in terms of associated Legendre functions of
the first and second kind with odd-half-integer degree and integer order Pn

m− 1
2
(z), Qn

m− 1
2
(z),

where n,m ∈ Z and z ∈ (1,∞). These are often referred to as toroidal harmonics of the first
and second kind. For properties of the associated Legendre functions, see [21, chapter 14].
The definition of a vanishing order toroidal harmonic of the second kind in terms of the Gauss
hypergeometric function is given by [21, (14.3.7)]

Qm− 1
2
(z) =

√
πΓ(m+ 1

2 )

m!(2z)m+
1
2

2F1

(
1
2m+ 1

4 ,
1
2m+ 3

4
m+ 1

;
1
z2

)
, (5.6)

where m ∈ Z. Now we present this addition formula and a corresponding integral formula for
Lamé–Wangerin functions.

Theorem 5.4. Let m ∈ N0, s,s∗ ∈ (−K,K), −K ′ < t∗ < t< K ′. Then

Qm− 1
2
(χ) = 2π

∞∑
n=0

1
wm,n

W n
m− 1

2
(s,k)W n

m− 1
2
(it−K− iK ′,k) (5.7)

×W n
m− 1

2
(s∗,k)W n

m− 1
2
(−it∗ −K− iK ′,k),

where χ : ((−K,K)× (−K ′,K ′))2 × (0,1)→ (1,∞) is given by

χ(s, t,s∗, t∗,k) = nc(s,k)nc(t,k ′)nc(s∗,k)nc(t∗,k ′) (5.8)

− dc(s,k)sc(t,k ′)dc(s∗,k)sc(t∗,k ′)

− sc(s,k)dc(t,k ′)sc(s∗,k)dc(t∗,k ′),

and wm,n is the Wronskian (5.2).

Proof. This follows from comparison of (5.4) with the azimuthal Fourier expansion (5.5) with
R, R∗, z, z∗ given in terms of bi-cyclide coordinates s, t and s∗, t∗ respectively. The identity (5.8)
can be verified by a direct computation.

Theorem 5.4 leads to an integral relation for Lamé–Wangerin functions.
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Theorem 5.5. Let m,n ∈ N0, s∗ ∈ (−K,K), −K ′ < t∗ < t< K ′. Then

wm,n

ˆ K

−K
Qm− 1

2
(χ)W n

m− 1
2
(s,k)ds

= 2πW n
m− 1

2
(it−K− iK′,k)W n

m− 1
2
(s∗,k)W n

m− 1
2
(−it∗ −K− iK′,k).

Using the method employed in [23], one can show that theorem 5.5 remains true if we
replace m− 1

2 everywhere by ν. See [4] for more details.

6. Harmonics of the second kind

For s0 ∈ (−K,K) the coordinate surface s= s0 is a closed surface. An instance of this surface
is shown in blue in figure 4. If s0 = 0 this surface is the unit sphere x2 + y2 + z2 = 1. If s0 ∈
(−K,0) the surface s= s0 is given by the part of the cyclidic surface P2(x,y,z) = 0 with P2

defined in (2.6) which lies in the unit ball B= {(x,y,z) : x2 + y2 + z2 < 1}. If s0 ∈ (0,K) the
surface s= s0 is given by the part of the surfaceP2(x,y,z) = 0which lies outside B̄. The surface
s= s0 encloses the bounded domain D2 given by s ∈ [−K,s0) in bi-cyclide coordinates.

The coordinate surfaces s= s0 and t= t0 are connected through the inversion M at the
sphere with center (0,0,1) and radius

√
2. This inversion is given by

M(x,y,z) = (x2 + y2 +(z− 1)2)−1(2x,2y,x2 + y2 + z2 − 1).

If (x,y,z) has bi-cyclide coordinates (s, t,ϕ) then (2.7) gives

M(x,y,z) = (ucosϕ,usinϕ,v),

where

u=
cn(s,k)cn(t,k′)

1− dn(s,k)sn(t,k′)
, v=

sn(s,k)dn(t,k′)
1− dn(s,k)sn(t,k′)

.

