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Stationary solitary waves in F = 1 spin-orbit-coupled Bose-Einstein condensates
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We consider solitary wave excitations above the ground state of F = 1 spin-orbit-coupled Bose-Einstein
condensates (SOBECs). The low-energy properties of SOBECs in any of the three branches of the single-particle
dispersion relation can be described by suitable scalar nonlinear Schrödinger (NLS) equations which we obtain
using multiple-scale expansions. This enables us to examine a variety of different configurations, such as dark
solitary waves associated with higher energy branches, as well as dark and bright structures in the lowest branch.
The lowest branch can also exhibit a “superstripe” phase that supports solitary waves. In all cases, we provide
explicit expressions for the NLS coefficients, and confirm their validity with full numerical simulations of the
SOBEC system, including a harmonic confining potential.

DOI: 10.1103/PhysRevA.109.023328

I. INTRODUCTION

Understanding the effect of synthetic spin-orbit coupling
(SOC) in Bose-Einstein condensates (BECs) is an active topic
in cold atom physics [1–3]. Starting from its first experimental
realizations, this topic has gained considerable traction [4],
with the experimentally accessible case with equal contribu-
tions of Rashba [5] and Dresselhaus [6] SOC being, arguably,
the most studied. The properties of spin-orbit-coupled BECs
(SOBECs) have been recently reviewed in Ref. [7] (with an
emphasis on the so-called Dicke model and associated phase
transitions). While most of the relevant works have focused on
two-component systems, prototypical higher spin cases have
been proposed [8] and realized [9,10].

Most research on SOBECs has focused on systems in or
near equilibrium, however, a number of studies have con-
sidered localized nonlinear excitations, i.e., solitary waves.
Early studies considered the dynamics of bright and dark
solitary waves in one dimension [11,12]; later work consid-
ered vortices and their ordering properties in two dimensions
[13,14]; by now a progressively increasing body of work
addresses such excitations [8,15–23]. More broadly, in one
dimension bright and dark solitons play a central role in the
dynamics of atomic BECs [24–27], as do vortices in two
spatial dimensions [28] and vortex lines and rings in three
dimensions [29].

Motivated by the growth of these areas and spinor
condensates more generally [30,31], the present work con-
siders solitary waves in higher-spin SOBECs. Experimentally
these could be realized using techniques developed earlier
by one of the present authors that were used in order to explore
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the ground states of such systems, giving ferromagnetic, polar,
and superstripe phases [9]. The collective excitation spectrum
takes on the standard Bogoliubov form similar to the two-spin
case [32]. The present effort extends this analysis to the case
of solitary states that emerge in the presence of mean-field
nonlinearity in the vicinity of extrema in the single-particle
spectrum. Our study uses multiscale expansions [33,34] to
obtain closed-form (albeit approximate) descriptions of soli-
tary wave excitations. We cross-check these against numerical
solutions of the one-dimensional (1D) Gross-Pitaevskii equa-
tion (GPE), a nonlinear Schrödinger equation describing
isolated coherently evolving BECs.

Our analysis begins in Sec. II, where we establish the
microscopic model and introduce the multiscale perturbation
method. We first validate the multiscale perturbation method
by initially selecting parameters for which F = 1 SOC is
reminiscent of the well-studied F = 1/2 case. In Sec. III we
obtain the linearized excitation spectrum (i.e., phonons), and
controllably introduce nonlinearity, by expanding the solution
in a power series of a parameter characterizing the depar-
ture from the linear limit. The equations satisfied by the two
leading-order corrections identify an effective scalar nonlinear
Schrödinger (NLS) equation. The coefficients of the corre-
sponding NLS model and their dependence on the linear and
nonlinear system properties are explicitly computed. Subse-
quently, in Sec. IV, we evaluate these coefficients in each case
of interest (near the extrema of the respective bands) giving
both dark and bright solitary waves [35,36]. More elaborate
structures, including stripe-phase waves, are also considered.
In Sec. V, the results of all the cases are compared with direct
numerical computations, both with and without a realistic
parabolic trap. Lastly, in Sec. VI, we present results for pa-
rameters where F = 1 and F = 1/2 SOC differ qualitatively.
In Sec. VII, we conclude and consider possible directions of
future study.
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FIG. 1. High magnetic field level diagram for the 87Rb F = 1
hyperfine ground state when the atomic quadratic Zeeman shift is
large, giving energy differences δ±1 between |F = 1, mF = ±1〉 and
|F = 1, mF = 0〉. A pair of counterpropagating laser beams, with
polarization noted by black arrows, independently Raman couple the
|F = 1, mF = −1〉 ↔ |F = 1, mF = 0〉 and |F = 1, mF = 0〉 ↔
|F = 1, mF = +1〉 transitions as was done experimentally in
Ref. [9].

II. MODEL

We consider quasi-1D spinor BECs with total angular mo-
mentum F = 1 with SOC induced by Raman coupling [2] the
three spin components |mF = 0,±1〉 of the F = 1 hyperfine
ground state. The BEC, with typical per-particle interaction
energy ε, is confined in a highly anisotropic trap with longi-
tudinal and transverse frequencies, ωx and ω⊥, respectively,
such that h̄ωx, ε � h̄ω⊥. The system can therefore be de-
scribed by the 1D many-body Hamiltonian

Ĥ = Ĥsp + Ĥint =
∫

dx
∑
l,m

ψ̂
†
l (x)Hl,m(x)ψ̂m(x)

+ 1

2

∫
dx :

[
g0n̂2(x) + g2

h̄2 |F̂ (x)|2
]

:, (1)

where : · · · : denotes the normal ordering operation. The
Hamiltonian can be divided into a two-field single-particle
term quantified by the single-particle Hamiltonian operator
Ĥ (x) with matrix elements Hl,m(x) and a pair of four-field
interaction terms with “symmetric” (spin-independent) and
“antisymmetric” (spin-dependent) interaction coefficients g0

and g2, respectively [37]. These interaction constants are re-
lated to a0 and a2, the s-wave scattering lengths of two atoms
with total spin F = 0 and F = 2, via g0 = 2h̄ω⊥(a0 + 2a2)/3
and g2 = 2h̄ω⊥(a2 − a0)/3.

Here, ψ̂†
m(x) describes the creation of a boson at position x

in magnetic sublevel mF = m;

n̂(x) ≡
∑

m

n̂(x) =
∑

m

ψ̂†
m(x)ψ̂m(x) (2)

is the local density operator; and

F̂ (x) =
∑

ν

⎡
⎣∑

l,m

F (ν)
l,m (x)ψ̂†

l (x)ψ̂m(x)

⎤
⎦eν, (3)

with ν ∈ {x, y, z}, is the angular momentum density vector
operator in terms of the three F = 1 angular momentum
matrices F̂ (ν).

We focus on a specific experimentally realized case
shown in Fig. 1 in which the |mF = −1〉 ↔ |mF = 0〉 and

|mF = 0〉 ↔ |mF = +1〉 transitions are independently Raman
coupled. As derived in Appendix A, we make a pair of
rotating-wave approximations (RWAs) that lead to the single-
particle SOC Hamiltonian [9,38,39]

Ĥ0

h̄
=

⎡
⎢⎢⎢⎣

h̄(−i∂x+kR )2

2ma
+ δq �/2 0

�/2 − h̄∂2
x

2ma
�/2

0 �/2 h̄(−i∂x−kR )2

2ma
+ δq

⎤
⎥⎥⎥⎦, (4)

with the momentum operator p = −ih̄∂x and the atomic mass
ma. The SOC Hamiltonian is additionally characterized by
the wave number of the Raman coupling laser kR, the Raman
coupling strength �, and an experimentally tunable parameter
δq analogous to the quadratic Zeeman shift. In terms of the
angular momentum operators F̂x,y,z, the total single-particle
Hamiltonian becomes

Ĥ = (−ih̄∂x Î + kRF̂z )2

2ma
+ δq

h̄
F̂ 2

z + 1√
2
�F̂x + V (x)Î, (5)

where we included the spin-independent confining poten-
tial V (x) = maω

2
x x2/2 with the identity operator Î . We note

that this Hamiltonian can be represented in other forms
as well by an appropriate pseudospin rotation. For ex-
ample, one finds cross-terms that correspond to an equal
weight to Rashba (pxF̂x + pyF̂y) and Dresselhaus (pxF̂x −
pyF̂y) coupling [38,39]. At the same time, recent studies have
considered pure Rashba coupling [16,39–41].

