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Recent developments in diameter metrology at NIST have improved the dimensional
characterization of piston–cylinder assemblies (PCAs) to unprecedented precision.
For the newest generation of PCA, the standard uncertainty on measurement of
outer diameter is 12 nm, while uncertainty on measurement of inner diameter is
14 nm. With a high-accuracy dimensional dataset in hand, the task of determining
the pressure generated by a specific PCA is reduced to converting diameter (and
straightness and roundness) to effective area (and distortion coefficient). Details on
how this was done for the artifact PCA2062 are described. PCA2062 was dimen-
sioned in 2017 and 2020; the area repeated within 0.2× 10−6 ·A0. The calculation
produced estimates of fall-rate and rotation-decay that agree with experimental
observations within 12 %. Fall-rate is proportional to the square of gap-width, so
the agreement between calculation and measurement validates the dimensional es-
timate of gap-width within (36± 42) nm, where the 42 nm standard uncertainty is
governed by the present state of flow theory. The piston-gauge model is buttressed
by three comparison tests against a laser barometer, which support a view that
PCA2062 is linear and reproducible within 0.2 µPa/Pa. Finally, an estimate of
uncertainty in the effective area of a dimensioned artifact is provided: as expected,
diameter measurement is the main culprit, but there are open questions with the
flow model that preclude an accurate evaluation of the distortion coefficient. For
the 530 kPa operating range of PCA2062, distortion is not a significant problem,
but the effect would be dominant in assemblies operating 1 MPa and above.

I. INTRODUCTION AND MOTIVATION

An experimental effort is underway to measure the refractivity of helium gas at the level
of 10−6 · (n − 1). The motivation is that a precision measurement of helium refractivity
at known temperature allows a realization of the pascal, in what is sometimes called the
optical pressure scale1. One attraction2 of the optical pressure scale is that it neither relies
on artifacts nor restricted materials. Indeed, one stimulant to perfecting the optical real-
ization is that it has potential to settle the twenty-five-year old, unresolved disagreements
in mechanical pressure scales—unresolved disagreements which have been at the level of
5×10−6 ·p for piston-gauges3, and 15×10−6 ·p for mercury manometers4. To meaningfully
conclude on past disagreements requires that one can compare a new optical realization to
a traditional mechanical realization at the highest levels of accuracy. This necessity for a
best-effort realization of the mechanical pressure scale motivates the present work. At the
National Metrology Institute (NMI) level, the outlook1,2,5 is that the optical pressure scale
will supersede the mechanical scale in terms of accuracy, reliability, and universality.
Towards this best-effort realization of the mechanical pressure scale, three sets of piston–

cylinder assemblies (PCA) have been dimensioned, and their effective areas established
traceable to the SI meter. These state-of-the-art PCA comprise a 50 mm-diameter fixed
piston with a floating and rotating cylinder. The three sets were manufactured in 2014
and coarse dimensioned in 2015. The set PCA2062 was fully dimensionally-characterized in
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2017. In 2020, all three sets PCA2062, PCA2065 and PCA2066 were fully dimensionally-
characterized6. The set PCA2062 is the exemplar with the best form, and its area and
performance are the main focus of this work; PCA2066 plays a role toward the end of
the article. While the preceding remarks have framed this piston-gauge development as
tandem to the optical realization, it would be remiss not to highlight the present article is
alone momentous. It marks the first time a highly-accurate mechanical pressure scale has
been established for the nation and based on NIST dimensions. The achievement reifies a
generation of dedicated effort in dimensional metrology, with a steadfast and methodical
drive toward improved capability.

Next follows some details on how the dimensional datasets were converted to effective
area, which rely heavily on two references by Sabuga and coworkers7,8. The procedure
begins by fusing together three separate dimensional inputs (diameter, straightness, and
roundness) to form a birdcage model of the artifact. Then, the pressure-induced distortion
is added to the birdcage; the distortion is calculated by finite-element methods, and uses
one parameterized input, which is the pressure distributed down the gap between the piston
and cylinder. This distributed pressure is calculated by the theory of rarefied gas dynamics.
Finally, the cross-sectional area of the distorted birdcage is calculated. To explain the
calculation, Section II will logically work backwards: starting from the output (pressure
equals force divided by area), and unwinding step-by-step to the input (dimensions). A
block diagram of the calculation procedure is shown in Fig. 1(a), and the explanation will
move from bottom to top. After the calculation, a lengthy discussion follows in Section
III, which describes the uncertainty of a generated pressure, together with some customary
diagnostics. Finally, the article concludes with Section IV, which features some additional
tests on piston-gauge performance via comparison to a highly precise laser barometer.

II. CALCULATION PROCEDURE

The mechanical pressure generated by the piston-gauge is given by

pmpg =
mg

A0 [1 + (t90 − 20)2αWC] (1 + b∆p)
+ pvac, (1)

where m is a mass load and g is local gravity. The effective area Aeff = A0(1 + b∆p)
is described more below, and is estimated chiefly by dimensional measurements made at
t90 = 20 ◦C; when the piston-gauge operates away from this reference temperature, its
diameter (effective area) should be scaled for the thermal expansion αWC. (The notation
t90 refers to temperature measurement on the international temperature scale of 1990.)
As pressure inside the cylinder increases, the piston and cylinder deform, thus changing
the diameter (effective area); the deformation parameter b accounts for pressure-induced
distortion. Finally, Eq. (1) should balance for pressure acting outside the cylinder; in
the present case, operation is in “absolute mode” and the pressure outside the cylinder is
pumped to pvac < 0.3 Pa, and measured with a capacitance diaphragm gauge.

The effective area Aeff of the PCA should consider forces caused by flow and friction
in the gap—the space between the piston and cylinder, which is approximately 580 nm.
Historically, these forces were estimated by the theory of Dadson9, which assumed viscous
flow. The more recent theory of Sharipov7,10 is based on rarefied gas dynamics, which
computes a flow coefficient determined by the level of rarefaction for all pressures and
dimensions distributed down the gap. For a pressure differential across the gap p1 − p2 (in
this case p2 = pvac), Sabuga, Sharipov, and Priruenrom7 write the area A0 = A1 −A2 −A3
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having three components11

A1 =
πG2

c1p1 − πG2
c2p2

p1 − p2

A2 =

π

∫ lc

0

hzGc
dpz
dz

dz

p1 − p2

A3 =

2π

∫ lc

0

pzGc
dGc

dz
dz

p1 − p2
.

(2)

The effective area Aeff is found by calculating A0 for several different p1, and extrapolating
(p1 − p2) → 0; the distortion coefficient b is deduced from the slope of the extrapolation.
In A0, the first component A1 is the area upon which the mass-force acts, and depends
on the radius (generatrix) at top Gc1 and bottom Gc2 of the cylinder. The generatrix of a
cylinder, described below, is obtained as the line that minimizes deviations between three
sets of dimensional measurements: straightness, roundness, and point-to-point diameter.
The other two components in Eq. (2) are A2 and A3, and arise from the drag forces owing
to gas flow in the gap and surface curvature; both of these components require knowledge
of the pressure distribution pz along the gap, and drive the gap dimensions to be updated
for pressure-induced distortion. The width of the gap hz = Gc−Gp is the difference between
the generatrixes of cylinder and piston. The height of the cylinder lc = 40 mm includes a
2 mm extrapolation of diameter measurements at both ends of the cylinder. The coordinate
system is shown in Figure 2(a); z is along the cylinder axis and x is radial; the variables
Gc,p, hz, and pz are all functions of z.

