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Diffraction elastic constants (DECs) describe the elastic response of a subset of

orientation-correlated grains which share a common lattice vector. DECs reflect

the elastic behaviour of the single-crystal constituents through their dependence

on grain orientation. DECs furthermore depend on the behaviour of the

polycrystal aggregate both through the dependence on preferred orientation

and through the average elastic interaction of the grains in the subset with their

surroundings. The latter is also known as grain–matrix interaction which is grain-

shape dependent. Both dependencies can make the DECs uniquely sensitive to

the elastic effects of the grain shape, texture and phase composition. Several

micro-mechanical models are explored for use in calculating both DECs and

overall elastic constants. Furthermore, it is shown how discrete data from

electron backscatter diffraction on grain shape, grain orientations and

neighbouring grains can be used for DEC calculations. Lastly, the inverse

problem of calculating single-crystal elastic constants from DECs is discussed in

detail. All calculations discussed in this work can be verified using the freely

available computer program IsoDEC.

1. Introduction

The intent of this work is to provide a detailed framework for

the calculations of elastic properties of orientation-correlated

subsets of grains in polycrystalline aggregates. Such properties

can be measured by diffraction, and the associated elastic

constants are known elsewhere as diffraction elastic constants

(DECs). DECs relate lattice strain to macroscopic stress for

specific, or correlated, grain orientations with a common

lattice plane normal. The directionality applies to both the

crystal direction of reflecting grains and the sample orienta-

tion, which causes DECs to be sensitive to the single-crystal

elastic constants, preferred orientation and bulk constants

(overall elastic constants of the aggregate), with additional

effects stemming from the grain shape. The sensitivity of the

DECs to the aforementioned factors depends on the magni-

tude of the elastic anisotropy of constituent crystallites, which

makes DECs an excellent tool for the study of elastic inter-

actions and model evaluation.

The earliest formulation of a DEC model (Möller & Martin,

1939) was based on Reuss’ assumption of uniform stress in all

grains (Reuss, 1929). The Reuss model represents a lower

bound on the bulk elastic stiffnesses where grains do not

interact elastically, and DECs are arithmetic averages of

single-crystal compliances about the lattice vector that is

perpendicular to the reflecting lattice plane, usually denoted

by its Miller indices (hkl). The absence of the mediating

effect of grain interaction leads to poor agreement with
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experimental observations in elastic extremum directions;

examples are the [100] and [111] directions for grains with

cubic crystal symmetry.

Voigt’s earlier assumption of homogeneous strain in all

grains (Voigt, 1928) represents the upper limit of the overall

elastic stiffnesses. It is of limited use for DEC calculations due

to the independence with respect to grain orientation. Inde-

pendence with respect to (hkl) contradicts experimental

evidence even for moderately anisotropic materials. Hill

(1952) suggested the arithmetic average of the Reuss and

Voigt limits, which leads to broadly improved agreement with

experimental observations both for overall elastic constants

and for DECs.

Eshelby’s calculation (Eshelby, 1957) of the elastic field of

an ellipsoidal inclusion allowed Kröner (1958) to formulate

the two bounds of the self-consistent model for the calculation

of isotropic overall elastic constants. Kinoshita & Mura (1971),

Lin & Mura (1973) and Mura (1987) later developed formulas

for the general anisotropic case. One of the Kröner bounds

was used for DEC calculations first by Bollenrath et al. (1967)

for cubic materials, and later by Behnken & Hauck (1986) for

all crystal symmetries. DEC calculations using the second

Kröner bound were first presented by Gnäupel-Herold et al.

(2012) where the second bound was referred to as the inverse

Kröner model. It was shown that considerable differences

between the two bounds exist in DECs due to the opposite

responses to the grain shape, particularly in the case of

texture. The Kröner bounds in overall elastic constants were

frequently examined (Kneer, 1965; Morris, 1970; Walpole,

1969; Willis, 1977), often with particular focus on special cases

that allow the formulation of closed expressions. Kneer

studied spherical grains, in which case the two bounds coin-

cide. The use of the inverse Kröner model for overall elastic

constant calculation has not been widely investigated yet;

however, this work shows that aligned ellipsoidal grains

produce diverging results for the two bounds in the case of

texture or multiphase aggregates. Another unexplored appli-

cation of Kröner-type models is the direct use of discrete grain

orientations and grain shape obtained from electron back-

scatter diffraction data. Such data allow the computation of

individual grain–matrix interactions where certain grain

orientations are preferentially surrounded by grains of

correlated orientations such as twins, coherent precipitates

and martensite. Here, the term ‘matrix’ is used for grains

directly surrounding the crystallite for which the Eshelby

tensor is calculated, thus implying that the elastic response of

the grain in the centre is different compared with uncorrelated

neighbours.

The upper/lower bound nature of elastic constant estimates

is rooted in the fact that orientation averages of single-crystal

stiffnesses and compliances generally lead to different results.

The use of the geometric average proposed by Matthies et al.

(2001) avoids this issue, thus allowing a single solution and the

interchangeable use of compliances and stiffnesses in the

partial (DECs) or complete (overall elastic constants) orien-

tation average. For DEC calculations some measure of grain–

matrix interaction is included but without considering grain-

shape effects. Elastic constants calculated using the geometric

average are close in value to the Hill average.

In contrast to overall elastic constants, the DECs retain

some dependence on crystal direction through their depen-

dence on the Miller indices (hkl). This has been utilized in the

formulation of the inverse problem in which the single-crystal

elastic constants (SCECs) are calculated from measured

DECs (Gnäupel-Herold et al., 1998; Howard & Kisi, 1999;

Matthies et al., 2001; Heldmann et al., 2019; Wang et al., 2016).

The method presents a viable way to determine alloy SCECs

for which large single crystals cannot be produced; however,

its scope and limitations have not been explored in depth yet.

2. Modelling

2.1. Numerical approach

2.1.1. Tensor reduction. The need to calculate tensor

rotations and the inverse of fourth-rank tensors is common-

place for all models discussed in the following. Moreover, the

geometric average discussed later requires the calculation of

matrix logarithms and matrix exponentials, both of which can

be obtained through Jacobi diagonalization of matrices. The

efficient reduction of a fourth-rank tensor with a maximum of

21 independent elements to a symmetric 6 � 6 matrix

described by Matthies & Humbert (1995) and Matthies et al.

(2001) allows the use of matrix inversion methods as well as

significant increases in computational speed. Stiffness and

compliance tensors have the twice-symmetric property

aijkl ¼ ajikl ¼ aklij: ð1Þ

The dependence of the tensor aijklðgÞ on its orientation is

expressed through the orientation matrix g,

aijklðgÞ ¼ g�1
im g�1

jn g�1
ko g�1

lp að0Þmnop;

i; j; k; l;m; n; o; p ¼ 1 . . . 3: ð2Þ

Here, gij are components of the rotation matrix g which relates

the grain orientation to the sample coordinate system KA and

að0Þmnop refers to the tensor in its principal axis representation,

which is tied to the crystallite’s unit cell (see Fig. 1). The

superscript ‘�1’ for tensors and matrices denotes the inverse

quantity. The rotations of tensors and matrices considered in
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Figure 1
A crystallite in the sample coordinate system.
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the following are defined using the coordinate system rela-

tionships shown in Fig. 2.

The rotation matrix g transforming KB!KA is given in

Bunge notation (Bunge, 1982) as

gð’1;�; ’2Þ ¼

cos ’1 cos ’2 sin ’1 cos ’2 sin ’2 sin �

� sin ’1 sin ’2 cos � þ cos ’1 sin ’2 cos �

� cos ’1 sin ’2 � sin ’1 sin ’2 cos’2 sin �

� sin’1 cos ’2 cos � þ cos ’1 cos’2 cos �

sin ’1 sin � � cos ’1 sin � cos �

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

ð3Þ

ð’1;�; ’2Þ are Euler angles which are defined by three

successive rotations of the orthonormalized crystal frame KB

(initially aligned with KA). First, KB is rotated about K
ð3Þ
A (Z

axis, normal direction – ND) by the angle ’1. The second

rotation � occurs about the X axis of the rotated frame ([100]

crystal direction, K
ð1Þ
B ) and the third rotation ’2 is performed

about the Z axis of the rotated frame ([001] crystal direction,

K
ð3Þ
B ). The successive multiplication of the three rotation

matrices leads to (3). Detailed expressions can be found in

chapter 1 of the textbook by Bunge (1982) which is available

in the public domain.