The transformations leading to the single-particle SOC
Hamiltonian also modify the spin-dependent interaction en-
ergy that results from the angular momentum density (see
Appendix A for details). In terms of field operators this takes
the explicit form

: |F̂ (x)|2 := [(ψ̂†
+1ψ̂

†
+1ψ̂+1ψ̂+1 + ψ̂

†
−1ψ̂

†
−1ψ̂−1ψ̂−1)

+ 2(ψ̂†
+1ψ̂

†
0 ψ̂+1ψ̂0 + ψ̂

†
−1ψ̂

†
0 ψ̂−1ψ̂0

− ψ̂
†
+1ψ̂

†
−1ψ̂+1ψ̂−1)

+ 2(ψ̂†
0 ψ̂

†
0 ψ̂+1ψ̂−1 + ψ̂

†
+1ψ̂

†
−1ψ̂0ψ̂0)]

that includes contributions to the density-density interaction
strength (first three lines) and spin-changing collisions (last
line). The spin-changing collision terms are eliminated by the
rotating wave approximation, and we introduce : |F̂RWA(x)|2 :
as the combined operator without these terms.

This final approximation is valid when the per-particle
spin-dependent interaction energy scale ε2 = g2〈n(x)〉 is
much smaller than the quadratic Zeeman shift |δ−1 − δ+1|,
i.e., ε2 � |δ−1 − δ+1|. For the parameters in Ref. [9] this is
easily satisfied with ε2 ≈ h × 5 Hz and |δ−1 − δ+1| ≈ h ×
100 kHz.

A. Gross-Pitaevskii equation

Here, we turn to the mean-field description of this system
suitable for weakly interacting atomic BECs described by the
1D GPE with mean-field energy density

E =
1∑

l,m=−1

ψ∗
l Ĥlmψm + g0

2
n2 + g2

2h̄2 |FRWA|2, (6)
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total energy E = ∫
R Edx, and atom number

∫
R n(x, t )dx =

N . The density n = ∑1
m=−1 |ψm|2 and RWA angular momen-

tum density |FRWA(x)|2 are the complex field analogues to the
many-body quantities in Sec. II.

We adopt dimensionless expressions with energy, length,
time, and density in units of h̄ω⊥, a⊥, ω−1

⊥ , and
√

N/a⊥,
leading to dimensionless interaction coefficients c0,2 ≡
g0,2/(h̄ω⊥a⊥) and the three-component GPE

i
∂ψ+1

∂t
= (L + 
 − iγ ∂x )ψ+1 + �ψ0

+ c2[(ψ∗
+1ψ+1 + ψ∗

0 ψ0 − ψ∗
−1ψ−1)ψ+1], (7a)

i
∂ψ0

∂t
= Lψ0 + �(ψ+1 + ψ−1)

+ c2(ψ∗
+1ψ+1 + ψ∗

−1ψ−1)ψ0, (7b)

i
∂ψ−1

∂t
= (L + 
 + iγ ∂x )ψ−1 + �ψ0

+ c2[(ψ∗
−1ψ−1 + ψ∗

0 ψ0 − ψ∗
1 ψ1)ψ−1], (7c)

where

L = [− 1
2∂2

x + V (x)
] + c0(ψ∗

−1ψ−1 + ψ∗
0 ψ0 + ψ∗

1 ψ1) (8)

and


 = δq + γ 2

2
. (9)

In our units, the trapping potential becomes V (x) = λ2
t x2/2,

with λt = ωx/ω⊥ � 1. Finally, in the equations of motion
we introduced γ = a⊥kR, and made the substitutions � �→
�/(2ω⊥), and δq �→ δq/ω⊥. In addition, we introduce the ratio
β = c2/c0, which is β = 0.04 for 23Na and β = −0.0046 for
87Rb [31,42,43].

In the following analysis, we consider the case of a sym-
metric linear energy spectrum with γ = 1. Finally, in our
analysis and simulations, we restrict � to be in the interval
[0,6] and fix β = −0.0046. Having presented the lay of the
land, we now turn to our analytical considerations for the
associated model.

B. Multiscale perturbation method

We employ an analytical approach, similar to the one
used in the case of binary SOBECs [12,35,44], to derive
approximate solitary solutions of the GPE Eqs. (7a)–(7c).
In particular, we will use a multiscale perturbation method
[33,34] to derive an effective single-component GP equation;
the latter supports exact dark and bright soliton solutions
(in the absence of the trap), which are then used for the
construction of approximate solitary wave solutions of the
original model. These will be tested against direct numer-
ical computations of stationary solutions of the full SOC
equations.

First, we introduce the order parameter

� = u exp[i(kx − μt )], with u = (φ1, φ0, φ−1)T , (10)

for an excitation with wave vector k, where the chemical
potential μ = ω + ε2ω0 governs the ground-state time depen-
dence. ω represents the energy in the linear regime, while
ε2ω0 is a small deviation about this energy (with 0 < ε � 1

being a formal small parameter), and ω0/ω = O(1). Note that,
as we will see below, ω0 will be a free parameter of the
solutions. In the present context, we are seeking solutions
that are bifurcating from the band edge of the system’s linear
eigenstates. Furthermore, we assume that the trapping poten-
tial is sufficiently weak, so that the normalized trap frequency
is λt = ε2λ̃t .

Next, we introduce the following asymptotic expansions in
ε for the fields φm, with m representing the magnetic quantum
number, m = (−1, 0, 1):

φm =
∞∑

i=1

εiφmi, (11)

where the unknown fields φmi depend on the slow variables
(since ε � 1)

X = εx, T = ε2t .

Introducing the above ansatz into Eqs. (7a)–(7c), we arrive at
the following equations at the orders O(ε1), O(ε2), and O(ε3),
respectively:

Wu1 = 0, (12a)

Wu2 = iW0∂X u1, (12b)

Wu3 = iW0∂X u2 + (
i∂T + 1

2∂2
X − A + ω0

)
u1, (12c)

where ui = (φ1i, φ0i, φ−1i )T , while the matrices W, W0, and
A are given by

W =
(

k2

2
− ω

)
I +

⎡
⎢⎣kγ + 
 � 0

� 0 �

0 � −kγ + 


⎤
⎥⎦, (13a)

W0 = ∂k (W + ωI), (13b)

A = diag(a1, a2, a3), (13c)

where a1, a2, and a3 are given by

a1 = c0nt + c2(−n−11 + n11 + n01) + Ṽ (X ), (14a)

a2 = c0nt + c2(n11 + n−11) + Ṽ (X ), (14b)

a3 = c0nt + c2(n−11 − n11 + n01) + Ṽ (X ); (14c)

also, nt = ∑1
m=−1 |φm1|2, nm1 = |φm1|2, and the potential is

given by Ṽ (X ) = (1/2)λ̃2
t X 2.

Equations (12) are a central finding of our multiscale ex-
pansion method, and can be used to obtain the results that
follow.

III. ANALYTICAL RESULTS FOR � = 0

In the subsequent analysis, we will set 
 = 0; this corre-
sponds to a quadratic Zeeman shift δq = −γ 2/2.