The calculation is iterative12: First there is a calculation of the pressure distribution from
p1 down to p2 along the gap

pz = p1 + (p2 − p1)

∫ z

0

[
h2
zGP

]−1
dz

∫ lc

0

[
h2
zGP

]−1
dz

, (3)

which requires the Poiseuille coefficient10,13

GP = a00 +





1
2
√
π
ln Gc

h + π
2 for δ ≤ 5× 10−4

∑
i

ai log(δ)
i for δ > 5× 10−4,

(4)

the interpolation of which is based on evaluation of the rarefaction parameter10,13

δz =
pzhz

ηvmp
, (5)

where η is gas viscosity, and vmp = (2RT/M)1/2 is the most probable speed and depends
on the gas constant R, temperature T , and molar mass M . For GP at δ > 5 × 10−4, a
12th-order polynomial is fit to the solution10 of the one-dimensional, infinite plate, planar
Poiseuille flow, with coefficients ai

a0 = 1.547801 a1 = −1.661399× 10−2 a2 = 6.736396× 10−1

a3 = 2.475631× 10−1 a4 = 1.034375× 10−1 a5 = 1.105164× 10−1

a6 = 8.492110× 10−2 a7 = 2.283521× 10−2 a8 = −5.879727× 10−3

a9 = −5.427568× 10−3 a10 = −1.438483× 10−3 a11 = −1.742273× 10−4

a12 = −8.217794× 10−6.
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FIG. 1. (a.) Block diagram of the procedure to calculate A0. (b.) Pressure distribution down the
gap pz for two cases in helium, p1 = 50 kPa and p1 = 500 kPa, and with p2 = 0. (c.) Poiseuille
flow coefficient from Sharipov10 and modified to the physical situation of the present work. The
inset figure shows the difference between Eq. (4) and four error cases covering u(GP).

A numerical algorithm to calculate GP is given in Ref. 10. The function of Eq. (4) is
plotted in Figure 1(c), together with output from the algorithm of Ref. 10; the function
Eq. (4) is modified from Ref. 10 as follows: the two-part function of Eq. (4) is clipped7 as

δ < 4× 10−4 to approximate the annular flow14 in the limit
Gp

Gc
→ 1. This patch addresses

the problem with the infinite plate solution, in which GP becomes infinite as δ → 0. The
clipping threshold is specific to each PCA geometry7 by the quotient Gc

hz
; for PCA2062, even

at helium pressures as low as p1 = 10 kPa (and p2 = 0), the annular flow approximation
applies to less than 2 % of the gap region, and its influence on A0 is negligible. The function
Eq. (4) allows for a tangential momentum accommodation coefficient of 0.9, by setting the
offset factor a00 = 0.25. Lack of knowledge about the accommodation coefficient is a main
contributor to uncertainty in the theory of rarefied gas dynamics; the four perturbations to
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GP, plotted in the inset of Figure 1(c), are relevant to the uncertainty analysis, discussed
in Section III.

In the calculation of pz, the terms pz and δz are interdependent, and so iteration is
required for convergence. (To startup, δz is initialized with a linear distribution of pressure
down the gap.) The procedure should also be iterated for hz, because the width of the gap
changes, caused by pressure-induced distortion of the piston and cylinder. The pressure-
induced distortion is computed using finite-element analysis (FEA), which is parameterized
for the pressure load pz applied to the gap, obtained by calculation of Eq. (3). This all
works with a master script which handles several things: (i) calculates pz based on the most
recent estimate of GP and hz; (ii) dynamically updates two FEA scripts (one piston script
and one cylinder) with pz and runs the FEA program; (iii) extracts/imports ∆x along the
PCA engagement region from the FEA displacement results; (iv) updates Gp and Gc for
the respective ∆x, recomputing pz and GP; and (v) iterates. An overview block diagram
of the calculation procedure is shown in Figure 1(a). The computed area converges within
10−8 ·A0 after two iterations [see Figure 3(a)], and the main advantage of this “closed-loop”
implementation is that numerical investigation of model sensitivity to input errors can be
performed with versatility. Another closed-loop benefit is demonstrated in Figure 3(c): the
effective area and distortion coefficient can be calculated throughout the cylinder fall down
the piston—something impractical to do with an open-loop implementation which hand-
transcribes settings from one program to another. The FEA is shown in Figure 2(a), which
is actually two separate simulations of piston and cylinder, which have been clipped to the
same ∆x colorscale and combined (the width of the gap is arbitrarily exaggerated in x). The
FEA model is axisymmetric about x = 0, and the boundary conditions are also annotated
in Figure 2(a): 1○ pressure p1 applied to partial inner surface of cylinder, 2○ pressure p1
applied to inner, top, partial outer, and partial bottom surface of piston, 3○ distributed
(gap) pressure pz applied to engaged segments of piston and cylinder as a function of z,
4○ piston constrained in z (by clamped o-ring), 5○ lip of cylinder constrained in z (by
mass load). The distorted profiles of the piston outer diameter and cylinder inner diameter,
along the region of engagement, are extracted from the FEA and added to the generatrix
(actual dimensional measurements) in Figure 2(b), with p1 = 500 kPa. Figure 2(b) is also
annotated with the locations of the pressure “regions” p1, pz, and p2.

The dimensional inputs to Eq. (2) are the generatrixes of piston and cylinder. Dimensional
characterization provided high-density data traces of roundness and straightness, and low-
density data on point-to-point diameter. The best estimate of the artifact geometry is
obtained by fusing together (synchronizing8) the intersecting points in the three sets of
measurements. Sabuga and Priruenrom8 found the generatrix and directrix

G(z) = Sθ(z) + o+ tz

D(θ) = Rz(θ) + q + w cos θ + v sin θ
(6)

by adjusting the measured straightness Sθ(z) and roundness Rz(θ) by the model parameters
o, t, q, w, v. Straightness Sθ(z) is a function of height z, and is indexed for each trace made
in azimuth θ; the parameters offset o and taper t are vectors of dimension equal to the
number of traces in θ (which is eight for both piston and cylinder). Roundness Rz(θ) is
a function of θ, and is indexed for each trace made in z; the parameters q, w, and v are
vectors of dimension equal to the number of traces in z (which is eight for the piston and
five for the cylinder). The model parameters are deduced by least-squares minimization of
the objective function

E2 = min
o,t,q,w,v

5∑

i=1

(∑
e2i

Ni

)
, (7)
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FIG. 2. (a.) Finite-element model of pressure-induced distortion in the piston and cylinder.
(b.) Least-squares-adjusted generatrixes of piston and cylinder, with overlay of pressure-induced
distortion at p1 = 500 kPa and p2 = 0. (c. and d.) “Birdcage” model of piston and cylinder
constructed by fusing three sets of dimensional data: straightness, roundness, and point-to-point
diameter.

which has

e1 = G − D

e2 =
D − (G + G′)

2

e3 =
D − (D +D′)

2

e4 =
Dref

2
− Gref

e5 =
Dref

2
−Dref,

(8)

and D are the measured point-to-point diameters. (The term E is the root-mean-square
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error of the optimization, and is a metric of statistical uncertainty. The integer Ni is the
sample size of each residual error matrix ei.) The flow calculation of Sabuga, Sharipov,
and Priruenrom7 uses the generatrix G of the piston and cylinder to calculate the cross-
sectional area that best describes a three-dimensional artifact. The residual matrices e4
and e5 in Eq. (8) are setup as reference points to define the coordinate system in which the
dimensional adjustment is performed. This means they are setup as sparse matrices of four
diameters; two at different z heights and two at different θ azimuthal angles; the choice of
height and angle is arbitrary. The notation G′ and D′ refers to the generatrix and directrix
at the opposite azimuthal orientation.

The least-squares adjusted datasets are shown in Figure 2(c) and (d); these plots are
sometimes called the “birdcage”15,16. The plot of the piston in Figure 2(c) has been scaled
in the radial axis by subtracting 49.9672 mm from the diameter; the plot of the cylinder in
Figure 2(d) has had 49.9686 mm subtracted from the diameter. Once the vectors o and t
have been found by the least-squares adjustment of the intersecting points, each straightness
trace can be converted to its respective G. The result is a set of eight G which are a function
of z, and are indexed for each straightness trace in θ. For calculation of A0, the eight G are
averaged over θ.

Finally, this dimensional characterization of G is used in the area calculation of Eq. (2),
to produce a determination of A0 = A1 −A2 −A3 as a function of pressure. The A0 result
is plotted in Figure 3(b); the relative contributions of A2 and A3 are shown in the inset of
Figure 3(b). From this, the effective area of PCA2062 has been determined as

A2062
eff = 1961.0292(37)

[
1 + 5.12(73)× 10−12∆p

Pa

]
mm2

in helium at 20 ◦C and absolute mode, and valid for the dimensional characterization of
2020. The distortion coefficient b is best described by a linear term. The estimation of b
from the slope of the line in Figure 3(b) is for a monolithic assembly. The final estimate
given above is 2.6 % smaller than the slope of the line in Figure 3(b); this reduction in
distortion is based on a finite-element simulation of a 0.1 mm epoxy joint between the
titanium (cap) and tungsten carbide that forms the hollow cylinder assembly. What follows
next is the uncertainty budget for this determination.

