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ABSTRACT
Industrial wireless communications networks have a major

role in the future industrial cyber-physical systems (CPSs) by al-
lowing higher flexibility and massive machine connectivity. How-
ever, the reliability and latency of industrial wireless networks
need to be evaluated accurately to ensure satisfying the indus-
trial CPS requirements and analyze degradation factors. In order
to measure the impact of deploying industrial wireless on cyber-
physical system performance, a deep learning framework based
on the generative adversarial network (GAN) is introduced. The
GAN is used to model the performance of the system and identify
the impact of various wireless impairments on the system per-
formance. The GAN model can deploy features from both the
wireless network and operational performance spaces. The loss
function of the discriminator part of the GAN is deployed as a
performance metric that can be used to model the average perfor-
mance of a specific wireless scenario and compare to the normal
behavior of the industrial wireless system. The proposed GAN-
based methodology is validated using a dual-robot collaborative
lift use case in which IEEE 802.11ac is employed.
Keywords: industrial wireless, deep learning, generative ad-
versarial networks, performance evaluation

1. INTRODUCTION
Wireless communications is crucial to the future vision on

industrial control systems but it is still facing challenges in achiev-
ing the required reliability and latency of such systems [1–4].
One main cause of deployment challenges of industrial wireless
systems (IWSs) is the random nature of wireless channels that
requires a special attention to the wireless network design to
deal with this special nature of the industrial wireless environ-
ment [5, 6]. Currently, the application space of industrial wireless
in cyber-physical systems (CPSs) is getting larger by supporting
flexible manufacturing and safety application with more strict
communications requirements. More specifically, the adoption

∗Corresponding author: mohamed.kashef@nist.gov

of wireless in CPSs requires innovative methods and approaches
to quantify the impact of wireless technologies in terms of in-
dustrial application production efficiency and measure the cost
of wireless link failures on performance [7]. In order to improve
the deployment of industrial wireless in CPSs, effective and easy-
to-use strategies have to be offered for the test and evaluation of
such systems in a way that correlates network performance with
operational performance. The needed data for this purpose is col-
lected from various CPS activities and networks, and is generally
found to be in large amounts, heterogeneous, and correlated.

In modern CPSs, a large volume of heterogeneous data is
generated and transferred within a variety of equipment, sensors,
controllers, and computing platforms. Data analytics in industrial
applications is critical for improving factory operation and prod-
uct quality, reducing machine downtime, and enhancing manu-
facturing efficiency [8, 9]. Generally, data analytics performs
the tasks of extracting information, analyzing performance, and
predicting production forecast. In [8], the life cycle of data an-
alytics in CPSs includes data acquisition, preparation, storage,
and analysis. Data acquisition includes adding various points of
data collection and data transfer to the storage and processing
units. Afterwards, typical preprocessing techniques for cleaning,
integration, and compression are deployed because of the large
volume, redundancy, and heterogeneity of the raw data. Finally,
data analysis is performed for data modelling and visualization.

Modeling industrial wireless and its impact onCPSs includes
identifying the normal behavior profile of various system compo-
nents such as the wireless network and the physical operational
equipment. This process includes dealing with the correlations
of various multivariate time series representing the variations in
various data flows [10]. The use of unsupervised learning for
such tasks allows the detection of any deviation in the perfor-
mance from the normal behavior without being trained using
labeled data. As a result, the use of unsupervised deep learning-
based techniques for modeling CPS performance abnormalities
has been proposed and deployed, such as in [11, 12], and the
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FIGURE 1: THE USE OF DEEP LEARNING FOR PERFORMANCE EVALUATION OF CYBER-PHYSICAL INDUSTRIAL WIRELESS SYSTEMS

references therein. The concept of using deep learning for per-
formance evaluation of cyber-physical industrial wireless systems
is shown in Fig. 1.
In this work, we deploy a generative adversarial network