Therefore, the point M(x,y,z) has bi-cyclide coordinates t,s,ϕ (with s, t exchanged) with bi-
cyclide coordinates taken with respect to the complementary modulus k

′
. This means that the

coordinate surface s= s0 (with respect to k) is mapped to the coordinate surface t= s0 (with
respect to k

′
). If t0 ∈ (0,K ′) then M maps the domain D1 given by t> t0 with respect to k to

the exterior of the domain D2 given by s> t0 with respect to k
′
.

Because of this connection between the coordinate surfaces, the results on bi-cyclide har-
monics of the second kind adapted to the domains D2 will be very similar to the ones for
bi-cyclide harmonic of the first kind. Therefore, we will keep the following treatment of bi-
cyclide harmonics of the second kind short.

We are looking for harmonic functions u(x,y,z) of the R-separated form (2.15) which are
harmonic in the union of all D2 with s0 ∈ (−K,K). This requires that u must be harmonic on
the interval {(0,0,z) :−b−1 < z< b−1} on the z-axis. For m ∈ Z, n ∈ N0, we define internal
bi-cyclide harmonics of the second kind by

Gm,n(x,y,z) = R−1/2W n
|m|− 1

2
(−is−K′ − iK,k′)W n

|m|− 1
2
(t,k′)eimϕ.

Theorem 6.1. The internal harmonic Gm,n(x,y,z) is a harmonic function on all of R3 with the
exception of set {(0,0,z) : |z|⩾ b−1}.

For m ∈ Z, n ∈ N0, we define external bi-cyclide harmonics of the second kind by

Hm,n(x,y,z) = R−1/2W n
|m|− 1

2
(is−K′ − iK),k′)W n

|m|− 1
2
(t,k′)eimϕ.

16



J. Phys. A: Math. Theor. 56 (2023) 325203 B Alexander et al

Then Hm,n is the Kelvin transform of Gm,n with respect to the unit sphere:

Hm,n(x,y,z) = Ĝm,n(x,y,z).

The function Hm,n(x,y,z) is harmonic on R3 with the exception of the segment
{(0,0,z) : |z|⩽ b}.

Arguing as in section 5 we prove the expansion of the reciprocal distance of two points in
bi-cyclide harmonics of the second kind. Alternatively, employing the inversion M, the result
can be derived directly from theorem 5.3.

Theorem 6.2. Let r,r∗ ∈ R3 with bi-cyclide coordinates (s, t,ϕ) and (s∗, t∗,ϕ∗), respectively.
If −K< s< s∗ < K then

1
‖r− r∗‖

= 2
∑
m∈Z

∞∑
n=0

1
wm,n

Gm,n(r)H−m,n(r∗), (6.1)

where W(U(s),V(s)) := wm,n = U(s)V ′(s)−U ′(s)V(s) is the Wronskian of the functions
U(s) =W n

|m|− 1
2
(is−K ′ − iK,k ′) and V(s) = U(−s).

As in section 5, theorem 6.2 yields an addition theorem and integral relations for Lamé–
Wangerin functions. We omit these results because they can be obtained from theorems 5.4
and 5.5 by exchanging k↔ k ′, K↔ K ′ and s↔ t.

7. Analysis of the limiting behavior for bi-cyclide coordinates

In figure 6, we graphically depict the behavior of bi-cyclide coordinates for three differ-
ent values of k ∈ { 1

10 ,
1
2 ,

4
5} in order to illustrate the behavior that changing the value of k

has upon the coordinates themselves. From figure 6, one qualitatively sees that as k→ 0,1,
bi-cyclide coordinates approaches bi-spherical and spherical coordinates respectively. For
instance, using (2.2) and (2.3), one can study this limiting process precisely. In section 7.1
we treat the k→ 0 limit of bi-cyclide coordinates to bi-spherical coordinates. A careful ana-
lysis of the k→ 1 limit of bi-cyclide coordinates to spherical coordinates is left to the reader.
However, in section 7.2 we study the k→ 1 limit of a modified bi-cyclide coordinates to prolate
spheroidal coordinates.

7.1. The k→0 bi-spherical limit of bi-cyclidic coordinates

In this section we show that bi-cyclide coordinates approach bi-spherical coordinates as k→ 0,
and our expansion of the reciprocal distance between two points (5.4) approaches term-by-term
the corresponding known expansion in bi-spherical coordinates.