III. UNCERTAINTY EVALUATION

The uncertainty budget for the pressure generated by a piston-gauge is given in Table
I. Most entries concern the proportional term, but there are two entries which are best
split into an offset term. With this splitting of terms, combined uncertainty is slightly
overestimated in parts of the pressure range. But the general message is that uncertainty is
dominated by the proportional term throughout most the working range. It is only below
50 kPa that the offset term becomes significant (which is the lower tenth of the working
range).

The budget in Table I evaluates each input parameter to Eq. (1), and the entries in the
table are discussed below. Some of these assessments may be considered controversial, owing
to their relative largeness compared to antecedent estimates of piston-gauge uncertainty;
here, the intention is to be conservative rather than controversial. Throughout this article,
the notation u(x) is used to denote the standard uncertainty of the quantity x. Unless
otherwise stated, all uncertainties in this work are one standard uncertainty, corresponding
to approximately a 68 % confidence level.
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FIG. 3. (a.) Convergence of the pz and FEA iteration loop. (b.) Calculated area as a function of
pressure for the piston–cylinder assembly PCA2062 in “absolute mode” with p2 = 0. Inset: relative
contributions of A2 and A3 to A0. (c.) Change in A0 and b, relative to values at z = 0, as the
cylinder falls down the piston.

A. The Main Contributor, u(A0)

1. Dimensional Uncertainty

Diameter measurement was a massive effort, and required the improvement of an old
instrument (sphere diameter in a Fizeau-type interferometer)17, the establishment of a new
instrument (cylinder and sphere diameter in a laser micrometer)18, and two forty-year-old
coordinate-measuring machines (CMM) in shipshape condition. The breadth and scope of
the development is described by Stoup et al.6, and here only a brief synopsis is provided. The
outer diameter of the piston was measured with an ultrahigh accuracy laser micrometer.
The inner diameter of the cylinder was measured with the CMM in comparison mode:
the CMM effectively operated as a null-comparator, comparing the (unknown) diameter of
the cylinder relative to the (known) diameter of the piston. The probe of the CMM was
mastered with precision spheres, whose diameters were independently determined with the
Fizeau-type interferometer. These master spheres also provided a crosscheck between the
Fizeau-type interferometer and the laser micrometer. Additional reference artifacts and
crosschecks were strategically employed in the characterization to achieve state-of-the-art
performance in a CMM-as-comparator: Ref. 6 has the details. One strength of this diameter
measurement is redundancy, with different artifacts being cross-validated across multiple
measuring machines, and each machine having its unique and understood systematic errors.
The uncertainty6 for the piston diameter (outer) was 12 nm, and the uncertainty for the
cylinder diameter (inner) was 14 nm. The entry D in Table I treats the two diameters
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as fully correlated, and the net uncertainty in the effective diameter of the assembly is
[u(Dp) + u(Dc)] /2.

In addition to the measurement uncertainty in diameter, there is uncertainty on how well
the three dimensional datasets can be fused together6. The least-squares adjustment de-
scribed by Eq. (6) and Eq. (7) builds a generatrix and directrix to form a model birdcage—a
wireframe whose coordinates depend on the intersecting points of diameter, straightness,
and roundness. Residual deviation persists between the three datasets, because each mea-
suring machine has its own error, and there are likely small changes in orientation/indexing
as the artifacts are moved between machines and measured. This residual deviation means
that there is statistical uncertainty in the generatrix G. The estimate of this statistical un-
certainty is the entry E in Table I. The term E , defined in Eq. (8), is the root-mean-square
error of the objective function after minimization, and reflects net deviation between the
three error matrixes, G −D, D/2−G, and D/2−D. The result for the piston Ep = 4.8 nm,
and for the cylinder Ec = 8.5 nm; these computed results are in terms of radius. Attempts
were made6 to estimate residual strain in the birdcage, and assess the flexibility available to
G due to lack of coverage in the D,S,R-dataset. This was done by Monte Carlo simulation.
The idea was to deliberately remove dimensional data from the birdcage, and simulate the
resulting effect on G. The conclusion from simulation was that E adequately covers all
expected variation in G, for birdcage sampling as dense as Figure 2(c) or (d). The entry
E = (E2

p +E2
c )

1/2 in Table I treats the imperfect form of piston and cylinder as uncorrelated
in their contribution to uncertainty in the effective diameter of the assembly. Finally, the
component E only covers uncertainty in fusing together three dimensional datasets; a re-
lated component—the effect of imperfect cylindricity on flow—is a separate entry, discussed
below.

Mechanical probing can only approach the actual “edge” defining the end of the piston
and cylinder, because of the finite probe size and instability in fixturing. Therefore, extrap-
olation is used to estimate the cylinder diameter. As can be seen in Figure 2(b), the mea-
sured cylinder radius is increasing by approximately 25 µm/m at the extremity; therefore,
Gc should be extrapolated across 2 mm to determine diameter at the point of engagement.
Because the cylinder of PCA2062 has a uniquely smooth and predictable curvature, one can
have confidence in this extrapolation within 10 %. This uncertainty component is labeled
“extrapolation” in Table I. This extrapolation of the diameter measurements to the cylinder
end increases the effective area by 3.5× 10−7 ·A0.

Deviations from the 20 ◦C reference temperature at which the piston and cylinder are
dimensioned should be compensated for thermal expansion of the artifacts. For typical
use, the piston-gauge PCA2062 operates in a lab stabilized to (20± 0.1) ◦C, and the small
corrections for thermal expansion require moderately accurate thermometry of the PCA.
The temperature of the PCA was measured with onboard resistance thermometers; these
resistance thermometers were calibrated near 20 ◦C by direct comparison to a calibrated
thermistor, all placed in an isothermal block. The uncertainty in this calibration procedure
is within a few millikelvin, and despite operating in a lab with very small thermal fluc-
tuations/gradients, a 20 mK uncertainty is assigned to the temperature of the PCA. The
relatively large assessment is because the resistance thermometer is inside the post of the
piston-gauge, and does not directly measure the temperature of the PCA; the 20 mK covers
gradients that potentially develop between the thermometers and PCA. For the thermal
expansion coefficient of tungsten carbide, the nominal value αWC = 4.6× 10−6 /K is used.
For the 20 mK uncertainty in PCA temperature, the 50 mm diameters can therefore be
confidently compensated for temperature within 4.6 nm. This component is labeled αWC

in Table I. Because the nominal value αWC is used, this temperature-dependent diameter
uncertainty is only valid for operation near 20 ◦C.

A component “compression” is added to the budget, which accounts for uncertainty in
the piston diameter, because it is clamped between two o-rings. Though the effect is small—
change in diameter ∆D ≈ 4µF

πDE , given by Poisson’s coefficient µ and Young’s modulus E—it
is difficult to have confidence in the compression force F of the clamped o-ring, and possible
“barreling” caused by friction. Manufacturer handbooks give rules-of-thumb, based on o-
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TABLE I. Relative standard uncertainty in mechanical pressure generated by a dimensioned piston-
gauge has been split into an offset and proportional term.

component u(pmpg)× 106

A0

dimensional 1.7
D, 13 nm
E , 19.8 nm
extrapolation, 10 nm
αWC, 4.6 nm
compression, 3 nm
instability, 17.8 nm

flow 0.7
RGD, 2.9× 10−4 mm2

G, 13× 10−4 mm2

hz, 0.1× 10−4 mm2

b 0.4
m 54 mPa + 0.1
g 0.2
pvac 2.5 mPa

combined (k = 1)
[
(54 mPa)2 + (1.9 µPa/Pa)2

]1/2
ring durometer, diameter, and compression, suggesting a clamping force of approximately
2.6 N/mm of lineal o-ring. The rule-of-thumb is assumed reliable within a factor of 2,
which yields the 3 nm uncertainty in the diameter caused by o-ring compression force.
[Another “compression” that should be considered is compressibility of the PCA, because
the artifacts are dimensioned at atmospheric pressure, but operate in vacuum (absolute
mode). Compressibility is accounted for in the FEA of Figure 2(a), and only changes area
by 2 × 10−7 · A0. Its uncertainty contribution is effectively absorbed into u(G), discussed
below.]
The last dimensional component in Table I is instability of the artifacts. The assembly

PCA2062 was initially dimensioned in 2017. Its calculated area from the 2017 dimensioning
was 0.2 µPa/Pa smaller than the present report. The mean piston diameter was 18.8 nm
smaller; the mean cylinder diameter was 16.8 nm larger. At this level, and with only a
two-sample history, it is not clear whether the gauge is unstable, or if reproducibility in the
measurement procedure is being validated, or if wear is a possible explanation. (Based on
almost identical straightness and roundness traces in both dimensional datasets between
2017 and 2020, it is felt that wear is an unlikely explanation.) Nevertheless, at this early
stage of the gauge’s control chart, a 17.8 nm uncertainty is assigned to temporal stability of
the artifact’s dimensions. Additional dimensional checks over the next decade may reduce
this uncertainty component.

