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ABSTRACT
Industrial wireless channels have different characteristics
than home and office channels due to their reflective nature.
Moreover, the millimeter-wave (mmWave) wireless bands
can play a big role in improving industrial wireless systems
due to their large available bandwidth and the short wave-
length that allows a large number of antennas to be located
closely to each other. Wireless test chambers are used for
over-the-air (OTA) testing and assessment of various proto-
cols and equipment. However, in order to closely character-
ize a system under test, the chamber should be configured to
replicate the environment where the system is deployed. In
this work, we present a deep reinforcement learning protocol
to configure a test chamber in order to replicate the spatial
characteristics of measured mmWave channels in industrial
environments. The proposed algorithm is general for any N -
dimensional chamber configurations where it can be used to
configure various reflectors, absorbers, and paddles inside a
wireless test chamber.

Index Terms— Over-the-air test chamber, automatic con-
figuration, Channel modeling, industrial wireless, deep rein-
forcement learning, wireless systems

I. INTRODUCTION
In future industrial systems, wireless-communication tech-

nologies such as 5G and 6G will play a critical role in achiev-
ing massive connectivity between various operational com-
ponents and allowing easier equipment mobility. Industrial
physical environments are different than office, home, and
even outdoor urban environments which leads to different
wireless channel characteristics such as the achievable delay
and reliability [1], [2]. Generic models are being studied
for indoor industrial channels such as [3] where four differ-
ent categories of wireless channels in indoor factories are
considered. However, various industrial environments differ
from each other in their layouts, types of equipment, and the
performed industrial activities. Hence, designing and testing
of industrial wireless systems require knowledge of the
channel characteristics of the corresponding environment [4].
The limited availability of sub-6 GHz wireless spectrum

has motivated the utilization of millimeter-wave (mmWave)
bands for many new wireless technologies. Moreover, with
many licensed bands, they offer a potential candidate for
industrial wireless.

Over-the-air (OTA) testing of wireless devices and sys-
tems becomes increasingly important in the technological
development and deployment of industrial wireless net-
works. Both wireless equipment manufacturers and users
are interested in assessing system performance and user
perceived quality in realistic propagation environments. In-
dustrial wireless electromagnetic environments exhibit rich
multipath propagation with strong reflections of the wireless
signal over the propagation channel. The reverberation cham-
ber (RC) is a metallic cavity where the signal created by a
single source is reflected and diffused to create multipath
fading. RCs can be configured as hybrid chambers through
adding absorbers and reflectors in different shapes, and
changing the position and orientation of different elements
including the transmitter, the receiver, the absorbers, and
the reflectors. The power delay profile (PDP) of a wireless
channel captures the temporal variations of the channel due
to multipath components (MPCs) [5]. While the power-angle
delay profile (PADP) captures both the temporal and spatial
characteristics of a wireless channel. By configuring the RC,
various channel parameters can be emulated including the
power delay profile and the power spatial pattern [6].

In [7], an RC loading configuration is introduced to
emulate realistic indoor environment PDPs through using
absorbers placed in the central part of the chamber and
in the corners in front of the transmitting and receiving
antennas. This configuration resulted in a very steep de-
scendant PDP behavior compared to the conventional central
barrier configurations. In [8], a guidance on configuring
the absorbing material inside an RC and verifying chamber
performance for over-the-air tests is provided. In [9], the
accuracy of an RC test method for 5G FR2 bands is verified
through designing and manufacturing a small-sized RC. The
proposed test method is applied to omni-directional power
measurements where a 5G mmWave equipment is measured
and its performance is evaluated. Note that refs. [7]–[9]



emulate the delay spread of the channel, rather than its
spatial characteristics. Anechoic chambers (ACs) have been
described in prior work to emulate spatial characteristics, For
example, in [10], realistic multi-path propagation channels
in terms of angles of arrivals (AoA) and cross polariza-
tion ratio with Rayleigh fading have been emulated with
the purpose of diversity measurements inside an anechoic
chamber. In [11], a dynamic mmWave channel emulation
method for 5G mmWave devices was investigated where the
authors reproduced the dominant channel clusters with high
accuracy. In [12], spatial channel emulation in an anechoic
chamber is used for testing of mmWave radios. Two methods
have been investigated for mmWave radios with preliminary
experimental results, namely the wireless cable method and
the multi-probe anechoic chamber (MPAC) method. In the
MPAC method, the spatial pattern at the receiver is generated
through having multiple probes inside the chamber.