Bi-spherical coordinates θ, t,ϕ [19, p 110] are given by

x=
sinθ cosϕ

cosh t− cosθ
, y=

sinθ sinϕ
cosh t− cosθ

, z=
sinh t

cosh t− cosθ
,

where t ∈ R, θ ∈ (0,π), ϕ ∈ (−π,π]. According to [20, (10.3.74)] we have the expansion

1
‖r− r∗‖

= (cosh t− cosθ)1/2(cosh t∗ − cosθ∗)1/2

×
∞∑
ℓ=0

e−(ℓ+ 1
2 )(t−t∗)

ℓ∑
m=−ℓ

(ℓ−m)!
(ℓ+m)!

Pm
ℓ (cosθ)P

m
ℓ (cosθ

∗)eim(ϕ−ϕ∗), (7.1)
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Figure 6. In bi-cyclide coordinates, the figures depict coordinate lines for constant val-
ues of s ∈ (−K,K) and t ∈ (−K ′,K ′)with uniform spacing for k= 1

10 ,
1
2 ,

4
5 respectively

from left to right. The abscissa represents the radial coordinate R= (x2 + y2)1/2 and
the ordinate represents the z-axis. One can see that as k approaches zero, the bi-cyclidic
coordinate system approaches bi-spherical coordinates. Similarly, as k approaches unity,
the bi-cyclidic coordinate system approaches spherical coordinates.

where Pm
ℓ denotes the Ferrers function of the first kind, (θ, t,ϕ), (θ∗, t∗,ϕ∗) are bi-spherical

coordinates of r, r∗, respectively, and it is assumed that t∗ < t.
In our analysis it is more convenient to interchange the summation in (7.1) so

1
‖r− r∗‖

=
∑
m∈Z

cme
im(ϕ−ϕ∗).

If m ∈ N0 then by setting ℓ= m+ n, we have

cm =

∞∑
n=0

Bm,n(θ,θ
∗, t, t∗),

where, for m,n ∈ N0,

Bm,n = (cosh t− cosθ)1/2(cosh t∗ − cosθ∗)1/2

× e−(m+n+ 1
2 )(t−t

∗) n!
(2m+ n)!

Pm
m+n(cosθ)P

m
m+n(cosθ

∗).

If a real-valued function f(ϕ) with period 2π is expanded in a complex Fourier series f(ϕ) =∑
m∈Z cme

imϕ, then we must have c−m = cm. In our case, the coefficients cm are real, so we
have c−m = cm. Therefore, we obtain

1
‖r− r∗‖

=
∑
m∈Z

eim(ϕ−ϕ∗)
∞∑
n=0

Bm,n(θ,θ
∗, t, t∗),

where we define B−m,n := Bm,n for m< 0.

18
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If we let k→ 0 in (2.2), (2.3), and observe [21, tables 22.5.3 and 22.5.4],

sn(s,k)→ sins, cn(s,k)→ coss, dn(s,k)→ 1,

sn(t,k′)→ tanh t, cn(t,k′)→ sech t, dn(t,k′)→ sech t,

we find that bi-cyclide coordinates approach bi-spherical coordinates with s= π
2 − θ.

Let us write the expansion (5.4) in the form

1
‖r− r∗‖

=
∑
m∈Z

eim(ϕ−ϕ∗)
∞∑
n=0

Am,n(s,s
∗, t, t∗,k),

where A−m,n = Am,n, and, for m,n ∈ N0,

Am,n =
2
w n
m
(RR∗)−1/2W n

m− 1
2
(s,k)W n

m− 1
2
(s∗,k)

×W n
m− 1

2
(it−K− iK′,k)W n

m− 1
2
(−it∗ −K− iK′,k).

The following theorem states the main result of this section.

Theorem 7.1. Let m ∈ Z, n ∈ N0, s,s∗ ∈ (− 1
2π,

1
2π), t, t

∗ ∈ R. Then

Am,n(s,s
∗, t, t∗,k)→ Bm,n( 12π− s, 12π− s∗, t, t∗) as k→ 0.

