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ABSTRACT 
Robots are increasingly being adopted in manufacturing 

industries and this trend is projected to continue. However, 

robots, like all equipment, degrade once in operation and 

eventually fail. Yet today’s manufacturing systems are highly 

paced requiring high equipment availability. Tools and methods 

are being developed for monitoring, diagnostics, and 

prognostics to support maintenance activities. These tools 

require the presence of data representing both healthy and 

unhealthy states of the robot. Robot unhealthy data is usually not 

available because robots are normally operated in a healthy 

state. A digital twin, which is a virtual real-time representation 

of a system, can support generating this data. This paper 

demonstrates the building of a digital twin of a robot workcell 

that uses data from the real system as input. The most frequent 

robot degradations are identified as increased bearing friction 

and gear backlash, which are modeled in the digital twin. The 

digital twin is then used to generate data representing degraded 

states of the workcell, which are plotted against healthy state 

data to reveal patterns associated with the respective types of 

failure. The results show that modeling degradations in the 

digital twin can provide data which, when analyzed, can support 

prognostics and health management. 
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1. BACKGROUND AND INTRODUCTION  
More manufacturing companies are adopting robot 

technologies in their operations because robots have shown 

capacity for success in increasing productivity, safety, and 

product quality [1]. However, once put in operation the robots 

begin to degrade. A robot arm, for example, is a complex system 

with many potential points of faults and failure. These faults and 

failures result in performance degradations, the origins of which 

could be due to wear and tear in any of the robot’s links and 

joints. The most common degradations are position accuracy, 

velocity, tool center point (TCP) force, torque, and energy usage. 

Yet, today’s manufacturing systems are competitive and highly 

paced requiring maximum equipment availability. This section 

reviews common approaches to robot maintenance and discusses 

a strategy to result in timely response leading to minimum 

failures and optimum maintenance activities. 

 
1.1 Maintenance of Industrial Robots 

Industrial robots’ maintenance practice follows either the 

time-based preventive strategy or corrective maintenance 

strategy [2]. Preventive maintenance is performed at regular 

intervals irrespective of the equipment condition, which can lead 

to unnecessary maintenance and still not prevent all failures. On 

the other hand, corrective maintenance is performed after a 

failure has occurred with a potential for costly downtime, repair, 

and safety. It is estimated that one-third to one-half of all 

maintenance expenditure is wasted in ineffective maintenance 

activities [3]. These shortcomings led to the development of 

methods to identify initial signs of faults in equipment and 

prevent them before they happen. It is observed that 99% of 

mechanical failures are preceded by noticeable indicators [4]. 

The condition-based maintenance strategy uses real-time robot 

data to identify potential faults by monitoring data such as 

actuating torque, vibration, velocity, and acceleration. These 

variables are compared against reference data to determine the 

likelihood of failure and the remaining time before failure. 

Maintenance is performed only when there is impending failure. 

 

The main challenges for condition-based maintenance are to 

detect that an equipment has deviated from its normal operating 

condition and to predict when a fault will occur. Recently, 

predictive maintenance systems through prognostics have been 

developed. Whereas machine diagnosis comprises the detection 
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and classification of faults, machine prognosis is the 

determination of likelihood of a fault and estimation of the 

remaining useful life (RUL). The collection of tools and methods 

for monitoring, diagnostics, and prognostics is called prognostics 

and health management (PHM). 

 

Deploying PHM methods requires previously collected 

robot data representing both healthy and failure performance. 

This data is compared with real-time system data to ascertain the 

health state of the system. However, robot unhealthy condition 

data is usually not available, and any prediction model developed 

with insufficient data would likely be inaccurate in representing 

the system. Further, manufacturers also need PHM systems to 

measure the effectiveness of current methods to monitor, 

diagnose, and predict failures impacting a robot’s performance 

with respect to required specifications [5]. Therefore, a method 

is needed to supplement physically collected data. Secondly, the 

approach should also support the generation of data representing 

future health state of the robot workcell for prediction of 

impending failure. This data is input into analytics and the output 

used to support planning of maintenance activities. 