In this work, we propose an automatic hybrid RC/AC
configuration approach to reproduce mmWave spatial chan-
nel behavior. The approach deploys a Deep Deterministic
Policy Gradient (DDPG) reinforcement learning algorithm to
tune the configuration of the hybrid chamber. Generally, the
proposed approach can work with N -dimensional problems
to optimize the variables, and the objective function can
include the temporal and spatial behavior of a channel.
We only focus on reproducing the spatial behavior through
minimizing the root mean squared (RMS) error of the AoAs
between the reproduced channel and an exemplar channel
that represents measured data from a realistic industrial
environment. The configuration parameters are the posi-
tions of the reflective bodies inside the chamber. In the
results, we validated the proposed approach through testing
its optimization performance in a test chamber with four
movable reflectors. By providing an automated approach to
configuring the multipath components within an OTA test
chamber, a wide variety of spatial channels can be created
efficiently and repeatably.

II. PROBLEM DESCRIPTION

In this section, an overview of the collection of PADPs
from an industrial environment is presented. The data prepa-
ration and the format of the resulting data are described.
Finally, the automatic chamber configuration problem is
stated.

II-A. Environment and Data Collection
The measured data described in this section are the

industrial environment data to be used for the validation
of the proposed approach, Measurements were performed
in the highly reflective Central Utility Plant (CUP) at the
Department of Commerce Boulder Laboratories in 2019.
This environment consists of large boiler tanks, piping, and
numerous racks of control hardware, as shown in Fig. 1.
The vector network analyzer (VNA) was placed in a small

Fig. 1. The NIST Central Utility Plant (CUP) measurement
environment

rack located between the transmit antenna and the receive
array. The measurements were obtained over the band of
26.5 GHz to 40 GHz with a transmit horn antenna and a
receive synthetic aperture [13] to scan a 35-by-35 planar
grid with 3 mm spacing between the sample points (λ/2 at
40 GHz).

II-B. Data Preparation and Resulting Data
The data preparation approach in this subsection is de-

ployed in both the original data preparation and later in
processing the data obtained from the test chamber. The
same receive synthetic aperture is used in both situations
and hence the same data processing technique is used.
The S21 parameters are collected by the synthetic-aperture
and are processed using true time delay beamforming to
steer the array mainbeam as described in [13]. A low-
sidelobe taper is applied across the aperture that is frequency
invariant in the boresight direction. Then to steer the array
mainbeam towards a desired direction, an additional phase
taper is applied across the aperture that varies linearly with
frequency.

After coherently combining the product of measured S21
values and complex beamforming weights across all the
aperture spatial samples, an inverse Fourier transform is
utilized to transform the frequency domain data to the tem-
poral domain. The result is known as a directional PDP. The
pointing directions specified at the peak of the mainbeam
are chosen systematically using the approach described in
[14] such that all beams overlap at the 3-dB beamwidth.
This algorithm accounts for the fact that the width of the
array mainbeam increases in proportion to the product of
the cosines of the azimuth and elevation scan angles.

II-C. Exemplar Extraction
In [15], we demonstrated a method to identify and charac-

terize the spatial properties of wireless channels in industrial
environments. We introduced an approach for directional



PDP exemplar extraction from measured data. The approach
deploys unsupervised machine learning-based clustering for
PDP exemplar extraction and uses various types of channel
features for the exemplar extraction process. In particular, a
cluster of directional PDPs can be represented by few PDPs
that capture the most significant characteristics in this cluster.
A device under test (DUT) impacted by a signal coming
through this exemplar channel from these directions can be
tested rigorously and repeatably for this representation of
the environment. Building on this, in this work, we focus
in reproducing the channel spatial behavior by creating a
channel inside an OTA test chamber that has AoAs at the
DUT similar to the AoAs of an exemplar channel of the
measured CUP environment.

II-D. Problem Statement

We denote the set of the AoAs of the exemplar channel by
θI and the set of the measured AoAs in the hybrid chamber
by θC. We have N configuration parameters with normalized
ranges [0, 1]. The value of the nth configuration parameter
at any moment is denoted by xn. The goal of the Deep
Reinforcement Learning algorithm is to achieve the optimal
configuration parameter settings and correspondingly each
chamber reflecting element to its optimal value x̂n that
minimizes the RMS error of AoAs between the exemplar
channel AoAs and the measured AoAs inside the chamber.

III. AUTOMATIC CHAMBER CONFIGURATION

In this section, we explain the need for automatic config-
uration and the use of deep learning for this purpose. Then,
we discuss how we modified a typical deep reinforcement
learning approach in order to make the algorithm feasible
in light of the long synthetic-aperture channel-measurement
times.

III-A. Deep Reinforcement Learning Approach

We describe the conventional way of using deep rein-
forcement learning for chamber configuration as shown in
Fig. 2. In this approach, a channel measurement is taken
after each configuration change inside the chamber. This
can be very time consuming in many scenarios such as the
high dimensional problems in the case of a large number
of configuration variables with multiple degrees of freedom
or when each channel measurements take a long period of
time. With four reflectors and a 35 x 35 synthetic aperture
array, our measurements present both of these difficulties.