(1) enables the Voigt matrix notation with a contraction of

indices for a symmetric 9 � 9 scheme:

aijkl $ AV
IJ; ij$ I; kl$ J;

I; J ¼ 1 . . . 9; ð11$ 1Þ; ð22$ 2Þ; ð33$ 3Þ; ð23$ 4Þ;

ð31$ 5Þ; ð12$ 6Þ; ð32$ 7Þ; ð13$ 8Þ and ð21$ 9Þ: ð4Þ

The transformation (4) is followed by the T transformation

(Matthies et al., 2001; Matthies & Humbert, 1995) as the

double multiplication of the 9 � 9 matrix AV with the ortho-

gonal matrix T (with the additional property T = T�1):

T ¼

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0
ffiffi
1
2

p
0 0

ffiffi
1
2

p
0 0

0 0 0 0
ffiffi
1
2

p
0 0

ffiffi
1
2

p
0

0 0 0 0 0
ffiffi
1
2

p
0 0

ffiffi
1
2

p
0 0 0

ffiffi
1
2

p
0 0 �

ffiffi
1
2

p
0 0

0 0 0 0
ffiffi
1
2

p
0 0 �

ffiffi
1
2

p
0

0 0 0 0 0
ffiffi
1
2

p
0 0 �

ffiffi
1
2

p

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
: ð5Þ

The result of (5) is a symmetric 9 � 9 matrix where the only

non-zero elements are in the upper 6 � 6 block with I, J =

1 . . . 6, now written as the symmetric matrix AIJ with I, J =

1 . . . 6. Note that because T ¼ T�1 forward and backward T

transformations are identical. The thus-reduced single-crystal

stiffness tensor c! C r and compliance tensor s! S r fulfil the

condition

C r
¼ ðS r

Þ
�1: ð6Þ

The tensor rotation in equation (2) is replaced by

AIJðgÞ ¼ WðgÞIKWðgÞJLAKL; I; J;K;L ¼ 1 . . . 6: ð7Þ

AKL is the principal axis representation. Equation (7) is

derived by Matthies et al. (2001). A
ð0Þ
jk are the components of a

matrix-transformed stiffness or compliance tensor in principal

axis representation. The matrix WðgÞ with the property

WðgÞ
�1
¼ Wðg�1Þ is obtained from the rotation matrix

components gij [explicitly given in equation (3)] and T trans-

formed, leading to the expression
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Figure 2
Coordinate systems with angle conventions used in this work. KA is aligned with the principal directions of the sample; K is the laboratory or
measurement system for which the z direction K(3) is parallel to both the measurement direction m and the crystal direction h. KB is the orthonormal
system attached to the crystal unit cell. The rotation g1 transforms KA into K, and g2 transforms KB into K. On the right side the Euler angles ð’1;�; ’2Þ

with their respective rotation axes and order of rotations are indicated.
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WðgÞ ¼

g11g11 g21g21 g31g31

ffiffiffi
2
p

g21g31

ffiffiffi
2
p

g11g31

ffiffiffi
2
p

g11g21

g12g12 g22g22 g32g32

ffiffiffi
2
p

g22g32

ffiffiffi
2
p

g12g32

ffiffiffi
2
p

g12g22

g13g13 g23g23 g33g33

ffiffiffi
2
p

g23g33

ffiffiffi
2
p

g13g33

ffiffiffi
2
p

g13g23

ffiffiffi
2
p

g12g13

ffiffiffi
2
p

g22g23

ffiffiffi
2
p

g32g33 g22g33 g13g32 g12g23

þ g23g32 þ g12g33 þ g13g22

ffiffiffi
2
p

g11g13

ffiffiffi
2
p

g21g23

ffiffiffi
2
p

g31g33 g23g31 g11g33 g13g21

þ g21g33 þ g13g31 þ g11g23

ffiffiffi
2
p

g11g12

ffiffiffi
2
p

g21g22

ffiffiffi
2
p

g31g32 g21g32 g12g31 g11g22

þ g22g31 þ g11g32 þ g12g21

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

ð8Þ

The rotation in equation (7) requires 362 floating-point

operations compared with 38 in equation (2), which is bene-

ficial for the many subsequent cases where the rotation (7) has

to be performed multiple times.

Using Euler angles in Bunge notation (Bunge, 1982), the

average over all orientations is

AIJ ¼

R
A
ðgÞ
IJ f ðgÞ dgR
f ðgÞ dg

¼
1

8�2

Z�
0

sin � d�

Z2�
0

d’1

Z�
0

d’2WðgÞIKWðgÞJL

� AKL f ðgÞ

Z�
0

sin � d�

Z2�
0

d’1

Z�
0

d’2 f ðgÞ ¼
1

8�2
: ð9Þ

The matrix elements AKL are placeholders for single-crystal

compliances or stiffnesses. f ðgÞ is the value of the orientation

distribution function at (’1, �, ’2). Equation (9) allows the

separate calculation of the orientation average without

multiplying AKL for every orientation,

���IJKL ¼
1

8�2

Z�
0

sin � d�

Z2�
0

d’1

Z�
0

d’2WðgÞIKWðgÞJL f ðgÞ;

I; J;K;L ¼ 1 . . . 6: ð10Þ

The matrix � is a 6 � 6 � 6 � 6 construct where each element

�IJKL holds weighted averages of orientations g. Equation (9)

can be written as

�AAIJ ¼
���IJKLAKL; I; J;K;L ¼ 1 . . . 6: ð11Þ

2.1.2. Orientation distribution function. Calculations for

both aggregate constants and DECs require the availability of

the weight f ðgÞ of the grain orientation g. f ðgÞ is to be

understood as a multiple on random density, with 1 denoting

complete randomness. For numerical purposes it is assumed

that the orientation distribution function (ODF) is available as

a tabulation of equidistant {’1, �, ’2, weight} values on a

5� � 5� � 5� grid. Tabulated output in this format can be

produced by most texture analysis codes (Kallend et al., 1991;

Hielscher & Schaeben, 2008; Bunge, 1982) and it is the most

universal form of ODF representation. The retrieval of the

ODF value f(g) = f ð’1;�; ’2Þ for gð’1;�; ’2Þ can be reduced

to a look-up of values f ðgÞ in this grid, which is also the fastest

way in numerical terms. The ODF must be given sorted (first

for ’1, followed by � and then by ’2) and in fully expanded

form, i.e. ’1 = 0 . . . 360�, � = 0 . . . 180�, ’2 = 0 . . . 360�, and it is

organized in such a way that the ODF value for each of the

eight cell vertices (Fig. 3) can be retrieved through simple

calculations of the table index. For example, the table index l

of the first vertex on the lower-left corner of the cell in Fig. 3 is

given by

l ¼ iþ jþ k

i ¼ intð’1=5Þ � 37� 73; j ¼ intð�=5Þ � 73; k ¼ intð’2=5Þ:

ð12Þ

The function int() refers to the integer part. The other seven

indices can be obtained by adding 1 for the respective direc-

tion. The result of the single-index look-up table is a very fast

return in computational terms.

The ODF value f ð’1;�; ’2Þ can be obtained from the

following interpolations from the values at the vertices:

f ð1Þ’2
¼ f ’ðiÞ1 ;�

ðjÞ; ’ðkÞ2

� �

þ

f ’ðiÞ1 ;�
ðjÞ; ’ðkþ1Þ

2

� �
� f ’ðiÞ1 ;�

ðjÞ; ’ðkÞ2

� �
’2 � ’

ðkÞ
2

; ð13Þ

f ð2Þ’2
¼ f ’ðiÞ1 ;�

ðjþ1Þ; ’ðkÞ2

� �

þ

f ’ðiÞ1 ;�
ðjþ1Þ; ’ðkþ1Þ

2

� �
� f ’ðiÞ1 ;�

ðjþ1Þ; ’ðkÞ2

� �
’2 � ’

ðkÞ
2

; ð14Þ

f
ð1Þ
� ¼ f ð1Þ’2

þ
f
ð2Þ
’2
� f
ð1Þ
’2

���ðjÞ
; ð15Þ
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Figure 3
Location of a triplet ð’1;�; ’2Þ in Euler space, with ODF values given at
each vertex. The indices (i, j, k) are the tabular indices of f ð’ðiÞ1 ;�

ðjÞ; ’ðkÞ2 Þ.
Numbers in parentheses denote the number of the equation used for
interpolation at the given location.
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f ð3Þ’2
¼ f ’ðiþ1Þ