2. Flow Uncertainty

No clear uncertainty budget has been developed for the rarefied gas dynamics model
of Sharipov. Lacking this knowledge, a first statement is that, for the present geometry,
the classical Dadson theory predicts A0 to be 2× 10−7 smaller than Sharipov. (As Sutton
and Fitzgerald19 have highlighted, viscous flow—Dadson theory—has almost no application
to modern piston–cylinder assemblies, with 500 nm gap-widths operating sub-megapascal.
Nevertheless, Sutton and Fitzgerald19 also made arguments that the choice of flow model
only influences A0 at fractions of a part per million. This fact was verified by Sabuga20. The
present work agrees that A0 is weakly dependent on the flow model.) Second, reasonable
uncertainty estimates for the viscous slip coefficient have negligible effect on GP (and A0,
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TABLE II. Comparison of experimental fall-rate to theory and Eq. (9). PCA2062 in absolute
mode, p2 < 0.3 Pa. Numbers in brackets express standard uncertainties. Viscosities used are from
REFPROP27, which at 293.15 K are: ηHe = 19.63 µPa s, ηAr = 22.31 µPa s, ηN2 = 17.57 µPa s.

vfall /(nm/s)
He Ar N2

p1 /kPa exp. theory % diff. exp. theory % diff. exp. theory % diff.

43 609(66) 652(75) −6.6 180(19) 200(24) −10.2 209(23) 239(28) −12.6
93 597(64) 639(76) −6.6 207(22) 221(24) −6.4 245(26) 267(29) −8.5
195 651(70) 694(79) −6.1 273(30) 287(25) −4.7 330(36) 352(31) −6.3
297 726(78) 781(82) −7.0 349(38) 367(33) −4.9 417(45) 453(40) −8.0
399 806(87) 887(85) −9.1 442(48) 458(41) −3.4 519(56) 569(50) −8.6
501 908(98) 1009(91) −10.0 546(59) 559(49) −2.2 648(70) 695(61) −6.8

shown by Sharipov et al.21). Last, an attempt was made to estimate the error bounds on
GP based on information provided by Sharipov and Seleznev22 and Sharipov10. The largest
uncertainty component inGP is the tangential momentum accommodation coefficient, which
describes energy transfer at the gas–surface interface23; the coefficient is an experimental
input to the scattering kernel that underpins the theoretical calculation13,24 of GP; the
coefficient is unity for perfectly diffuse scattering, and zero for specular reflection. This
accommodation coefficient is species- and roughness-dependent, and for polished tungsten
carbide is unknown. Surveys24,25 of measurements for the accommodation coefficient show
much variability, and Ref. 25 concludes that a “range of 0.80–1.02 seem to encompass almost
all data available in the literature for monatomic gases irrespective of the Knudsen number
and surface material.” A more recent extraction from highly accurate acoustic resonator
experiments in helium and argon also showed some variability26, and noted that deriving
an accommodation coefficient from experimental data is nontrivial. Since no information is
available for the accommodation coefficient of polished tungsten carbide, Ref. 25 is used as
a guideline, and a value 0.9± 0.1 is assumed. Refs. 10, 13, and 22 show that an error of 0.1
in the accommodation coefficient causes, to first-order, a 0.25 offset in GP throughout the
rarefaction range; a smaller accommodation coefficient increases GP. Refs. 10 and 22 also
show that the choice of kinematic model used to approximate the Boltzmann equation can
cause an error of 20 % in GP, where deviation is most prominent δ < 1. Based on these
arguments, u(GP) was evaluated by propagating four error cases through the A0 calculation:
(i) a 10 % increase in GP resulted in −0.1×10−4 mm2; (ii) a 0.25 increase in a00 resulted in
+0.5× 10−4 mm2 (i.e., effect of error in the accommodation coefficient); (iii) a 0.2 increase
in a1 when δ < 1 resulted in +1.4 × 10−4 mm2 (i.e., effect of error approximating the
Boltzmann equation); (iv) the three-part interpolation function, Eq. (11.136) in Ref. 10,
for GP resulted in +0.4 × 10−4 mm2. The difference between Eq. (4) and each of the
four GP error cases is graphically shown in Figure 1(c). Therefore, the component “RGD”
added to Table I is a combination of half the error between rarefied gas dynamics versus
Dadson theories, plus half the range of the four error cases which cover u(GP). This is a
best estimate of what contribution uncertainty in the rarefied gas dynamics model makes
to u(A0), but it is based on limited information.

Despite these open questions about uncertainty in flow theory, the Sharipov model does
predict the fall-rate21

vfall =
v2mp

2πG2
c p1

ṁ, (9)

for a mass flow rate28 ṁ = −π(Gp+Gc)
vmp

GPh
2
z
dpz

dz . The generatrixes in these formulae refer to

the pressure-distorted profiles. A comparison of theory with what is observed experimen-
tally is listed in Table II, for the gas species helium, argon, and nitrogen. The estimate
of uncertainty in the theoretical fall-rate is between 10 % and 14 %, and comes from half
the range of vfall calculated for the four error cases covering u(GP), described above. The
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theoretical values have assumed a00 = 0.25 in the GP function Eq. (4) for all gases (i.e.,
a tangential momentum accommodation coefficient of 0.9 for all gases interacting with
polished tungsten carbide.) For experiment, u(vfall) is 10.8 %: measurement of cylinder
position has a 10 % uncertainty in the length scale (which was calibrated with calipers),
and reproducibility in the measurement is within 4 % (one standard deviation on ten mea-
surements). Referring to Table II, the experimental vfall agrees with theory within 8 % on
average for all three gas species. For helium, it is remarkable that both experiment and
theory show a reduction in vfall as p1 increases from 43 kPa to 93 kPa. These two facts give
confidence in the validity of the flow model (and increase confidence in the FEA distortion
model). Two concerns are noted: (i) Disagreement between experiment and theory appears
systematic for all three species, suggestive of either the measured gap width being too wide
or the theoretical GP being too high; and (ii) A quantitative validation of the flow model
requires a dedicated experiment to measure the accommodation coefficient for each species
interacting with polished tungsten carbide. (Qualitative information from the literature
survey of Ref. 25 suggests that the accommodation coefficient for argon would be 0.03 lower
than that of helium—hence GP larger, and theoretical vfall faster by about 7.5 % than what
is listed in Table II.)
[Additionally, the Sharipov model—Poiseuille flow with no-slip boundaries—does not

presently describe the effect of rotation. A phenomenological account is due to Schmidt,
Welch, and Ehrlich29, who modeled decay in the rate of rotation as having a period τ =
τ0 exp

(
Γ
I t
)
, where Γ is the angular torque coefficient and I is the mass moment of inertia.