A. Linear regime

First, at the leading order O(ε), which is relevant to the
linear regime of the problem, we obtain the single-particle
energy spectrum ω(k). Indeed, the solvability condition
detW = 0 of Eq. (12a) yields three different branches, a
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FIG. 2. Single-particle spectra for � = 0 (a), � = 0.1 (b), and � = 1.2 (c) for the case of fixed 
 = 0 (δq = −γ 2/2) and � = 0.1 (d) for
fixed 
 = γ 2/2. In (a)–(c), lower, middle, and upper lines respectively correspond to the ω1(k), ω2(k), and ω3(k) of the dispersion relation of
Eqs. (15a)–(15c), while in the fourth panel the three lines represent three different bands of the single-particle spectra computed using Eq. (29).

lower, a middle, and an upper one, namely, ω(k) = ω j (k)
( j = 1, 2, 3), given by

ω1 = 1

2
(k2 − 2

√
k2γ 2 + 2�2) (lower branch), (15a)

ω2 = k2

2
(middle branch), (15b)

ω3 = 1

2
(k2 + 2

√
k2γ 2 + 2�2) (upper branch). (15c)

These branches of the energy spectrum are illustrated in
Fig. 2 for different values of the parameter �. It is ob-
served that (when the branches are separated) the upper
and middle branches ω2 and ω3 feature a global minimum
at k = 0 for every value of �. On the other hand, for
� > γ 2/

√
2, the lower branch ω1(k) features a global min-

imum at k = 0, while for � < γ 2/
√

2 this branch acquires
a double-well shape. In this case, ω1(k) features a maxi-
mum at k = 0 and two minima at k = ±

√
γ 2 − 2(�2/γ 2).

The latter is, arguably, the richest scenario in terms of rele-
vant possibilities for solitary waveforms, as we will illustrate
below.

It is also straightforward to find that the solvability condi-
tion, det(W) = 0, of Eq. (12a) leads to the solution

u1 = Rϕ(X, T ), (16)

where ϕ(X, T ) is an unknown scalar field (to be de-
termined below), while R = [Q1, Q2, Q3]T is the right
eigenvector of the kernel of W. The components of R ac-
quire different expressions for each branch of the energy
spectrum.

Next, we consider the equation at O(ε2), namely, Eq. (12b).
Generally, the solvability condition of the inhomogeneous
equations arising at O(ε j ) for j � 2 is LF jR = 0, where F j

is the right-hand side term at O(ε j ). Hence, the solvability
condition of Eq. (12b) is LW0R = 0, where L = [Q1, Q2, Q3]
is the left eigenvector of the kernel of the matrix W. The
above solvability condition fixes the value of k, which is

given by

k = γ
Q2

3 − Q2
1

Q2
1 + Q2

2 + Q2
2

. (17)

At this value of k, the group velocity becomes zero, i.e.,

vg ≡ ω′(k) = k − γ
Q2

3 − Q2
1

Q2
1 + Q2

2 + Q2
2

= 0. (18)

According to this result, perturbative solutions can only
be sought for at the extrema (minima or maxima) of
ω(k), which occur at the “stationary points” (ωm, km),
where ωm = ω(km). Based on this we expect the per-
turbative solutions to be approximately valid near these
points.

Furthermore, at this order, a solution of Eq. (12b) reads

u2 = −i(∂kR)[∂X ϕ(X, T )]. (19)

It is relevant to indicate at this point that this is a single
inhomogeneous solution of Eq. (12b) and the most general
associated solution can be constructed by appending to it the
solution of the homogeneous problem, although we will not
pursue this avenue herein.

B. Nonlinear regime

We now proceed with the equation at O(ε3), namely,
Eq. (12c). The solvability condition of this equation is
LF3R = 0 [where F3 is the right-hand side of Eq. (12c)].
Then, employing the form of the solutions for u1 and u2,
the solvability condition of Eq. (12c) yields the following
effective GP equation:

iϕT = [− 1
2ω′′(km)∂2

X + Ṽ (X ) + g(km)|ϕ|2 − ω0
]
ϕ, (20)
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where the dispersion and nonlinearity coefficients, ω′′(km) and g(km), are given by

ω′′(km) = 1 + 2
k(Q1Q′

1 + Q2Q′
2 + Q3Q′

3) + γ (Q1Q′
1 − Q3Q′

3)

Q2
1 + Q2

2 + Q2
3

, (21a)

g(km) = c0

(
Q2

1 + Q2
2 + Q2

3

)2 + (
2Q2

2

(
Q2

1 + Q2
3

) + (
Q2

1 − Q2
3

)2)
β

Q2
1 + Q2

2 + Q2
3

. (21b)

Here, ω′′(km) = ω′′(k)|k=km
, g(km) = g(k)|k=km

[i.e., the func-
tions ω′′(k) and g = g(k) are evaluated at the stationary point
km, as defined above], and c2 = βc0. Notice that the coeffi-
cients ω′′(km) and g take different values for the three different
branches of the dispersion relation. Furthermore, the relative
sign of these coefficients controls the type of the soliton that
is supported by the effective GPE [Eq. (20)]. In particular,
considering time-independent solutions, in the absence of
the potential [Ṽ (X ) = 0], and for ω′′(km)g(km) > 0, the NLS
Eq. (20) possesses a stationary dark solitary (DS) solution of
the form

ϕDS(X ) =
√

ω0

|g(km)| tanh

(√
ω0

|ω′′(km)|X

)
, (22)

while for ω′′(km)g(km) < 0, it possesses a stationary bright
soliton (BS) solution:

ϕBS(X ) =
√

2ω0

|g(km)| sech

(√
2ω0

|ω′′(km)|X

)
. (23)

It is of course relevant to note that these stationary solutions
can, in principle, be boosted using the Galilean transformation
of the obtained NLS equation [34]. Hence, in terms of the
original variables, the system of Eqs. (7c) yields a solitary
wave solution of the form

�(x, t ; R) ≈ [εϕS (εx)R(km) − iε2R′(km)∂X ϕS (εx)]

× exp[i(kmx − μmt )], (24)

valid to O(ε3). Here, ϕS is the (dark or bright) solution,
and μm = ωm + ε2ω0. In light of the above expression for
Eq. (20), the solitary wave mass will be inversely propor-
tional to ω′′(km), given the nature of the contribution of the
latter in the equation’s dispersive term; see also the details in
Appendix A.

In general, there exist two different eigenfunction sets that
we consider herein (although different normalizations of the
eigenvectors are also possible; we comment on this a bit
further below), labeled as Ra = [Q1a, Q2a, Q3a]T and Rb =
[Q1b, Q2b, Q3b]T , where

Q1a(ω, k) =
(

k2

2 − kγ − ω
)

(
k2

2 + kγ − ω
) ,

Q2a(ω, k) = − 1

�

(
k2

2
− kγ − ω

)
, Q3a(ω, k) = 1 (25)

and

Q1b(ω, k) = 1, Q2b(ω, k) = − 1

�

(
k2

2
+ kγ − ω

)
,

Q3b(ω, k) = 1/Q1a(ω, k). (26)

Since Ra and Rb are eigenfunctions, in line with earlier cal-
culations in Refs. [11,12], using a linear combination (which,
by a continuation argument, may also exist in the nonlinear
regime), we may also construct the solitary wave solution,
which is of the form

�(x, t ) ≈ C

2
[�(Ra)eikmx + �(Rb)e−ikmx], (27)

where C is an arbitrary constant. For finite km, Eq. (27) rep-
resents a stripe solitary wave solution. This is in analogy with
the stripe-phase ground state which contains density modula-
tions resulting from interfering contributions to the mean-field
wave function [2,8,45].

Below we will present results for the type of solitary wave
that is supported at each branch of the energy spectrum, and
corroborate our predictions with results of direct numerical
simulations.

IV. SOLITARY WAVES IN A HOMOGENEOUS BEC

A. Solitary waves at the lower branch

First, we consider the lower branch ω1(k) of the energy
spectrum, which features either a single minimum at km = 0
for � > γ 2/

√
2 or a double-well shape with two minima

km = ±
√

γ 4 − 2�2/γ for � < γ 2/
√

2. In the following para-
graphs, we discuss the solitary solutions for both cases � >

γ 2/
√

2 and � < γ 2/
√

2.