1 ;�ðjÞ; ’ðkÞ2

� �

þ

f ’ðiþ1Þ
1 ;�ðjÞ; ’ðkþ1Þ

2

� �
� f ’ðiþ1Þ

1 ;�ðjÞ; ’ðkÞ2

� �
’2 � ’

ðkÞ
2

; ð16Þ

f ð4Þ’2
¼ f ’ðiþ1Þ

1 ;�ðjþ1Þ; ’ðkÞ2

� �

þ

f ’ðiþ1Þ
1 ;�ðjþ1Þ; ’ðkþ1Þ

2

� �
� f ’ðiÞ1 ;�

ðjþ1Þ; ’ðkÞ2

� �
’2 � ’

ðkÞ
2

; ð17Þ

f
ð2Þ
� ¼ f ð3Þ’2

þ
f
ð4Þ
’2
� f
ð3Þ
’2

���ðjÞ
; ð18Þ

f ð’1;�; ’2Þ ¼ f
ð1Þ
� þ

f
ð2Þ
� � f

ð1Þ
�

’1 � ’
ðiÞ
1

: ð19Þ

2.2. Overall elastic constants

The overall elastic constants, also referred to as bulk or

aggregate elastic constants depending on which micro-

mechanical model is selected, in IsoDEC are calculated either

through minimization (self-consistent models) or through

orientation averaging (arithmetic or geometric).

2.2.1. Models by Voigt, Reuss and Hill. The upper and

lower bound models by Voigt and Reuss are based on

numerical integration over ODF-weighted grain orientations.

What constitutes upper or lower bounds is often illustrated

through Young’s modulus which is a unidirectional quantity.

For example, for isotropic bulk values of Young’s modulus E

one has EV >ER:
The calculation of the tensors is performed most efficiently

through equation (11) for each phase:

�SS
R

IJ ¼
PM

i

�i
���
ðiÞ

IJKLS
ðiÞ
KL; I; J;K;L ¼ 1 . . . 6; i ¼ 1 . . . M; ð20Þ

�CC
V

IJ ¼
PM

i

�i
���
ðiÞ

IJKLC
ðiÞ
KL; I; J;K;L ¼ 1 . . . 6; i ¼ 1 . . . M: ð21Þ

Here, (i) is the index for phase (i), �i is the given volume

fraction for that phase, ���
ðiÞ

IJKL contains the orientation average

for phase (i), M is the number of phases, and S
ðiÞ
KL and C

ðiÞ
KL are

the T-transformed single-crystal compliance and stiffness

tensors for phase (i).

There are two numerically slightly different arithmetic Hill

averages:

�SS
H;1

IJ ¼
1

2
�SS

R

IJ þ
�CC

V
� ��1

IJ

� �
; I; J;K;L ¼ 1 . . . 6; ð22Þ

�CC
H;2

� ��1

IJ
¼

1

2
�CC

V
þ �SS

R
� ��1

� �� ��1

IJ

; I; J;K;L ¼ 1 . . . 6:

ð23Þ

Note that, similarly to the arithmetic Hill averages, two

geometric averages can be formed by multiplying (20) with the

inverse of (21) and vice versa, after which the matrix square

root is taken.

2.2.2. Kröner-type models. Kröner (1958) derived two

expressions for the elastic polarization and the elastic

susceptibility that are used to obtain the upper and lower

bound estimates of the overall elastic constants. Kröner’s

fourth-rank tensor notation is replaced by T-transformed

6 � 6 matrices; orientation-dependent quantities are shown as

such.

Susceptibility T:

TIJðgÞ ¼ UIKðgÞS
bulk
KJ : ð24Þ

Polarization R:

RIJðgÞ ¼ CIJðgÞ � Cbulk
IJ þ CIKðgÞUKJðgÞ: ð25Þ

UIJðgÞ ¼ �V�1
IK ðgÞ CKJðgÞ � Cbulk

KJ

	 

;

VIJðgÞ ¼ CIJðgÞ � Cbulk
IJ þ Cbulk

KJ WKJ;
ð26Þ

where the tensors U and V are placeholders. The inverse

Eshelby tensor WIJ is obtained from the assumption that the

grain shape is that of an ellipsoid whose principal axes are

aligned with the principal axes of the sample. In the general

anisotropic case with a non-spherical grain shape, WIJ is

calculated by means of numerical integration, with the most

efficient methods discussed by Gavazzi & Lagoudas (1990). In

the hypothetical case of non-aligned reference frames, and for

anisotropic materials where the grain ellipsoid axes have some

common direction not parallel to the sample axis system, the

bulk tensor Cbulk
IJ must be rotated into the ellipsoid axis system

using (7). Kröner-type overall elastic constants are determined

in iterative schemes where the bulk tensors for compliance

and stiffness are refined with a gradient method until the

average elastic polarization and elastic susceptibility vanish

(Kröner, 1958). The first equation, often referred to as the

Kröner model, states that the average elastic polarization must

vanish; it is solved for each component of the bulk

compliances Sbulk
IJ : R

TIJðgÞf ðgÞ dg! 0: ð27Þ

The second equation (inverse Kröner model) describes the

elastic susceptibility, and it is solved for the bulk stiffnesses

Cbulk
KJ : R

RIJðgÞf ðgÞ dg! 0: ð28Þ

The conditions (27) and (28) apply to each component (IJ).

The two solutions are identical if there is no texture and the

grains are spherical. For triclinic sample symmetry all 21

independent components of the expressions under the integral

sign must approach zero for the correct solution of either Cbulk

or Sbulk. The more common case of isotropic symmetry

requires the iteration only over two independent components.

Kröner gave his solutions for a single-phase material, which, as

shown in the following, can be generalized without difficulty to

multiphase aggregates:
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Z PM
�¼1

��T�
IJðgÞf

ð�ÞðgÞ

" #
dg! 0; ð29Þ

Z PM
�¼1

��R�
IJðgÞf

ð�ÞðgÞ

" #
dg! 0: ð30Þ

The sums are extended over all M constituents with individual

phase fractions �� and individual ODFs f ð�ÞðgÞ. Note that the

inverse Eshelby tensor WIJ must be calculated for each grain

shape. If all phases have the same grain shape, then WIJ is the

same for all phases. The two solutions are identical if there is

no texture and the grains are spherical (Kneer, 1965).

In the case where both texture and non-spherical grains are

considered the solutions to (27) and (28) can diverge signifi-

cantly. It therefore makes sense to form the arithmetic average

of both in the same way as the widely used Hill average,

Cbulk ¼
1

2
½Cðr! 0Þ þ S�1ðt! 0Þ�: ð31Þ

2.2.3. Geometric average. The geometric average model

was developed specifically to address the questions

surrounding the different solutions from upper bound and

lower bound models in both Reuss/Voigt and the Kröner-type

models. The resulting expression provides a single solution

that satisfies the inversion relation

�CC
geo� ��1

¼ �SS
geo
: ð32Þ

Detailed explanations are given by Matthies et al. (2001), so

only the fundamentals will be outlined here. The general

expression for the geometric average of a square matrix A is

�AA
geo
¼
QN
i¼1

ðAiÞ
wi ¼

QN
i¼1

ð1=AiÞ
wi

� ��1

;wi ¼
f ðgiÞ�giPN
j¼1 f ðgjÞ�gj

: ð33Þ

The wi (
PN

i¼1 wi ¼ 1) are understood as weights or prob-

abilities of expression of a grain orientation gi; f ðgiÞ is the

average ODF value in the orientation interval �gi. Using the

properties of the exponential and logarithm, one obtains

�AA
geo
¼ exp ln

QN
i¼1

½AðgiÞ�
wi

� �
 �

¼ exp
PN
i¼1

ln WðgiÞA
ð0Þ WðgiÞ
	 
�1

n o
wi


 �
;

PN
i¼1

wi ¼ 1:

ð34Þ

The wi are given explicitly in (33). Using (10) and (11) toge-

ther with the logarithm property, the matrix exponential (34)

becomes

�AA
geo
¼ exp ��� ln Að0Þ

� �	 

; ð35Þ

ln Að0Þ
� �

¼ V ln A0ð Þ½ �V�1;

A0 ¼ V�1Að0ÞV:
ð36Þ

The matrix logarithm lnðAð0ÞÞ can be determined through

Jacobi diagonalization of Að0Þ which yields the matrix of

eigenvectors V. The natural logarithm is applied only to the

diagonal elements of A0. Operations such as the matrix

exponential and the matrix square root are calculated by

applying the exponential or square root to the diagonal

elements of A0 instead of the logarithm.