 

1.2 Data Driven Robot PHM Approach  
The possible approaches to addressing the data challenge are 

i) building a degradation model based on the fundamental 

physics of the system, ii) adapting data from a similar machine 

where sufficient data is available, or iii) artificially generating 

the data. The physics-based approach requires to accurately 

model degradation caused by wear, tear, and other processes in 

the robot arm. This approach requires creating a model 

describing both the operation and degradation process. It is time 

consuming, and the results are not likely to be accurate because 

of many assumptions that must be made. It is, therefore, not 

practicable. Data on similar robots covering various modes of 

degradation and failure are not available since robots are 

normally operated in a healthy state. Artificially generating data 

would require building a virtual representation of the system that 

runs on real-time from the real system. This virtual world 

representing the evolution of the real robot or robot workcell in 

real-time is called the digital twin. In this paper, a digital twin of 

a real robot workcell is built to support monitoring, simulating, 

and optimizing PHM operation.  

 
A digital twin is an integrated virtual representation of a 

system that connects and synchronizes a part of or the whole 

manufacturing system, enabled by historical and real-time data. 

A major difference between the digital twin and traditional 

simulation is that the digital twin is updated with the real system. 

Shao et al [6] discuss the role and state of the art of the digital 

twin for manufacturing research from the perspective of the 

simulation community and it argued that a digital twin should be 

tailored for a specific application. As such, the digital twin for 

the workcell in this paper is built using the physical modeling 

method. The factors and data that link the real system with the 

digital twin have been specified. The main data captured includes 

joint positions, joint velocities, joint accelerations, joint torque, 

joint current, TCP pose, TCP velocity, TCP force, joint 

temperatures, execution time, tool acceleration, main voltage, 

and main robot current. However, in this initial effort, data 

relevant to mechanical motion and degradation, i.e., position, 

velocity, acceleration, and torque at the joints, is used as input. 
Robot degradations will be incorporated in the digital twin for 

the components identified as being more prone to failure but are 

crucial for the robot’s proper functioning. The initial focus is on 

failures at the joints, particularly the effects of increased bearing 

friction and gear backlash. The roadmap for using a digital twin 

to support PHM is summarized in Figure 1. 

 
FIGURE 1: ROADMAP FOR THE ROBOT WORKCELL DIGITAL TWIN 
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The scope of this paper is to generate degraded state data 

and comparing it with a base healthy state data. How to develop 

prediction models, integrating the real world with virtual world 

in real-time, and using data analytical models for prognostics 

will be the work of our future efforts. The rest of the paper is 

organized as follows. The next section describes the workcell 

and use case scenario. Section 3 describes the method for 

building a digital twin. Section 4 shows how degradations are 

introduced into the robot components within the digital twin. In 

Section 5 comparisons are made between the healthy and 

degraded data. Section 6 is the discussion and way forward. 

 

2. THE ROBOT WORKCELL USE CASE SCENARIOS 
Robot workcells produce a family of products with high 

repeatability in product quality. Several use cases of the workcell 

may be needed for a digital twin to generate data for a prediction 

model that would be valid for a range of robot tasks. Recognizing 

this situation, the National Institute of Standards and Technology 

(NIST) researchers undertook efforts to identify industrial arm 

robot system use cases that are currently active in industry [7]. 

Among these use cases is a workcell with two robot arms, end 

effectors, safety systems, and other requirements for a workcell. 

One of the robots performs pick and place operations, including 

moving parts from an input area to in-process work fixtures 

while the other performs a precision operation on a part. When 

the operation is completed, the material handling robot will then 

move the completed part to an output. This robot workcell has 

been installed at NIST. 

 
Figure 2 is the top view of the workcell as adopted from [8]. 

The material handling robot is a UR5 (to the right in the picture) 

and equipped with a RG2 gripper. The precision operation robot 

is a UR3 (left) equipped with a spring-loaded pen gripper and a 

pen to leave a trace on a part. Our previous work has built and 

validated a digital twin for a healthy state of the workcell [9]. 