Schmidt, Welch, and Ehrlich used a momentum transfer function to interpolate the torque
coefficient between two limiting cases, i.e., viscous and free-molecular flow regimes. The
final expression for the torque coefficient, a drag caused by gas in the annular region between
the piston and rotating cylinder,

Γan =
2πG3

c

hz

∫ lc

0

F1(pz)dz, (10)

includes the momentum transfer function F1 ≡ η
1+β1/pz

, with the variable β1 = 2
√
πRTη

Mvmphz

chosen for smooth interpolation between the two limiting cases of flow. Experimental esti-
mates of Γ

I are obtained as the slope of a linear fit to the measured period of rotation ln(τ)
as a function of time. In the absolute mode of operation Γ ≈ Γan, because the contribution
of drag on the rotating surfaces in the belljar is considered negligible (i.e., belljar pumped
to p2 < 0.3 Pa). Therefore, Eq. (10) can be compared to experimental measurements of
rotation decay rates; this comparison is listed in Table III. Schmidt, Welch, and Ehrlich29

used Eq. (10) to deduce hz by regressing experimental data to the model; upon encountering
discrepancy between hz inferred by fall-rate versus rotational-decay, they stated preference
for the latter inference. In the present case, close agreement between experiment and theory,
for both fall-rate (Table II) and rotational-decay (Table III), tends to increase confidence
that the artifact is understood; besides the fact that hz is claimed known within 7.3 %
(41 nm) by dimensional measurement. However, it must be pointed out that Eq. (10) is a
kludge of pz from rarefied gas dynamics7 combined with the interpolation of limiting cases
suggested by Ref. 29. The purpose of this parenthetical paragraph was to draw attention for
the need of cylinder rotation to be incorporated into the rarefied gas dynamics model of the
piston-gauge in a rigorous way, together with a quantitative statement as to the magnitude
of vertical force on a spinning irregular shape.]
The much larger uncertainty component in the flow calculation is related to the generatrix

and the imperfect geometry of the artifact. Despite the adjustments o and t to the dimen-
sional measurements, A0 has a variance related to variability among G. As an example,
out-of-roundness of the piston and cylinder are about 60 nm at the point of engagement. In
principle, under the assumptions of viscous flow9 (hydrodynamic regime) and axisymmetry
(or, no rotation), this imperfect form can be accounted for by performing the flow calcula-
tion for each azimuthal G as a continuum30. However, continuity is not always valid in the
theory of rarefied gas dynamics22,23,31, and the assumption of axisymmetry is questionable,
because out-of-roundness is six to nine times larger than uncertainty in a single diameter
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TABLE III. Comparison of rotational-decay rates between experiment and theory in Eq. (10).
Moments of inertia I for the rotating assembly are listed, which correspond to the mass loads
generating the pressures p1 of Table II. PCA2062 in absolute mode, p2 < 0.3 Pa. The number in
brackets is standard deviation on ten repeat measurements.

Γ
I
/(µs−1)

He Ar N2

I /(kg m2) exp. theory % diff. exp. theory % diff. exp. theory % diff.

0.023 1296(168) 1217 6.4 2430(170) 2681 −9.4 2161(161) 2182 −0.9
0.171 265(16) 276 −3.9 583(11) 517 12.8 433(19) 416 4.0
0.467 156(18) 148 4.9 250(4) 238 5.3 197(4) 190 3.5
0.763 104(4) 106 −1.5 169(6) 158 7.2 133(4) 126 6.4
1.059 84(2) 83 0.0 121(8) 118 2.9 101(7) 93 7.7
1.355 70(1) 68 2.1 95(2) 93 2.1 83(5) 74 11.9

measurement. Instead, the present view accepts that imperfect geometry introduces an un-
certainty component into the calculation of A0. This component was evaluated by iterating
the calculation of A0 for all 64 permutations of piston and cylinder generatrixes (azimuthal
orientations); in effect, rotating the cylinder around the piston. The standard deviation on
the 64 calculations was 1.1×10−3 mm2. (The range was 4.4×10−3 mm2; the authoritative
work of Schmidt et al.16 used one-half the range as standard uncertainty. The mean of
the 64 permutations of A0 based on combinations of G, agrees with A0 calculated by the
azimuthal average, within 1 part in 107; the median of the 64 permutations is 2.0 × 10−8

larger than the mean.) Again, dimensional measurements of roundness and straightness
stop 2 mm short of the cylinder end, and the out-of-roundness trends 2.6 nm/mm worse
towards the end: therefore, it is projected that the effect of out-of-roundness is about 10 %
larger than what the 64 permutations suggest. Also, polynomial fits to the measured G
data are used (i.e., to extrapolate Gc, and for numerical advantage) but this “filtering” may
remove actual surface feature. The standard deviation on the residuals from the fit is less
than 1.5 nm, and the range is 9.5 nm: at this dimensional level, it is not clear if the poly-
nomial fitting removes surface feature or measuring instrument noise. Nevertheless, if the
“raw” measurement data is used for computation, the difference from what is obtained for
the polynomial fits is only 3× 10−9 ·A0. Therefore, the entry G in Table I is predominantly
because of imperfect cylindricity.

The width of the gap hz varies as the cylinder falls down the piston. For the geometry of
historic PG39, Jain, Bowers, and Schmidt15 estimated that geometric effects would change
the area by 1×10−6 ·A0 as the piston moved 3.5 mm relative to the cylinder in z; Sharipov
et al.21 found a difference of 0.7 × 10−6 · A0 between low and high positions (i.e., relative
positions of piston and cylinder that differed by 5.5 mm in z). In the present work, this effect
was evaluated by iterating the calculation of A0 as the location of the cylinder incrementally
moves down the piston; in effect, sliding a window across what portion of Gp is used in Eq. (2)
and loaded with pz in the FEA. The result is shown in Figure 3(c); the valid “float zone” is
the cylinder position range ±2.5 mm, where A0 has a dependence of 4.0× 10−5 mm2/mm.
The result of Figure 3(c) can be intuitively explained: A0 reaches a maximum as the cylinder
falls past the small bump in the piston profile [see Figure 2(c) at z ≈ −33 mm], while b
steadily decreases as more of the piston outer diameter is loaded with p1. (To be clear: the
piston is becoming more distorted as the cylinder falls, so the average diameter of the PCA
decreases and Aeff decreases.) The piston-gauge has a position sensor which can monitor
cylinder height within 0.2 mm. Thus, one can either record a generated pressure at a
reference cylinder height corresponding to a specific calculation of Aeff, or compensate Aeff

depending on the indication of cylinder height. The estimate of the hz variation in Table
I is therefore a small effect overall, for the unique geometries of PCA2062. (Measurement
corroborating this calculated hz effect follows in Section IV.)



14

3. Summary of u(A0)

In the dimensional entries for A0 in Table I, “extrapolation” and “compression” are
treated as biases, and so add half their estimate in quadrature with the other entries. The
quadrature-sum of the dimensional and flow entries results in u(A0) contributing 1.7 µPa/Pa
uncertainty to a generated pressure, and is thus the dominant component. Arguments can
be made that the entries E and G are duplicates, which effectively sample the same source
of uncertainty—imperfect cylindricity—and therefore uncertainty is slightly overestimated.
Although the origin of both entries is probably the same, they are interpreted as separate and
unrelated. The entry E is viewed as describing the uncertainty in how well a static set of 3D
dimensional measurements can be fused together and represented by a cross-sectional profile.
The entry G is viewed as describing the uncertainty in forces arising from noncontinuous flow,
as a non-axisymmetric cylinder rotates about a non-axisymmetric piston. In Section IV,
indirect tests on the effect of rotation on the generated pressure suggest that the entry G
is overestimated by factor of five for PCA2062 (or a factor of two for more typical PCA);
the entry G is therefore precautionary, and its removal awaits a theoretical estimate for the
effect of rotation on flow.

B. Minor Contributors

Knowledge of the distortion coefficient b is limited by uncertainty in elastic properties, the
accuracy of the pressure distribution in the gap, and the fidelity of the finite-element model
to the experiment. Salama, Sabuga, and Ulbig32 demonstrated that the elastic properties
of tungsten carbide might be measured within 0.1 % by resonant ultrasound spectroscopy;
the PCA analyzed here is made from the same sintering of tungsten carbide as measured by
Salama, Sabuga, and Ulbig, but Ref. 32 also showed that variations exist between batches of
up to 4 %. Changing material properties by 4 % in the model resulted in a change of 1.6 %
to b. From the dimensional discussion above, the gap width hz is confidently known within
41 nm. Changing the hz input to the model by 41 nm resulted in a change of 1.6 % to b.
The aforementioned 64 permutations for piston and cylinder over all azimuthal orientations
showed a standard deviation on b of 9.2 % [this uncertainty is partially accounted for by
u(G) above]. Also, Figure 3(c) shows that b can vary by as much as 6.4 % as the cylinder
falls down the piston; the effect is 10 times smaller if a correction is applied for cylinder
height. Finally, the pressure distribution in the gap depends on knowledge of GP, and
the quadrature-sum of the four error cases covering u(GP) was a 10.2 % uncertainty in b.
Validation of the finite-element model is less straightforward. Neither increasing the density
of the mesh, nor sample spacing on pz, influenced b by more than 0.01 %; both the element
edge size and step size in z were 0.1 mm). However, it is less certain that the boundary
conditions accurately reflect the real-world. The piston is modeled as free to deform, and
thus does not properly account for the friction of the clamped o-ring. The effect of this
oversight should be small, because the piston distorts five times less than the cylinder.
Furthermore, the PCA plumbing has a “controlled clearance port” which allows pressure
applied to the internal surfaces of the piston to be independent of p1: this feature offered
an indirect validation of the FEA estimate of piston distortion, via a change in fall-rate and
hz in Eq. (9). If the inside surface of the piston remains at atmospheric pressure, the FEA
predicts an increase in vfall of 11 % at p1 = 500 kPa, whereas experiment showed a 13 %
increase in vfall. This agreement suggests that o-ring friction has a small effect on piston
distortion, and piston distortion makes the smaller contribution to b. For the cylinder, it
is modeled as a monolithic joint between the tungsten carbide cylinder and titanium cap;
in reality, the two parts are epoxied together. If a 0.1 mm layer of epoxy (E = 1 GPa,
µ = 0.4) is introduced between the cylinder and cap, b decreases by 5.2 %. (The value
state above b = 5.12(73)× 10−12 · p