Case I: Dark solitary waves for km = 0, � > γ2/
√

2

In this case ωm(km) = −√
2� [see Fig. 2(c)]. Then, at

(ω, k) = (ωm, km), we obtain

Ra = [1,−
√

2, 1]T , R′
a =

[
−

√
2γ

�
,

γ

�
, 0

]T

,

ω′′(km) = 1 − γ 2

√
2�

, g(km) = 2c0(2 + β ),

and, similarly,

Rb = [1,−
√

2, 1]T , R′
b =

[
0,−�

γ
,

√
2�

γ

]T

,

ω′′(km) = 1 − γ 2

√
2�

, g(km) = 2c0(2 + β ).
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FIG. 3. The steady-state DS solution for km = 0 and � >
γ 2√

2
.

(a) The total density, (b)–(d) the density of individual components,
(e) the real part of (ψ+1, ψ−1), (f) the imaginary part of (ψ+1, ψ−1),
and (g)–(i) the density of individual components in Fourier space.
The solid lines represent numerical results, and the symbols represent
the theoretical prediction of Eq. (27), with circles representing the
total density n and squares, diamonds, and hexagrams denoting the
spinor components with m = −1, m = 0, and m = +1, respectively.
The parameters are c0 = 1, � = 6, γ = 1, λt = 0, μ = ωm + 0.1,
and C = 1.

Observe that since ω′′(km) > 0 and g(km) > 0 (for c0 > 0), the
stationary solution is a DS, as per Eq. (22).

We now numerically solve the time-independent version
of Eqs. (7a)–(7c) by considering μm = ωm + ε2ω0. The
result of � = 6 at ε2ω0 = 0.1 is shown in Fig. 3. We
observe that the amplitudes of the dark solitary waves of
the components m = +1 and m = −1 are equal, as obtained
analytically in Eq. (27). We further ensure that both the
numerical and the analytical results for the total density are
matching well by showing them on the top left panel of
Fig. 3. Further, the figure shows that the real parts of the
wave functions ψ+1 and ψ−1 are equal; both the relevant
real and imaginary parts are shown by means of connected
symbols in the left panels of the figure. On the other hand,
the change in sign of the profile of imaginary parts follows
the analytical solution u2. In this manuscript, the density of
the individual components in real space is normalized by the
maximum of n(x), and the real and imaginary parts of the
wave functions are normalized by the maximum of

√
n(x).
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The representation of the wave functions in the Fourier space
shows the contributing momenta. Overall, we confirm that
the theoretical prediction adequately captures the numerically
obtained solutions in all relevant components. Additionally,
we confirmed the stability of this solution both by evolving
it for a longer time as shown Fig. 4 and with a full stability
analysis of the Bogolyubov-de Gennes (BdG) equations [46].
For details of the corresponding stability calculation, see
Appendix C.

To corroborate that the DS solution exists and follows
analytical predictions for all values of � >

γ 2√
2
, we have

considered two additional cases, � = 1.2 and � = 0.8. The
results are shown in Fig. 5. As seen, the numerical results
are in line with the analytical predictions, identifying a robust
dark solitary wave where one such DS solution is expected to
exist.

Case II: Dark solitary waves for km = ±√
γ4 − 2�2/γ ,

� < γ2/
√

2

In this double-well case, ωm(km) = − γ 4+2�2

2γ 2 [see
Fig. 2(b)]. Then, at (ω, k) = (ωm, km), we obtain

Ra =
[−km + γ

km + γ
,

kmγ − γ 2

�
, 1

]T

,

R′
a =

[
2(km − γ )

γ (km + γ )
,

−km + γ

�
, 0

]T

,

ω′′(km) = 1 − 2�2

γ 4
,

g(km) = 4c0
(1 + β )γ 8 − 2β�4

γ 6(km + γ )2
.

023328-6



STATIONARY SOLITARY WAVES IN F = 1 … PHYSICAL REVIEW A 109, 023328 (2024)

D
en

si
ty

D
en

si
ty

−10 0 10

x

0.0

0.2

0.4

0.6

0.8

1.0

n
(x

)

(a)

0.0

2.5
×10−1(b) n+1

0

5
×10−1(c) n0

−10 0 10

x

0.0

2.5
×10−1(d) n−1

−10 0 10

x

0.0

0.2

0.4

0.6

0.8

1.0

n
(x

)

(e)

1

2

×10−1(f) n+1

0

5
×10−1(g) n0

−10 0 10

x

1

2

×10−1(h) n−1

FIG. 5. The comparison between the theoretical and numerical
results for (� = 1.2, ε2ω0 = 0.02) (top panel) and (� = 0.8, ε2ω0 =
0.01) (bottom panel). These parameters are still above the critical
� below which a nonvanishing kmin exists. (a) and (e) The total
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Similarly, in this case we construct

Rb =
[

1,
−kmγ − γ 2

�
,

km + γ

−km + γ

]T

,

R′
b =

[
0,

−km − γ

�
,

2(km + γ )

γ (−km + γ )

]T

,

ω′′(km) = 1 − 2�2

γ 4
, g(km) = 4c0

(1 + β )γ 8 − 2β�4

γ 6(km − γ )2
.

Since, in this case too, ω′′(km) > 0 and g(km) > 0, the sta-
tionary solution is again a dark solitary wave, per Eq. (22).
Additionally, since km = ±

√
γ 4 − 2�2/γ , Eq. (24) for Ra

and Rb also provides solutions. The result corresponding to
the case km =

√
γ 4 − 2�2/γ is shown in Fig. 6, where the

dark solitary wave is depicted at the right momentum mini-
mum. Naturally, there is a corresponding state around the left
momentum minimum, with the relative populations of the ψ+1

and ψ−1 components reversed (not shown here for brevity).
On the other hand, Fig. 7 shows the stripe solitary wave
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−1 0 1

kx

0

1

×102(i) ñ−1

FIG. 6. The steady-state DS solution for the double-well case
with km = √

γ 4 − 2�2/γ and � < γ 2/
√

2. (a) The total density,
(b)–(d) the density of individual components, (e) the real part of
(ψ+1, ψ−1), (f) the imaginary part of (ψ+1, ψ−1), and (g)–(i) the
density of individual components in Fourier space. The solid line
represents numerical results and symbols represent the analytical
prediction [Eq. (24) for Ra]. Here, circles represent the total density
n and squares, diamonds, and hexagrams denote spinor components
with m = −1, m = 0, and m = +1, respectively. The parameters are
c0 = 1, � = 0.1, γ = 1, λt = 0, and μ = ωm + 0.01.

obtained from a linear combination of plane waves of mo-
menta ±km. It is interesting to note that despite the presence
of a definitive finite wave number in the Fourier spectrum of
the different components, the solution does not travel due to its
bifurcation from a point in k-space where the group velocity
is vanishing.

Given that wavelength-scale spatial modulations visible
in Fig. 6 have a comparable length scale to the transverse
confinement length a⊥, it is relevant to briefly comment on
the effective one-dimensionality of the system. While length
scales can be a useful heuristic, energies are the more suitable
quantities to compare when identifying the validity of dimen-
sional reduction. Here, the interfering momentum components
have an energy of just 2Er ≈ 7 kHz and the transverse con-
finement is generated by an optical lattice of depth V = sEr

[47]. In this case, the vibrational spacing between the ground
and first excited transverse states has energy ∼2Er

√
s; for

typical confining lattice depths of s > 16Er this implies a
spacing of 8Er � 28 kHz. As such, coupling to these excited
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FIG. 7. The stripe DS solution occurring at the double-well-
shaped lower branch. (a) The total density, (b)–(d) the density
of individual components, (e) the real part of (ψ+1, ψ−1), (f)
the imaginary part of (ψ+1, ψ−1), and (g)–(i) the density of in-
dividual components in Fourier space. The solid line represents
numerical results, and the symbols—which have the same repre-
sentation as before—represent the analytical prediction [Eq. (27)].
The parameters are c0 = 1, � = 0.1, γ = 1, λt = 0, μ = ωm + 0.01,
and C = 1.4.

states is energetically blocked, confining transverse motion to
the ground state.