(GAN)-based approach to evaluate the impact of using industrial
wireless in a leader-follower robotics testbed where the follower
robot receives the leader positions wirelessly. The approach de-
pends on training the GAN two neural networks in order to opti-
mize the ability of the generator network to produce samples that
have similar distribution to the original data and the discrimina-
tor network ability to distinguish fake samples from the original
samples [13]. While doing so, the GAN networks are implicitly
trained to the model of the original data. As a result, we use
the GAN to model the normal behavior of the testbed with no
interference impairing the connection between the leader and the
follower robots. The discriminator network of the trained GAN
then can be used to distinguish the impact of any impairments on
the wireless network that deviates the behavior from the normal
behavior.
More specifically, once the GAN is trained with the nor-

mal behavior of the CPS, only the discriminator network of the
GAN is used to measure the impacts of wireless impairments
on the overall deviation of the performance from the normal be-
havior. This innovative approach only deploys the discriminator
loss function of the trained GAN to study the performance of
a wireless network under various scenarios that may impact the
operational performance. Note that the normal behavior includes
both the performance of the wireless network and the physical

FIGURE 2: DUAL ROBOTIC USE CASE PERFORMING A CIRCLE
PATTERN

equipment, which are represented by a number of correlated time
series.

2. DUAL-LIFT ROBOTIC USE CASE
In this section, we describe the use case, its data flows, and

the various features that represent its performance. Later, we
describe the use of these features to train the GAN when the use
case is not impacted by interfering traffic. Additionally, test data
is also collected for validating the proposed approach.
The dual-lift robotic use case performs coordinated move-

ments with a leader and follower robot to jointly lift and move an
object as shown in Fig. 2. The object lifted is a custommetrology
bar with an integrated force-torque sensor (ATI mini45). The
robots are two Universal Robots (URs), UR3s, and are directly
controlled by Robot Operating System (ROS) nodes. ROS is a
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communication middleware that was used to control and coordi-
nate the motion of the robots. The ROS nodes are implemented
on SuperLogics microbox-PCs, running Ubuntu 18.04 and ROS
Melodic and can communicate over a network through topics,
services, and actions.
Additionally, there are a number of Next Unit of Computing

(NUC) machines used as Ethernet-wireless bridges and serve as
the wireless stations (STAs), and one NUC is configured as the
wireless access point (AP). They have 2x2 MIMO wireless capa-
bility with IEEE 802.11ac Wi-Fi cards. The AP was configured
to use a 20 MHz channel. Also, all of the NUCs for the wireless
bridges and wireless AP are synchronized over Ethernet using the
IEEE 1588 Precision Time Protocol (PTP) [14].
The data streams, which are collected using Ethernet tap

devices called SharkTaps, are routed to the collection machine to
capture the network packets. This allows us to capture the times
on a collection machine that is globally synchronized to the grand
leader (GL) clock. Also, a traffic source and a wireless traffic sink
are used to create a wireless traffic stream using iPerf [15] from
the AP to the sink STA.
The follower’s control algorithm utilizes a velocity-based

controller with input from the leader, using the desired topic
data streamed at 125 Hz. This topic contains the position and
orientation information of where the follower should move to
next. This data stream directly impacts the follower movement,
as any significant latency disturbances or loss in this stream will
cause the follower to jerk or even stop briefly. Since this stream is
a ROS topic, the protocol used is Transmission Control Protocol
(TCP). This application is latency sensitive by design, as we are
able to see and measure small latency disturbances in real time
with the leader-follower error.

3. THE GAN ARCHITECTURE AND EXPERIMENTAL
METHODOLOGY

3.1 Brief Description of the GAN Architecture
A GAN is composed of two neural networks, namely, the

generator (G) and the discriminator (D). While training, real
measured data samples are introduced to the GAN. The generator
has an input Gaussian random variable and produces samples
that are trained to have similar statistical distribution to the real
measured data. On the other hand, the discriminator receives the
generated samples and the real data to perform classification on
them in order to distinguish them from each other.
Each of the two neural networks is optimized to achieve its

goal while the discriminator feeds back its classification result to
the generator. At equilibrium and after both networks are trained
using the normal behavior data, the trained generator is able to
generate samples has similar statistical features to the real sam-
ples while the trained discriminator is able to classify its received
samples to either follow the normal behavior or not. The dis-
criminator employs its loss function to perform this classification
task. In our work, we will use the value of the discriminator
loss function to identify deviation from the normal behavior. Ad-
ditionally, we will only train the GAN by the normal behavior
data and will not use the CPS data that is impacted by any wire-
less impairments for any further training. More details about the
mathematical definitions and expression can be found in [12].