The geometric average for overall elastic constants

expressed as the complete orientation average is

�SS
geo
¼ exp ��� ln Sð0Þ

� �	 

¼ exp ��� ln Cð0Þ

� �	 
� ��1
: ð37Þ

As mentioned before, the inversion equality (32) holds, thus

yielding a unified solution. Nonetheless, the usefulness of (22),

(23), (31) and (37) is more rooted in mathematical reasons

than in their physical justification. Lastly, the generalization of

the geometric average to multiphase aggregates is straight-

forward:

�SS
geo
¼ exp

PN
i¼1

�i
���i ln S

ð0Þ
i

� �� �
: ð38Þ

N is the number of constituent phases, �i is the phase fraction

and ���i is the weighted orientation average for phase i.

2.3. Orientation-correlated grains and DECs

2.3.1. Fundamentals. The orientation selectivity of diffrac-

tion allows the measurement of elastic properties of grains

with a common lattice vector along a specific sample direction.

Elastic constants defined through this property are known as

DECs. The fraction of grains involved is generally very small

which, together with preferred orientation, may amplify their

sensitivity to grain shape, crystal direction (lattice vector) and

specimen direction. For a given lattice plane/reflection (hkl)

and a fixed orientation (’ ) of the lattice vector (also known

as the scattering vector) in the specimen coordinate system

[m || h || K(3), see Fig. 2], a DEC is defined for a specific lattice

research papers

J. Appl. Cryst. (2023). 56, 1658–1673 Thomas Gnaupel-Herold � Elastic behaviour of orientation-correlated grains 1663

Figure 4
Top: diffraction measurements perpendicular and parallel to the applied
stress. Bottom: DEC measurement in shear and the variation of the shear
DEC depending on the orientation of the measurement direction m with
respect to the shear direction SD (’ = 0! SD || m).
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plane (hkl) and a given specimen direction (’ ) as the slope

��/�� of lattice strain versus applied stress (Fig. 4). (hkl) are

the Miller indices of the lattice plane. For measurement

purposes, the applied stress should be uniaxial because only in

that case is the slope attributable to a single stress component.

Existing residual stresses do not change the slope; only the

intercept with the strain axis is affected.

One exception to the requirement of applied uniaxial stress

is the DEC measurement in pure shear (F12, F13, F23) since a

shear stress can be decomposed as the superposition of two

mutually perpendicular stress components, one compressive

and one tensile, with equal magnitude.

The principal use of DECs is in diffractive stress analysis;

however, the dependencies on elastic properties of both the

overall aggregate and the properties of the constituent crys-

tallites allow insights into elastic interactions not possible for

the aggregate as a whole.

The relationship between lattice strain and applied stress

can be expressed through a tensor where the direction m of

measured strain corresponds to the z direction of the

measurement frame K (Fig. 2, centre):

�ðhkl; ’;  Þ ¼ �33 ¼ a33klðhkl; ’;  Þ ���kl: ð39Þ

Note that here and in the following the summation over like

indices applies. a33klðhkl; ’;  Þ are model-dependent place-

holders for components of the orientation-dependent gener-

alized stiffness tensor and ���kl are the applied stresses. Also,

a33kl ¼ a33lk applies. In the general case of triclinic sample

symmetry for a given combination of (hkl) and sample

direction (’ ), there are six independent DECs. For isotropic

sample symmetry that reduces to two independent constants

a33kl which only depend on (hkl).

In the following, the fourth-rank tensor notation is main-

tained for greater clarity. In the literature (Dölle, 1979;

Behnken & Hauck, 1986; Hauk, 1999; Gnäupel-Herold et al.,

2012) a collapsed notation is often used which drops the ‘33’

indices:

�ðhkl; ’;  Þ ¼ F11 ���11 þ F22 ���22 þ F33 ���33 þ 2F12 ���12 þ 2F13 ���13

þ 2F23 ���23

Fkl ¼ a33kl hkl; ’;  ð Þ: ð40Þ

Fklðhkl; ’;  Þ are the DECs or stress factors. The subscripts in

Fkl denote the specimen direction; mixed ‘kl’ denote shears.

An alternative expression is based on the classic equation

for diffractive stress analysis on macroscopically isotropic

materials (Hauk, 1997):

�ðhkl; ’;  Þ ¼
1
2 s2ðhklÞ

	
ð ���11 cos2 ’þ ���22 sin2 ’þ ���12 sin 2’Þ sin2  

þ ð ���13 cos’þ ���23 sin ’Þ sin 2 þ ���33 cos2  



þ s1ðhklÞð ���11 þ ���22 þ ���33Þ: ð41Þ

The values 1
2 s2 and s1 depend only on (hkl). The relationship

between Fij from equation (40) and 1
2 s2 and s1 is obtained from

parsing (41):

Fij ¼

s1 0:5 1
2 s2 sin 2’ sin2  0:5 1

2 s2 cos ’ sin 2 

þ 1
2 s2 cos2 ’ sin2  

0:5 1
2 s2 sin 2’ sin2  s1 0:5 1

2 s2 sin ’ sin 2 

þ 1
2 s2 sin2 ’ sin2  

0:5 1
2 s2 cos ’ sin 2 0:5 1

2 s2 sin ’ sin 2 s1 þ
1
2 s2 cos2  

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

ð42Þ

Equation (41) cannot be used for anisotropic materials.

The overbar a33kl in (39) signifies the average over grain

orientations/rotations about the lattice plane normal h || m.

The average is calculated from

Fkl hkl; ’;  ð Þ ¼ a33kl ¼
mimj

R 2�

0 aijklðgÞf ðgÞ d�R 2�

0 f ðgÞ d�
;

i; j; k; l ¼ 1 . . . 3: ð43Þ

Note that the triple ‘hkl’ always denotes Miller indices; the use

of k and l in subscripts is unrelated. f ðgÞ was introduced earlier

as the weight factor (multiple of random density) or intensity

of the ODF for the orientation gð’1;�; ’2Þ. The angle � is the

rotation angle about the plane normal h || m (Fig. 2, left). The

measurement direction m in the sample coordinate system is

m ¼

cos ’ sin 
sin ’ sin 

cos 

0
@

1
A: ð44Þ

The angles ’ and  are defined in Fig. 2. The subscript indices

k and l relate to the sample directions in Fig. 4 in the way

demonstrated in Table 1.

The DEC models discussed in the following were selected

or developed because they are conceptually suitable for

including the effects of preferred orientation. The inclusion of

texture through the ODF is a problem of numeric program-

ming; therefore, all DEC models discussed here include the

ODF in the same manner through the weights f ðgÞ obtained as

described earlier.

First, a functional relationship between the direction m in

the sample coordinate system and the lattice plane normal h in
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Table 1
DEC notation with respect to directions of applied stress and directions
of measurements.

Direction of applied
stress

Measurement
direction (’, )

Stress factor
notation

Isotropic
symmetry

X, (’ = 0,  = 90) (’ = 0,  = 0) F11ð0; 0; hklÞ ��hkl=Ehkl

X, (’ = 0,  = 90) (’ = 0,  = 90) F11ð0; 90; hklÞ 1=Ehkl

X, (’ = 0,  = 90) (’ = 90,  = 90) F11ð90; 90; hklÞ ��hkl=Ehkl

Y, (’ = 90,  = 90) (’ = 90,  = 90) F22ð90; 90; hklÞ 1=Ehkl

Z, (’ = 0,  = 0) (’ = 0,  = 0) F33ð0; 0; hklÞ 1=Ehkl

XY, (’ = 0,  = 90) (’ = 45,  = 90) F12ð45; 90; hklÞ ð1þ �hklÞ=2Ehkl†
XZ, (’ = 0,  = 0) (’ = 0,  = 45) F13ð90; 45; hklÞ ð1þ �hklÞ=2Ehkl†
YZ, (’ = 90,  = 90) (’ = 90,  = 45) F23ð90; 45; hklÞ ð1þ �hklÞ=2Ehkl†

† For shear components the applied stress direction is the shear direction.
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the crystal coordinate system is needed to perform the inte-

gration in (43). While some crystal symmetries allow equation

(43) as a closed expression (Möller & Martin, 1939; Gnäupel-

Herold et al., 1998; Behnken & Hauck, 1986), the thus-derived

equations are very complex and offer no benefit either

numerically or for general understanding. The relationship

(43) is derived by considering the coordinate system of the

sample KA, the orthonormal crystal system KB and the inter-

mediate measurement system K. Its z direction K(3) is parallel

to the measurement direction m and the crystal direction h

linked through the rotations g1 and g2.