Case III: Bright solitary wave for km = 0, � < γ2/
√

2

We additionally consider the case corresponding to the
local maximum at km = 0 of the double-well-shaped lower
branch (occurring for � < γ 2/

√
2), for which ωm(km) =

−√
2� (see the left panel of Fig. 2). For this case,

at (ω, k) = (ωm, km), we find

Ra = [1,−
√

2, 1]T ,

R′
a =

[
−

√
2γ

�
,

γ

�
, 0

]T

,

ω′′(km) = 1 − γ 2

√
2�

,

g(km) = 2c0(2 + β ),

and similarly,

Rb = [1, −
√

2, 1]T R′
b =

[
0, −�

γ
,

√
2�

γ

]T

,

ω′′(km) = 1 − γ 2

√
2�

, g(km) = 2c0(2 + β ).

Here, an important observation is that, while the nonlinearity
coefficient is positive, g(km) > 0, the dispersion coefficient
changes sign, since ω′′(km) < 0. The latter coefficient is con-
nected with the inverse of the effective mass, i.e., meff ∝
1/ω′′(km) (see, e.g., Refs. [48,49]), which suggests that
the solitary waves in this case feature a negative effective
mass; this result can also be obtained by employing sym-
metry considerations (see details in Appendix B). In the
case of all the dark solitary waves that are presented in this
work, the structures are characterized by a positive effective
mass [50].

Importantly, since g(km) > 0 and ω′′(km) < 0, the negative
mass solitary wave is a bright one. The functional form of this
solitary wave is given by Eq. (23), and is illustrated in Fig. 8.
We further confirmed that this solution is a spectrally stable
coherent structure from the full stability analysis of the BdG
equations.

B. Solitary waves at the middle branch

We now consider structures that can be formed within the
second branch of the dispersion relation ω2(k). This branch
has a minimum at km = 0, while it is straightforward to find
that ωm(km) = 0; see Fig. 2. Then, we obtain the correspond-
ing eigenvectors associated with the first- and second-order
solutions:

Ra = [−1, 0, 1]T , R′
a =

[
0,

γ

�
, 0

]T
,

ω′′(km) = 1, g(km) = 2c0.

Similarly, at (ω, k) = (ωm, km), we find

Rb = [1, 0, −1]T , R′
b =

[
0, − γ

�
, 0

]T

,

ω′′(km) = 1, g(km) = 2c0.

In this case too, it is clear that ω′′(km) > 0 and g(km) > 0, and
hence the system supports a DS solution, given by Eq. (27)
and illustrated in Fig. 9. Notice that we have confirmed the
absence of unstable eigenvalues for this solution within the
realm of the full stability analysis of the BdG equations;
once again, see Appendix C for details on the relevant BdG
computation setup.

C. Solitary waves at the upper branch

We now consider the upper branch, ω3(k), which also fea-
tures a minimum at km = 0. In this case, ωm(km) = √

2� (see
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−1 0 1

kx

0

2

4
(i) ñ−1

FIG. 8. The steady-state BS solution for � < γ 2/
√

2. (a) The to-
tal density, (b)–(d) the density of individual components, (e) the real
part of (ψ+1, ψ−1), (f) the imaginary part of (ψ+1, ψ−1), and (g)–(i)
the density of individual components in Fourier space. The solid line
represents numerical results and symbols represent theory [Eq. (27)],
where circles represent total density n and squares, diamonds, and
hexagrams denote spinor components m = −1, m = 0, and m = +1,
respectively. The parameters are c0 = 1, � = 0.4, γ = 1, λt = 0,
μ = ωm + 0.01, and C = 1.

Fig. 2) and, correspondingly, we obtain

Ra = [1,
√

2, 1]T , R′
a =

[√
2γ

�
,

γ

�
, 0

]T

,

ω′′(km) = 1 + γ 2

√
2�

, g(km) = 2c0(2 + β ).

Similarly, at (ω, k) = (ωm, km), we find

Rb = [1,
√

2, 1]T , R′
b =

[
0, − γ

�
, −

√
2γ

�

]T

ω′′(km) = 1 + γ 2

√
2�

, g(km) = 2c0(2 + β ). (28)

Obviously, in this setting too, the same sign of ω′′(km) and
g(km), indicates the existence of a DS, which is illustrated
in Fig. 10. In this case as well, the spectral stability of the
dark solitary wave has been confirmed by virtue of the BdG
analysis.
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FIG. 9. The steady-state DS solution for the middle branch.
(a) The total density, (b)–(d) the density of individual components,
(e) the real part of (ψ+1, ψ−1), (f) the imaginary part of (ψ+1, ψ−1),
and (g)–(i) the density of individual components in Fourier space.
The solid line represents numerical results and the symbols cor-
respond to the analytical approximation of Eq. (24) for Ra. The
parameters are c0 = 1, � = 6, γ = 1, λt = 0, and μ = ωm + 0.01.

V. NUMERICAL RESULTS
FOR A TRAPPED CONDENSATE

In this section we discuss the solitary wave dynamics for a
trapped condensate, a system that is naturally of relevance to
experiments [46,51,52]. We will focus on structures that can
be supported in the lower branch of the dispersion relation
and discuss representative cases corresponding to the case of
a single minimum or two minima (when the lower branch fea-
tures a double-well shape). It is reminded that these cases are
distinguished by the relative strength of the SOC parameters
� and γ (γ 2/

√
2, more precisely).

A. Dark solitary waves for km = 0, � > γ2/
√

2 in the trap

We start with the steady-state solution in the presence of
the trap, shown in Fig. 11 for � = 6.0. As before, we identify
the stationary state and observe good agreement for each of
the components with the observed stationary configurations in
the figure. Additionally, in this case, the point spectrum of the
BdG excitations of the wave in the presence of the parabolic
trap [46,51] provides us with an analytical prediction for the
spectrum of the spinor SOC problem. In order to compare
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FIG. 10. The steady-state DS solution for the upper branch.
(a) The total density, (b)–(d) the density of individual components,
(e) the real part of (ψ+1, ψ−1), (f) the imaginary part of (ψ+1, ψ−1),
and (g)–(i) the density of individual components in Fourier space.
The solid line and symbols represent, respectively, numerical results
and analytical prediction [Eq. (27)], with circles representing total
density n, and squares, diamonds, and hexagrams denoting spinor
components with m = −1, m = 0, and m = +1, respectively. The
parameters are c0 = 1, � = 6, γ = 1, λt = 0, μ = ωm + 0.1, and
C = 1.

with the numerical BdG spectrum, we solve the eigenvalue
problem described in Appendix C to check the spectral stabil-
ity of the solutions. The way of construction of our stability
problem indicates that if the (generally complex) eigenvalue
λ features a real part λr , then the pertinent configuration is
unstable; on the other hand, if the eigenvalue is imaginary,
then the configuration is stable and involves purely oscillatory
excitations.