The digital twin representing a healthy state is the base upon 

which to model the degradations at the joints. 

 

3. MODELING OF THE ROBOT WORKCELL 
This section describes the procedure to model the real 

workcell in the virtual world. With the physical modeling used 

in this research, robot degradations can easily be incorporated at 

the component level as represented in the Simscape blocks [10]. 

The method used does not require sophisticated programming 

and can be easily transferred to industry.  

 

3.1 Overview of the Robot Arm Modeling  
The robot arm is a mechanical structure that consists of links 

connected at flexible joints. The links of the UR5 and UR3 robots 

are the base, upper arm, lower arm, link4, link5, and tool flange. 

The end effector is attached to the last link. Figure 3 shows the 

UR3 robot indicating the links and the connecting revolute 

joints. All the six joints contribute to the transformational and 

rotational movements of the end effector. The joints house the 

components such as drive motor, gearbox, encoder, controller, 

electronics, brakes, and bearings. The link motions are actuated 

by the drive motor following the robot instruction program. 

 

The tool used for building the digital twin is Simscape 

Multibody [10]. Simscape uses blocks to represent links, joints, 

constraints, and force elements. The data collected from the real 

robots is saved to a database and input into the digital twin 

through the motion signal input feature of Simulink and used to 

actuate the joints. Data is collected from the twin by modeling 

sensors attached to the respective elements. 

 

. 

 
 

FIGURE 2: ROBOT WORKCELL FOR THE USE CASE SCENARIO [8] 
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The strength of this tool for PHM is that you can compute 

and analyze forces, torques, and stresses within the joints and 

links. The values of these dynamic effects depend on the state of 

health of the robot arm in addition to loading and environmental 

conditions. The left side of Figure 4 shows the building blocks 

of the model for the UR3 robot and the controller. UR5 model 

blocks in the digital twin are the same as those for the UR3 robot. 

The right side of Figure 4 shows the animation section of the 

model for the workcell. Our previous work describes the details 

of the blocks used in the digital twin [9]. In that work, the twin 

was verified and validated by comparing the motion and torque 

data that are computed by the controller in the real world with 

those that are predicted by the digital counterpart.  

 

 
 

FIGURE 3:  UR3 ROBOT [11] 
 

4. DEGRADATION MODELING APPROACH 
Robot degradations lead to poor product quality and 

reduction in efficiency. If left unrepaired, the machines 

eventually beak down and stop functioning. Research work at 

NIST is advancing technology to verify and validate methods 

and technologies for robot health assessment especially with 

regards to accuracy [12]. In addition, efforts are directed at 

building a digital twin to model robot degradations and generate 

data to be used for building a prediction model to support PHM. 

Robot degradations occur from different sources including 

environmental factors such as temperature, moisture, corrosion, 

or external abrasion. However, the focus of this research is on 

degradation resulting directly from operation. 

 

The major causes of robot degradation during operation are 

mechanical wear, encoder slip, and thermal effects. This research 

investigates the effects of mechanical wear to determine how 

these degradations affect joint and robot performance through 

the digital twin. There are two main ways of modeling 

degradation of a robot or its components [13].  These are the 

physics-based approach and data-driven approach. In a physics-

based approach, a mathematical model is developed to describe 

how the physics of the system is related to degradation and 

failure phenomena. Equations are developed specifying wear 

and tear in terms of contact loads and the relative sliding speeds 

which, in turn, depend on the forces and moments applied at the 

joints. This model is very difficult to produce without many 

simplifying assumptions. A data-driven approach uses collected 

data and machine learning or statistical methods to detect 

patterns and classify degradations. There are several challenges 

to acquiring run-to-failure data for machinery including robots, 

as discussed in [14]. It is also observed that machinery generally 

express a long-term degradation process from a healthy state to 

failure. In this paper, this data is obtained by modeling 

degradations within the digital twin.  