In Bunge notation (Bunge, 1982) the orientation of the

intermediate system K is expressed through the rotation

matrix gð’1;�; ’2Þ. Specifically, g in equation (3) is the rota-

tion KB!KA for grains where the lattice vector h is parallel to

the measurement direction m. Using the intermediate coor-

dinate system, K can be expressed as the product of two

rotations, g1 (KA!K) and g2 (KB!K) (Bunge, 1982):

g ’1;�; ’2ð Þ ¼ g2 �;�B;
�
2 � 	B

� �
g1 ’þ

�
2 ;  ; 0

� �
; ð45Þ

g1 ’þ
�
2 ;  ; 0

� �
¼

cos ’þ �
2

� �
sin ’þ �

2

� �
0

� sin ’þ �
2

� �
cos cos ’þ �

2

� �
cos sin 

sin ’þ �
2

� �
sin � cos ’þ �

2

� �
sin cos 

2
64

3
75; ð46Þ

g2 �;�B;
�
2 � 	B

� �
¼ . . . ¼

cos � cos BB sin � cos BB sin BB sin �B

� sin � sin BB cos �B þ cos � sin BB cos �B

� cos � sin BB � sin � sin BB cos BB sin �B

� sin � cos BB cos �B þ cos � cos BB cos �B

sin � sin �B � cos � sin �B cos �B

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

ð47Þ

Here, BB ¼
�
2 � 	B. The meaning of the angles  , ’, �, �B, 	B

is shown in Fig. 2. Note that the use of ’,  as spherical polar

angles in the sample system S is common throughout the

literature; Bunge used 
A and �A instead (
A = ’, �A =  ).

�B and 	B are spherical polar angles in the crystal ortho-

normal system K that determine the direction of the lattice

plane normal h. They are calculated with Miller indices (hkl)

for the general case of a triclinic crystal system with lattice

parameters a, b, c, �, 	, 
 as

�B ¼ arccos hz=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

x þ h2
y þ h2

z

q� �
; ð48aÞ

	B ¼ arccos hx=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

x þ h2
y

q� �
; ð48bÞ

h ¼

hx

hy

hz

0
B@

1
CA

¼

h=a

�h=a cot 
 þ k=ðb sin 
Þ

hbc sin � cos� cos 
�cos	
V sin� sin 
 þ kac sin 	 cos	 cos 
�cos �

V sin	 sin 
 þ
lab sin 


V

2
64

3
75:
ð49Þ

The volume of the unit cell is

V ¼ abc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2 cos� cos 	 cos 
 � cos2 �� cos2 	� cos2 


p
:

Equations (44)–(49) allow the evaluation of the integral in

(43) once aijklðgÞ is specified. The weight f(g) is determined

from the ODF by first explicitly multiplying (47) and (46), and

subsequently using inverse trigonometric functions to obtain

values for ’1;�; ’2 from the matrix g in (45) or (3). The

detailed procedure for obtaining f(g) from values ’1;�; ’2 is

explained in Section 2.1.2. The equations for obtaining

’1;�; ’2 from (3) are

’1 ¼ tan�1 g31

g32

; sin � 6¼ 0;

’2 ¼ tan�1 g13

g23

; sin � 6¼ 0;

� ¼ cos�1 g33:

ð50Þ

For the case of � ¼ 0, (50) cannot be used; instead ’1 is

calculated from

’1 ¼
1

2
tan�1 g12

g11

; ’2 ¼ �’1: ð51Þ

Once the triple ’1;�; ’2 has been determined, the numerical

value f ð’1;�; ’2Þ can be obtained from the look-up table as

described earlier.

The numerical advantages in performing the calculation

(43) in the notation of T-transformed [see (4) and (5)]

matrices have been discussed earlier; however, mixing the

two-index notation of Fkl and the components of the vector m

from (43) on one side with the matrix notation above on the

other side is confusing. Hence, the following expressions for

DECs will be derived in terms of fourth-rank tensors.

2.3.2. Reuss, Voigt and Hill models. The following equa-

tions are the basis for implementations of the most basic DEC

models. The Reuss assumption is that of homogeneous stress

in all grains (Möller & Martin, 1939), while the Voigt model is

the same as for the bulk material (Voigt, 1928) in assuming

homogeneous strain. The modified Voigt model (Murray &

Noyan, 1999) averages the orientation-dependent stiffnesses,

and then takes the inverse of the average. The Hill and

geometric Hill models are based on the arithmetic and

geometric averages of Reuss and Voigt.

Reuss:

aijklðgÞ ¼ sijklðgÞ ¼ g�1
im g�1

jn g�1
ko g�1

lp sijkl: ð52Þ

Voigt:
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aijkl ¼ �cc�1
ijkl: ð53Þ

Modified Voigt:

aijklðgÞ ¼ g�1
im g�1

jn g�1
ko g�1

lp cmnop

� ��1

ijkl
: ð54Þ

Hill:

aijklðgÞ ¼
1
2 sijklðgÞ þ �cc�1

ijkl

	 

: ð55Þ

Geometric Hill:

aijklðgÞ ¼ sðgÞ�cc�1
	 
�1=2

ijkl
: ð56Þ

cijkl and sijkl are the single-crystal stiffnesses and com-

pliances, respectively. The dependence of aijklðgÞ on (hkl) and

on the measurement direction is rooted in equations (45)–

(51). The Voigt model is independent of (hkl). The square root

in (56) implies a matrix square root and it requires the Voigt

matrix notation (4); the T transformation (5) is optional

because of the previously discussed advantages.

2.3.3. Kröner-type models. The expressions for upper and

lower bound single orientation grain compliances were given

by Kröner (1958).

Kröner:

aijklðgÞ ¼ Sijkl þ uijmnðgÞSmnkl: ð57Þ

Inverse Kröner:

aijklðgÞ ¼ cijklðgÞ þ cijmnðgÞumnklðgÞ
	 
�1

: ð58Þ

Average Kröner (DEC):

aijklðgÞ ¼

1
2 Sijkl þ uijmnðgÞSmnkl þ cijklðgÞ þ cijmnðgÞumnklðgÞ

	 
�1
n o

:

ð59Þ

Sijkl are the compliances of the aggregate (bulk). The

expression for the average was not given by Kröner, but its use

for the calculation of DECs is straightforward and analogous

to the Hill average. Note that (59) cannot be used to calculate

overall elastic constants. The two quantities uijklðgÞ and vijklðgÞ

are defined as

uijklðgÞ ¼ uijklðgÞ ¼ �v�1
ijmnðgÞ cmnklðgÞ � Cmnkl

	 

;

vijklðgÞ ¼ cijklðgÞ � Cijkl þ Cijmnwmnkl:
ð60Þ

cijklðgÞ are orientation-dependent single-crystal stiffnesses and

Cijkl are the bulk stiffnesses. The tensor wmnkl is the inverse

Eshelby tensor. The methods for the calculation of the

Eshelby tensor in the general, anisotropic case were outlined

by Eshelby (1957) and Gavazzi & Lagoudas (1990).

2.3.4. Geometric average. The geometric average

according to Matthies et al. (2001) is a construct based on a

goal to achieve the inversion equality (32). Note that matrix

exponentials, logarithms and matrix square roots are needed

in the following which require matrix notation. Equations

(33)–(38) apply, with the orientations g ¼ gð�Þ taken along the

rotation angle �. ��� in (37) is replaced by the path integral:

���
ð�Þ

IJKL ¼

R 2�

0 WðgÞIKWðgÞJLf ðgÞ d�R 2�

0 f ðgÞ d�
; I; J;K;L ¼ 1 . . . 6:

ð61Þ

� is the rotation angle about the scattering vector, and the

orientations gð’1;�; ’2Þ for a particular � are calculated using

(45)–(49). The a33kl from (43) in matrix notation are written as

(Matthies et al., 2001)

�AA
ð�Þ;geo

¼ exp �
ð�Þ

lnðSÞ
h i

: ð62Þ

The superscript � indicates the geometric average over the

orientations along the rotation angle; S are the single-crystal

compliances in matrix form. Equation (62) yields results that

generally differ by small percentages from Kröner-type

calculations, with (62) being faster computationally. Differ-

ences become larger if grain shapes deviate more strongly

from spheroid shapes since there is no mechanism for

including shape effects. In order to establish a relationship

with the bulk stiffness tensor Sbulk, and to allow calculations

for multiphase aggregates, Matthies et al. (2001) postulated

the following relationship as the matrix square root:

�AA
ð�;bulkÞ;geo

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�AA
ð�Þ;geo

S

q
: ð63Þ

The matrix square root is calculated in the same way as (36)

by taking the square root of the diagonal elements instead of

the logarithm. The stress factors from equation (43) are

obtained by transforming �AA
ð�;bulkÞ;geo

back to tensor form.