The lowest imaginary eigenvalues as functions of μ are
shown in Fig. 12 for � = 6 (top panel) and � = 1.2 (bottom
panel). The purely imaginary eigenvalues suggest that for
large μ, an asymptotic spectral picture is being approached.
Within that lies the well-known and extensively studied [46]
mode pertaining to the oscillation of the DS inside the trap
of 1/

√
2 of the effective trap frequency; the latter, as can be

inferred upon rescaling, is found to be equal to λt
√|ω′′(km)| in

our case. The remaining modes, pertaining to the background
(rather than the solitary wave) excitations approach the values√

n(n + 1)/2 λt
√|ω′′(km)| [53]. On the other hand, the lin-

ear limit (of small enough μ, such that the density tends to
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−2 0 2

kx

0.0

2.5

(i) ñ−1

FIG. 11. The steady-state DS solution in the lower branch for
km = 0 and � > γ 2/

√
2 in the presence of a trap. (a) The to-

tal density, (b)–(d) the density of individual components, (e) the
real part of (ψ+1, ψ−1), (f) the imaginary part of (ψ+1, ψ−1), and
(g)–(i) the density of individual components in Fourier space. The
parameters are c0 = 1, � = 6, γ = 1, β = −0.0046, λt = 0.05,
and μ = ωm + 0.05.

vanish) shows that the eigenvalues are integer multiples of the
above-mentioned effective trap frequency. It is worthwhile to
note that as � decreases, we observe a slight deviation of the
eigenvalues from the above analytical predictions, although
still the relevant agreement is fairly reasonable; cf. the bottom
panel of Fig. 12.

B. Dark solitary waves for km = ±√
γ4 − 2�2/γ ,

� < γ2/
√

2 in the trap

In this case, our representative example is the stripe DS.
Figure 13 shows the steady-state stripe DS solution in the
presence of a trap for � = 0.1. It is clear that, despite the
confinement of the relevant state (and its undulations) in
the parabolic trap, our theory can still adequately capture
the relevant configuration. In fact, for large μ, this config-
uration can be approximated by the product of the ground
state of the system (in the Thomas-Fermi approximation)
and the dark stripe solitary wave that was found in the ab-
sence of the trap. In Fig. 14, we have also examined the
lowest imaginary eigenvalues (top panel) and the lowest real
eigenvalues (bottom panel) as functions of μ for � = 0.01.
In this case, we have found that, generically, there exist
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FIG. 12. The lowest (normalized) imaginary eigenvalues of the
dark solitary wave spectrum, as found from the BdG analysis,
are depicted as functions of μ for km = 0 and � > γ 2/

√
2 by solid

blue lines. The parameters are � = 6 (top panel) and � = 1.2 (bot-
tom panel), γ = 1, β = −0.0046, and λt = 0.05. A comparison with
the asymptotic frequency prediction for the DS oscillation frequency
is incorporated as a dashed (red) line, while the remaining asymp-
totic modes connected to background excitations are depicted by the
dashed (black) lines.

intervals of oscillatory instability, as is illustrated in the
figure.

Additionally, to study the dynamics of this instability, we
have perturbed a stripe dark solitary wave with the eigenvector
corresponding to the largest real eigenvalue; the evolution
of the perturbed stripe DS is shown in Fig. 15. Here, we
observe that the oscillatory nature of the instability induces
very long-lived oscillations of the solitary wave around the
center of the trap. Similar results were found also for the
case of weaker traps, such as λt = 0.01 (not shown here, for
brevity).

VI. RESULTS FOR � �= 0

In this section, we extend our analysis to 
 �= 0 (more
specifically, setting δq = 0). In this case, the dispersion rela-
tion, as obtained from the equation det(W) = 0 [with W given
by Eq. (13a)], becomes

D(ω, k) = 1
8 (k2 − 2ω){[k2 + 2(
 − ω)]2 − 4γ 2k2}
−�2[k2 + 2(
 − ω)] = 0. (29)

In this case, the lowest branch can form a triple well, in
contrast with the F = 1/2-like double-well setting discussed
above; i.e., a case bearing three distinct minima for small
�, as shown in Fig. 2. This makes the system very differ-
ent from a binary SOC-BEC, yet it is still experimentally
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FIG. 13. The steady-state stripe DS solution for
km = ±√

γ 4 − 2�2/γ and � < γ 2/
√

2 in the presence of the
trap. (a) The total density, (b)–(d) the density of individual
components, (e) the real part of (ψ+1, ψ−1), (f) the imaginary part
of (ψ+1, ψ−1), and (g)–(i) the density of individual components
in Fourier space. The parameters are c0 = 1, � = 0.1, γ = 1,
β = −0.0046, λt = 0.01, and μ = ωm + 0.025.

realizable [41]. We note, as was shown, e.g., in Ref. [35],
that the energy spectrum can be made asymmetric by in-
troducing an energy shift due to a detuning from Raman
resonance.

For nonzero 
, the eigenfunctions Ra = [Q1a, Q2a, Q3a]T

and Rb = [Q1b, Q2b, Q3b]T become

Q1a(ω, k) =
(

k2

2 − kγ + 
 − ω
)

(
k2

2 + kγ + 
 − ω
) ,

Q2a(ω, k) = − 1

�

(
k2

2
− kγ + 
 − ω

)
, Q3a(ω, k) = 1

(30)

and

Q1b(ω, k) = 1, Q2b(ω, k) = − 1

�

(
k2

2
+ kγ + 
 − ω

)
,

Q3b(ω, k) = 1/Q1a(ω, k). (31)

Figure 16 shows the analytically and numerically com-
puted solution using � = 0.1 and 
 = γ 2/2 (i.e., quadratic
Zeeman shift δq = 0). This solution is obtained for km = 0 of
the lowest triple-well band, the single-particle ground state.

023328-11



T. MITHUN et al. PHYSICAL REVIEW A 109, 023328 (2024)

FIG. 14. The lowest imaginary eigenvalues (top panel) and the
lowest real eigenvalues (bottom panel) of the dark solitary wave
spectrum as a function of μ for km = ±√

γ 4 − 2�2/γ and � <

γ 2/
√

2 for λt = 0.05. The parameters are � = 0.1, γ = 1, and β =
−0.0046.

As found in Fig. 16, we expect the m = 0 component to
have the largest contribution to the eigenfunction. Moreover,
the analytical solution is in very good agreement with the
numerical result. Another salient feature of the solution is
the asymmetric density distribution of ±1 wave functions
around the wave vector km = 0 in the Fourier space. This
asymmetry is arising from the small but finite linear poten-
tial ±γ kx experienced by the ±1 wave functions in Fourier
space.

VII. SUMMARY AND FUTURE DIRECTIONS

In the present work, we explored the existence, stabil-
ity, and wherever relevant, dynamics of solitary wave states
in F = 1 SOBECs. Although our computations were pro-
vided for specific parameter sets, the methodology used and
the structures considered are expected to be broadly rel-
evant in this system. More specifically, we extended the
multiscale expansion technique that was applied in two-
component systems to analyze the emergence of coherent
structures at the extrema of the linear dispersion relation.
We constructed second-order approximate solutions, thereby
identifying a wide range of nonlinear excitations includ-
ing “conventional” dark and stripe dark solitary waves as
well as bright ones that emerge near the potential max-
imum of the dispersion relation. All of these excitations
were corroborated by means of numerical computations,
by first identifying their waveforms via fixed point it-
erations and then illustrating their stability via a BdG
analysis.
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FIG. 15. Contour plots of the density depicting the evolution of a
stripe dark solitary wave perturbed with the eigenvector of the largest
real eigenvalue. Shown are the three spin components, m = +1 (left),
m = 0 (middle), and m = −1 (right). The parameters are c0 = 1,
� = 0.15, γ = 1, β = −0.0046, λt = 0.05, and μ = −0.2730. A
similar behavior was observed for the case of λt = 0.01 (and μ =
−0.4125), not shown here.

We confirmed their experimental relevance by studying
these states in the presence of a parabolic trap. We were
able to directly show that the structures persist in confined
settings, and to leverage our reduction technique to predict
their BdG spectrum in the presence of the trap in good
agreement (where appropriate) with direct numerical compu-
tations thereof. Here, we have also been able to identify cases
where the trapping may lead to instabilities (e.g., of stripe
dark solitary waves) and have illustrated the corresponding
instability-induced dynamics, giving rise to long-lived DS
oscillations.