FIGURE 3: THE GAN TRAINING AND EVALUATION BLOCK DIA-
GRAM

3.2 Approach Justification
The goal of this work is developing an approach which is

capable of measuring the deviation of an industrial wireless sys-
tem performance from its normal behavior due to the existence
of wireless impairments. The approach should benefit from mea-
surable system features at the wireless network level and the
operational use case level. In order for this approach to work, the
normal behavior of the CPS system has to be modeled. The CPSs
are usually nonlinear and complex, and hence, deep learning is
a suitable way for achieving this purpose. Moreover, the unsu-
pervised estimation of the deviation from the normal behavior is
required because, in many cases, few outlier events due to wire-
less impairments are only captured and no availability of the data
under all the expected impairments that allows for a supervised
learning approach.
As a result, GANs can be used to model nonlinear systems

where a GANmodel consists of two networks where the discrim-
inator, once trained, can be used separately to identify samples
that are not following the statistical behavior of the normal oper-
ation of the CPS under test. The discriminator loss can be used to
distinguish any deviation from the neural network model which
is trained only on the normal behavior so no need for supervised
learning in this case. Moreover, GANs do not depend on prior
knowledge of the system model but rather model the real data
from its samples and varying features.

3.3 Measurement Methodology
The results presented in the paper consist of physical perfor-

mance data collected by sensors on the leader and follower robots
and the metrology bar that is handled by the two robots. The
measurement machine, to which the SharkTaps are routed, col-
lects the network packets along with Real-Time Data Exchange
(RTDE), [16], data at 125 Hz from the robots, to calculate the
error between the leader and follower. For the measurement ma-
chine, the clocks on multiple 4-port gigabit Ethernet PCI cards,
based on Intel i210, are time synchronized to the GL clock using
PTP time synchronization for <1 us error with 99% confidence.
The ground truth error is also accurate in time synchronization,
as the same collection machine is used for both the RTDE data
streams from the leader and follower robot controllers.
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In the use case, the leader and follower carried the metrology
bar together to follow a specific path. In this work, each collected
measurement was taken for the duration of 40 revolutions of a
circle, taking approximately two and a half minutes to finish. A
circle is chosen as the error between the leader and follower under
perfect conditions should be a constant value due to the constant
radial acceleration.

3.4 Data Processing

Through these measurements, a specific set of data streams
are collected to represent the behavior of the use case. These data
streams are typically heterogeneous such that they present vari-
ous physical quantities with different units and different ranges.
Moreover, not all collected data streams are affected by the vari-
ous wireless events in the use case. As a result, a preprocessing
phase is needed tomake sure that the training and evaluation of the
GAN model is able to identify the deviation in the performance
due to the deployed industrial wireless network.
The collected features at the normal conditions case and the

case of coexisting traffic are statistically compared using box plots
and the corresponding statistical measures such as the mean, the
standard deviation, and the various population percentile mea-
sures. The features, which have their statistical behavior not
changed due to the coexisting traffic, are removed from the set
of features to train the GAN model. This step is followed by a
normalization to the range between 0 and 1, such that the remain-
ing features have equal impact during the training and evaluation
phases. Note that a weighting scheme can be used to differentiate
the features importance in a controllable fashion.
The basic block diagram of the training and evaluation of

the proposed GAN-based approach is shown in Fig. 3. In this
work, we start with a number of measured features through the
operation of the use case. We collect baseline measurements in
the case where the leader and the follower communicate through
a wireless channel that is not affected by other interfering traffic
in the network. In the evaluation phase, other traffic streams are
allowed to share the same WiFi network with the leader-follower
use case. As a result, the proposed approach is used to assess the
impact of coexisting WiFi traffic on the operational performance
of the use case. A detailed block diagram for the evaluation is
presented in Fig. 4.

FIGURE 4: THE GAN DETAILED EVALUATION BLOCK DIAGRAM

4. RESULTS
In the results section, we consider the case of using the thir-

teen features from the operational metrics of the testbed. Specif-
ically, we include the linear and angular position errors in all
the xyz directions, the magnitude error, and the force and torque
values of the metrology bar in the xyz directions as well. We col-
lected, in this work, two data sets, namely, the normal behavior
data where the testbed traffic is being transferred over the wireless
network, and the case of having an interfering traffic stream of
48Mbps that shares the same WiFi network with the dual-lift use
case.