2.3.5. Other DEC models. Among the DEC models not

mentioned here are those of de Wit (1997), van Leeuwen et al.

(1999) and Baczmanski et al. (2006). The first is limited in

scope to cubic and hexagonal materials without preferred

orientation, while the others make assumptions about the

states of strain and stress in the crystallites that are only

suitable for thin films or X-ray measurements, thus limiting

their generality. Numerous other models can be constructed

through different assumptions about grain–matrix interaction

or boundary conditions; however, such models do not yield

results notably different from what was discussed in previous

sections.

2.3.6. DECs from electron backscatter diffraction data. A

given electron backscatter diffraction (EBSD) data set

contains grain orientations (Euler angles), grain centre-of-

gravity coordinates, ellipsoid axis parameters (grain shape

approximated as ellipse), ellipsoid tilt angle, grain area and the

number of neighbour grains. All models discussed previously

can operate on a discrete set of grains. Voigt/Reuss/Hill

models can utilize grain orientations and weights whereas

Kröner-type models and the geometric average are sensitive

to the overall elastic constants as well. Kröner-type models can

incorporate additional information through the ellipsoid axis

parameters, the orientation of the shape ellipse and the elastic

properties of the surrounding grains. Consider a grain oriented

for diffraction. The crystallites directly surrounding the

diffracting grain constitute the ‘local matrix’. In the presence

of macroscopic stresses strain fields arise if there are
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differences between the elastic constants of the grain and its

surroundings. Generally, the strain fields decay to small frac-

tions of their magnitude at the interface within one grain

diameter (Mura, 1987; Sato et al., 1979). Therefore, it can be

argued that the properties of the local matrix have a dominant

effect on the magnitude of the grain–matrix interaction

compared with properties of the overall aggregate. In the

absence of orientational correlations between neighbouring

grains, properties of the local matrix will on average be equal

to those of the overall matrix. Differences between a local

matrix and the general bulk can arise after processes such as

twinning or the formation of martensite inside grains. Other

possible reasons for a local matrix effect are bimodal textures

where two strong texture components pair two different

crystal directions in the same sample direction. Examples are

found in sheet metal forming textures of steel (Creuziger et al.,

2014) where 
-fibres [(111) || ND] sometimes occur together

with cube- and Goss-type textures [(100) || ND], thus leading

to grains with orientations (111) || ND preferentially

surrounding grains with orientations (100) || ND (Fig. 5).

In order to use any of the aforementioned models, the first

step is to identify grains in the EBSD data set that are oriented

for diffraction with (hkl) as the reflection and m (’ ) as the

measurement direction. It is understood that the reflection

(hkl) corresponds to a crystal direction h which is obtained

from (hkl) through (48a), (48b) and (49) for orthogonal crystal

systems or through the general formulas given by Gnäupel-

Herold et al. (2012). The three Euler angles are calculated

from equations (3)–(51), and using n discrete values for the

angle � by dividing the interval {0, 2�} for � into n =

round(2�/�) sub-intervals, where � is the allowable misor-

ientation angle. The meaning of � can be understood as a

mosaic or detector opening within which misaligned grains still

contribute to diffraction. For example, a value � = 5� leads to

n = 72 sets of Euler angles ð’1;�; ’2Þ
ð�Þ
i that are compatible

with the reflection (hkl) in the sample direction (’ ). The

procedure is repeated for m permutations of (hkl) compatible

with the crystal symmetry. For cubic symmetry there are m =

24 such permutations, resulting in 24 � 72 orientations that

are compared with all p orientations listed in the EBSD data

set. An EBSD grain is oriented for diffraction if the misor-

ientation angle is within �. The numerical demands are

considerable – the number of operations involving numerous

matrix multiplications is m � n � p. The misorientation angle

is defined as (Bunge, 1982)

gð’1;�; ’2Þ ¼ g2 ’
ðEBSDÞ
1 ;�ðEBSDÞ; ’ðEBSDÞ

2

� �
j

� g�1
1 ’ð�Þ1 ;�

ð�Þ; ’ð�Þ2

� �
i
;

� ¼ cos�1 g11 þ g22 þ g33 � 1

2


 �
:

ð64Þ

The orientation matrices g1 and g2 are calculated from (3). g�1
1

is the inverse of g1.

Once a grain oriented for diffraction is identified, the

neighbouring grains are found through the distance measure

d �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ

2
þ ðyi � yjÞ

2
q

i; j ¼ 1 . . . N: ð65Þ

Here, d is sensibly chosen as the grain diameter and N as the

number of grains. If no neighbour is found, d should be

increased incrementally until the number of neighbours noted

in the EBSD data set agrees with or exceeds the number of

matches from (65). Once the neighbouring grains are found,

the local matrix constants can be calculated through any of the

previously discussed methods.

2.4. Fitting of SCECs

As previously shown, DECs retain a damped form of single-

crystal elastic behaviour along the lattice vector determined

by (hkl). Therefore, the functional relationships between

DECs and SCECs allow the solution of the inverse problem in

which single-crystal constants are obtained from measured

DECs. Closed expressions relating SCECs and DECs can be

derived for higher crystal symmetries, but SCECs are gener-

ally best determined through the least-squares fitting of

SCECs using one of the models. Such a refinement is funda-

mentally no different from fitting a peak function to a

diffraction peak. The quantity to minimize is

�2
¼
XN

n¼1

F
ðm;nÞ
ij ðhklÞn; ’n;  n

	 

� F

ðc;nÞ
ij ðhklÞn; ’n;  n

	 

� F

ðm;nÞ
ij

� �
8<
:

9=
;

2

! min : ð66Þ

The sum can contain any combination of F11, F22, F33, F23, F13

and F12. The superscripts ‘m’ (measured) and ‘c’ (calculated)

indicate the n = 1 . . . N measured and calculated DECs, the

latter using any of the models discussed previously.

3. Results and calculations

3.1. Overall elastic constants

The calculation of overall elastic constants using the models

by Hill (Reuss and Voigt are implied) for multiphase materials

without texture is commonplace and numerically simple. Some

minor difficulty arises in the presence of preferred orientation

since now integration in Euler space (’1, �, ’2) is required. In

this work, the Kröner-type models are the most powerful

means of estimating overall elastic constants due to their built-

in grain–matrix interaction. As mentioned before, both the

Kröner model and the inverse represent bounds on the elastic
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Figure 5
Simulated grain structure in which (111)-oriented grains frequently
surround (100)-oriented grains.
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constants but both exhibit only small differences for spherical

grains. An example with calculations for a composite of

aluminium and silicon carbide is given here.

Fig. 6 indicates that the Hill average agrees well with the

measured values. The average Kröner agrees similarly well if

SiC fibres with an ellipsoidal shape [5, 1, 1] aligned along the

X direction are assumed (numbers in brackets denote ellipsoid

aspect ratios). It is also revealed that the grain shape plays a

significant role in Kröner-type models which are the only

models sensitive to the grain shape. Overall, for materials with

modest anisotropy the Hill averages, the average Kröner

model and the geometric average yield very similar values.

Larger differences between models are revealed in mixtures of

phases with large elastic disparities or materials with large

elastic anisotropy.

3.2. DECs from EBSD data

Data from EBSD contain orientations, shape parameters

and coordinates of individual grains, thus allowing the

extraction of information that can be used in Kröner-type

models. In order to investigate the effects of individual grain

neighbourhoods on the DECs, two equal-weight data sets

were generated using an ODF based on neutron diffraction

pole figures from a mild steel deformed to 20% plane strain

along the transverse direction. Calculated pole figures are

shown in Fig. 7. The granularity of the EBSD pole figure is the

result of the limited size of the data set (67 � 67 orientations).

In the first data set grain orientations and coordinates were

uncorrelated; the second data set was set up such that (h00)-

type grains oriented in the ND [(100) || (’ = 0,  = 0)] were

surrounded by grains with the orientation [(111) || (’ = 0,  =

0)] within a misorientation of 5�. In other words, grains from

the central pole of the (200) pole figure were only directly

surrounded by grains of the central pole of the (222) pole

figure. Note that ODFs and pole figures generated from the

correlated and uncorrelated data sets are identical. Grains

were arranged on a 67 � 67 grid. The misorientation-angle

distribution for both data sets is shown in Fig. 8.