The solitary waves herein are particularly interesting when
considered from a “synthetic dimensions” perspective [54]
whereby the internal atomic states are assigned a synthetic
spatial coordinate. The Raman coupling introduces an effec-
tive magnetic field normal to the plane of a two-dimensional
(2D) strip, which is three sites wide for our F = 1 case.
This perspective is most useful in the triple-well case where
dynamics accurately correspond to the motion of a charged
particle in a magnetic field [55,56]. The antisymmetry of
the momentum distributions in Fig. 16(g) versus Fig. 16(i)
therefore implies a type of chiral flow for this static struc-
ture. The existence of stable traveling solitary waves in this
case would lead to dissipationless chiral currents—as in inte-
ger quantum Hall systems, but from a completely different
mechanism—making the stability of such traveling solitary
structures an especially interesting topic for future study. Not
only is it of relevance to systematically produce such traveling
solutions, but this also would pave the way for examining the
potential collision of such states and how elastic or inelastic
these are.
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FIG. 16. The steady-state DS solution for v = 0, � = 0.1, and
μ = ωm + 0.008. (a) The total density and (b)–(d) the density
of individual components. (e) and (f) The real and imaginary
part, respectively, of (ψ1, ψ−1), and (g)–(i) momentum-density
distributions of the individual spin components. The solid lines
represent numerical results and symbols represent the theoretical
prediction.

More generally, we expect that the provided methodology
will define a playbook for identifying such states in a broad
class of spin-orbit coupled systems, including those with
the different types of SOC (Rashba or Dresselhaus and
combinations thereof) that have been realized in state-of-
the-art experiments. Moreover, our results suggest various
near-term research directions. For instance, it appears natural
to consider stationary structures in higher-dimensional
systems such as SOC vortices using the corresponding
multiscale expansion method and to explore the associated
stability and dynamics.
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APPENDIX A: EFFECTIVE HAMILTONIAN

1. Bichromatic optical fields

We begin with a focus on the single-particle term from
which we will obtain SOC in a 87Rb BEC. Figure 1 de-
picts our basic setup in which an applied magnetic field
B = B0ez Zeeman splits the three mF sublevels. We consider
the case of large applied magnetic field where, owing to the
quadratic Zeeman effect, the energy differences δ±1 between
|F = 1, mF = ±1〉 and |F = 1, mF = 0〉 are significantly dif-
ferent from each other, as indicated.

In addition, a pair of counterpropagating laser beams, with
equal optical electric field E0 and wave vector kR, drive two
photon Raman transitions with strength �. The beam directed
along +ex (red and orange) has two frequency components de-
noted by ω−

±1, while the beam directed along −ex has a single
frequency component ω+. As suggested by the level diagram,
these frequency components will be selected to indepen-
dently address the |F = 1, mF = −1〉 ↔ |F = 1, mF = 0〉
and |F = 1, mF = 0〉 ↔ |F = 1, mF = +1〉 transitions, as
was done experimentally in Ref. [9].

This combination of laser beams results in the optical elec-
tric field

E(x) = E0{[ei(kRx−ω−
−1t+π/2) + ei(kRx−ω−

+1t+π/2)]ey

+ e−i(kRx+ω+t+π/2)ex}, (A1)

where the factors of π/2 serve to establish a convenient spatial
origin. Raman coupling results from the rank-1 tensor (i.e.,
vector) light shift [39] described by an effective magnetic field

Beff (x) = iuvE∗(x) × E(x)

= 2uv|E0|2[cos(2kRx + δω−1t )

+ cos(2kRx + δω+1t )]ex (A2)

in terms of the frequency differences δω±1 = ω+ − ω−
±1 and

the vector polarizability uv .
This enters into the light-matter Hamiltonian via

ĤLM = gF μB

h̄
Beff (x) · F̂, (A3)

with Landé g-factor gF and Bohr magneton μB, in this case
giving a term proportional to F̂x.

2. Rotating wave approximation

We now eliminate the time dependence from ĤLM by first
transforming into a rotating frame and then making a pair of
RWAs. In general we consider unitary frame transformations
Û (t ) that take |ψ ′〉 = Û (t )|ψ〉 and recall that |ψ ′〉 evolves
according to a rotating frame Hamiltonian

Ĥrot = Û (t )ĤÛ †(t ) − ih̄Û (t )∂tÛ
†(t ). (A4)

We consider the unitary frame transformation

Û (t ) = exp[+i(δω−1|−1〉〈−1| − δω+1|+1〉〈+1|)t], (A5)
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for which the time-derivative term in Eq. (A4) decreases |mF = −1〉 in energy by h̄δω−1 and increases |mF = −1〉 in energy by
h̄δω+1, The complexity in the problems comes from the remaining operator transform

Û (t )
F̂x

h̄
Û †(t ) = 1√

2
(e−iδω−1t |0〉〈−1| + e−iδω+1t |+1〉〈0| + H.c.),

leading to a total of 16 terms in the light matter Hamiltonian

ĤLM = gF μBuv|E0|2√
2

{[e2ikRx + e−i(2kRx+2δω−1t ) + ei(2kRx+(δω+1+δω−1 )t ) + e−i(2kRx+(δω+1+δω−1 )t )]|0〉〈−1|

+ [ei(2kRx+(δω−1−δω+1 ) + e−i(2kRx+(δω−1+δω+1 ) + e2ikRx − e−i(2kRx+2δω+1t )]|+1〉〈0| + H.c.}. (A6)

The rotating wave approximation consists of eliminating all rapidly rotating terms, leading to the final RWA Hamiltonian

ĤRWA = δq(|−1〉〈−1| + |+1〉〈+1|) + �R[e2ikRx|0〉〈−1| + e2ikRx|+1〉〈0| + H.c], (A7)

where we aggregated the numerical prefactors in Eq. (A6) into the Raman coupling strength �R and introduced δq = δ−1 −
δω−1 = δ+1 − δω+1 (thereby constraining ω±1).

In practice, terms rotating more rapidly than ∼100 kHz can be safely neglected as they exceed both the single-particle and
interaction energy scales in the problem. For the 87Rb system specifically this implies that B0 � 30 G, so that both the linear and
quadratic Zeeman shifts are above this scale.

This leads to the single-particle Hamiltonian

Ĥ0 = h̄2k2

2ma
+ �√

2
[cos(2kRx)F̂x − sin(2kRx)F̂y] + δq

h̄
F 2

z . (A8)

A final spin rotation about ez by an angle 2kRx leads to the spin-orbit coupled Hamiltonian

Ĥ0 = (−ih̄∂x Î + kRF̂z )2

2ma
+ δq

h̄
F̂ 2

z + �√
2

F̂x (A9)

in Eq. (5).

3. Interaction Hamiltonian

We now turn our attention to the four-field terms in Eq. (1). In the second quantized notation, the transformation analogous
to Eq. (A5) is

Û (t ) = exp [+i(δω−1n̂−1(x) − δω+1n̂+1(x))t], (A10)

for example, giving the parallel action of Û (t )|+1〉 = e−iδω+1t |+1〉 versus Û (t )ψ̂+1(x)Û†(t ) = e−iδω+1t ψ̂+1(x). We now consider
the action of this transformation on the interaction contribution to the many-body Hamiltonian

Ĥint = 1

2

∫
dx :

[
g0n̂2(x) + g2

h̄2

∣∣F̂ (x)
∣∣2

]
:,

where : · · · : denotes the normal ordering operation. We now consider the term-by-term action of our rotation on this many-body
Hamiltonian. The total density is trivially unchanged,

Û (t ) : n̂2(x) : Û†(t ) =: n̂2(x) :, (A11)

and acquires no time dependence. By contrast, the spin-dependent term

Û (t ) : |F̂ (x)|2 : Û†(t ) = Û (t )[ψ̂†
+1ψ̂

†
+1ψ̂+1ψ̂+1 + ψ̂

†
−1ψ̂

†
−1ψ̂−1ψ̂−1 + 2ψ̂

†
+1ψ̂

†
0 ψ̂+1ψ̂0 + 2ψ̂

†
−1ψ̂

†
0 ψ̂−1ψ̂0 − 2ψ̂

†
+1ψ̂

†
−1ψ̂+1ψ̂−1

+ 2ψ̂
†
0 ψ̂

†
0 ψ̂+1ψ̂−1 + 2ψ̂

†
+1ψ̂

†
−1ψ̂0ψ̂0]U†(t )