Pa is the mean of the monolithic and epoxy models.) By
adding in quadrature all aforementioned variations in b, one can only claim confidence that
the finite-element model can predict b within 13.9 %, with the main uncertainty owing to
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u(pz)—i.e., because GP is not very well known. The statement in Table I that b contributes
no more than 0.4 µPa/Pa to a generated pressure is valid for the piston-gauge operating
within its specified range p1 − p2 < 530 kPa.
The mass load is predominantly made of a stack of nine 10.2 kg stainless-steel masses,

one 6.4 kg stainless-steel mass, a titanium mass bell/pan, together with the cylinder of the
PCA (a tungsten carbide cylinder with titanium cup); the non-stainless-steel part of the
mass load, which contributes to every generated pressure, amounts to 2.1 kg. The stainless-
steel masses were made of 316 alloy with magnetic susceptibility less than 0.01. The masses
were calibrated in air within 35 ng/g standard uncertainty. However, because the piston-
gauge operates in absolute mode, the buoyancy correction to convert the (conventional)
mass calibration values to vacuum (true) mass also comes into play. The density of the
masses was obtained by hydrostatic weighing a material token in fluorocarbon33, from which
(7981± 10) kg/m

3
was deduced. The resulting uncertainty in the stainless-steel component

of the mass load is 0.1 µg/g. Lack of accurate knowledge in the density of titanium and
tungsten carbide is best handled by a 8.1 mg offset term (4 % uncertainty in density).
Additional offset terms34 arise from two unstable masses: (19 ± 7) mg vacuum grease on
one screw thread to prevent binding, and an elastomer o-ring subject to (0.2 ± 0.04) mg
desorption of water35. (Šentina et al.35 report a mass gain of 2 mg by water absorption
into a 2.6 g o-ring; the pressure balance o-ring is 0.22 g, and of the same elastomer.) The
quadrature sum of these three mass offset terms equates to the 54 mPa in Table I.
Lastly, the two remaining components in Table I. Local gravity was measured with a free-

fall gravimeter, and was updated for seasonal changes. The estimate of u(g) also accounts for
imperfect leveling of the PCA. The vacuum gauge has an uncertainty of 0.5 % of indication,
and belljar pressure, which is turbopumped, was always less than 0.5 Pa.

IV. PRETENSIONS OF LASER BAROMETRY

This closing-section describes some tests between a laser barometer and a piston-gauge.
These tests say some interesting things about precision and consistency of the A0 and b
calculation described above. (For more details on laser barometry, see Section IV of Ref. 36
and references therein.)
The laser barometer was plumbed directly to the piston-gauge system. The setup for

the laser barometer is similar to Ref. 37, in which a monolithic, homogeneous Fabry–Perot
cavity is suspended from cables and probed with 633 nm laser. There is one crucial im-
provement in thermometry over Ref. 37: the laser mode between the mirrors of the cavity
has been enclosed within a copper block, and the temperature of this copper block was
measured with a capsule-type standard platinum resistance thermometer38. (The copper
block does not touch the glass cavity.) This key improvement achieves the following system
characteristic: for a 112 kPa charge of argon, the settling-time required for the temperature
gradient between the thermometer and cavity mode to reach 0.1 mK is within 1500 s, with
a time-constant of 360 s. The performance has been verified by simulation and indirect
measurement. These extra details about thermal characteristics are not misplaced. The
tests below demonstrate precision and reproducibility in the optical pressure at the level of
±0.1 µPa/Pa for pressures up to 500 kPa. A ±0.1 µPa/Pa precision on optical pressures
is equivalent to claiming that a capsule-type standard platinum resistance thermometer,
distant from the laser beam, inferred average gas temperature along the cavity mode within
±30 µK. The claim is extreme, but it is supported.
Next follows a description of three tests, in which the reproducibility and precision of

the optical pressure scale is used to validate three aspects of the piston-gauge model and
performance. Below, the notation pops =

2
3AR

(n− 1)RT + · · · is used to refer to the optical
pressure scale, realized by measurement of argon refractivity n − 1 at known temperature
T . (The gas constant R is a fixed value; the molar polarizability AR is a reference property
of argon gas.) However, the purpose of this closing-section is cross-validation via relative
differences and ratios; these tests say nothing about the accuracy of either A2062

eff or the
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properties of argon.

A. Effect of Cylinder Position

A first test used the laser barometer to monitor the small changes in the generated
pressure as the cylinder fell down the piston. From Figure 3(c), the piston-gauge model
predicts that the area and distortion coefficient will change. So, the first test compared
a generated (calculated) pressure pmpg to an optical (measured) one pops as a function of
cylinder position.
The result is plotted in Figure 4(a) for operation at p = 469 kPa, where fractional change

in pressure is shown as a function of cylinder position (fall). For the x-axis the analysis

has δp = pops −
(

mg
Aeff

+ pcte + pvac + phead

)
. The “variable” part phead = ρg∆z of the

generated pressure occurs because, relative to the laser barometer, the hydrostatic head
changes as the cylinder falls down the piston. (For room-temperature argon and cylinder
displacement ∆z = 6 mm, phead ≈ 1.0 µPa/Pa—a significant disturbance compared to the
x-axis result.) The “fluctuating” part pvac of the generated pressure is what is happening
inside the belljar, and this was measured with a vacuum gauge. [Belljar vacuum slowly
fluctuates (0.2± 0.1) Pa about its average, equivalent to 0.2 µPa/Pa.] The “temperature”
part pcte ≈ −2αWC(t90−20)p of the generated pressure compensates for thermal expansion
of the artifact caused by changes in temperature during the fall—the resolution of this
compensation is no better than 0.1 µPa/Pa. The “constant” part mg

Aeff
of the generated

pressure hasAeff = A0(1+b∆p); so, it incorrectly assumesA0 and b have no dependence on z.
This assumption causes an error δAeff = [A0(z)−A0(0)]+∆p[A0(z)b(z)−A0(0)b(0)]. For the
case of PCA2062, the first term A0(z)−A0(0) fractionally increases Aeff by 2.5×10−8 as the
cylinder falls from z = 3 mm to z = −3 mm, while the second term ∆p[A0(z)b(z)−A0(0)b(0)]
dominates at ∆p = 469 kPa, and fractionally decreases Aeff by 1.6× 10−7.

The net result for PCA2062 is that the “constant” part of the generated pressure is
predicted to change by about 0.14 µPa/Pa for the 6 mm of cylinder displacement—a small
effect. The calculated effect on pmpg for the combined z-dependence of A0 and b is shown
as the dashed line in Figure 4(a). The measured error δp = pops − pmpg closely follows the
calculation, offering good evidence that the laser barometer has corroborated this aspect of
the piston-gauge model.

B. Effect of Rotation Rate

A second test used the laser barometer to monitor changes in generated pressure as the
rotation rate of the cylinder naturally decelerated29 to a stop. This test was performed in
absolute mode, operating at 195 kPa with the belljar pumped to pvac < 0.3 Pa. (From
Table III, at 195 kPa the time-constant for rotational-decay is about 1.1 h.)