Proof. It is sufficient to consider m⩾ 0. All limits in this proof are taken as k→ 0. We first
note that

R−1/2R∗−1/2 →
(

coss
cosh t− sins

)−1/2( coss∗

cosh t∗ − sins∗

)−1/2

. (7.2)

Using [4, corollary 4.4], we have

W n
m− 1

2
(s,k)W n

m− 1
2
(s∗,k)

→ (m+ n+ 1
2 )

n!
(2m+ n)!

(coss)1/2Pn
m+n(sins)(coss

∗)1/2Pm
m+n(sins

∗) (7.3)

By [4, theorem 4.7], we have

W n
m− 1

2
(i(σ−K′),k)

W n
m− 1

2
(−iK′,k)

→ e−(m+n+ 1
2 )σ

locally uniformly for σ ∈ C. Actually, it was assumed there that |=σ|< 1
2π but the proof shows

that this restriction is superfluous. If we set σ = t+ iK and note that K(k)→ 1
2π, it follows that

2
wmn

W n
m− 1

2
(it−K− iK ′,k)W n

m− 1
2
(−it∗ −K− iK ′,k) (7.4)

→ e−(m+n+ 1
2 )(t+i

1
2π)e(m+n+

1
2 )(t

∗+i 12π)

m+ n+ 1
2

.

After multiplying out (7.2)–(7.4) and minor simplification, we obtain the desired statement.

19



J. Phys. A: Math. Theor. 56 (2023) 325203 B Alexander et al

7.2. The k→1 prolate spheroidal limit of modified bi-cyclidic coordinates

If we let k→ 1 in (2.2) and (2.3) we find that bi-cyclide coordinates approach spherical coordin-
ates. However, by modifying the limiting process we show that bi-cyclide coordinates can also
approach prolate spheroidal coordinates as k→ 1.

Prolate spheroidal coordinates [19, p 28] are given by

x= asinhσ sinθ cosϕ, y= asinhσ sinθ sinϕ, z= acoshσ cosθ,

where σ ∈ (0,∞), θ ∈ (0,π), ϕ ∈ (−π,π]. According to [14, section 245] (see also [9,
section 5.1]) we have the expansion

1
‖r− r∗‖

=
1
a

∞∑
ℓ=0

(2ℓ+ 1)
ℓ∑

m=−ℓ

(−1)m
[
(ℓ−m)!
(ℓ+m)!

]2
×Pm

ℓ (cosθ)P
m
ℓ (cosθ

∗)Pmℓ (coshσ)Q
m
ℓ (coshσ

∗)eim(ϕ−ϕ∗),

where Pm
ℓ denotes the Ferrers function of the first kind, Pmℓ , Q

m
ℓ are associated Legendre func-

tions of the first and second kind, respectively, (σ,θ,ϕ), (σ∗,θ∗,ϕ∗) are prolate spheroidal
coordinates of r, r∗, respectively, and it is assumed that σ < σ∗. We may write the expansion
in the equivalent form

1
‖r− r∗‖

=
∑
m∈Z

eim(ϕ−ϕ∗)
∞∑
n=0

Bm,n(σ,σ
∗,θ,θ∗),

where B−m,n = Bm,n, and for m,n ∈ N0,

Bm,n =
1
a
(−1)m(2m+ 2n+ 1)

[
n!

(2m+ n)!

]2
×Pm

m+n(cosθ)P
m
m+n(cosθ

∗)Pmm+n(coshσ)Q
m
m+n(coshσ

∗).

We modify bi-cyclide coordinates by setting σ = s+K, (x,y,z) = 1
2ak

′(X,Y,Z). The mod-
ified bi-cyclide coordinates (σ, t,ϕ) of (X,Y,Z) are defined as those of (x,y,z) with σ = s+K.
If we let k→ 1, we obtain

lim
k→1

(X,Y,Z) = (asinhσ cos tcosϕ, asinhσ cos tsinϕ, acoshσ sin t) ,

so we approach prolate spheroidal coordinates with θ = 1
2π − t.