 

 

UR3 SIMSCAPE BLOCKS 

 

 
ANIMATION 

FIGURE 4: THE WORKCELL MODEL IN SIMSCAPE 
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4.1 Degradation Curves 
The health state of a robot arm component can be expressed 

using a parameter. Examples of these parameters are root mean 

square (RMS) torque of a motor, friction of a bearing, and gear 

backlash. The degradation of the component with respect to the 

parameter can be expressed as a degradation curve. Since 

machine elements such as gears follow similar degradation 

profiles, degradation curves can be constructed for selected robot 

components. Experience in robotics maintenance with respect to 

motors, gears, and bearings can be exploited to develop these 

curves. A digital twin, with embedded degradation curves, is then 

used as a simulation to generate data that is exploited for 

degradation modeling and prediction.  

 

A degradation curve can be expressed in terms of a system 

parameter change as a function of time, cycle, or another factor. 

In real life a robot operates under different payloads and velocity, 

which changes the rate of degradation. The profile of the curve 

may remain the same because degradation is caused by the same 

mechanical processes. It has been determined that bearing life is 

inversely proportional to the cube of the payload [15]. The digital 

twin simulates degradation curve changes due to different 

payloads and operation speeds. The degradation curve updates 

are realized by using real-life health state parameter data and 

mapping it to the appropriate point on the time scale. Updates are 

then made to the curve accordingly. 

 
4.2 Procedure for Degradation Modeling 
 The procedure for degradation modeling in the digital twin 

is as follows: 

• Identify the robot components more prone to failure but 

vital for the robot’s proper functioning  

• Model these components in detail in the digital twin  

• Define modeling parameters, develop an initial 

degradation curve for each component and incorporate it 

in the model  

• Simulate the digital twin to generate data including 

values of select parameters 

• Update degradation curves based on a parameter value 

from the real system  

• Generate data representing future health state of the 

system 

 

The crucial components for robot functioning are the drive 

system and it is the one that is most prone to failure [16]. The 

drive system is located at the joints and comprises components 

such as motors, reducer, joint motor, stopper, drive, sensors, 

brakes, electronics, bearings, and harmonic drives. The most 

common robot failures stem from increased bearing friction and 

gear backlash [17]. Bearing friction increases because of wear as 

bearing surfaces move relative to each other. There is also 

fatigue, which leads to formation of bearing surface cracks and 

small pieces (spalls) breaking away, a process called spalling. 

Spalling, in turn, results in increased vibration and friction.  

 

Regarding gear backlash, Universal robots are equipped 

with harmonic gears to achieve high speed reduction between the 

servo motor and the driven link. At their best, harmonic gears 

have minimal backlash. Some backlash is built into gears so that 

they can mesh without binding, allow for thermal expansion, and 

provide space for a film of lubricating oil. A robot is supplied 

with specified backlash, which should be kept within specified 

tolerances. However, the loads and velocity on the gear teeth 

result into wear leading to some backlash. Backlash can be 

detected by comparing the changes in position, velocity, and 

torque profiles for healthy state with the actual torques sensed at 

the joints.  

 

4.3 Simscape modeling of degradations  
We use the shoulder and elbow joints of the UR3 robot to 

model robot degradation due to joint friction and gear backlash 

respectively. The shoulder joint connects the base to the upper 

arm while the elbow joint connects the lower arm to the upper 

arm. See Figure 3.   

 
4.3.1 Bearing friction degradation curve 

Bearing friction takes the profile of the curve shown in 

Figure 5 [18]. The graph shows that for most of the bearing life, 

the friction values change only slightly up to a time when it 

increases exponentially as wear accumulates. Other studies of 

bearing through accelerated tests and other methods produced 

similar profiles of failure progression [19, 20]. It is observed that, 

for machines with intermittent operation but high dependability 

requirements, the bearing life is between 8000 and 12000 hours 

[21]. For the use case scenario of this paper, this is equivalent to 

200000 - 300000 cycles. The plot of Figure 5 is used for the UR3 

robot under light loading since its end effector comprises a 

spring-loaded pen gripper and a pen. It is a plot used in the digital 

twin and is the (initial) degradation curve of the robot, which is 

updated in real time during operation as parameter data is 

obtained from the real system. In the digital twin, a section of 

this graph that represents a transition from beginning of degraded 

state to a fully unhealthy state is selected for modeling. This time 

is between 250000 and 280000 cycles.  