The result is shown in Figure 4(b) for the artifact PCA2062, where the rotation rate has
been discretized by the resolution of the tachometer internal to the piston-gauge system. As

above, the analysis has δp = pops −
(

mg
Aeff

+ pcte + pvac + phead + pfall

)
, but with the addi-

tional “falling” part pfall = −1.8×10−8 ·p∆z of the generated pressure, which compensates
for axial displacement of the cylinder relative to the fixed piston. Based on Figure 4(b), for
any nonzero rotation, there is no evidence that the generated pressure has a dependence on
rotation rate greater than 0.1 µPa/Pa. Indeed, the data support an interpretation that the
generated pressure does not significantly change at zero rotation. As aforementioned, the
Poiseuille flow coefficient used to calculate effective area has nonslip boundaries, which is
not a complete model for the rotating cylinder. The test of Figure 4(b) suggests that the
effect of rotation on flow should not change the calculated area by more than 10−7 ·A2062

eff .
Nevertheless, a theoretical estimate of this effect remains absent from the piston-gauge
model.
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FIG. 4. Performance tests with a laser barometer. (a) Change in generated pressure as the cylinder
falls down the piston. (b) Change in generated pressure as a function of cylinder rotation rate.
(c) Ratios of optical pressures compared to ratios of calculated areas. (d) Residuals from Eq. (11)
using coefficients A, B, and C tied to p2062mpg . For (a) and (b), the opaque points are the average of 10
repeats, and the shaded area spans the standard deviation. For (c) the shaded area on A2066

eff /A2062
eff

span the standard uncertainty for the calculation (see text). For (c) and (d), the errorbars on
p2062ops /p2066ops and δp span the standard deviation on 5 repeats.

It is mentioned that the test of Figure 4(b) was only practicable with PCA2062. The
other cylinders in this set hug the piston at zero rotation, and do not float and generate
pressure. Furthermore, when rotating, the other cylinders sinusoidally displace up and down
the piston, with peak-to-peak amplitude of ±0.12 mm and period 330 s, independent of
operating pressure. Comparisons against the laser barometer confirmed that this cylinder
displacement corresponds to periodic pressure oscillations of about ±0.4 µPa/Pa, which
is 20 times larger than the head effect. This noisy pressure of the other PCA will be
problematic in the test below. Clearly, the test of Figure 4(b) is not the final word on the
effect of rotation on the generated pressure, and should be taken as best-case. The artifact
PCA2062 is considered anomalously good: it has out-of-roundness two times smaller than
the other PCAs.
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C. Optical Crossfloat

Finally, a third test used the laser barometer to measure optical pressure ratios between
two different PCAs. With the same mass-force applied, each PCA generates a different
pressure, because their areas differ. When connected to the laser barometer, each PCA
“generates” two different gas refractivities, which are best converted to a respective pops
(to account for small differences in gas temperature). To take the artifacts PCA2062 and
PCA2066 as example: the ratio p2062ops /p2066ops , measured with the same mass-force applied to

the respective assembly, becomes a proxy for A2066
eff /A2062

eff . Effectively, the approach is cross-
float by laser barometry. [The notation p206xops ≡ pops − (pmass + pcte + pvac + phead + pfall)
means the measured optical pressure has been adjusted to constant PCA conditions. This
adjustment ensures that the measured quantity p206xops → F/A206x

eff is governed only by ef-
fective area and distortion coefficient; force F is constant. Adjustments comprise: differing
cylinder masses, thermal expansion, belljar pressure, head height, and cylinder position.]
The test was performed in argon. Therefore, the area of PCA2062 stated in Section II

for helium, should be updated for the different species

A2062
eff = 1961.0293(37)

[
1 + 6.37(73)× 10−12∆p

Pa

]
mm2,

and the area of PCA2066 should be established in argon by the calculation methods of
Section II:

A2066
eff = 1961.0360(55)

[
1 + 4.89(94)× 10−12∆p

Pa

]
mm2.

So, in argon at 20 ◦C and absolute mode, the calculated area ratio is A2066
eff /A2062

eff =

1.0000034(21)[1 − 1.5(13) × 10−12 ∆p
Pa ]. From Table I, for the uncertainty of a calculated

ratio, only the entries E , flow, and b contribute; all PCA were dimensioned in the same
setup6 so that systematic error in D would be common. The stated uncertainty in the
calculated ratio is dominated by the characteristics of PCA2066. Compared to PCA2062,
the components E , flow, and b for PCA2066 are larger by factors of 2.1, 2.3, and 1.4,
respectively.
To deduce absolute optical pressures, something fundamental must be said about the

properties of argon gas, and how measured refractivity at known temperature is converted
to pressure39. These statements are deferred to a future work. Here, instead, the analysis
proceeds as relative. The pressure generated by PCA2062 was treated as the reference, and
the isothermal (t90 ≈ 20 ◦C) refractivity measurements were fitted

p2062mpg → p2062ops = (n− 1)AT
[
1 + (n− 1)B + (n− 1)2C

]
, (11)

with A = 2R
3AR

. This first step tied the optical and thermophysical properties of argon gas

(i.e., the proportionality coefficients A, B, and C) to the diameter of PCA2062, so that
p2062ops ≡ p2062mpg in the least-squares sense. Then, without further adjustment to the pro-
portionality coefficients, the refractivity and temperature data from the PCA2066 isotherm
were processed with the right-hand side of Eq. (11) to obtain p2066ops . This ratiometric/relative

analysis produces the desired p2062ops /p2066ops , and it also offers some insight into nonlinearity as
explained below. [The measurements reported here are so precise that the temperature de-
pendence of B and C in Eq. (11) should be included, even for the few millikelvin fluctuation
on the isotherm. Details on these dependencies are also deferred to a future work.]
The ratios A2066

eff /A2062
eff and p2062ops /p2066ops are plotted in Figure 4(c), which shows excellent

agreement. The average difference is 0.5 µPa/Pa. At zero force, area ratios are indepen-
dent of the distortion coefficient b, and the difference is within 0.3 µPa/Pa. The result
of Figure 4(c) greatly increases confidence in the piston-gauge model and area calculation:
it is independent confirmation that ratios of calculated areas are equivalent to ratios of
measured pressures within 0.3 µPa/Pa. Some experimental details are mentioned. In these
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crossfloat tests, each of the 19 set pressures were repeated 5 times. A repeat measurement
entailed a pumpout to high-vacuum and a refill with pure argon (and refloat of the PCA). A
fully-automated 95-point isotherm took 85 h to acquire. The switch between PCA2062 and
PCA2066 broke the pure gas volume, but an overnight pumpout removed all contaminants
before the second isotherm was acquired.
An alternate analysis of the optical crossfloat obviates the adjustment to F/A206x

eff , but
its interpretation is less clear. The alternate analysis adds an offset to Eq. (11), and A,
B, and C are free parameters when both PCA datasets are regressed. A pressure offset
term in Eq. (11) is justified, such as might arise from mass error in the piston-gauge, or
glass temperature error (cavity expansivity) in the laser barometer. The analysis seeks the
ratio (A2062/A2066)T as proxy for A2066

eff /A2062
eff , and the optical measurements (fit coeffi-

cients) are adjusted to isothermal argon (constant and same temperature in both runs).
Effectively, the analysis uses single-isotherm refractive-index gas thermometry5 as the con-
sistency check on pressures generated with two different PCA. The disagreement between
isothermal (A2062/A2066)T and the calculated area ratio A2066

eff /A2062
eff was within 0.7×10−6.

While this analysis bounds combined inconsistency in A0 and b, a full understanding is veiled
by fitting effects in gas thermometry. For example, the nonlinear terms in Eq. (11) would
be best identified by multi-isotherm regression, and an argument can be made that the
ratio (A2062/A2066)T should be produced with fixed B and C (i.e., it is the same gas at the
same temperature). If the analysis is performed with B and C being the (fixed) average
value of both PCA datasets, and leaving A and the offset as free parameters, disagreement
between the measured (fit) and calculated ratios reduces to 0.2× 10−6. Further discussion
about fitting effects in gas thermometry is outside the scope of the present article, and these
sub-10−6 · p difficulties comparing mechanical and optical ratios are set aside. Next, some
useful information is obtained by looking at the residuals.
The residuals plotted in Figure 4(d) have δp = pops − pmpg. From above, p2062ops ≡ p2062mpg

in the least-squares sense, so a linear fit to δp2062 has a mean and slope approximately
zero. However, three pieces of quasi-independent information can be unraveled from the
residuals:

1. The nonzero mean of δp2066 is synonymous with A2066
eff /A2062

eff − p2062ops /p2066ops ̸= 0 from

Figure 4(c) and above; y-axis intercept has δp2066 = −0.2 µPa/Pa. This nonzero
intercept is caused by the combined effect of error in the dimensioning, error in the
piston-gauge model, plus irreproducibility of the laser barometer (refractometer plus
thermometer). It is difficult to conceive irreproducibility in the (untouched) laser
barometer exceeding 0.2 µPa/Pa across the eight-day duration of the two optical
crossfloats. Consequently, δp2066 is interpreted as confirmation that the piston-gauge
model (i.e., the conversion of diameter to generated pressure) is consistent within
0.4 µPa/Pa, and that the dimensional characterization is consistent within 10 nm.
(To be clear, this does not mean diameters are known within 10 nm; rather, statistical
error in the dimensional characterization is less than 10 nm.)