Let us write the expansion (6.1) in the form

1
‖r− r∗‖

=
∑
m∈Z

eim(ϕ−ϕ∗)
∞∑
n=0

Am,n(σ,σ
∗, t, t∗,k), (7.5)

where A−m,n = Am,n, and, for m,n ∈ N0,

Am,n = (X2 +Y2)−1/4(X∗2 +Y∗2)−1/4

× 2
w n
m
W n

m− 1
2
(t,k′)W n

m− 1
2
(t∗,k′)W n

m− 1
2
(K′ − iσ,k′)W n

m− 1
2
(K′ − i(2K−σ∗)),k′).

In (7.5) we take r= (X,Y,Z), r∗ = (X∗,Y∗,Z∗).
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Lemma 7.2. Let σ0 > 0, ν ⩾− 1
2 , n ∈ N0. Then we have

W n
ν(K

′ − i(2K−σ),k′)
W n

ν(K′ − i(2K−σ0),k′)
→

(sinhσ)1/2Q
ν+ 1

2

n+ν+ 1
2
(coshσ)

(sinhσ0)1/2Q
ν+ 1

2

n+ν+ 1
2
(coshσ0)

as k→ 1 locally uniformly for <σ > 0.

Proof. The function w(σ) =W n
ν(K

′ − i(2K−σ),k ′), 0< σ < 2K, satisfies the differential
equation

w ′ ′ +

(
ν(ν+ 1)−Λn

ν(k
′)− ν(ν+ 1)

1
sn2(σ,k)

)
w= 0. (7.6)

By [4, lemma 2.3], Λk
ν(k

′)→ (n+ ν+ 1)2 as k→ 1. The differential equation (7.6) appeared
in the proof of [3, theorem 7.2] with k

′
in place of k. The sequence Λn

ν(k
′) was replaced by

another sequence that converged to n2. We can now follow the proof of [3, theorem 7.2] to
complete the proof the lemma.

The main result of this section follows.

Theorem 7.3. Let m ∈ Z, n ∈ N0, σ,σ∗ ∈ (0,∞), t, t∗∈(− 1
2π,

1
2π) and set θ =

1
2π− t, θ∗ =

1
2π− t∗. Then

Am,n(σ,σ
∗, t, t∗,k)→ Bm,n(σ,σ

∗,θ,θ∗) as k→ 1.

Proof. It is sufficient to consider m⩾ 0. All limits in this proof are taken as k→ 1. We first
note that

(X2 +Y2)−1/4(X∗2 +Y∗2)−1/4 → (sinhσ sinθ)−1/2(sinhσ∗ sinθ∗)−1/2. (7.7)

Using [4, corollary 4.4], we have

2W n
m− 1

2
(t,k ′)W n

m− 1
2
(t∗,k ′)

→ (2m+ 2n+ 1)
n!

a(2m+ n)!
(sinθ)1/2Pn

m+n(cosθ)(sinθ
∗)1/2Pm

m+n(cosθ
∗).

(7.8)

We define two functions

f(u,k) :=W n
m− 1

2
(u,k′),

g(u∗,k) :=W n
m− 1

2
(K′ − i(2K− u∗),k′).

These functions are well-defined for u,u∗ ∈ (0,2K). Then we consider the expression

h(u,u∗,k) =
f(u,k)g(u∗,k)

W(g, f)
, (7.9)

whereW(g, f) :=w n
m denotes the Wronskian of g(·,k) and f(·,k). We notice that (7.9) remains

unchanged when we multiply f and/or g by real or complex constants. Therefore, using [4,
corollary 4.4] and lemma 7.2 one obtains

h(σ,σ∗,k)→ F(σ)G(σ∗)

W(G,F)
,
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where

F(σ) = (sinhσ)1/2Pmm+n(coshσ), G(σ∗) = (sinhσ∗)1/2Qm
m+n(coshσ

∗).

The known Wronskian [21, (14.2.10)]

[Pµ
ν (x),Q

µ
ν (x)] = eiµπ

Γ(ν+µ+ 1)
Γ(ν−µ+ 1)

1
1− x2

,

implies

W(G,F) = (−1)m
(2m+ n)!

n!
.

Thus we have shown

1
w n
m
W n

m− 1
2
(K ′ − iσ,k ′)W n

m− 1
2
(K ′ − i(2K−σ∗),k ′)

→ (−1)m
n!

a(2m+ n)!
(sinhσ)1/2Pnm+n(coshσ)(sinhσ

∗)1/2Qn
m+n(coshσ

∗).