= [ψ̂†
+1ψ̂

†
+1ψ̂+1ψ̂+1 + ψ̂

†
−1ψ̂

†
−1ψ̂−1ψ̂−1 + 2ψ̂

†
+1ψ̂

†
0 ψ̂+1ψ̂0 + 2ψ̂

†
−1ψ̂

†
0 ψ̂−1ψ̂0 − 2ψ̂

†
+1ψ̂

†
−1ψ̂+1ψ̂−1

+ 2ψ̂
†
0 ψ̂

†
0 ψ̂+1ψ̂−1e−i(δω+1−δω−1 )t + 2ψ̂

†
+1ψ̂

†
−1ψ̂0ψ̂0ei(δω+1−δω−1 )t ] (A12)

does have time-dependent contributions in the spin-changing collision terms, which are eliminated by the RWA. This leads to
the RWA expression used in the main manuscript,

: |F̂RWA(x)|2 :≡ [ψ̂†
+1ψ̂

†
+1ψ̂+1ψ̂+1 + ψ̂

†
−1ψ̂

†
−1ψ̂−1ψ̂−1 + 2ψ̂

†
−1ψ̂

†
0 ψ̂−1ψ̂0

+ 2ψ̂
†
+1ψ̂

†
0 ψ̂+1ψ̂0 − 2ψ̂

†
+1ψ̂

†
−1ψ̂+1ψ̂−1]. (A13)
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APPENDIX B: EFFECTIVE MASS

As was shown in Secs. III B and IV A, the effective NLS
equation

iϕT + 1
2ω′′(km)∂2

X ϕ − g(km)|ϕ|2ϕ + ω0ϕ = 0 (B1)

can have negative prefactors for both dispersion and nonlin-
earity, i.e., ω′′(km) = −|ω′′(km)| < 0 and −g(km) < 0. In this
case, the NLS (B1) possesses a stationary bright solitary wave
solution (23). Starting from this stationary waveform, one may
use the Galilean invariance of the NLS equation and construct
a traveling bright solitary wave of the form

ϕBS(X, T ) =
√

2ω0

g(km)
sech

[√
2ω0

|ω′′(km)| (X − vsT )

]

× exp i(ksX − ωsT ). (B2)

The above solitary wave is characterized by a velocity vs, a
frequency ωs, and a wave number ks that are connected by a
“solitary wave dispersion relation,”

vs = −|ω′′(km)|ks, ωs = − 1
2 |ω′′(km)|k2

s . (B3)

Notice that the velocity vs can be directly obtained from the
dispersion relation using vs = ∂ωs/∂ks = −|ω′′(km)|ks. It is
straightforward to find that the NLS Eq. (B1) conserves the
momentum P (i.e., ∂P/∂T = 0), which is given by

P = i

2

g(km)

|ω′′(km)|
∫ ∞

−∞
(ϕϕ∗

X − ϕ∗ϕX )dX. (B4)

Substituting the traveling solitary wave (B2) into Eq. (B4),
one finds the solitary wave momentum

Ps = 2
√

2ω0ks. (B5)

Leveraging the particle picture of a solitary wave (B2), we
determine the effective mass meff from

meff = ∂Ps

∂vs
, (B6)

which leads to

meff = ∂Ps/∂ks

∂vs/∂ks
= − 2

√
2ω0

|ω′′(km)| . (B7)

As mentioned in Sec. IV, the bright solitary wave, which
exists for ω′′(km) < 0, features a negative effective mass. Con-
trarily, as suggested by Eq. (B7), dark solitary waves which
exist for ω′′(km) > 0 have positive effective mass.

APPENDIX C: LINEARIZED GPE AND BDG ANALYSIS

The dimensionless coupled GPE equations can be ex-
pressed as

i∂t� = (ĥ + c0nI + c2A1)�, (C1)

with

ĥ = 1
2

(−∂2
x I − iγ ∂x fz

) + V (x)I +
√

2� fx

and

A1 =

⎡
⎢⎣n1 + n0 − n−1 0 0

0 n1 + n−1 0
0 0 n−1 + n0 − n1

⎤
⎥⎦,

in terms of the densities ni = |ψi|2 = ψ∗
i ψi. Then, letting

�0 = (ψ+1, ψ0, ψ−1) be a steady-state solution, we consider
small perturbations δ� around the steady state, and introduce
the ansatz

� = (�0 + ε δ�) exp(−iμt )

into Eq. (C1). At order O(ε), we obtain the linear equation

i∂tδ� = KR δ� + KI δ�∗, (C2)

for δ�, where

KR = ĥ + c0nI − μ + c0B1 + c2C1,

KI = ĥ + c0nI + c0B2 + c2C2,

and

B1 =

⎡
⎢⎣

n1 ψ∗
0 ψ+1 ψ∗

−1ψ+1

ψ∗
+1ψ0 n0 ψ∗

−1ψ0

ψ∗
+1ψ−1 ψ∗

0 ψ−1 n−1

⎤
⎥⎦,

C1 =

⎡
⎢⎣

Fz + n1 + n0 ψ∗
0 ψ+1 −ψ∗

−1ψ+1

ψ∗
+1ψ0 n−1 + n1 ψ∗

−1ψ0

−ψ∗
+1ψ−1 ψ∗

0 ψ−1 −Fz + n−1 + n0

⎤
⎥⎦,

B2 =

⎡
⎢⎣

ψ2
+1 ψ0ψ+1 ψ−1ψ+1

ψ+1ψ0 ψ2
0 ψ−1ψ0

ψ+1ψ−1 ψ0ψ−1 ψ2
−1

⎤
⎥⎦,

C2 =

⎡
⎢⎣

ψ2
+1 ψ0ψ+1 −ψ−1ψ+1

ψ+1ψ0 0 ψ−1ψ0

−ψ+1ψ−1 ψ0ψ−1 ψ2
−1

⎤
⎥⎦.

Finally, inserting a perturbation of the form

δ� = P exp(λt ) + Q∗ exp(λ∗t )

into the the linearized problem (C2) gives the coupled
equations

iλP = KRP + KI Q

iλQ = −K∗
RQ − K∗

I P,

which can be explicitly written as the eigenvalue problem

MV = λV, (C3)

with

M = −i

[
KR KI

−K∗
I −K∗

R

]
and V =

[
P

Q

]
.
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G. Juzeliūnas, and M. Lewenstein, Synthetic gauge fields in
synthetic dimensions, Phys. Rev. Lett. 112, 043001 (2014).

[55] B. K. Stuhl, H. I. Lu, L. M. Aycock, D. Genkina, and I. B.
Spielman, Visualizing edge states with an atomic Bose gas in
the quantum Hall regime, Science 349, 1514 (2015).

[56] M. Mancini, G. Pagano, G. Cappellini, L. Livi, M. Rider, J.
Catani, C. Sias, P. Zoller, M. Inguscio, M. Dalmonte, and L.
Fallani, Observation of chiral edge states with neutral fermions
in synthetic Hall ribbons, Science 349, 1510 (2015).

023328-17

https://doi.org/10.1038/s41467-020-20762-4
https://doi.org/10.1103/PhysRevA.64.053602
https://doi.org/10.1103/PhysRevLett.88.093201
https://doi.org/10.1103/PhysRevA.89.033636
https://doi.org/10.1103/PhysRevLett.107.150403
https://doi.org/10.1103/PhysRevLett.91.060402
https://doi.org/10.1103/PhysRevLett.92.230401
https://doi.org/10.1142/S0217979217420139
https://doi.org/10.1103/PhysRevLett.112.043001
https://doi.org/10.1126/science.aaa8515
https://doi.org/10.1126/science.aaa8736