The large spike at 0� is the result of (111) neighbours with

the same orientation due to the data set being organized with

all grains having the same size. On the level of small sub-

populations of grains oriented along ND = (’ = 0,  = 0) the

grain-to-neighbour misorientation shows appreciable differ-

ences between correlated and uncorrelated orientations only

for (200)- and (222)-oriented grains. In the correlated data set

the average grain–neighbour misorientation for (200) is 49.3�

which is within 5� of the ideal angle /([100][111]) with the

plane normal. Grains with (222) orientation in the correlated

data set show lower average grain–neighbour misorientation
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Figure 6
Top: comparison of predicted and measured Young’s modulus for an Al–
SiC composite using the Hill average, average Kröner and measured
values (reference A: Pal et al., 2009; reference B: Suryanarayana, 2011).
Bottom: the sensitivity of Kröner-type models with respect to both grain
shape and the direction of alignment of the grains. Experimental data
were not provided with information on grain shapes. The grain axes (a, b,
c) are aligned with sample directions (x, y, z) but are uncorrelated with
crystallographic axes.

Figure 7
Neutron diffraction pole figures for (222) and (200) reflections for a mild steel deformed to 20% plane strain along the transverse direction (TD). The
pole figures ‘(200), EBSD’ for correlated and uncorrelated data sets are identical. RD, rolling direction.
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because a large number of them are direct neighbours of other

(222) grains.

The calculation of DECs F11(0, 0) (= ��/E) shows that the

largest effect of correlated orientations is found for

F11(200, 0, 0) (see Fig. 9, the difference between symbols at � =

0). A smaller shift (compared with uncorrelated grains) is

found for F11(222, 0, 0) (Fig. 9 at � = 1/3), but both reflections

show the expected shift to directionally greater elastic stiffness

on account of preferential pairings with elastically hard (111)-

oriented grains.

Overall, all values F11(hkl, 0, 0) slightly increased compared

with the ODF-based calculation, which is not the case for

F11(hkl, 0, 90�) (= 1/E) (Fig. 9). The latter is specific for the

rolling direction (RD), and it is therefore not affected by the

(100)-to-(111) orientation correlation in the ND direction.

Moreover, the grain-based values are nearly identical to the

ODF-based values. This suggests that even without correlated

orientations there can be systematic shifts in DEC values for

those sample directions that coincide with strong preferred

grain orientations. Only such preferred orientations (= large

number of grains in this orientation) of the type (111) or (100)

will show this effect because the magnitude of the effect

depends on the difference with respect to the average orien-

tation. Elastic properties of high-multiplicity reflections are

very close to the isotropic average, meaning that grains

surrounded only by, for example, (211) || ND grains will not

behave very differently from those surrounded by random

orientations.

3.2.1. The role of texture. Preferred orientation affects

DECs to a much larger extent than bulk elastic properties. The

path integral in (43) averages over a fibre in Euler space, and it

can have an outsized influence in some combinations of

sample direction and reflection (hkl) even for weak textures.

One of the most prominent examples of highly nonlinear

directional effects of texture is the (211) reflection for ferritic

steels between the ND and in-plane directions (RD and TD –

transverse direction) (Barral et al., 1987; Brakman, 1983;
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Figure 8
Top: misorientation-angle distributions for an uncorrelated data set and a
data set where [(111) || (’ = 0,  = 0)] grains were paired with [(100) || (’
= 0,  = 0)]-oriented grains. Bottom: average misorientation between
grains reflecting in ND = (’ = 0,  = 0) and their direct neighbours. The
orientation parameter on the x axis is defined as
� ¼ ðh2k2 þ h2l2 þ k2l2Þ=ðh2 þ k2 þ l2Þ

2. � = 0 corresponds to (h00)-type
reflections while � = 1/3 corresponds to (hhh)-type reflections.

Figure 9
DECs F11(hkl, 0, 90�) (= 1/Ehkl) (top) and F11(hkl, 0, 0) (= ��hkl/Ehkl)
(bottom) for different reflections using correlated grains, uncorrelated
grains and the ODF (that was used to generate the EBSD data sets) for
quasi-continuum calculations. The ODF-based values for F11(hkl, 0, 90�)
are not shown but are nearly identical to the grain-based values. All
calculations used the average Kröner model.
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Gnäupel-Herold et al., 2012). A model’s ability to match the

observed shape of the directional dependence of the DECs

determines directly the accuracy of stress determination for

measurements performed in the same directions. In the same

way, model accuracy affects the fitting of SCECs. The

comparison in Fig. 10 shows the accuracy improvements made

through the development of the inverse Kröner model

compared with the widely used Reuss and Kröner models. The

material discussed in Section 3.2 was used. Nonetheless,

applied stress evaluation experiments on a similarly textured

material (Gnäupel-Herold et al., 2011) have shown that

improvements are still needed. Note that the stress factor

F22(211,90�, ) indicates an applied stress in the TD direction

and a  -tilt plane parallel to the ND–TD plane.

3.3. Fitting of SCECs

Fitting of SCECs using DEC data has recently received

increased attention for characterizing the elastic constants of

alloys where the constituent fractions are sufficiently large

that one may expect larger differences from data of pure

materials. The preference of specific models in the fitting of

SCECs has not yet been analysed in the literature. It is the

purpose of the following sections to discuss model suitability

and requirements of experimental data with respect to fitting

SCECs.

3.3.1. Suitability of the DEC model for fitting SCECs. The

most consequential question regarding the use of DEC model

fitting relates to aspects of model suitability for obtaining

SCECs. In order to analyse the roles of goodness of fit, fit

stability and the effect of uncertainties, and to facilitate a

broader model comparison, a synthetic data set was created by

calculating the DECs using the Kröner-type models, Reuss,

Voigt, Hill and the geometric average, and calculating the

average over all models. Input single-crystal values for

�-titanium were taken from Fisher & Renken (1964). Uncer-

tainties (1�) were estimated by taking the inverse of the

square root of the (hkl) multiplicity as a measure of intensity.

Each uncertainty was multiplied with a different random

number in the range [�2, 2] and added to the respective DEC

value, thus disturbing the model value in the range 2�. Input

and fitted DEC values are listed in Table 2.

Overall elastic constants in models with grain–matrix

interaction (Kröner-type and geometric average) were

updated at every iteration. Remarkably, Reuss, Kröner-type

models and Hill (arithmetic average) yield identical DEC

results and goodness-of-fit measures but different fitted single-

crystal values. The same procedure was also applied to

orthorhombic �-uranium, iron and titanium with different
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Figure 10
Comparison of measured DECs F22(211, 90�,  ) with model calculations.
The tilt plane in this measurement was between ND (’ = 90,  = 0) and
TD (’ = 90,  = 90). The measurements were performed on a tensile
specimen extracted from the 20% plane strain sample deformed in the
TD direction.

Table 2
Input values and fit results for a simulated data set for titanium.

(hkl) ’ (�)  (�)
F11(’,  )
(�TPa�1)

�
(�TPa�1)

Reuss, Kröner, inverse Kröner,
average Kröner, Hill (�TPa�1) Voigt

Geometric
average

Modified
Voigt

100 0 0 �2.825 0.218 �2.977 �2.759 �2.972 �2.967
100 0 90 9.492 0.218 9.117 8.721 9.108 9.099
002 0 0 �2.106 0.204 �2.145 �2.759 �2.145 �2.154
002 0 90 7.869 0.204 7.574 8.721 7.575 7.576
101 0 0 �2.881 0.100 �2.868 �2.759 �2.871 �2.873
101 0 90 9.047 0.100 8.926 8.721 8.931 8.938
102 0 0 �2.535 0.213 �2.639 �2.759 �2.638 �2.636
102 0 90 8.615 0.213 8.506 8.721 8.504 8.499
110 0 0 �3.124 0.167 �2.977 �2.759 �2.972 �2.967
110 0 90 9.006 0.167 9.117 8.721 9.108 9.099
103 0 0 �2.523 0.141 �2.463 �2.759 �2.457 �2.454
103 0 90 7.987 0.141 8.175 8.721 8.166 8.154
112 0 0 �2.981 0.123 �2.834 �2.759 �2.838 �2.839
112 0 90 8.725 0.123 8.866 8.721 8.871 8.878
201 0 0 �2.804 0.143 �2.949 �2.759 �2.948 �2.946
201 0 90 8.840 0.143 9.07 8.721 9.068 9.067
004 0 0 �2.009 0.289 �2.145 �2.759 �2.145 �2.154
004 0 90 7.368 0.289 7.574 8.721 7.575 7.576
202 0 0 �2.659 0.224 �2.868 �2.759 �2.871 �2.873
202 0 90 9.272 0.224 8.926 8.721 8.931 8.938

�2 21.07 130.30 20.82 20.62
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randomizations. In all cases the same outcome was found, with

Reuss, Kröner-type models and Hill yielding identical results

of fitted DECs, and similar results for the modified Voigt and

geometric average model. The values of �2 for modified Voigt

and the geometric average exhibit only slight differences from

Reuss, Kröner-type models and Hill. Table 2 allows the

conclusion that �2 and goodness-of-fit measures cannot be

used to judge the model quality for fitting unknown SCECs.