(7.10)

After multiplying out (7.7), (7.8), (7.10) and minor simplification, we obtain the desired
statement.

8. Conclusions and future work

This paper concludes the analysis of the internal and external harmonics and an expansion of a
fundamental solution of Laplace’s equation associated with bi-cyclide coordinates, a rotation-
ally invariant coordinate system which separates Laplace’s equation. The existence of addition
theorems in terms of toroidal harmonics of the second kind for rotationally-invariant coordin-
ate systems which separate Laplace’s equation in three-dimensions which was introduced in
[5, 7–9] is nearly complete. The only such coordinate systems of this type whose analysis has
not been completed and rotationally-invariant addition theorems derived until now is flat-disk
cyclide coordinates [18, system 16, p 211]. The completion of these efforts for flat-disk cyclide
coordinates, hopefully in the coming years, will be an exciting conclusion to these activities.

Concerning the three-variable Laplace equation in Euclidean space, and the study of the
internal and external harmonics and an expansion of its fundamental solution in the conform-
ally inequivalent coordinate systems which separate Laplace’s equation, one should consider
any other remaining coordinate systems which have not received adequate attention. These
coordinate systems include, as just mentioned, flat-disk cyclide coordinates [18, system 16, p
211], but as well, asymmetric cyclidic coordinates of the second kind [18, system 13, p 210].
The asymmetric cyclidic coordinates of the first kind was considered in [10–12]).

Other topics of related interest include the fact that there should also exist integral for-
mulas for a fundamental solution of Laplace’s equation which will arise when the coordinate
surfaces are noncompact, such as those which occur in the asymmetric cyclidic coordinates
of the second kind, confocal ellipsoidal coordinates, paraboloidal coordinates, sphero-conical
coordinates, parabolic coordinates, oblate spheroidal coordinates, prolate spheroidal coordin-
ates, spherical coordinates, parabolic cylinder coordinates, elliptic-cylinder coordinates, circu-
lar cylindrical coordinates, and Cartesian coordinates. Additional work could be done on limits
of one coordinate system to another with corresponding limit relations for special functions.
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Of course an analysis of eigenfunction expansions in conformally inequivalent separable
coordinate systems for a fundamental solution of Laplace’s equation on Rd see [6, (2.3)]

Gd(x,x′) =
Γ( 12d− 1)

4π
1
2 d‖x− x′‖d−2

,

which satisfies

−∆Gd(x,x′) = δ(x− x′),

in dimensions greater than three, is almost entirely uninvestigated. In fact, as far as the authors
are aware, the total number and classification of such conformally inequivalent separable
coordinate systems for Laplace’s equation in dimensions greater than three remains outstand-
ing. However, the general theory ofR-separability on an n-dimensional Riemannian manifold
was derived in [22] (see also [16, 18]).

Data availability statement

No new data were created or analysed in this study.

Appendix A. The bi-cyclide coordinates of Moon and Spencer

Moon and Spencer [19, p 124] define bi-cyclide coordinates µ,ν,ϕ by

x=
a
Λ
cn(µ,κ)dn(µ,κ)sn(ν,κ′)cn(ν,κ′)cosϕ,

y=
a
Λ
cn(µ,κ)dn(µ,κ)sn(ν,κ′)cn(ν,κ′)sinϕ,

z=
a
Λ
sn(µ,κ)dn(ν,κ′),

where

Λ = 1− dn2(µ,κ)sn2(ν,κ′),

a is a positive constant, and κ ∈ (0,1), κ ′ = (1−κ2)1/2. SettingR= (x2 + y2)1/2 and using the
addition theorem for the Jacobi elliptic function sn [21, (22.8.1)], we can write these coordin-
ates in the complex form

z+ iR= asn(µ+ iν,κ). (A.1)

The function v= sn(u,κ) maps the rectangle

−K(κ)< <u< K(κ), 0< =u< K′(κ),

conformally to the half-plane =v> 0. Therefore, we choose

−K(κ)< µ < K(κ), 0< ν < K ′(κ). (A.2)

Wangerin [25] introduced coordinates µ,ν in the (R, z)-plane by setting z+ iR= af
(µ+ iν) for f = cn, f = sn and f = dn. Actually, he considers only f = cn and f = dn because
the coordinates generated by sn and dn are essentially the same. This follows from the
identity

κsn(u,κ) = dn(K′(κ)+ iK(κ)− iu,κ′).
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In this paper we used bi-cyclide coordinates s ∈ (−K,K), t ∈ (−K ′,K ′) defined by (2.2)
and (2.3). They can be written in complex form as

z+ iR= i(sc(s− it,k)+ nc(s− it,k)). (A.3)

The connection between µ,ν and s, t is given by the following theorem.