4.1 GAN Parameters Setup
Webuilt the generator and discriminator networks using long

short-term memory (LSTM) networks with depth 3 and 100 hid-
den layers. For the training and testing of the GAN, we set the
sequence length to 30, the number of epochs to 20, the batch
size to 100, and the latent dimension to 25. The data set used
include the normal behavior data of the 13 features that contains
15000 samples while the data for the case that is impacted by an
interfering traffic has 13000 data sample of the same 13 features.

4.2 GAN Training Results

FIGURE 5: THE GENERATOR AND DISCRIMINATOR LOSSES EVO-
LUTION DURING TRAINING

In Fig. 5, the evolution of the discriminator and generator
losses during the GAN training is presented against the epochs.
This figure shows the convergence of the trained GAN and pro-
vides the discriminator loss and generator loss values for the
normal behavior of the use case performance. The discrimina-
tor loss is defined as the mean negative cross-entropy between
its predictions and sequence label, and hence, it is a decreasing
function while training. On the other hand, the generator loss
function is the independent cross entropy for the training data
that increases by faking the discriminator and make it not able to
distinguish real data. Hence, it is an increasing function while the
generator is being trained. The equations for the loss functions,
as defined in this work, can be found in [12].

4



4.3 Using Discriminator Loss in the Proposed Approach

The second set of the results provides a comparison between
the discriminator losses when a wireless connection is deployed
between the leader and follower when no other competing traffic
is introduced and when interfering traffic over the same network
is introduced. The interfering traffic has a data rate of 48 Mbps.
In the following set of results, we use the trained discriminator
to evaluate the performance of the network under two different
interference levels. In the no interference case, we use a different
test set than the one used in the training phase. In these experi-
ments, we let the level of interference fixed during the whole time
of the experiment and we compare the average performance of
the two cases.

FIGURE 6: THE DISCRIMINATOR LOSS AGAINST TIME FOR WIRE-
LESS TRANSMISSIONS WITH NO INTERFERENCE

In Fig. 6, the discriminator loss against time is presented
when no interfering traffic is introduced. We can notice that a
steady performance is achieved while few spikes happen due to
the stochastic nature of the wireless channel. When interfering
traffic is introduced, the discriminator loss in Fig. 7 has more
time instances at which the discriminator loss deviates from the
steady performance of the no interference case. Note that in
this case, we do not have a labeled version of the data so these
spikes on the discriminator loss curves cannot be compared to the
physical variation of the channel but the increase on the number of
these spikes in the case of interference reflects the expected more
randomness on the wireless link when impaired by the interfering
traffic.
Finally, in Fig. 8, we present the cumulative density function

(CDF) for the discriminator for the cases of the leader-follower
testbed performance with and without interference. The CDF is
used to statistically compare the population of stochastic samples.
In this case, the impact of interference on the performance is
demonstrated by shifting the CDF curve to the right such that the
discriminator loss is higher compared to the no interference case.
It also shows that in this case, the deviation in performance due
to the interference is not large in this case.

FIGURE 7: THE DISCRIMINATOR LOSS AGAINST TIME FOR WIRE-
LESS TRANSMISSIONS WITH INTERFERENCE OF 48 MBPS

FIGURE 8: THE CDF OF THE DISCRIMINATOR LOSS FOR WIRE-
LESS TRANSMISSIONS WITH AND WITHOUT INTERFERENCE

5. CONCLUSIONS

This work presents the initial prototype of the use of deep
learning to study the system performance of an industrial wire-
less system. We deployed a GAN to model the behavior of the
industrial system in order to use the discriminator loss to iden-
tify the deviation of the performance in different features when
deploying various wireless communications scenarios. We have
shown that the discriminator loss of a trained GAN can provide
insights about the wireless communications state within an in-
dustrial use case. We plan to extend this work to identify and
characterize industrial wireless systems through the inclusion of
various operational, network, and spectrum features. Moreover,
other post-processing metrics that use the discriminator loss time
series are to be defined to identify the operating modes of the
system.
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DISCLAIMER
Certain commercial equipment, instruments, or materials

are identified in this paper in order to specify the experimental
procedure adequately. Such identification is not intended to im-
ply recommendation or endorsement by the National Institute of
Standards and Technology, nor is it intended to imply that the ma-
terials or equipment identified are necessarily the best available
for the purpose.
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