Note that fixing the overall elastic constants is equivalent to

imposing constraints for Kröner-type models and the

geometric average, therefore leading to a lower quality of fit.

Direct comparison with known SCECs can accomplish that;

however, the differentiation of DECs from different models

inside the range of achievable uncertainties is small, but it

becomes larger with increasing elastic anisotropy (Fig. 11).

Among the more readily available materials, copper (C11000

alloy, 99.9% pure) has the largest anisotropy. The comparison

of X-ray measurements with ODF-based model calculations of

F11(hkl, 0, 0) is shown in Fig. 12.

Fig. 12 illustrates the difficulties in evaluating model accu-

racy within the group of ‘averaging’ models (Hill, geometric
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Figure 11
Isotropic (no texture) DECs for iron [single-crystal values taken from Rotter & Smith (1966)] and 	-brass (Young & Bienenstock, 1971) using different
models. The value of a typical uncertainty for measured DECs 1� = 0.1 TPa�1 is shown. The orientation parameter on the x axis is defined as
� ¼ ðh2k2 þ h2l2 þ k2l2Þ=ðh2 þ k2 þ l2Þ

2.

Figure 12
DECs F11(hkl, 0, 0) for copper from measurements and model
calculations. The reflections measured are (400), (420) and (331). Lines
are drawn to indicate the upper/lower bounds in the isotropic case.
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average, Kröner), all of which describe the measurement

results similarly well.

Most materials with an elastic range sufficiently large

(’10�3) to be suitable for DEC measurements have degrees

of anisotropy that narrowly band together the Kröner-type

models, the geometric average and Hill. Moreover, for cubic

materials the largest differentiation between models occurs

for (h00)-type reflections while DECs for high-multiplicity

reflections (211) are experimentally nearly indistinguishable.

For iron this range is typically covered by uncertainties of

�0.2 TPa�1 or less, thus presenting difficulties for a conclusive

evaluation of the mentioned models. Owing to their upper/

lower bound properties, extremum values [(100)/(111) for

cubic materials] obtained from Reuss, Voigt and modified

Voigt are well outside experimentally established boundaries,

but DECs for high-multiplicity (hkl) reflect more of the elastic

behaviour of large fractions of weakly interacting grains and

thus they are closer in value to the other models.

There are various definitions of elastic anisotropy in the

literature (Ledbetter & Migliori, 2006; Ranganathan &

Ostoja-Starzewski, 2008); however, a universal measure which

is also more descriptive is introduced here as the ratio of

maximum and minimum single-crystal Young’s modulus. As

shown in Table 3, a material with an exceptionally large elastic

anisotropy such as 	-brass allows distinction between models

even for common high-multiplicity reflections, thus making

this material a highly suitable test case for model evaluation.

It can be concluded that for materials with low anisotropy

(similar to or lower than iron) the DEC models Kröner,

inverse and average Kröner, Hill, and geometric average give

results of similar quality with respect to goodness of fit. Fig. 12

suggests that a narrower model selection can be done once

DEC data on more anisotropic materials become available.

All DEC models can be used for the estimation of bulk elastic

constants (Young’s modulus, Poisson’s ratio) which are more

readily measurable; such data can be used to select DEC

models on the basis of how well bulk constants agree with

measurements.

3.3.2. Fitting sensitivity of SCECs with respect to (hkl) and
measurement direction. A question not previously considered

in the available literature on fitting SCECs (Gnäupel-Herold

et al., 1998; Howard & Kisi, 1999; Heldmann et al., 2019;

Matthies et al., 2001; Wang et al., 2016; Heldmann et al., 2022)

is whether there is an optimal strategy or DEC data set for

calculating the SCECs. Such parameters include sample

directions in which the Fij were measured, the reflections (hkl)

and whether to include overall elastic constants in the

refinement. The latter can be measured without diffraction as

bulk values for Young’s modulus and Poisson’s ratio, and such

values can be used as a constraint on fits of the SCECs. The

relationship between DECs, the measurement/stress direction,

the reflection (hkl) and the single-crystal moduli Sij can be

expressed through the partial derivatives |dF/dSij| which reflect

the sensitivity of the single-crystal constants to the respective

parameters.

Naturally, large sensitivities are beneficial for fitting the

single-crystal constants. Fig. 13 also shows that different

measurement directions are complementary and necessary in

the sense that Sij with ði 6¼ jÞ are most sensitive to measure-

ments perpendicular to the applied stress while Sii respond

best to the direction parallel to the stress direction. DEC

measurements parallel to the applied stress have the advantage
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Table 3
Minimum and maximum values of directional Young’s modulus for
various single crystals.

Values were obtained with IsoDEC using the Reuss model from E = 1/F11(hkl,
’ = 0,  = 90�) which delivers values for Ehkl identical to that of the single
crystal. Single-crystal data are taken from Simmons & Wang (1971) and Young
& Bienenstock (1971) for 	-brass.

Material Symmetry (hkl)min (hkl)max

Emin

(GPa)
Emax

(GPa) Emax/Emin

Aluminium Cubic (100) (111) 63.1 75.1 1.19
Copper Cubic (100) (111) 67.4 192.2 2.85
Iron Cubic (100) (111) 132.3 283.2 2.14
Nickel Cubic (100) (111) 136.3 303.9 2.23
	-Brass Cubic (100) (111) 29.1 194.6 6.68
Titanium Hexagonal (100) (001) 104.4 143.3 1.37
�-Aluminium

oxide
Trigonal (0 33 76) (002) 339.1 462.9 1.36

�-Uranium Orthorhombic (010) (011) 148.9 287.7 1.93

Figure 13
Sensitivities |dF(hkl)/dSij| for titanium in the Kröner model expressed as a heatmap with (a) the measurement direction parallel to the direction of
applied stress and (b) the measurement direction perpendicular to the applied stress; (c) the applied stress is a shear stress (�12) and F12 is measured in
the direction (’ = 45�,  = 90�).
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of smaller relative uncertainties because Fk 	 ð1=�ÞjF?j (�,

Poisson’s ratio), meaning that Fk is larger in magnitude by a

factor 3–5 while having the same uncertainties. Obtaining Sij

with ði 6¼ jÞ benefits from measurements with mixed (hkl) and

high multiplicities where the measurement direction is

perpendicular to the direction of the applied stress, while for

Sij ði ¼ jÞ both directions should be parallel for maximum

sensitivity |dF(hkl)/dSij|. On the other hand, measurements in

shear configurations do not provide any advantages over

uniaxial measurements; in contrast, sensitivities are generally

lower compared with measurements with applied uniaxial

stress. The condition |dF/dSij| < 1 holds for all models except

the Reuss model and the modified Voigt model which are

based on unbound, non-interacting grains, thus allowing

|dF(hkl)/dSij| = 1 for (hkl) where the normal vector of the

lattice plane is parallel to one of the Cartesian base axes of the

Sij [generally of the type (h00), (0k0) or (00l)].

4. Download

All calculations used in this work were performed using

IsoDEC. IsoDEC can be downloaded from https://github.com/

IsoDEC/IsoDEC as a zip archive.

5. Summary

IsoDEC presents a comprehensive set of methods for the

calculation of elastic properties with a focus on diffraction

while also including a facility for estimating overall (bulk)

elastic constants. Novel approaches are the overall elastic

constant calculation for multiphase aggregates with texture

and non-spherical grains, a framework for fitting SCECs using

measured DECs, and the calculation of DECs from EBSD

data based on individual grains oriented for diffraction and

the orientation of their direct neighbours. Grain-shape para-

meters can be utilized through the selection of suitable DEC

models. The Kröner average was introduced as a new DEC

model that plays the same role conceptually as the Hill

average of upper and lower bounds.
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