Theorem A.1. Take a= κ1/2 and κ= 1−k
1+k . Then the coordinates µ,ν and s, t of a point (R, z)

with R> 0 are connected by

t= (1+κ)µ, s+K(k) = (1+κ)ν.

Proof. The modulus κ is the descending Landen transformation of k
′
so [21, (19.8.12)] gives

K′(k) = (1+κ)K(κ), 2K(k) = (1+κ)K′(κ).

It follows that s̃ := (1+κ)ν−K(k), t̃ := (1+κ)µ satisfy −K(k)< s̃< K(k), −K ′(k)< t̃<
K ′(k). Therefore, using (A.1), (A.3) and setting u= (1+κ)(µ+ iν), the theorem will follow
from the identity

κ1/2 sn

(
u

1+κ
,κ

)
= i(nc(iu+K(k),k)− sc(iu+K(k),k)) . (A.4)

To prove (A.4) we note that

i(nc(iu+K(k),k)− sc(iu+K(k),k))

=
i
k′
(cs(iu,k)− ds(iu,k)) =

1
k′
(ns(u,k′)− ds(u,k′)) .

Now (A.4) follows from [21, (22.7.2) and (22.7.4)].

Appendix B. Orthogonality of Lamé–Wangerin functions

For fixed k ∈ (0,1) and ν ⩾− 1
2 we consider the differential equation (3.3) for t ∈ (−K,K).

A Lamé–Wangerin function w(t) is a real-valued solution of this equation for some real eigen-
value h with the property that it is a Fuchs-Frobenius solution corresponding to the exponents
ν+ 1 at both endpoints t=−K and t=K (the other exponent is −ν). One could also say that
w(t) is a recessive solution at both endpoints.

Lemma B.1. Let w1(t) and w2(t) be two Lamé–Wangerin functions belonging to different
eigenvalues h1,h2. Thenˆ K

−K
w1(t)w2(t)dt= 0.

Proof. We have the equations

w′′
1 (t)+ (h1 − ν(ν+ 1)dc2(t,k))w1(t) = 0,

w′′
2 (t)+ (h2 − ν(ν+ 1)dc2(t,k))w2(t) = 0.

Multiplying the first equation by w2(t), the second by w1(t), and subtracting we find

w′′
1 (t)w2(t)−w′′

2 (t)w1(t)+ (h1 − h2)w1(t)w2(t) = 0.
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Integrating from a to b where −K< a< b< K, we get

(h2 − h1)
ˆ b

a
w1(t)w2(t)dt=

ˆ b

a
(w′′

1 (t)w2(t)−w′′
2 (t)w1(t))dt= (w′

1(t)w2(t)−w1(t)w
′
2(t))|

b
a .

If we let a→−K and b→K then the right-hand side tends to 0. This is because for t>−K
close to −K

w1(t) = (t+K)ν+1v1(t), w2(t) = (t+K)ν+1v2(t)

with convergent power series v1(t) and v2(t) in powers of t+K. Then

w′
1(t)w2(t)−w1(t)w

′
2(t) = (t+K)2ν+2(v′1(t)v2(t)− v1(t)v

′
2(t))

and this tends to zero as t→−K because ν ⩾− 1
2 . Similarly, we do this analysis at the right

endpoint t=K. Since h1 6= h2 we get the desired orthogonality.

Remark. The proof works for ν >−1. Since v1(t) and v2(t) contain only even powers of t+K
one could also prove this lemma for ν >− 3

2 . But if ν ⩽− 3
2 then the orthogonality makes no

sense anymore because the function w1(t)w2(t) behaves like (t+K)2ν+2 close to t=−K so
w1(t)w2(t) is not integrable.
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