 

 
FIGURE 5: VARIATION OF BEARING FRICTION DUE TO 

DEGRADATION 
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4.3.2 Modeling bearing degradation 
There are no built-in blocks to model bearing degradation, 

but custom blocks can be used to model this behavior. 

Parameters, such as friction in the revolute joint at the shoulder, 

are modeled in detail using Simscape networks. A rotational 

multibody interface block is used to establish bidirectional 

connections between the Simscape Multibody joint and the 

Simscape networks. The Rotational Multibody Interface 

block matches the torque and relative angular velocity across the 

interface. This section of the model is shown in Figure 6.  

 

 
 

FIGURE 6: BEARING FRICTION MODELING FOR THE 

SHOULDER JOINT 

 

 
 

FIGURE 7: GEAR BACKLASH MODELING FOR THE 

ELBOW JOINT 

4.3.3 Gear backlash 

The approach to modeling backlash in Simscape is different 

from that used for the bearing friction. Two parallel revolute 

joints are created. One joint is labelled “Joint3 - Base” while the 

other is labelled “Joint3 - Follower”. The “Base” joint is motion 

actuated with the desired joint position while the velocity is input 

to the backlash model, as shown in Figure 7. A simple gear block 

is used to model the effect of backlash thorough a rotational hard 

stop block, which enables specifying the free movement of the 

drive gear before it fully engages the driven gear. This free 

movement is the input backlash. A PS Integrator block derives 

the motion from the velocity output of the gear, which is input 

into the follower revolute joint. The follower motion then 

incorporates the effects of backlash. Use of a simple gear block 

rather than a harmonic gear block helps to simplify the model but 

still introduces backlash effects in the joint accurately.  

 
5. ROBOT DATA FOR A DEGRADED STATE 

During this initial research work, the robot workcell is still 

operating in a healthy state. Therefore, there was no real data 

from the workcell representing an unhealthy state that can be 

used to update the degradation curve. Therefore, the scope of this 

section is limited to comparing degradation parameter data for 

the initial degradation curve with a reference (healthy state). 

Even without additional data analytics being deployed, the 

patterns observed in the plots can be used to identify the type of 

fault. 

 

5.1 Procedure and setup 
The gear backlash was set to 0.2 degrees. The digital twin 

was executed, and virtual sensors are used to collect data for a 

gradual increase in the bearing friction. During the case scenario, 

the UR3 robot undergoes a cycle where the same sequence of 

motions is repeated. Each cycle starts by moving the end effector 

into a position near the part, putting a trace on a part, moving 

into position close to a second part, putting a trace on the second 

part, and back to a staging position. Joint torques, positions, and 

velocities are the data used to illustrate the effects of bearing 

friction and backlash.  

 

5.1.1 Bearing friction 

The peak torque during each cycle is identified and plotted. 

Figure 8 shows a section of the peak torque data when the graph 

for increasing bearing friction is compared with reference data. 

The higher the friction, the higher the needed actuating torque. 

The peak torque matches for both cases when the bearing friction 

is low because the dominant contributors to the joint torque are 

the mass and inertia of the links and end effector that the shoulder 

joint supports. As the bearing friction increases, so does the 

component of the torque attributed to it.  
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FIGURE 8: PEAK TORQUE VARIATION FOR HEALTHY AND DEGRADED STATES 

 

5.1.2 Gear backlash  

The effects of gear backlash on output (driven) gear position 

are plotted in Figure 9 and Figure 10. The discontinuous physical 

effects of backlash require a small step size to capture the 

behavior accurately, especially for visualization. Hence, the 

backlash plots for Figure 10, Figure 11, and Figure 12 are for a 

duration of only 40 seconds. Secondly, the motion data requires 

a detailed view at the plots. Thus, the plot of Figure 10 is an 

isolated section of the plot of Figure 9. The motion output lags 

the input because there is deadband before the gears engage. On 

a change in the direction of rotation, the gears initially disengage, 

and the output remains the same until the gears reengage. 