Fig. 2. The conventional reinforcement learning applied to
automatic chamber configuration.

In a deep reinforcement learning approach, the follow-
ing needs to be defined: a) the objective function, b) the
tuning parameters, and c) the deep learning algorithm and
its parameters. We start by formally defining the objective
function and describe the approach for evaluating its various
variables. The objective function to be minimized through
the reinforcement learning approach is the RMS error of the
AoAs as follows

J =

√ ∑
m∈M

(θI,m − θC,m)
2 (1)

where M is the set of indices of the AoAs to be replicated
and θI,m, θC,m are the mth elements of the sets θI, θC,
respectively. In order to evaluate the objective function, the
AoAs have to be measured. In the present work, the 2D
spatial pattern of the received power is measured and it is
followed by a peak detection algorithm to evaluate the AoAs
at the receiver.

The tuning parameters, generally, include all the con-
figurable elements of the test chamber. In this specific
scenario, we use the linear positions of spherical reflectors
as the tuning parameters. In each step of the reinforcement
learning, algorithm, the vector of the tuning parameters is
optimized to change the reflectors’ positions and get a new
measurement from which the AoAs may be estimated.

III-B. Deep Deterministic Policy Gradient (DDPG)
We next briefly overview the used deep reinforcement

learning algorithm and the reason for deploying this algo-
rithm in our work. In configuring the chamber, we are deal-
ing with a multi-dimensional continuous output optimization
problem to minimize the AoA RMS error. Modeling the
impact of the reflectors’ positions on the received signal
AoAs is a complex problem that contains multiple non-linear
effects. As a result, the use of deep learning is proposed to
solve this modeling problem while the optimization problem
can be solved either through supervised learning or rein-
forcement learning. The use of supervised deep learning in
a multi-dimensional continuous output optimization problem
requires a large training set of labeled data, here consisting
of specific reflectors’ positions and the associated resulting
AoAs. Solving such a complex problem is not feasible for
the case of long chamber measurement time, such as we
have with the VNA-based synthetic aperture. As a result,



Fig. 3. The proposed hybrid reinforcement learning approach that combines numerical and measurement-based inputs to the
deep learning algorithm.

the use of reinforcement learning is more suitable to the
stated problem.

Reinforcement Learning (RL) is the type of learning
guided by a specific objective. An agent learns by interacting
with an unknown environment, typically by trying certain
actions. The agent receives feedback in terms of a reward or
cost from the environment; then, it trains itself and collects
knowledge about the environment. RL algorithms may be
policy-based or value-based or a combination of both such
as the actor-critic method. The RL algorithms can also be
classified as model free methods such as Q-learning or
model-based algorithms such as dynamic programming. In
a model-based algorithm, an agent does not rely on trials,
instead it exploits an already learned model. In model-based
RL, an agent can make predictions about different states and
corresponding rewards after learning [16].

Deep reinforcement learning has a main advantage in its
ability to learn from the actions it experiences and to be
able to work in continuously changing dynamic environ-
ments [17]. Typical algorithms include Deep Q Network
(DQN) algorithm and the Deep Deterministic Policy Gradi-
ent (DDPG) algorithm [18]. DQN is the simplest algorithm
to implement nonlinear function approximation. When used
in conjunction with the Q-Learning mechanism, DQN can
enhance training stability by breaking reinforcement learning
difficulties into manageable supervised learning tasks. The
DDPG combines the advantages of DQN and the actor-critic
framework to generate a deterministic strategy. The deep
neural network parameterizes this method, making DDPG
perform well in continuous control tasks [19].

In this work, we used the DDPG algorithm because of
the need to have a continuous values for the reflectors’
positions and because of the non-linear behavior of the AoAs
with respect to the reflectors. Specifically, we deployed the
implementation of the DDPG in [20]. The actions and the
state of the problems are defined to be similar and to be the
normalized reflectors’ positions in the range of [0,1] where
the position value in a specific direction is normalized with

respect to the whole linear range of this direction. The reward
is the inverse of the defined objective function in eq. (1).

III-C. Hybrid Deep Reinforcement Learning Approach
We next describe our modified approach that allows the

deep reinforcement learning algorithm to run its iterations
using both numerical and measured data. This proposed
algorithm is necessary because, for our measurement system,
obtaining an AoA measurement is a lengthy process and
hence obtaining the typically many measurements needed
for the RL to converge is infeasible. The algorithm starts
by measuring the channel at the corners of the optimization
space by measuring all combinations of the interval edges
of all the tuning parameters (here, linear positioners). Then,
the AoA of a simulated iteration is obtained through a
multi-dimensional linear interpolation. Every K simulated
iterations, we perform a measured iteration to add a point
to the measured data and hence improve the interpolation
results in the subsequent simulated iterations. The modified
algorithm block diagram is shown in Fig. 3.