2. The nonzero slope on δp2066 is caused by the combined effect of error in the piston-
gauge flow model plus error in the calculation of the distortion coefficient. As above, it
is difficult to conceive compressibility of the laser barometer changing during the eight-
day (isothermal) test; this assumption is largely confirmed by the δp2062 residuals.
The 4.1× 10−10 /N slope on δp2066 means that the error in the distortion coefficient
b calculated for a single PCA might be as large as 1√

2
8.8 × 10−13 /Pa, or 12.4 %.

The result is somewhat surprising. On the one hand, it is within the allowable 24 %
mutual standard uncertainty of b for PCA2062 and PCA2066; on the other hand, this
failure to accurately predict b is of significance to gauges operating p > 1 MPa. [To
be clear, the slope on δp2066 does not mean all distortion error is in the calculation of
b2066; the more correct interpretation is that error in the calculation of b2062 has been
written onto the properties of argon gas in the initialization of Eq. (11).]

3. Little about both sets of residuals δp2062 and δp2066 suggests nonlinearity. The larger
residuals δp2066 can be attributed to the ±0.4 µPa/Pa oscillating pressure of PCA2066
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as it rotates; the magnitude of these residuals conforms with the entry G in Table I.
For δp2062, standard deviation on the residuals is less than 0.2 µPa/Pa—a remarkable
result. Even if the hint of nonlinearity in Figure 4(d) were real, it is unclear to
which instrument the nonlinearity should be attributed. [An imprint of nonlinearity
might appear from statistically imperfect application of Eq. (11), for example.] For
the refractometer, it is difficult to imagine nonlinearity in a monolithic, homogeneous
block of glass suspended by cables. At these low-pressures, nonlinearity in elastic
properties40 is negligible. Similarly, at these gas densities, the higher-order terms
truncated from Eq. (11) are below 0.1 µPa/Pa. Also, Ref. 41 presented good evidence
that two intercompared refractometers are linear within 0.1 µPa/Pa for pressures up
to 180 kPa. These three considerations vouch that nonlinearity in δp should not be
attributed to pops. However, the refractometer is not absolved because this single-
cavity configuration has offset errors of about 30 mPa, which would explain some
of the low-pressure structure. Moreover, unexpected behavior has been observed in
a similar homogeneous refractometer by Yang, Rubin, and Sun42, some 150 times
larger than the structure in Figure 4(d) (see their Figure 14). For the piston-gauge,
rarefied gas dynamics and the calculation methods of Section II predict no nonlinearity
greater than ±0.04 µPa/Pa; see Figure 3(b). However, the piston is clamped in
an inhomogeneous assembly, and the cylinder is monolithically inhomogeneous—it is
made with an epoxy-joint between the tungsten-carbide cylinder and titanium cup. In
principle, these inhomogeneities may give rise to nonlinearity as a function of pressure
that would be lost by an idealized model; however, it would instinctively seem that the
very high elastic modulus of tungsten-carbide should ensure the distortion coefficient
b is immune to mismatch effects. So, the present work makes no firm conclusion about
nonlinearity in a piston-gauge or a laser barometer; however, Figure 4(d) attests that
any nonlinearity would be very small.

D. Summary of the Laser Barometer Tests

The tests reported in this closing-section have validated several aspects of the area calcula-
tion outlined in Section II. The success of these tests adds confidence that the piston-gauge
model is a reliable physical description of the artifact standard, within the uncertainty
stated in Table I. The findings of the tests are:

• The pressure generated by the piston-gauge changes as the piston falls down the
cylinder. Optical measurements agree with calculation within 0.1 µPa/Pa.

• An experimental estimate has been placed on how much error may arise by the fact
that rotation is not accounted for in the flow model. Tests that monitored the gener-
ated pressure as the cylinder decelerated to a stop suggest that this error is no larger
than 0.1 µPa/Pa in PCA2062, an artifact of unusually good form. This experimental
estimate lacks theoretical confirmation.

• An optical crossfloat produced a ratio of two measured pressures, generated by two
respective PCA. The ratio of measured pressures agreed with the ratio of calculated
areas within 0.3 µPa/Pa. Additionally, when generated pressures from the two PCA
are compared to the optical pressure scale, the trend (slope) in disagreement confirms
that error in the calculated distortion coefficient b is no larger than 12.4 %.

• Any hint of nonlinearity in either the piston-gauge or laser barometer is no larger than
0.2 µPa/Pa for PCA2062. The present tests have not identified the more nonlinear
instrument. It must be stated that, if real and attributable to the piston-gauge,
nonlinearity would be an order of magnitude smaller than the combined uncertainty
stated in Table I.
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V. CONCLUSION

A procedure has been described to convert a dimensional dataset to effective area for a
piston–cylinder assembly. The procedure first fuses together all dimensional inputs (diam-
eter, straightness, and roundness) to form the birdcage and average generatrix. The flow
(distributed pressure) down the gap between piston and cylinder is then calculated using
the theory of rarefied gas dynamics. Next, the distributed pressure is parameterized to load
a finite-element model, which estimates geometric distortion to the generatrixes. Finally,
the calculation is iterated to convergence. The entire procedure runs in a self-contained
script, which executes the finite-element program as a function call.
Based on the quality of the dimensional characterization, its reproducibility, and a de-

tailed error analysis, it seems realistic that the artifact PCA2062 can approach 2 µPa/Pa
standard uncertainty. From an optimistic viewpoint, this work has reported some ratio and
relative tests against a laser barometer which suggest that the reproducibility, precision,
and linearity of the artifact standard are an order of magnitude smaller than this uncer-
tainty estimate. The counterpoint recalls the authoritative work of Schmidt et al.16 claimed
3.0 × 10−6 · p uncertainty on the 36 mm diameter PCA39. When scaled for differences in
diameter, the work of Schmidt et al. translates to 2.2 × 10−6 · p for the 50 mm diameter
PCA2062. The pessimistic view holds that despite a generation of progress in dimensional
metrology and flow modeling, the performance of the (other) last artifact-based standard2

remains essentially unchanged. Indeed, if anything, recent evidence in key comparisons of
diameter43,44, urge caution below the 4 µPa/Pa level (100 nm in diameter). Crossfloat
comparisons that show agreement between force and diameter ratios at fractionally within
10−6 may lead to false-confidence: ratios validate consistency of the dimensional charac-
terization, not its accuracy. A stringent test is desired between the optical and mechanical
pressure scales at the level of a few 10−6 · p.
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Appendix A: Supplementary information

The supplementary material to this article is available at https://doi.org/10.18434/mds2-
2698. The supplementary material is an archive file, containing the dimensional dataset of
PCA2062 and the conversion scripts.

• The main Python script is CalcAeff2062.py. This script controls the area con-
version process, and runs standalone. It has two dependencies. First, it calls
findGcyl2062.py and findGpis2062.py. These two scripts load the dimensional
datasets and find the best-fit generatrixes of piston and cylinder. The second depen-
dency is that a finite-element program is required to calculate distortion. The present
implementation uses Ansys45. The main script CalcAeff2062.py dynamically up-
dates the finite-element scripts for the applied pressure load distributed down the
gap, and runs Ansys as a function call.

https://doi.org/10.18434/mds2-2698
https://doi.org/10.18434/mds2-2698
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• The dimensional datasets of the piston–cylinder assembly PCA2062 are included. The
dimensional characterization was undertaken in Fall 2020. The dataset comprises
straightness and roundness traces, and two-point diameters.
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