Figure 11 and Figure 12 show comparison of the plots of 

output velocity and torque respectively. Figure 11 shows that 

when there is a change in the direction of rotation, backlash leads 

to the driven gear being out of contact with the driving gear. 

However, because of inertia, the driven gear keeps rotating in the 

original direction until contact is reestablished. The driven gear 

then starts rotating in reverse along with the driving gear. The 

result is a more jagged graph than the case of zero backlash. For 

those sections of the curve where there is a sustained rotation in 

one direction, the plots of velocity are coincident. The torque 

data plot with backlash (Figure 12) shows spikes when there is a 

change in the direction of rotation. The torque increases because 

the driven gear was rotating in opposite direction at the point of 

contact. The effects of backlash are more noticeable in the plots 

of velocity and torque than for position data.

 

 
FIGURE 9: POSITION DATA INDICATING THE ROBOT CYCLES (BOUNDING BOX IS THE ISOLATED SECTION FOR FIGURE 10) 
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FIGURE 10: POSITION DATA FOR HEALTHY AND DEGRADED BACKLASH STATE 

 
 

 
FIGURE 11: COMPARING VELOCITY PROFILE OF THE HEALTHY AND DEGRADED BACKLASH STATES 
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FIGURE 12: COMPARING TORQUE FOR A HEALTHY WITH A DEGRADED BACKLASH STATE 

 

5. DISCUSSION AND WAY FORWARD 
The paper has developed and demonstrated an approach to 

generate data that represents a degraded state of the robot 

workcell. This approach replaces the need to physically 

introduce faults in the real robots to generate this data. In many 

cases, physically generated data relies on accelerated conditions, 

leading to unnatural degradations of the robot component under 

study. Two types of mechanical degradations, i.e., bearing 

friction and gear backlash, are introduced into two robot joints. 

These degradations are introduced because most robot faults are 

attributed to drive failure. The examples in the paper are based 

on literature review of the degradation of the modeled 

components. Other forms of mechanical degradations such as 

motor failure can also be incorporated using this method. 

 

One of the major challenges is constructing accurate 

degradation curves of robot components that are required or 

estimating the progression of gear backlash with time. More 

information is needed from robot manufactures, industry robot 

users, and the research community to provide information on 

repair, replacement history, and duration of robot components.  

 

The twin developed can also aid to generate degraded data 

to help to advance verification and validation prognostic 

solutions. The digital twin contributes to addressing the lack of 

valid data representing healthy and degraded state stemming 

from various causes for robot systems. One of the approaches is 

to compare the performance of PHM algorithms with the 

predictions by digital twin generated data. Further, in case of 

multiple robots, physical sensors on real robots can be used to 

capture data on key physical factors of individual robots. The 

digital twin would reflect the real physical conditions, which 

may be different because of different operating conditions 

resulting in different generated data sets. 

 

Research in robot PHM using the digital twin is a relatively 

new area of research without significant published case studies. 

The digital twin work at NIST is continuing. A way forward for 

this work will be to integrate the digital twin with the real system. 

The digital twin will then be updated with data from the real 

workcell in real time. This data includes the health state 

parameter such as motor torque or joint current which will update 

the initial degradation curve. The point at which the curve is 

updated becomes the starting point for generating data indicating 

future state of the robot through simulation of the digital twin. 

This data would be input into analytics and the results used for 

repair and maintenance planning. 

 

DISCLAIMER 
Certain commercial products and systems are identified in 

this paper to facilitate understanding. Such identification does 

not imply that these software systems are necessarily the best 

available for the purpose. No approval or endorsement of any 

commercial product by NIST is intended or implied. 
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