IV. RESULTS
In this section, we present the results of a realistic example

of the automated chamber configuration approach on the
OTA test chamber to reproduce the spatial behavior of a
mmWave exemplar channel representing the measured utility
plant data. We start this section by describing the chamber
measurement procedure and the data processing. We then
show the results for running the procedure to reproduce a
physical channel that provide angles of arrival from the four
desired spatial directions.

IV-A. OTA Test Chamber and Data Processing
The hybrid chamber can take measurements in any fre-

quency bandwidth within 26.5 GHz to 40 GHz range. In
this paper we took S-parameter measurements from 26.5
GHz to 29.5 GHz with 100 MHz frequency steps, 100 Hz
IF bandwidth, and -15 dBm power level settings of the
VNA. The synthetic aperture beam-forming was based on



S21 parameters from 1225 measurements in 35× 35 virtual
array for each polarization.

Fig. 4. A photo of the hybrid measurement chamber showing
various equipment and components.

Fig. 4 shows the main components of the measurement
setup in the chamber. The transmit (Tx) antenna is stationary
and connected to port 1 of the VNA. Port 2 of the VNA
is connected to the receive (Rx) antenna which is mounted
on the robotic arm. Both antennas are WR28 open-ended
waveguides with the same model number. There is an RF
absorber wall (a metal plate sandwiched between two RF
absorbers) to prevent Tx-Rx direct coupling. Four reflectors
(A, B, C, and D) mounted on four linear positioners, which
can reconfigure the chamber to emulate different exemplar
channels.

IV-B. Measured AoAs
In this subsection, we show the obtained 2D spatial pattern

of the received power at the beginning and the end of the
RL algorithm. We compare the received power pattern to the
AoAs of the desired exemplar channel. In Fig. 5, we present
the received power pattern for the first measurement inside
the chamber after the initial measurement phase and running
the RL algorithm for the initial K simulated iterations.
The black dots in the figure represent the AoAs of the
exemplar channel that should be replicated. It can be seen
that the received power pattern peaks are getting closer to
the exemplar AoAs but have not converged yet.

Each complete cycle of the hybrid RL approach includes
a chamber measurement and K simulated iterations. After
running 7 complete cycles, the RL algorithm converged. The
result in Fig. 6 shows the resulted received power pattern.
In this figure, we see that the peaks of the received power
pattern after running our hybrid deep learning algorithm
approach almost overlapped with the exemplar AoAs.

Fig. 5. The 2D spatial received power pattern resulting from
the set of first measurements inside the test chamber.

Fig. 6. The power pattern resulting from taking the final
synthetic-aperture measurement inside the test chamber after
the approach converged.

IV-C. Resulting Metrics

In this subsection, we present the evolution of relevant
metrics versus the seven chamber-configuration measure-
ments that were performed between each set of 7 complete
cycles of the hybrid approach. In Fig. 7, the AoA RMS error
value in degrees from eq. 1 is presented. The RMS error has
dropped significantly through the seven measurements using
the modified RL approach. The error has saturated to a value
higher than 0 because each reflector has a single degree of
freedom and can only move horizontally.

In Fig. 8, we present another metric that assesses the



Fig. 7. The AoA RMS error values at various measured data
points.

performance of the algorithm: the average received power
over the exemplar AoAs. The higher the average received
power, the better the system has achieved the exemplar
AoAs.

Fig. 8. The average power averaged over the exemplar AoAs
at various measured data points.

V. CONCLUSIONS

We introduced an automatic OTA test chamber configu-
ration approach that deploys deep reinforcement learning.
The approach is generic that can be used to optimize any
N -dimensional tuning parameters to optimize an objective
function. In this work, we validated the proposed approach to
configure the position of four reflectors to minimize the RMS
error of the AoAs between the channel created inside the test
chamber and an exemplar channel of a realistic industrial
environment.

The ability to physically recreate industrial channels will
allow the testing and performance evaluation of wireless

equipment in realistic environments. The flexible hybrid
chamber presented here can create these channels in a con-
trollable fashion with the ability to test various directional
stress scenarios by configuring specific directional channel
patterns. The modified deep reinforcement learning approach
allows the automatic configuration approach to converge
with a smaller number of measurements.

Disclaimer Certain commercial equipment, instruments, or
materials are identified in this paper in order to specify the
experimental procedure adequately. Such identification is not
intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it
intended to imply that the materials or equipment identified
are necessarily the best available for the purpose.
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